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Abstract

Quintic B-spline collocation schemes for numerical solution of the regularized long
wave (RLW) equation have been proposed. The schemes are based on the Crank–
Nicolson formulation for time integration and quintic B-spline functions for space
integration. The quintic B-spline collocation method over finite intervals is also applied
to the time-split RLW equation and space-split RLW equation. After stability analysis
is applied to all the schemes, the results of the three algorithms are compared by
studying the propagation of the solitary wave, interaction of two solitary waves and
wave undulation.
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1. Introduction

The present study is concerned with numerical solution of the regularized long
wave (RLW) equation, which was first derived by Peregrine to define undular bore
development [15]. Since then, this equation has been used to model a large number of
problems arising in various areas of applied science. The analytical solutions of the
RLW equation together with some initial and boundary conditions are shown in [3, 5].
Thus numerical solutions of this equation are of interest for various boundary and
initial conditions. Well-known numerical techniques, including finite difference, finite
element and Fourier pseudospectral methods, are applied to obtain numerical solutions
of the RLW equation.

The B-spline functions are the basis for piecewise polynomials and are used to
construct approximate solutions in the finite element techniques. So approximation
solutions of the differential equations with B-splines can be obtained by the method of
weighted residuals, of which the Galerkin and collocation methods are particular cases.
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e-mail: bsaka@ogu.edu.tr.
c© Australian Mathematical Society 2008, Serial-fee code 0334-2700/08

389

https://doi.org/10.1017/S1446181108000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000072
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The Galerkin method is a widely used method for B-spline approximation. This
method provides very smooth solutions for numerical solutions of partial differential
equations. For example, Gardner et al. [11] proposed a Petrov–Galerkin quintic B-
spline finite element method to obtain the numerical solution of the RLW equation.
Burgers’ equation is also numerically solved by the Galerkin method using quintic
B-splines as both shape and weight functions over the finite elements [7]. The finite
element solution using quadratic B-splines as the element and the weight functions
for the space split EW equation is set up in [19]. But application of the Galerkin
method accompanied by higher-degree polynomials results in a higher-degree matrix
system. That brings a burden for numerical analysis, and the computational cost of
the matrix system increases in the evaluation of both linear and nonlinear systems.
On the other hand, the collocation method together with B-spline approximations
represents an economical alternative since it only requires the evaluation of the
unknown parameters at the grid points. A variant of this method has been successfully
applied to solve differential equations [6, 8, 9, 12, 17, 20, 21, 23]. As is known,
the success of the B-spline collocation method is dependent on the choice of B-
spline basis. Quintic B-splines bases have been used to build up the approximation
solutions for some nonlinear differential equations. For instance, a numerical solution
of the Korteweg–de Vries (KdV) equation was obtained using collocation of quintic
B-spline interpolation functions over finite elements in [10]. An algorithm based on
the collocation method with quintic B-spline finite elements was set up to simulate the
solutions of the KdV, Burgers’ and KdVB equations [23].

The RLW equation has been used as a test equation for numerical methods since
this equation can be solved analytically for some boundary and initial conditions. So
a comparison between analytical and numerical solutions of the RLW equation can be
carried out. Various forms of both B-spline collocation and B-spline Galerkin methods
have been constructed in obtaining the numerical solutions of the RLW equation
[2, 4, 6, 8, 9, 12, 13, 17, 20, 21]. A numerical solution of the RLW equation has also
been found by applying a splitting-up scheme, which is used to be able to construct
the approximating solution with lower-degree piecewise polynomials, and both the
applicability and the efficiency of the splitting of the differential equations are sought
for numerical methods [6].

The organization of this paper is as follows. In Section 2.1, a quintic B-spline
finite element algorithm is designed for the numerical solution of the RLW equation.
In Section 2.2, the same method is applied to the time-split RLW equation. Lastly,
in Section 2.3 the RLW equation is split into the first-order coupled matrix system
by letting V (x, t) = −Ux (x, t). The results of the three algorithms are compared in
Section 3 using three test problems. The efficiencies of both time and space splitting
techniques together with quintic B-splines are sought. In addition, some of the earlier
results are also compared with those of the present algorithms.

The RLW equation is given by

Ut + Ux + εUUx − µUxxt = 0, (1.1)
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where ε and µ are positive parameters, and x and t denote differentiation. Boundary
conditions are chosen from

U (a, t) = β1,

Ux (a, t) = 0,

U (b, t) = β2,

Ux (b, t) = 0,
(1.2)

and the initial condition is

U (x, 0) = f (x), a ≤ x ≤ b, (1.3)

where f (x) will be defined in the later sections depending on the test problems.
The existence and uniqueness properties of the problem given by (1.1)–(1.3) were
discussed by Bona and Bryant [5].

We consider a uniformly spatially distributed set of nodes

a = x0 < x1 < · · · < xN = b

over the solution domain a ≤ x ≤ b with h = xm − xm−1, m = 1, . . . , N .

2. Numerical method

2.1. Quintic B-spline collocation method I (QBCM1) At the nodes xm the quintic
B-splines Qm, m = −2, . . . , N + 2, are defined by

Qm(x)

=
1

h5



(x − xm−3)
5, [xm−3, xm−2],

(x − xm−3)
5
− 6(x − xm−2)

5, [xm−2, xm−1],

(x − xm−3)
5
− 6(x − xm−2)

5
+ 15(x − xm−1)

5, [xm−1, xm],

(x − xm−3)
5
− 6(x − xm−2)

5
+ 15(x − xm−1)

5

− 20(x − xm)5, [xm, xm+1],

(x − xm−3)
5
− 6(x − xm−2)

5
+ 15(x − xm−1)

5

− 20(x − xm)5
+ 15(x − xm+1)

5, [xm+1, xm+2],

(x − xm−3)
5
− 6(x − xm−2)

5
+ 15(x − xm−1)

5

− 20(x − xm)5
+ 15(x − xm+1)

5

− 6(x − xm+2)
5, [xm+2, xm+3],

0, otherwise,

(2.1)

and the set of those B-splines defines the form of a basis over the interval [a, b]

(see [16]). A numerical solution of (1.1) will be derived by using the collocation
method based on quintic B-splines. So a global approximation solution UN (x, t) to
the analytical solution U (x, t) will be sought in the form of an expansion of B-splines,

UN (x, t) =

N+2∑
m=−2

δm(t)Qm(x), (2.2)
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where Qm are the quintic B-splines and δm are time-dependent parameters to be
determined from the quintic B-spline collocation form of the RLW equation.

By using the approximation (2.2) and quintic B-splines (2.1), the nodal value U and
its first and second derivatives U ′ and U ′′ at the nodes xi are obtained in terms of the
element parameters as

Um = U (xm) = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

U ′
m = U ′(xm) =

5
h

(δm+2 + 10δm+1 − 10δm−1 − δm−2),

U ′′
m = U ′′(xm) =

20

h2 (δm+2 + 2δm+1 − 6δm + 2δm−1 + δm−2),

(2.3)

where ′ and ′′ denote first and second differentiation with respect to x respectively.

Collocation points are selected to coincide with nodes. Substituting (2.3) into (1.1)
leads to the set of the coupled first-order ordinary differential equations

δ̊m−2 + 26δ̊m−1 + 66δ̊m + 26δ̊m+1 + δ̊m+2

+
5(1 + εzm)

h
(δm+2 + 10δm+1 − 10δm−1 − δm−2)

−
20µ

h2 (δ̊m+2 + 2δ̊m+1 − 6δ̊m + 2δ̊m−1 + δ̊m−2) = 0, (2.4)

where ◦ denotes derivative with respect to time and

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2.

Time discretization of (2.4) is carried out by interpolating time parameters δm
and their time derivatives δ̊m by using the Crank–Nicolson rule for δm and the usual
forward difference rule for δ̊m respectively between two time levels n and n + 1:

δm =
δn+1

m + δn
m

2
, δ̊m =

δn+1
m − δn

m

1t
. (2.5)

Thus a recurrence relationship is obtained between two successive time levels n
and n + 1 which relates two successive unknown parameters δn+1

i and δn
i (where

i = m − 2, . . . , m + 2) as

αm1δ
n+1
m−2 + αm2δ

n+1
m−1 + αm3δ

n+1
m + αm4δ

n+1
m+1 + αm5δ

n+1
m+2

= αm5δ
n
m−2 + αm4δ

n
m−1 + αm3δ

n
m + αm2δ

n
m+1 + αm1δ

n
m+2, (2.6)
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where

αm1 = 2h2
− 5h1t (1 + εzm) − 40µ,

αm2 = 52h2
− 50h1t (1 + εzm) − 80µ,

αm3 = 132h2
+ 240µ,

αm4 = 52h2
+ 50h1t (1 + εzm) − 80µ,

αm5 = 2h2
+ 5h1t (1 + εzm) − 40µ, m = 0, 1, . . . , N .

(2.7)

The above system consists of the N + 1 equations in the N + 5 unknown
parameters. The elimination of parameters δn+1

−2 , δn+1
−1 , δn+1

N+1, δn+1
N+2 from

the system (2.6) using the boundary conditions U (a, t) = β1, U (b, t) = β2 and
Ux (a, t) = Ux (b, t) = 0 enables one to get a solvable (N + 1) × (N + 1) matrix
system. The resulting pentadiagonal matrix system is easily and efficiently solved
with a variant of the Thomas algorithms [18].

To initiate element parameters δn
m , we must find the initial unknown parameters δ0

m
by means of the following requirements:

(UN )x (a, 0) = δ0
−2 + 10δ0

−1 − 10δ0
1 − δ0

2 = 0,

(UN )xx (a, 0) = δ0
−2 + 2δ0

−1 − 6δ0
0 + 2δ0

1 + δ0
2 = 0,

UN (x, 0) = δ0
m−2 + 26δ0

m−1 + 66δ0
m + 26δ0

m+1 + δ0
m+2 = U (xm, 0),

(UN )x (b, 0) = δ0
N+2 + 10δ0

N+1 − 10δ0
N−1 − δ0

N−2 = 0,

(UN )xx (b, 0) = δ0
N+2 + 2δ0

N+1 − 6δ0
N + 2δ0

N−1 + δ0
N−2 = 0.

(2.8)

This also allows us to determine the solution of the pentadiagonal matrix equation with
the parameters δ0

m , m = −2, . . . , N + 2.
To deal with nonlinearity in (2.6), the time parameters δm in zm are replaced by δn

m
for the time level, so the linearized algebraic system (2.6) is used together with the
following iteration process to get a better result:

(1) calculate δn+1 using iteration procedure (2.6) by employing the Thomas
algorithms; and

(2) obtain a new approximation to (δ∗)n+1 by the procedure

(δ∗)n+1
= δn

+
1
2 (δn+1

− δn). (2.9)

Before moving the calculation of the next time step approximation for the time
parameters, iteration should be repeated two or three times.

To investigate the stability of the difference scheme (2.6), we apply von Neumann
stability analysis. We assume that the quantity U in the nonlinear term UUx is
locally constant p for the RLW equation. This selection is the same as assuming
that the corresponding values of zm are also constant and equal to p. Let us
consider a particular solution, δn

m = qneimϕ , where i is an imaginary unit, ϕ is an
arbitrary real number, and q = q(ϕ) is a complex number whose value must be found.

https://doi.org/10.1017/S1446181108000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000072
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After substituting the Fourier mode δn
m = qneimϕ into the linearized form of the

difference equation, we have the growth factor

q =
a + ib

a − ib
,

where

a = (αm1 + αm5) cos 2ϕ + (αm2 + αm4) cos ϕ + αm3,

b = (αm1 − αm5) sin 2ϕ + (αm2 − αm4) sin ϕ.

Since the magnitude of the growth factor is |q| = 1, the difference scheme (2.6) is
unconditionally stable.

2.2. Quintic B-spline collocation method II (QBCM2) The time-split RLW
equation is

(U − µUxx )t + 2εUUx = 0, (2.10)

(U − µUxx )t + 2Ux = 0. (2.11)

If we identify the collocation points with nodes xm and substitute the nodal
values Um and their first two successive derivatives U ′

m and U ′′
m into (2.10) and (2.11),

we have the following coupled matrix system of first-order ordinary differential
equations:

δ̊m−2 + 26δ̊m−1 + 66δ̊m + 26δ̊m+1 + δ̊m+2

−
20µ

h2 (δ̊m+2 + 2δ̊m+1 − 6δ̊m + 2δ̊m−1 + δ̊m−2)

+
10εzm

h
(δm+2 + 10δm+1 − 10δm−1 − δm−2) = 0, (2.12)

δ̊m−2 + 26δ̊m−1 + 66δ̊m + 26δ̊m+1 + δ̊m+2

−
20µ

h2 (δ̊m+2 + 2δ̊m+1 − 6δ̊m + 2δ̊m−1 + δ̊m−2)

+
10
h

(δm+2 + 10δm+1 − 10δm−1 − δm−2) = 0, (2.13)

where again ◦ denotes derivative with respect to time and

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2.

With a Crank–Nicolson formulation in time for the unknown parameters δm and the
usual finite difference scheme for their time derivatives δ̊m ,

δm =
δn

m + δ
n+1/2
m

2
, δ̊m =

δ
n+1/2
m − δn

m

1t
, (2.14)
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we obtain an equation between two time levels, for the unknown parameters of (2.12)
relating time levels n and n + 1/2, δn

i to δ
n+1/2
i (i = m − 2, . . . , m + 2),

α1δ
n+1/2
m−2 + α2δ

n+1/2
m−1 + α3δ

n+1/2
m + α4δ

n+1/2
m+1 + α5δ

n+1/2
m+2

= α5δ
n
m−2 + α4δ

n
m−1 + α3δ

n
m + α2δ

n
m+1 + α1δ

n
m+2, (2.15)

where

α1 = 2h2
− 5h1tεzm − 40µ,

α2 = 52h2
− 50h1tεzm − 80µ,

α3 = 132h2
+ 240µ,

α4 = 52h2
+ 50h1tεzm − 80µ,

α5 = 2h2
+ 5h1tεzm − 40µ.

Similarly, using the Crank–Nicolson approach for parameters δm and the finite
difference scheme for their time derivatives δ̊m respectively between two time levels
n + 1/2 and n + 1 in (2.13),

δm =
δn+1

m + δ
n+1/2
m

2
, δ̊m =

δn+1
m − δ

n+1/2
m

1t
, (2.16)

we have an equation relating δ
n+1/2
i to δn+1

i (i = m − 2, . . . , m + 2),

α6δ
n+1
m−2 + α7δ

n+1
m−1 + α8δ

n+1
m + α9δ

n+1
m+1 + α10δ

n+1
m+2

= α10δ
n+1/2
m−2 + α9δ

n+1/2
m−1 + α8δ

n+1/2
m + α7δ

n+1/2
m+1 + α6δ

n+1/2
m+2 , (2.17)

where

α6 = 2h2
− 5h1t − 40µ,

α7 = 52h2
− 50h1t − 80µ,

α8 = 132h2
+ 240µ,

α9 = 52h2
+ 50h1t − 80µ,

α10 = 2h2
+ 5h1t − 40µ.

Equations (2.15) and (2.17) constitute a multistep finite difference scheme, for
solving the RLW equation, having N + 1 equations containing N + 5 unknown
parameters. We obtain a unique solution by eliminating the parameters δi

−2,
δi
−1, δi

N+1, δi
N+2 (i = n + 1/2, n + 1) from (2.15) and (2.17) after imposition of

the boundary conditions U (a, t) = β1, U (b, t) = β2 and Ux (a, t) = Ux (b, t) = 0.
Boundary conditions U (a, t) = β1 and Ux (a, t) = 0 are used to eliminate δi

−2 and
δi
−1, while the conditions U (b, t) = β1 and Ux (b, t) = 0 are used to eliminate δi

N+1
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and δi
N+2, so that this solvable five-banded pentadiagonal matrix system is solved

by way of the Thomas algorithms. Once we find an approximation δ0
m , the next

time solution parameters δn+1
m having been found, parameters δ

n+1/2
m from (2.15) are

computed using (2.17).
To handle the nonlinearity in (2.15), the corrector procedure

(δ∗)n+1/2
= δn

+
1
2 (δn+1/2

− δn) (2.18)

is used. To start the iteration for calculating the unknown parameters, the initial
unknown parameters δ0

m must be determined from the initial and boundary conditions
to satisfy the requirements given in (2.8).

To investigate the stability of the difference equation (2.15), we apply the von
Neumann stability method after linearizing by taking U in the nonlinear term UUx
as a local constant p. Thus the term zm in the difference equation corresponds to
constant p. Substitute δn

m = qneimϕ in (2.15), then

q =
a + ib

a − ib
,

where the quantities q , ϕ have the same meaning as in previous considerations and

a = (α1 + α5) cos 2ϕ + (α2 + α4) cos ϕ + α3,

b = (α1 − α5) sin 2ϕ + (α2 − α4) sin ϕ.

Von Neumann’s condition |q| ≤ 1 is satisfied so that the difference scheme is
unconditionally stable. With the similar calculation the difference equation (2.17) is
also unconditionally stable.

2.3. Quintic B-spline collocation method III (QBCM3) In this section, the quintic
B-spline collocation method discussed above is employed to obtain the numerical
solution of the space-split RLW equation. If we set V (x, t) = −Ux (x, t) in the RLW
equation, it becomes

Ut − (1 + εU )V + µVxt = 0,

V + Ux = 0.
(2.19)

The boundary and initial conditions can be rewritten as

U (a, t) = β1, U (b, t) = β2, V (a, t) = 0, V (b, t) = 0,

Ux (a, t) = 0, Ux (b, t) = 0, Vx (a, t) = 0, Vx (b, t) = 0,
(2.20)

U (x, 0) = f (x), V (x, 0) = − f ′(x), a ≤ x ≤ b. (2.21)

Expressing U (x, t) and V (x, t) by using quintic B-splines, Qm(x) and the time-
dependent parameters δm and σm are given as

UN (x, t) =

N+2∑
m=−2

δm(t)Qm(x), VN (x, t) =

N+2∑
m=−2

σm(t)Qm(x). (2.22)
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The nodal variables Um , Vm and their space derivatives U ′
m , V ′

m can be calculated
by using expressions (2.22) and the quintic B-splines (2.1) as

Um = U (xm) = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

U ′
m = U ′(xm) =

5
h

(δm+2 + 10δm+1 − 10δm−1 − δm−2),

Vm = V (xm) = σm−2 + 26σm−1 + 66σm + 26σm+1 + σm+2,

V ′
m = V ′(xm) =

5
h

(σm+2 + 10σm+1 − 10σm−1 − σm−2).

(2.23)

Substituting (2.23) into (2.19) yields

δ̊m−2 + 26δ̊m−1 + 66δ̊m + 26δ̊m+1 + δ̊m+2

− (1 + εzm)(σm−2 + 26σm−1 + 66σm + 26σm+1 + σm+2)

+
5µ

h
(σ̊m+2 + 10σ̊m+1 − 10σ̊m−1 − σ̊m−2)

= 0,

σm−2 + 26σm−1 + 66σm + 26σm+1 + σm+2

+
5
h

(δm+2 + 10δm+1 − 10δm−1 − δm−2)

= 0,

(2.24)

where ◦ denotes differentiation with respect to time and

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2.

To derive the fully discretized difference equation, we use the following Crank–
Nicolson approximation in time for the unknown parameters δm , σm and the usual
finite difference scheme for the time derivative of the parameters δ̊m, σ̊m :

δm =
δn+1

m + δn
m

2
,

σm =
σ n+1

m + σ n
m

2
,

δ̊m =
δn+1

m − δn
m

1t
,

σ̊m =
σ n+1

m − σ n
m

1t
.

(2.25)

These lead to a system of 2N + 2 algebraic equations in 2N + 10 unknowns:

2hδn+1
m−2 + βm1σ

n+1
m−2 + 52hδn+1

m−1 + βm2σ
n+1
m−1 + 132hδn+1

m

+ βm3σ
n+1
m + 52hδn+1

m+1 + βm4σ
n+1
m+1 + 2hδn+1

m+2 + βm5σ
n+1
m+2

= 2hδn
m−2 − βm5σ

n
m−2 + 52hδn

m−1 − βm4σ
n
m−1 + 132hδn

m − βm3σ
n
m

+ 52hδn
m+1 − βm2σ

n
m+1 + 2hδn

m+2 − βm1σ
n
m+2, (2.26)
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−5δn+1
m−2 + hσ n+1

m−2 − 50δn+1
m−1 + 26hσ n+1

m−1 + 66hσ n+1
m

+ 50δn+1
m+1 + 26hσ n+1

m+1 + 5δn+1
m+2 + hσ n+1

m+2

= 5δn
m−2 − hσ n

m−2 + 50δn
m−1 − 26hσ n

m−1 − 66hσ n
m

− 50δn
m+1 − 26hσ n

m+1 − 5δn
m+2 − hσ n

m+2, m = 0, . . . , N ,

where

βm1 = −dh1t − 10µ,

βm4 = −26 dh1t + 100µ,

βm2 = −26 dh1t − 100µ,

βm5 = −dh1t + 10µ,

βm3 = −66 dh1t,
d = 1 + εzm .

Application of the boundary conditions

U (a, t) = β1, Ux (a, t) = 0, V (a, t) = 0, Vx (a, t) = 0,

U (b, t) = β2, Ux (b, t) = 0, V (b, t) = 0 and Vx (b, t) = 0

enables us to eliminate the parameters δn+1
−2 , σ n+1

−2 , δn+1
−1 , σ n+1

−1 , δn+1
N+1, σ n+1

N+1, δn+1
N+2

and σ n+1
N+2 from the system (2.26) so that we have a solvable 11-banded matrix system

of dimension (2N + 2) × (2N + 2). This system is solved by employing the Gauss
elimination procedure.

Time evolution of the parameters δn+1
m , σ n+1

m is computed once the initial
parameters δ0

m , σ 0
m are obtained with the help of the following boundary and initial

conditions:

(UN )x (a, 0) = δ0
−2 + 10δ0

−1 − 10δ0
1 − δ0

2 = 0,

(UN )xx (a, 0) = δ0
−2 + 2δ0

−1 − 6δ0
0 + 2δ0

1 + δ0
2 = 0,

UN (x, 0) = δ0
m−2 + 26δ0

m−1 + 66δ0
m + 26δ0

m+1 + δ0
m+2 = U (xm, 0),

(UN )x (b, 0) = δ0
N+2 + 10δ0

N+1 − 10δ0
N−1 − δ0

N−2 = 0,

(UN )xx (b, 0) = δ0
N+2 + 2δ0

N+1 − 6δ0
N + 2δ0

N−1 + δ0
N−2 = 0,

(VN )x (a, 0) = σ 0
−2 + 10σ 0

−1 − 10σ 0
1 − σ 0

2 = 0,

(VN )xx (a, 0) = σ 0
−2 + 2σ 0

−1 − 6σ 0
0 + 2σ 0

1 + σ 0
2 = 0,

VN (x, 0) = σ 0
m−2 + 26σ 0

m−1 + 66σ 0
m + 26σ 0

m+1 + σ 0
m+2 = V (xm, 0),

(VN )x (b, 0) = σ 0
N+2 + 10σ 0

N+1 − 10σ 0
N−1 − σ 0

N−2 = 0,

(VN )xx (b, 0) = σ 0
N+2 + 2σ 0

N+1 − 6σ 0
N + 2σ 0

N−1 + σ 0
N−2 = 0.

(2.27)

The system above is also solved by a variant of the Thomas algorithms.
The procedure defined in (2.9) is applied two or three times at every time step to

accomplish better results.
To investigate the stability of the difference scheme (2.26), we apply the method

of harmonics [22] after linearizing by taking U in the nonlinear term U V as a local
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constant p. Thus the term zm in the difference equation corresponds to a constant p.
In this case, we will try to find the solution in the form

δn
m = Pqneimϕ,

σ n
m = Wqneimϕ,

where the quantities q and ϕ have the same meaning as in the previous two
considerations and P , W are the amplitudes of harmonics. Substituting δn

m = Pqneimϕ

and σ n
m = Wqneimϕ into the difference scheme (2.26) gives

a1 P + (b1 + ic1)W = 0,

ia2 P + b2W = 0,
(2.28)

where

a1 = (2h cos 2ϕ + 52h cos ϕ + 132h + 52h cos ϕ + 2h cos 2ϕ)(q − 1),

b1 = (β1 cos 2ϕ + β2 cos ϕ + β3 + β4 cos ϕ + β5 cos 2ϕ)(q + 1),

c1 = (−β1 sin 2ϕ − β2 sin ϕ + β4 sin ϕ + β5 sin 2ϕ)(q − 1),

a2 = (10 sin 2ϕ + 100 sin ϕ)(q + 1),

b2 = (h cos 2ϕ + 26h cos ϕ + 66h + 26h cos ϕ + h cos 2ϕ)(q + 1).

The system (2.28), with respect to P and W , will have a nontrivial solution if the
determinant of the coefficient matrix is equal to zero. After some mathematical
manipulation, the roots of the determinant of the coefficient matrix can be found as

q1 =
z1

z2
, q2 = −1,

where

z1 = −90 dh1t sin3 ϕ + 490 dh1t sin ϕ + 410 dh1t cos ϕ sin ϕ

− 5 dh1t cos ϕ sin3 ϕ + i(−406h2 sin2 ϕ + 1300µ sin2 ϕ + 916h2

+ 500µ sin2 ϕ cos ϕ − 50µ sin4 ϕ + 2h2 sin4 ϕ + 884h2 cos ϕ

− 52h2 sin2 ϕ cos ϕ),

z2 = 90 dh1t sin3 ϕ − 490 dh1t sin ϕ − 410 dh1t cos ϕ sin ϕ

+ 5 dh1t cos ϕ sin3 ϕ + i(−406h2 sin2 ϕ + 1300µ sin2 ϕ + 916h2

+ 500µ sin2 ϕ cos ϕ − 50µ sin4 ϕ + 2h2 sin4 ϕ + 884h2 cos ϕ

− 52h2 sin2 ϕ cos ϕ).

Since |q1| ≤ 1 and |q2| ≤ 1 are satisfied, the difference scheme is unconditionally
stable.
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3. Numerical calculations

The only three conservation quantities of the RLW equation are [14]

C1 =

∫ b

a
U dx ' h

N∑
j=1

U n
j ,

C2 =

∫ b

a
(U 2

+ µ(Ux )
2) dx ' h

N∑
j=1

{(U n
j )

2
+ µ((Ux )

n
j )

2
},

C3 =

∫ b

a
(U 3

+ 3U 2) dx ' h
N∑

j=1

{(U n
j )

3
+ 3(U n

j )
2
}.

(3.1)

The integrals above are approximated by the rectangle rule for quadrature. Thus U n
j

and its first derivative are calculated from (2.3). Conservation quantities, the L2 error
norm

L2 =

√
h

∑N

j=0
|U exact

j − (UN ) j |
2 (3.2)

and the L∞ error norm

L∞ = ‖U exact
− UN ‖∞ = max

j
|U exact

j − (UN ) j | (3.3)

will be computed to show how well the behaviour of the numerical schemes models
the test problems in terms of accuracy.

3.1. Single solitary wave The exact solution of (1.1) is given by

U (x, t) = 3c sech2(k[x − x0 − vt]), (3.4)

which represents a single solitary wave of amplitude 3c, velocity v = 1 + εc and
k =

1
2 (εc/µν)1/2 (see [15]). This solution travels across the interval −40 ≤ x ≤ 60

in the time period 0 ≤ t ≤ 20 with parameters ε = µ = 1, x0 = 0 and boundary
conditions β1 = 0, β2 = 0.

The numerical experiment of this single solitary wave motion is performed for the
three schemes. The experiment is carried out using the initial condition

U (x, 0) = 3c sech2(k[x − x0]). (3.5)

First, the program is run up to time t = 20 with parameters c = 0.1, 1t = 0.1 and
h = 0.125, which are chosen to be the same as in some earlier papers [6, 11, 12,
20, 21]. The results of the error norms and conservation invariants are documented in
Table 1 at times t = 0 and 20 for the three schemes. During the program run, numerical
invariants C2 and C3 remain constant and C1 remains almost constant. Although the
three schemes produce the same order accuracy, QBCM1 and QBCM3 give a slightly
smaller error than QBCM2. The initial function and numerical solution are drawn for
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FIGURE 1. Solitary wave solution.

visualization of the solution at time t = 20 in Figure 1 for the three algorithms. Error
(exact solution minus numerical solution) distributions at the same time are depicted
in Figures 2–4 to show the errors between the analytical and numerical results over
the problem domain. Thus error norms and invariants tell us that the single solitary
wave solution of the RLW equation is simulated with little error. A comparison of
the quintic B-spline collocation solutions with the variants of both quadratic and cubic
B-spline collocation methods and a type of both quintic B-spline Petrov–Galerkin and
quadratic B-spline Galerkin finite element methods can be made with error norms
exhibited in Table 1. So from the tabulated results, the quadratic B-spline collocation
method [6] together with the splitting technique provided one digit less error for the
L2 error norm than that of the other methods given in Table 1.

3.2. Interaction of two solitary waves Interaction of two positive solitary waves is
studied by using the initial condition

U (x, 0) = U1 + U2,

U j = 3A j sech2 (k j (x − x̃ j )), A j =
4k2

j

1 − 4k2
j

, j = 1, 2,
(3.6)

together with boundary conditions U (0, t) = U (120, t) = 0, Ux (0, t) = Ux (120, t)
= 0. The parameters k1 = 0.4, x̃1 = 15, k2 = 0.3, x̃2 = 35 are chosen to coincide with
those used in the literature [1, 9, 17]. These parameters provide solitary waves of
magnitudes about 5.333 33 and 1.687 50 and their peak positions are located at x = 15
and 35. Calculations are carried out with the time step 1t = 0.1 and mesh size h = 0.1
over the region 0 ≤ x ≤ 120.
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FIGURE 2. Error ×104 (QBCM1).
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FIGURE 3. Error ×104 (QBCM2).
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FIGURE 4. Error ×104 (QBCM3).

TABLE 1. Invariants and error norms for a single solitary wave at time t = 20: amplitude = 0.3.

L2 × 104 L∞ × 104 C1 C2 C3

0.0 0.0 3.979 927 1 0.810 462 5 2.579 007 5 (t = 0)
2.151 92 0.829 51 3.979 879 8 0.810 462 5 2.579 007 5 (QBCM1)
3.566 72 1.296 82 3.979 884 3 0.810 462 5 2.579 007 4 (QBCM2)
2.151 92 0.829 51 3.979 879 8 0.810 462 5 2.579 007 5 (QBCM3)
3.01 1.14 3.979 96 0.810 276 2.578 39 (cub. met. [13])
1.92 0.73 3.979 89 0.810 46 2.579 01 (quad. gal. [21])
2.205 0 0.844 8 3.980 016 0.810 462 4 2.579 006 (CBSCM2 [6])
2.608 6 1.029 9 3.979 958 0.810 459 6 2.578 999 (CBSCM1 [6])
0.431 5 0.132 1 3.979 890 0.810 462 5 2.578 999 (QBSCM [6])
3.784 1 1.399 3 3.979 95 0.810 46 2.579 00 (cub. met. [20])
2.2 0.86 3.979 89 0.810 467 2.579 02 (quad. gal. (h = 0.1) [12])
2.38 0.87 3.979 95 0.810 459 2.579 00 (quin. met. (h = 0.2) [11])

The initial solitary waves with given parameters are shown in Figure 5. These
solitary waves are propagated to the right with velocities that depend upon their
magnitudes and have reached a stage where the larger wave has passed through the
smaller solitary wave and emerged with their original positions. The shapes of both
waves are graphed during the interaction period at time t = 15 and after the interaction
at time t = 30 in Figure 5 for the three schemes. For QBCM1, at time t = 30, the
smaller solitary wave of amplitude 1.682 85, whose peak is located at x = 77.9, is
recorded and the larger solitary wave of amplitude 5.323 22 is obtained, the peak
position of which is located at x = 100.8. At the same time, using the second algorithm
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FIGURE 5. Two solitary wave solutions.

QBCM2, we have found the amplitudes of both smaller and larger waves as 1.683 70
and 5.327 72, and the x-positions of the peaks of the amplitudes are 77.9 and 100.8
respectively. Using the third algorithm QBCM3, we have found the amplitudes of both
smaller and larger waves as 1.682 85 and 5.323 22, and the x-positions of the peaks of
the amplitudes are 77.9 and 100.8 respectively. It is found for the schemes QBCM1,
QBCM2 and QBCM3 that the absolute difference of larger amplitude between times
t = 0 and t = 30 is 1.011 × 10−2, 5.61 × 10−3, 1.011 × 10−2 and that of smaller
amplitude is 4.65 × 10−3, 3.8 × 10−3, 4.65 × 10−3, respectively.

The interaction process can be observed clearly from the graph of the time–
amplitude in Figure 6. Thus, the larger solitary wave started to catch up the small
solitary wave at about time t = 10. The interaction time continued to end up at
about time t = 20 and the two solitary waves have regained their original amplitudes
after the interaction. In Figures 7–10, we depict the values of the invariants C1, C2
and C3 against time throughout the simulation for the three algorithms. It can be
seen from these figures that, during a run of the algorithms, the conservation laws
are changed in the ranges as 37.9164 ≤ C1 ≤ 37.9171, 120.5233 ≤ C2 ≤ 120.5263,
743.4675 ≤ C3 ≤ 744.1017 for QBCM1, 37.9164 ≤ C1 ≤ 37.9170, 120.5233 ≤ C2
≤ 120.5256, 743.6011 ≤ C3 ≤ 744.2264 for QBCM2, and 37.9165 ≤ C1 ≤ 37.9170,
120.5233 ≤ C2 ≤ 120.5264 , 743.4675 ≤ C3 ≤ 744.1017 for QBCM3.

3.3. Wave undulation We study the undulation from the initial condition

U (x, 0) = 0.5U0

[
1 − tanh

(
x − xc

d

)]
, (3.7)
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and the following boundary conditions are used:

U (a, t) = U0, U (b, t) = Ux (a, t) = Ux (b, t) = 0, (3.8)

where U (x, 0) denotes the elevation of the water above the equilibrium surface at
time t = 0 and d is the slope between the still water and deeper water. The change
in water level of magnitude U (x, 0) is centred on x = xc. The parameters ε = 1.5,
µ = 0.166 666 67, U0 = 0.1, xc = 0, a = −36, b = 300, h = 0.24, 1t = 0.1, d = 2, 5
are taken to make comparison with results of [2, 4, 6, 8, 11, 20]. The results of
the algorithms for the RLW equation are obtained up to time t = 250 with the initial
condition (3.7). The initial undulation form has evolved into a steady-state profile
moving in the positive direction with more undulations. Views of both numerical
solutions and the initial wave are depicted at time t = 250 for the three schemes
in Figures 11 and 12. The amplitudes of the successive four undulations and the
positions of their peak values are documented in Table 2. It can be seen from Table 2
that the magnitudes of the amplitudes and the x-values of the peak positions of
undulations for all of the algorithms presented in this paper are found to be almost
the same. The results and graphs of simulations agree with those of published
papers [2, 4, 6, 8, 11, 20].

4. Conclusion

The main purpose of this paper has been to compare the numerical findings when
the quintic B-spline is used in the collocation method, and achievement of the splitting
technique in the numerical methods has been searched. So numerical solutions of the
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FIGURE 12. Results for d = 2.
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TABLE 2. Positions and amplitudes of the undulations at time t = 250.

QBCM1 d = 5 d = 2
Position Amplitude Position Amplitude

Leading undu. 264.96 0.177 872 671 8 265.92 0.181 982 496 4
Second undu. 253.92 0.153 332 601 9 254.16 0.162 040 970 7
Third undu. 244.08 0.132 415 293 8 244.08 0.144 549 920 9
Fourth undu. 234.96 0.117 815 818 2 234.72 0.130 527 978 7
QBCM2 d = 5 d = 2

Position Amplitude Position Amplitude
Leading undu. 264.96 0.177 909 903 0 265.92 0.182 038 362 4
Second undu. 253.92 0.153 397 868 2 254.16 0.162 043 713 0
Third undu. 244.08 0.132 483 749 6 244.08 0.144 607 477 0
Fourth undu. 234.96 0.117 871 534 9 234.72 0.130 601 928 6
QBCM3 d = 5 d = 2

Position Amplitude Position Amplitude
Leading undu. 264.96 0.177 757 272 5 265.68 0.181 786 243 9
Second undu. 253.92 0.152 942 560 1 254.16 0.161 762 897 4
Third undu. 244.08 0.131 867 560 2 244.08 0.143 849 847 3
Fourth undu. 234.96 0.117 280 024 1 234.72 0.129 615 883 7

RLW equation have been constructed by using the collocation method with quintic
B-splines as interpolation functions. The RLW equation is split both in space and
in time. Those coupled systems of differential equations are also solved by way of
the quintic B-spline collocation method over uniform finite intervals. Although the
three ways of solving the equation produce very close results, the space-splitting
process together with numerical methods produce slightly better results than the
time-splitting one. The disadvantage is that the space-splitting of the equation is
costly due to the high-order matrix system being obtained after the application of the
numerical method. We have also observed that the space/time-splitting procedure for
the RLW equation does not result in much increase of accuracy in the quintic B-spline
collocation method. Consequently, quintic B-spline functions are handy in writing the
approximate solutions in the numerical methods if the partial differential equations
involve higher-order derivatives.
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