
J. Functional Programming 6 (2): 365-373, March 1996 © 1996 Cambridge University Press 365

FUNCTIONAL PEARL

Deduction for functional programmers

J. J. LEIFERt
Cambridge University Computing Laboratory, New Museums Site,

Pembroke Street, Cambridge CB2 3QG, UK

AND B. A. SUFRIN
Oxford University Programming Research Group, Wolfson Building,

Parks Road, Oxford 0X1 3QD, UK

1 Introduction

We investigate how formal logic can be introduced to students who are familiar
with functional programming in a way that takes advantage of their familiarity with
higher order functions, free data-types, homomorphisms, and induction principles.
In our experience, students often struggle with formal logic because they are unclear
about the distinction between theorems and metatheorems, the distinction between
syntactic constructors and semantic operators (and hence the meaning of models
and valuations), and the induction and recursion principles over proofs. Using a
functional programming notation as a metalanguage clears up these ambiguities
because of the imposed type discipline: theorems and metatheorems have distinctive
types, so are easily distinguished; when operators are overloaded (for example, when
they are used both in syntax and semantics) their different types can be written
out; and the recursion and induction principles over proofs become straightforward
because the data-type for proofs is explicitly described. As an added benefit, proofs
- naturally tree-structured - need not be arbitrarily linearized just so that natural
number recursion and induction can be performed on them.

We present a Gofer (Jones, 1991) functional program script that defines data-types
for representing well-formed formulas, proofs, and sequents in the propositional
logic. We then discuss the implementation of theorem and inference schemas and
illustrate the latter by denning a function that provides a constructive proof of the
Deduction Theorem. Finally, we compare our approach to prior work and conclude
by remarking on other research we have done in this area.

2 Wffs, proofs and sequents

In the Hilbert propositional logic, well-formed formulas (wffs) are constructed from
propositional variables, binary implication, and unary negation:

* Corresponding author. E-mail: James.LeiferScl.cam.ac.uk

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

366 J. J. Leifer and B. A. Sufrin

data Wff = Var String
I Not Wff
I Wff :=> Wff

A proof is formed from four axiom schemas (K, S, CP, Hyp) and application of
inference rule Modus Ponens (MP) to two subproofs:

data Prf = K
1 S
1 CP

1 Hyp
1 MP

Wff
Wff
Wff

Wff
Prf

Wff
Wff Wff

Wff

Prf

seq
seq
seq

seq
seq

seq

(K x
(S x

(CP x
(Hyp
(MP p

y)
y z)

y)
x)

q)

: Prf -> Seq
= [] : 1 -

= D :|-

= [] :|-
= [x] :|-
= ws 'union'

where

Sequents are pairs containing the hypotheses and the conclusion of a proof.
Function seq extracts a sequent from a proof by instantiating each schema with its
specified parameters (and, in the process reveals the definition of each axiom schema
and of Modus Ponens):

data Seq = [Wff] :I - Wff

x :=> (y :=> x)
(x :=> (y :=> z))
:=> ((x :=> y) :=> (x :=> z))
(Not x :=> Not y) :=> (y :=> x)
x
hs :I - y, if w == x
ws : I - w = seq p
hs :I - x :=> y = seq q

In the above, union calculates the union of two sets represented as lists; it is denned
below along with without - for removing a singleton from a list - and subset - for
comparing two lists by the set-inclusion relation:

xs 'union' ys = nub (xs ++ ys)
xs 'without' x = f i l t e r (/= x) xs
xs 'subset ' ys = a l l ('elem' ys) xs

Function con extracts the conclusion of a proof and hyps extracts the hypotheses:

con :: Prf -> Wff
con p = x where _ : I - x = seq p
hyps :: Prf -> [Wff]
hyps p = hs where hs : I - _ = seq p

3 Good proofs and theorem schemas

Function seq is partial because its MP case is not guarded exhaustively: seq causes
an error if applied to a proof involving an incorrect use of MP. We define a total
function gp - for 'good proof - that tests a proof for internal consistency by
checking that each instance of an application of MP involves two subproofs that

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

Functional pearl 367

correctly match:

gp : : Prf -> Bool
gp (MP p q) = gp p && gp q && islmp cq && cp == limp cq

gP -

gp p && gp q && islmp cq &i

where (cp, cq) = (con p, con q)

= True

islmp : : Wf f -> Bool

islmp (_ :=> _) = True

islmp _ = False

limp, rimp : : Wff -> Wff

limp (x :=> _) = x

rimp (_ :=> x) = x

Given this notion of a good proof, we introduce the total function just for
checking if a proof justifies a sequent, i.e. if the proof has the same conclusion but
possibly fewer hypotheses than the sequent:

just :: Prf -> Seq -> Bool
p ' j u s t ' (hs : | - x) = gp p && con p == x && hyps p 'subset ' hs

Then, the turnstile symbol V for making judgments about wffs is defined as follows:
For w: Wff, ws: [Wff],

ws h w <=> (ip.Prf . p 'just' ws :|- w)

As an example of a judgment made with h, consider the assertion

(Vx:Wff . [) h x:=>x).

It is justified constructively by writing a total function reflex satisfying the following
specification:

reflex : Wff -> Prf

reflex x 'just' [] : | - x : = > x

Here is such a function:

reflex :: Wff -> Prf

reflex x = MP (K x x) (MP (K x (x :=> x))

(S x (x :=> x) x))

Its proof of its correctness is simple (involving only normal order reductions) and is
constructed automatically by a system such as Jape or Boyer-Moore. Figure 1 shows
an example of the use of reflex and the pretty-printer showPrf: Prj'—* String whose
definition is omitted but is available with all the other definitions in this article from
Leifer (1995). Function showPrf linearizes a proof and decorates each of the nodes
with the sequent justified at that place in the proof. (The sequents are printed in a
concrete syntax similar to the standard notation used by logicians.)

Notice that 'I-', '<=>', 'V, and '3' are not constructors of objects of type Wff- as
one can see by looking at the definition of Wff- but are part of our specification

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

368 J. J. Leifer and B. A. Sufrin

0 |- x => (x => x) K x, x
1 | - x => ((x => x) => x) K x, x => x
2 | - (x => ((x => x) => x))

=> ((x => (x => x)) => (x => x)) S x, x => x, x
3 I- (x => (x => x)) => (x => x) MP 1, 2
4 I- x => x MP 0, 3

Fig. 1. showPrf (re f lex (Var "x")) .

language for functional programs. But gp and just are functional programs, not
predicates in the specification language, so, to be absolutely correct, we should
write, for example, gp p = True - where True is a constant of built-in Gofer type
Bool - instead of gp p, though this verges on the pedantic. Clearly, if gp or just were
not total, we would have to be much more careful.

Function reflex is an example of a theorem schema, which we define as a value of
type

zero or more
whose result satisfies gp. By this definition, K, S, CP, and Hyp are all theorem
schemas.

4 The deduction theorem and inference schemas

As seen in the definition of reflex (and in Figure 1) constructing proofs of properties
of :=> is tedious. The following inference rule, called the Deduction Theorem,
simplifies the process considerably. It is stated as follows:

ws 'union' [h] h w = > ws h h :=> w

(Note: '=> ' is the implication symbol of the specification language and has nothing
to do with :=> and objects of type Wff.) We will examine a stronger statement:

ws h w = > ws 'without' h \- h:=> w

which is justified constructively by writing a total function ded that satisfies the
following specification:

ded:Wff-> PrJ'-> Prf
gp p = > ded h p 'just' (hyps p 'without' h : I- h -.=> con p)

Given the task of constructing a proof of h~> w, this specification shows that it is
sufficient to construct a proof of w using h as an added hypothesis and then apply
ded - in general, a far easier task. As an example, the problem of constructing a
proof of x :=> ((x :=> y) :=> y) is reduced to constructing a simpler 3 line proof (see
Figure 3) followed by two applications of ded (see Figures 4 and 5), resulting in a
23 line proof.

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

Functional pearl 369

The following implementation of ded can, by structural induction on its second
argument, be proved to meet its specification:

ded : : Wf f -> Prf -> Prf
ded h (MP p q) = MP (ded h p) (MP (ded h q)

(S h (con p) (rimp (con q))))
ded h (Hyp x) = r e f l ex h, if h == x
ded h p = MP p (K (con p) h)

Function ded is an example of an inference schema — a value of type:

r : Wff-> >,Prf-+ > frf
zero or more one or more

whose specification is of the form:

(Vxo,...,xn:Wff,po...pm:Prf
\gpp0A--Agppm A G xo...xnpo...pm

.gp(r XQ...xnpo...pm)

)

where

G : Wff^> ^ Pr/-> > Bool

zero or more one or more
is the guard of the schema. Notice that by these definitions, MP is an inference
schema guarded by

G p q = islmp (con q) A con p = limp {con q)

5 The LCF approach

The approach to logic outlined here differs from that taken in Gordon (1979). In
LCF and its successors, wffs are represented by the abstract data type Form and
theorems by Thm. The latter's constructors are the axioms and inference rules of
the object logic. Proofs are not represented as data, but as programs that construct
values of type Thm. Axiom schemas are functions of type [Form] —* Thm, and proof
rules are functions of type [Thm] —> Thm. In LCF, the primitive Thm constructors
can only generate sound theorems (each causing an exception if used incorrectly)
with the advantage that if an object has type Thm, that is witness to its soundness. In
our system, the soundness of a proof must be checked by gp. However, the burden
of justifying that a derived inference rule meets its specification is equally hard in
both system: in ours one verifies that the rule generates objects satisfying gp and in
LCF one verifies that the rule calls each primitive (or derived) constructor correctly
so as not to cause an exception.

In contrast to our explicit representation of a proof tree, LCF style systems
represent the tree implicitly in the data used to implement the control structures of
the metalanguage. Meta-level reasoning in our framework is conducted by induction
over the structure of proofs, whereas in the LCF framework it is conducted by

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

370 J. J. Leifer and B. A. Sufrin

p , q , r : : Prf

p = MP (Hyp (Var "x"))

(Hyp (Var "x" :=> Var "y"))

q = ded (Var "x" :=> Var "y") p

r = ded (Var "x") q

Fig. 2. The definition of three proofs illustrating the use of ded. See Figures 3, 4, and 5.

0 x I- x Hyp x
1 x => y I - x => y Hyp x => y
2 x, x => y | - y MP 0, 1

Fig. 3. The output from showPrf p.

0 x | - x Hyp x
1 I- x => ((x => y) => x) K x, x => y
2 x I- (x => y) => x MP 0, 1
3 I- (x => y) => ((x => y) => (x => y)) K x => y, x => y

8 I - ((x => y) => (x => y))
=> (((x => y) => x) => ((x => y) => y))

S x => y, x, y
9 I- ((x => y) => x) => ((x => y) => y) MP 7, 8
10 x I- (x => y) => y MP 2, 9

Fig. 4. The output from showPrf q in abridged form.

0 | - x => (x => x) K x, x
1 I- x => ((x => x) => x) K x, x => x
2 I- (x => ((x => x) => x))

=> ((x => (x => x)) => (x => x)) S x, x => x, x
3 I- (x => (x => x)) => (x => x) MP 1, 2

20 I - (x => (((x => y) => x) => ((x => y) => y)))
=> ((x => ((x => y) => x)) => (x => ((x => y) => y)))

S x , (x => y) => x, (x => y) => y
21 I- (x => ((x => y) => x))

=> (x => ((x => y) => y)) MP 19, 20
22 I- x => ((x => y) => y) MP 10, 21

Fig. 5. The output from showPrf r in abridged form.

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

Functional pearl 371

induction on the computation that results in a theorem. Hence, recursion over the
structure of a proof is not possible in LCF: an inference rule - such as ded - that is
defined by case-analysis on the history of its argument proof cannot be written in
LCF except as a primitive constructor

In some of the successors of LCF, for example Isabelle (Paulson, 1994), it is
possible to formalise the rules of a logic in such a way that an explicit record of the
proof tree is made as a theorem is constructed.

6 Thoughts on ded and the teaching of logic

The presentation of ded offers several distinct advantages:

• Our method of defining ded as a functional program and then proving it
correct demonstrates a clear separation of concerns. The proof of correctness
is a simple result and is done easily by mechanical means (Leifer, 1995). Many
presentations of the Deduction Theorem in logic texts combine the definition
and the proof together (see, for example, Hamilton, 1993), and this leads to
a more complicated exposition than is provided by the five line definition of
ded.

• We have replaced the notion of induction and recursion on the length of a
proof as a textual object (as is done in Hamilton (1993), for example) with a
simple induction and recursion over proof trees, where the cases are dictated
directly by the type definition of Prf and no arbitrary linearization of the
proof is necessary.

• Students can experiment with and test ded on the computer. This provides
them with a concrete justification for the introduction of hypothetical proof
techniques because they can see directly the effect of applying ded to a
hypothetical proof in order to generate a purely axiomatic one, as is illustrated
in Figures 3, 4 and 5.

This last point leads to the observation that the unadulterated Hilbert logic is
almost impossible to use in practice for proving propositions since the only primitive
inference rule, MP, is not suited to 'backward' (i.e. goal-directed) proof. So, ded could
be considered a compiler from an enriched proof language (one that includes the
discharging of hypotheses) to a more basic one. An example of such an enriched
language is given in Figure 6 along with a function defined in terms of ded that
maps a hypothetical proof to an axiomatic one.

Following this example, wffs could be enriched to include constructors for con-
junction and disjunction. Proofs could be enriched to include many derived rules. A
comfortable deductive logic then is built up in which proofs are written at as high a
level as possible and can always be 'compiled' down to purely axiomatic ones. The
proof of correctness of this compiler is simply the collection of proofs that each
inference schema meets its specification.

The task of designing the pieces of the high-level proof system may be given to
students who can build the functional programs that accomplish the 'compiling'.

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

372 J. J. Leifer and B. A. Sufrin

d a t a HPrf = HK Wff Wff
I HS Wff Wff Wff
I HCP Wff Wff
I HMP HPrf HPrf
I HHyp Wff
I Ded Wff HPrf

pure : : HPrf -> Prf
pure (HK x y) = K x y
pure (HS x y z) = S x y z
pure (HCP x y) = CP x y
pure (HMP p q) = MP (pure p) (pure q)
pure (HHyp x) = Hyp x
pure (Ded h p) = ded h (pure p)

Fig. 6. Some preliminary definitions in the description of enriched, hypothetical proofs.

They can have the fun of seeing the compiler translate a high-level proof to a lower
level one and then of comparing the lengths of the two.

To accommodate this plan, we have built data types for representing natural
deduction-style proofs; translators from proofs in such an enriched proof system
to pure fV/-style proofs; unification support functions for generating tactics from
inference rules; and tactic combinator functions ftacticals'). With these, the first
author has implemented an automatic theorem prover (as the composition of several
simple inference tactics) whose domain is exactly the tautological propositions, thus
providing a constructive proof of completeness. In collaboration with C. A. R. Hoare,
he has shown as a corollary to the completeness proof that in the presence of ded
all uniform inference rules (i.e. rules that respect substitution of variables) have a
normal form that involves no explicit recursion on the structure of their arguments,
thus justifying that the logic described by systems such as LCF is not weakened
by the restriction that proofs are represented as opaque objects with no primitive
destructors.

Our work on ded has led us to believe that computing science - and, in particular,
functional programming - can offer its students new ways of learning and mastering
formal logic. (This thought seems to have inspired much of the excellent presentation
in Ben-Ari, 1993.) The program script in this article, along with additional material,
is available in Leifer (1995), and we encourage you to experiment with and enhance
our results.

Acknowledgements

We wish to thank the following for their detailed comments and criticisms on the
drafts of this paper: R. S. Bird, E. W. Dijkstra (in conjunction with the Austin
Tuesday Afternoon Club), D. Gries, C. A. R. Hoare, J. M. Spivey, and P. Wadler.
The paper has benefited greatly from their advice and aid.

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

Functional pearl 373

References

Ben-Ari, M. (1993) Mathematical Logic for Computer Science. Prentice Hall.
Gordon, M. J. C, Milner, A. J. R. G. and Wadsworth, C. P. (1979) Edinburgh LCF: Lecture

Notes in Computer Science 78. Springer-Verlag.
Hamilton, A. G. (1993) Logic for Mathematicians. Cambridge University Press.
Jones, M. P. (1991) An Introduction to Gofer. Available, with compiler source code, via

anonymous ftp from nebula. cs. yale. edu.
Leifer, J. (1995) Formal Logic via Function Programming. Available via anonymous ftp from

ftp.comlab.ox.ac.uk in pub/Packages/JAPE/LogicViaFP/.
Paulson, L. C. (1994) Introduction to Isabelle. Computer Laboratory, Cambridge University.

https://doi.org/10.1017/S0956796800001726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001726

