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Abstract

In this paper we investigate the quantity of diagonal quartic surfaces a0X
4
0 + a1X

4
1 +

a2X
4
2 + a3X

4
3 = 0 which have a Brauer–Manin obstruction to the Hasse principle. We

are able to find an asymptotic formula for the quantity of such surfaces ordered by
height. The proof uses a generalization of a method of Heath-Brown on sums over linked
variables. We also show that there exists no uniform formula for a generic generator in
this family.
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T. Santens

1. Introduction

This paper is concerned with failures of the Hasse principle. A Q-variety X satisfies the
Hasse principle if X(AQ) �= ∅ implies that X(Q) �= ∅. There are multiple known obstructions
which explain why varieties fail the Hasse principle, the most important of these being
the Brauer–Manin obstruction. This obstruction consists of constructing a subset X(Q) ⊂
X(AQ)Br ⊂ X(AQ) called the Brauer–Manin set. We say that X has a Brauer–Manin obstruction
to the Hasse principle if X(AQ) �= ∅ but X(AQ)Br = ∅.

In this paper we look at K3 surfaces. These lie at the boundary of our current understand-
ing of the Hasse principle. It was conjectured by Skorobogatov [Sko09] that the Brauer–Manin
obstruction is the only obstruction for K3 surfaces. This conjecture is only known for certain
Kummer varieties [HS16, Har19] when assuming the truth of some big conjectures in number
theory (finiteness of Shafarevich–Tate groups) and wide open in general.

Recently Gvirtz, Loughran and Nakahara [GLN22] investigated how often diagonal degree
2 K3 surfaces have a Brauer–Manin obstruction and were able to obtain the correct order of
magnitude. We instead look at another family of K3 surfaces, namely the diagonal quartic
surfaces. These are defined by the equation

Xa : a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0 ⊂ P3

Q

for a = (a0, a1, a2, a3). Unlike the case of degree 2 K3 surfaces the Brauer group has already been
computed. The algebraic part by Bright [Bri02] and the transcendental part by Gvirtz, Ieronymou
and Skorobogatov [IS15, GvSk22]. However, in our case there is no uniform description of the
relevant algebras. When compared with the case of degree 2 K3 surfaces this causes us significant
difficulties. However, the method used to resolve these issues also allows us, without too much
extra effort, to find an asymptotic formula. This is a stronger type of result than the correct
order of magnitude in [GLN22]. We hope that this method can also be applied to find asymptotic
formulas for other families.

First note that due to [BBL16, Theorem 1.3] a positive proportion of these surfaces have local
points everywhere. This positive proportion can be computed as a product of local densities. It
has been shown by Bright [Bri11] that 0% of these surfaces have a Brauer–Manin obstruction
to the Hasse principle. In this paper we are able to improve this result by proving the following
asymptotic formula.

Theorem 1.1. There exists a constant A > 0 such that

#
{
a ∈ Z4

�=0 :
|ai| ≤ T, for all i ∈ {0, 1, 2, 3},
Xa has a BM obstruction to the HP

}
∼ AT 2(log T )33/8.

We actually prove the following finer results, denote the set in the left-hand side by NBr(T ),
we can then define the subsets

NBr
=�(T ) := {a ∈ NBr(T ) : a0a1a2a3 ∈ Q×2},

NBr
=−�(T ) := {a ∈ NBr(T ) : a0a1a2a3 ∈ −Q×2},

NBr
�=±�(T ) := {a ∈ NBr(T ) : a0a1a2a3 �∈ ±Q×2}.

Because NBr(T ) = NBr
=�(T ) �NBr

=−�(T ) �NBr
�=±�(T ) it suffices to prove the following theorem.
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Theorem 1.2. There exist constants 0 < A,B such that

#NBr
=�(T ) = O(T 2(log T )2),

#NBr
=−�(T ) ∼ AT 2(log T )33/8,

#NBr
�=±�(T ) ∼ BT 2(log T )45/16.

Remark 1.3. It is geometrically interesting to instead count points [a0 : a1 : a2 : a3] ∈ P3
Q(Q) of

bounded height such that Xa has a Brauer–Manin obstruction. This is equivalent to counting
only those a such that gcd(a0, a1, a2, a3) = 1 in Theorems 1.1 and 1.2. Our method is easily able
to deal with this variant. We explain in Remark 5.1 which minor modification one has to make
to prove this variant.

We recall that a subset of X(Q) is thin if it is a finite union of sets of the form f(Y (Q))
for Y irreducible and f : Y → X finite and not birational. For example, the subset {a ∈ A4(Q) :
a0a1a2a3 ∈ −Q×2} is thin. Theorem 1.2 implies that 100% of the elements of NBr(T ) lie in
this thin set. It has been understood for some time that in Manin-type conjectures one is
required to remove a thin set. Thus, the exponent of the logarithm which would be reasonable
to geometrically interpret is 45/16. We give such an interpretation in § 1.1.

Somewhat unusually we do not prove the lower bound by providing an explicit example of a
family of varieties which have a Brauer–Manin obstruction to the Hasse principle. Our method
is actually only able to provide such a family of order of magnitude T 2. It seems very difficult
to provide an explicit example of a family of varieties with a Brauer–Manin obstruction of the
correct order of magnitude, due to the non-existence of a uniform description of the generator of
Br(Xa)/Br(Q) in the generic case. We make precise in § 6 what we mean by a uniform generator
and prove, using ideas of Uematsu [Uem14, Uem16], that it indeed does not exist.

An important concept in the proof is that of prolific algebras as introduced by Bright [Bri15].
Indeed, the proof proceeds by first showing that 50% of the surfaces where a certain algebra A,
which depends on certain choices but defines a canonical element of Br(Xa)/Br(Q), is locally
nowhere prolific have a Brauer–Manin obstruction. Then later we find an asymptotic formula
for the amount of surfaces where A is nowhere locally prolific.

The fact that the thin set where a0a1a2a3 ∈ −Q×2 dominates can also be interpreted using
this notion. Namely, A being nowhere locally prolific and Xa being locally soluble is more
common on this thin set than outside of it.

To prove this 50% result we proceed roughly as follows. Given any choice of A ∈ Br(Xa) and
a tuple u = (u0, u1, u2, u3) ∈ Q× we construct a related algebra Au ∈ Br(Xu2a) where u2a =
(u2

0a0, u
2
1a1, u

2
2a2, u

2
3a3). It is possible to compute the invariants of Au in terms of those of A.

We use this to show that as long as A is locally nowhere prolific half of the surfaces Xau2 have
a Brauer–Manin obstruction as u varies. Note that we do not need to know what the invariants
of A actually are.

1.1 Structure
We now give an overview of the structure of the paper. In the second section we recall the notion
of cyclic algebras and the Brauer–Manin obstruction. We also describe a slight modification of
a method by Bright [Bri15] which is used to decide whether an algebra is prolific.

The third section starts by constructing two Brauer elements A,B which we use in our
arguments. We then apply the method in the previous section to compute when they are prolific.
We also look at how the invariants of the Brauer element A change as we multiply the coefficients
a by a square.
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The goal of the fourth section is to generalize a method of Heath-Brown [Hea93] on sums over
linked pairs of variables. In particular, we need to deal with variables which are linked by quartic
residue symbols and not just by Jacobi symbols. This generalization is proven in § 4.2. To prove
this in the desired generality, and also for other uses, we prove an uniform asymptotic formula for
sums over frobenian multiplicative functions as introduced by Loughran and Matthiesen [LM19]
in § 4.1.

In this section we also prove a lemma which can be interpreted as a form of the hyperbola
method for toric varieties [PS20] for functions f(x1, . . . , xn) which can be written as a product
of single-variable functions fi(xi). The advantage of this new form is that it can also be applied
when

∑
xi≤T fi(xi) is not of order of magnitude a power of T . These analytic results are of

independent interest.
In the fifth section we count NBr(T ). We first show that most of the Brauer–Manin obstruc-

tions are caused by A. We then prove that 50% of the surfaces where A is nowhere locally
prolific have a Brauer–Manin obstruction. We will then interpret the amount of surfaces where
A is nowhere locally prolific as a sum over a large amount of linked variables and use the method
developed in the third section to reduce the number of variables. We finish by computing an
asymptotic formula for the resulting simpler sum using our form of the hyperbola method.

The last section is devoted to proving that there exists no uniform formula for A. We do this
using ideas of Uematsu [Uem14, Uem16]. This section is independent of the rest of the paper.

1.2 An interpretation of the exponents
We give a geometric interpretation for the exponents in Theorem 1.2. What follows is quite
speculative and we give no proofs of the claims we make.

Let π : X → P3
Q be the universal diagonal quartic, i.e. X ⊂ P3

Q × P3
Q is defined by the equation

a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0.

Proposition 3.4 can be interpreted as saying that NBr(T ) is a subset of the set of weak Campana
points of the Campana orbifold (P3

Q,
1
2D) where D =

∑3
i=0

1
2{ai = 0} as defined in [PSTV21,

Definition 3.3]. This is also what one should expect from arguments such as those in [Bri18].
There is as of yet no Manin-type conjecture for the asymptotic behavior of weak Campana
points. However, these are in some sense Campana points on the limit of all log blow-ups. To
be precise let B → P3

Q be a smooth log blow-up of the log pair (P3
Q, D) and let D̃ ⊂ B be the

strict transform of D. The set of weak Campana points on (P3
Q,

1
2D) is the intersection of the

images of the Campana points on the orbifolds (B, 1
2D̃) as B → P3

Q ranges over all smooth log
blow-ups. We are counting Campana points with respect to a height function determined by the
hyperplane class H ∈ Pic(P3

Q).
Blow up P3

Q first at the disjoint subvarieties {a0 = a1 = 0}, {a2 = a3 = 0}, then blow it
up at the strict transforms of {a0 = a2 = 0}, {a1 = a3 = 0} and then blow it up at the strict
transforms of {a0 = a3 = 0}, {a1 = a2 = 0}. Call the resulting (toric) variety B. Denote by
Ek� ⊂ B the (strict transform) of the exceptional divisor corresponding to {ak = a� = 0}.

One can check that the order of magnitude of the set of Campana points on the orbifold
(B, 1

2D̃) will not change if we do more log blow-ups B′ → B. The order of magnitude in this
case is T 2(log T )6 where 6 = rk(Pic(B)) − 1. We get a further saving on the exponent 6 from two
parts: first, that the surfaces we count have to be locally soluble; and, second, due to properties
of the Brauer group.
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First note that the base change X ×P3
Q
B is not smooth. Let Y be the blow-up of X ×P3

Q
B

at the subvarieties X ×P3
Q
Ek� ∩ {Xm = Xn = 0} for all {k, �,m, n} = {0, 1, 2, 3}. This variety is

smooth. We interpret the exponent of the logarithm as coming from f : Y → B.
The first issue is that the surfaces we count have to be locally soluble. As in [LS16] we

should get for each divisor D ⊂ B a saving in the exponent of the logarithm equal to 1 minus
the δ-invariant of the set of geometrically irreducible components of the fiber YQ(D) as a
Gal(Q(D)/Q(D)) set. This δ-invariant is the probability that an element of Gal(Q(D)/Q(D))
fixes any element of the set. The only divisors whose fiber is not geometrically irreducible are
the Ek�. The étale algebra corresponding to this set of irreducible components is

A = Q(Ek�)[ 4
√
−ak/a�] × Q(Ek�)[ 4

√
−am/an].

One computes that the δ-invariant is 13
32 so the saving in the logarithm is 19

32 .
The other savings should come from some sort of relative version of the computation in

Lemma 3.8. An issue when trying to do this relative computation is that the relative version of
A does not live in Br(YQ(B)), but only in H1(Q(B),Pic(YQ(B)

)). A relative residue map has
been defined in [BBL16, (5.9)]:

H1(Q(B),Pic(YQ(B)
)) → H0(Q(Ek�),H1(Ysm

Q(Ek�)
,Q/Z)).

However, in this case Ysm
Q(Ek�)

is a disjoint union of affine planes so the right-hand side is trivial.
This relative residue map is thus not particularly useful.

We see from Lemma 3.8 that the savings should be equal to 1 minus the chance that
an element of Gal(Q(Ek�)/Q(Ek�)) fixes a geometrically irreducible component of the fiber
YQ(Ek�) and either fixes

√
akam/a�an or does not fix

√−1. In other words it has to fix at
least one of

√±akam/a�an. The saving should thus be equal to 1 minus the δ-invariant of the
Gal(Q(Ek�)/Q(Ek�)) set corresponding to the étale algebra

A[
√
akam/a�an] ×A[

√
−akam/a�an].

A computation shows that this δ-invariant is 15
32 so the saving is 17

32 for each Ek�. The expected
power of the logarithm is 6 − 617

32 = 45
16 which is exactly what we wanted.

One can interpret the order of magnitude T 2(log T )33/8 coming from the thin set {a0a1a2a3 ∈
−Q×2} in a similar way, but instead of starting with P3

Q one has to consider (a desingularization)
of the double cover C = {a0a1a2a3 = −b2} ⊂ P3

Q × A1
Q.

The leading constant in Theorem 1.2 (if one counts a = [a0 : a1 : a2 : a3] ∈ P3
Q(Q) of bounded

height as in Remark 1.3) is exactly half the leading constant of the analogous counting problem
where one counts the a such that A forXa is nowhere locally prolific. This latter counting problem
should have a leading constant of the same type as the counting problem in the conjecture [LS16,
Conjecture 1.6].

The known cases of this conjecture [Lou18, LTT20, SV21] suggest that the constant should
take the Peyre-type form

α(B, 1
2D̃)#(SubBr/Br Q)τ(USubBr)

γ
,

where:

(i) α((B, 1
2D̃), H) is the alpha constant of the orbifold (B, 1

2D̃) as defined in [PSTV21, § 3.3];
(ii) the group SubBr ⊂ Br Q(P3) is the subordinate Brauer group which should be defined

analogously to [Lou18, Definition 2.8];

663

https://doi.org/10.1112/S0010437X22007916 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007916


T. Santens

(iii) the set U ⊂ P3
Q(AQ) is the set of all (av)v such that for each place v the algebra A is not

prolific on Xav ;
(iv) the subset USubBr ⊂ U is the set of those elements of U which are orthogonal to SubBr with

respect to the Brauer–Manin pairing;
(v) the Tamagawa number τ(USubBr) is the volume of USubBr with respect to a certain

Tamagawa measure τ ;
(vi) the denominator γ is a product of values of the Gamma function.

In most known cases of this conjecture [Lou18, LTT20, SV21] the number γ is a special value
of the Gamma function. But recently Loughran, Sofos and Rome [LRS22, Theorem 1.1] proved a
case of the conjecture in which γ is π3/2 = Γ(1

2)3. They also conjecture a general formula [LRS22,
Conjecture 2.14] for γ. In our case this gives γ = Γ(61/16) because k[B \ ⋃

k,�Ek�]
× = k×.

In our case the subordinate Brauer group must certainly be contained in BrB \ ⋃
k,�Ek�

because the Ek� are the only divisors for which we have a non-trivial δ-invariant. However,
B \ ⋃

k �=�Ek� ∼= P3
Q \ ⋃

k �=�{ak = a� = 0}. In addition, {ak = a� = 0} has codimension 2 so BrB \⋃
k,�Ek�

∼= Br P3
Q = Br Q. We thus have #(SubBr/Br Q) = 1 and USubBr = U .

It is unclear how to interpret the necessary convergence factors in the Tamagawa measure.
In [Lou18, § 5.7.2] a virtual Artin character is used, but this has no obvious analogue in our case.

It is conjectured by Lehman and Tanimoto [LT17, § 1.2] that the non-Zariski dense part of the
thin set in Manin’s conjecture comes from finite maps which are étale in codimension 1. The map
C → P3

Q defining the thin set is ramified at the divisors {ai = 0}. However, the map of orbifolds
(C ×P3

Q
B, 0) → (B, 1

2D̃) is étale in codimension 1 in the sense that the map C ×P3
Q
B → B is

unramified at all divisors except those in D̃ and that the ramification degree at every divisor in
D̃ is equal to 2. Our result thus agrees with the orbifold version of this conjecture.

1.3 Notation and conventions
For every field K fix a separable closure K.

Given a number field K we let ΩK be the set of its places. Given a place v ∈ ΩK we denote
by Kv the associated local field and Ov the valuation ring. If v is finite, we let Fv be the residue
field.

We identify Z/nZ with the subgroup of Q/Z generated by 1/n.
For any group G and number n ∈ N we use G[n] to denote the n-torsion. If G is discrete and p

is a prime number, then letG(p′) be the prime to p torsion. IfG naturally has a profinite topology,
the only such G we consider are étale fundamental groups, then let G(p′) be the maximal prime
to p quotient.

All cohomology is étale/Galois cohomology and all fundamental groups are étale fundamental
groups. We omit the base point if it is not relevant. For any abelian group B, we identify elements
of H1(X,B) with the corresponding maps π1(X) → B.

For any number field K, we let IK be the monoid of integral ideals of K. For any extension
L/K of number fields and ideal a ∈ IL we let NL/K(a) be the relative norm. We write N(·) :=
NK(·) := NK/Q(·) for the absolute norm.

For any ideal n of K and z ∈ C we define τz(n) as the coefficients of the Dirichlet series
ζK(s)z. It is the unique multiplicative function such that for all k ∈ N

τz(pk) =
(
z + k − 1

k

)
.
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In particular, for an integer n, τ(n) := τ2(n) is the number of divisors of n. We frequently use
that for z ≥ 0 ∑

N(n)≤N
τz(n) 
z,K N(logN)z−1.

We also use the divisor bound, i.e. that for all ε > 0 we have τz(n) 
z,K,ε N(n)ε.
For any number n we define ω(n) :=

∑
p|n 1 as the amount of prime ideals dividing n, not

counted with multiplicity.
For any number n ∈ N define rad(n) :=

∏
p|n p as the largest square-free number dividing n.

A prime p of K is totally split if it completely splits for the extension K/Q. This is equivalent
to NK(p) being a prime number.

For any ideal m a Hecke character χ of finite modulus m is a character of the group {a ∈ IK :
(a,m) = 1}/{(α) ∈ IK : α ≡ 1 (mod m)}. The conductor of χ is the minimal ideal q | m such
that there exists a Hecke character χ′ of modulus q such that χ(a) = χ′(a) for all a coprime
to m.

2. Algebraic preliminaries

2.1 Cyclic algebras
We recall the notion of cyclic algebras. Let K be a field, n ∈ N, χ ∈ H1(K,Z/nZ) and b ∈ K×.
Then b induces an element in H1(K,μn) ∼= K×/K×n by Kummer theory. The associated cyclic
algebra is the cup product

(χ, b) := χ ∪ b ∈ H2(K,μn) ⊂ Br(K).

If μn ⊂ K, then, after fixing a primitive nth root of unity ζ, we can assign to each a ∈ K× a
character χa via the induced isomorphism μn ∼= Z/nZ. The induced cyclic algebra is

(a, b)ζ := (χa, b).

We denote the quaternion algebra (a, b) := (a, b)−1. For more information and another construc-
tion of cyclic algebras we refer the reader to [GiSz06, §§ 2.5 and 4.7].

In the special case when K is a local field corresponding to a place v of a number field k
we have the invariant map invv : Br(K) → Q/Z coming from local class field theory. This map
is always an injection and it is an isomorphism if v is finite. We define the quadratic Hilbert
symbol as

(a, b)v := invv((a, b)) ∈ Z/2Z.

This is the usual quadratic Hilbert symbol, but taking values in Z/2Z instead of μ2.

2.2 Brauer–Manin obstruction
For any scheme X, its (cohomological) Brauer group is Br(X) := H2(X,Gm). Let X be a variety
over a number field k. We recall [CTS21, § 12.3] that there exists a Brauer–Manin pairing

X(Ak) × Br(X) → Q/Z : ((xv)v, A) →
∑
v∈Ωk

invv(A(xv)),

where X(Ak) is the set of adelic points of X. The left kernel of this pairing is called the
Brauer–Manin set X(Ak)Br, it contains the set of rational points X(k), the right kernel contains
the constant Brauer elements Br0(X) := Im(Br(k) → Br(X)). If X(Ak) �= ∅ but X(Ak)Br = ∅,
we say that X has a Brauer–Manin obstruction to the Hasse principle.
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A homomorphism of groups B → Br(X) induces a pairing

X(Ak) ×B → Q/Z.

We call the left kernel of this pairing the Brauer–Manin set induced by B and denote it by
X(Ak)B. We have X(Ak)Br ⊆ X(Ak)B with equality if B → Br(X)/Br0(X) is surjective. For
A ∈ Br(X) let 〈A〉 ⊂ Br(X) be the subgroup generated by A. We write X(Ak)A := X(Ak)〈A〉

and call this the Brauer–Manin set induced by A
The algebraic Brauer group of X is Br1(X) := Ker(Br(X) → Br(Xk)). The quotient

Br(X)/Br1(X) is the transcendental Brauer group of X.

2.3 Prolific algebras
To decide whether a quartic diagonal surface has a Brauer–Manin obstruction we use a method
developed by Bright [Bri15]. We want to slightly modify this method. In the original, one needs
to know a priori that certain algebras are non-constant. We give a variation of the method where
this is not necessary (but will follow a posteriori).

Let X be a smooth variety over a number field k and v a finite place of k. Let p be the
characteristic of Fv and let X be a smooth Ov-integral model of X, i.e. X is a smooth finite type
separated Ov-scheme and there is a fixed isomorphism of the generic fiber Xk with X. We also
assume that the special fiber XFv is connected and, thus, irreducible. Any integral model X can
be turned into such a model by taking an open subscheme of the smooth locus X sm. Lastly, we
assume that X (Fv) �= ∅. Then XFv has to be geometrically irreducible and X(kv) ⊃ X (Ov) �= ∅
by Hensel’s lemma. Thus, Br0(Xkv) = Br(kv).

The following is a slight variation of [Bri15, Definition 7.1].

Definition 2.1. We say that a morphism B
α−→ Br(X) is prolific at v if the map

invBv : X(kv) → B∨ := Hom(B,Q/Z) : (b, P ) → invv(b(P ))

is surjective. An element A ∈ Br(X) of order n is said to be prolific if Z/nZ → Br(X) : 1/n→ A
is prolific.

Remark 2.2. If B is prolific, then B → Br(X)/Br0(X) is injective. Indeed, even the map
B → Br(Xkv)/Br(kv) has to be injective. This is because the composition of invBv with B∨ →
α−1(Br(kv))∨ always has to be constant, so α−1(Br(kv))∨ is 0 if B is prolific. In particular, if B
is prolific in our sense, then α(B) ⊂ Br(X)/Br0(X) is prolific in the sense of Bright.

The crucial property of prolific B is the following [Bri15, Proposition 7.3].

Proposition 2.3. If B is prolific, then it induces no Brauer–Manin obstruction to the Hasse
principle.

Let α : B → Br(X) be a map of abelian groups with B finite and p � |B|. We study whether
B is prolific by relating invBv to another map.

We can compose α with the residue map ∂v : Br(X)(p′) → H1(XFv ,Q/Z)(p′) coming from the
Gysin sequence [CTS21, Theorem 3.7.1]. This gives us a morphism ∂vα : B → H1(XFv ,Q/Z)(p′).
By duality and because p � |B| this corresponds to a map π1(XFv) → B∨ which we denote by
∂vα ∈ H1(XFv , B

∨).
The following lemma gives the relation between ∂vα and invAv . For x ∈ X (Ov) use the

notation x mod mv for the image of x under the composition

X (Ov) → X (Fv) = XFv(Fv).
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For any Fv-variety Z and z ∈ Z(Fv) we let Frobz be the image of the Frobenius Frobv under the
map z∗ : Gal(Fv/Fv) → π1(Z). This is only well-defined up to conjugacy. However, B∨ is abelian
so ∂vα(Frobx mod mv) is well-defined.

Lemma 2.4. For all x ∈ X (Ov) ⊂ X(kv) we have

invBv (x) = ∂vα(Frobx mod mv).

Proof. We have to show that for all b ∈ B

invv(α(b)(x)) = ∂vα(b)(Frobx mod mv).

This follows from functoriality of the residue map [CTS21, Theorem 3.7.4], in particular the
commutativity of the following diagram.

The composition of the bottom row is invv by combining [CTS21, Theorem 1.4.10, Lemma 2.3.3]
and the definition of invv. �

This lemma allows us to relate whether b∨ ∈ B∨ lies in the image of invBv to the existence of
points on certain varieties over Fv.

Evaluation at the Frobenius induces an isomorphism H1(Fv, B∨) ∼= B∨. Denote the character
corresponding to b∨ ∈ B∨ under this isomorphism by χb∨ ∈ H1(Fv, B∨). Consider now ∂vα−
χb∨ ∈ H1(XFv , B

∨). This corresponds to a B∨-torsor which we denote by πb∨ : Yb∨ → XFv . Over
Fv all of the Yb∨ are isomorphic. Denote this Fv-variety by Y .

Corollary 2.5. For x ∈ X sm(Ov) we have invBv (x) = b∨ if and only if x mod mv ∈
πb∨(Yb∨(Fv)). Such an x exists if and only if Yb∨(Fv) �= ∅.
Proof. Let P := x mod mv. We have P ∈ πb∨(Yb∨(Fv)) if and only if π−1

b∨ (P ) has a Fv-point. This
fiber is the B∨-torsor corresponding to the composition

π1(Fv) = Gal(Fv/Fv)
P∗−→ π1(XFv)

∂vα−χb∨−−−−−−→ B∨.

A torsor over a field has a rational point if and only if it splits. Thus, this torsor has a Fv-point
if and only if (∂vα− χb∨)(FrobP ) = 0. In other words ∂vα(FrobP ) = b∨ and we are done by
Lemma 2.4. �

We are now interested in when Yb∨(Fv) �= ∅. A necessary condition is that one (and, thus,
any) connected component is geometrically connected. This condition is sufficient as long as |Fv|
is sufficiently large with respect to the (compactly supported) Betti numbers of Y by the Weil
conjectures [Del80]. The following lemma describes when this happens.

Lemma 2.6. Applying the snake lemma to the following commutative diagram with exact rows

defines a morphism δb
∨

: Gal(Fv/Fv) → coker(∂vα). It is equal to δb
∨

= δ0 − χb∨ .
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In particular, the connected components of Yb∨ are geometrically connected if and only if
δb∨ = 0.

Proof. The first statement follows from standard homological algebra. To prove the second state-
ment we note that the set of connected components of Yb∨ has a transitive B∨-action with
stabilizer im(∂vα− χb∨), analogously the set of connected components of Y has a transitive B∨

action with stabilizer im(∂vα). Every connected component is thus geometrically connected if
and only if the natural map im(∂vα) → im(∂vα− χb∨) is an isomorphism. The snake lemma
implies that this happens if and only if δb

∨
= 0. �

Remark 2.7. (i) The morphism δb
∨

is 0 if and only

δb
∨
(Frobv) = δ0(Frobv) − b∨ = 0 ∈ coker(∂vα).

The set of such b∨ is thus an im(∂vα)-coset of B∨.
(ii) If Y is connected, then ∂vα is surjective so δb

∨
will always be 0.

(iii) Dually, the boundary map δb∨ which one gets by applying the snake lemma to the
following diagram has to be zero.

Here b∨ is identified with the composition B b∨−→ Q/Z ∼= H1(Fv,Q/Z).

If XFv is the smooth locus of a cone over a curve, we can say more. What follows is analogous
to [Bri15, Theorem 6.5]. We remark that the proof written there is incomplete. It is stated
that fibrations with fiber A1

Fv
induce isomorphisms on fundamental groups. This is already false

for the fibration A1
Fv

→ Spec(Fv) due to the existence of Artin–Schreier extensions of A1
Fv

. The
statement is probably true for the maximal prime to p quotient but we just need the following
special case.

Lemma 2.8. Let K be a field of characteristic p. Let X ⊂ Pn+1
K be the cone over a smooth variety

Y ⊂ PnK . The projection Xsm → Y induces an isomorphism π1(Xsm)(p′) ∼= π1(Y )(p′).

Proof. Let P ∈ X be the cone point. Consider the blow-up X ′ at this point with exceptional
divisor E. It is a P1-bundle over Y and Xsm = X \ P = X ′ \ E. Thus, Xsm is the complement of
a relative normal crossing divisor E in the smooth proper Y -variety X ′. The desired statement
follows from [Gro71, Examples XIII.4.4]. �

In particular, if XFv is the smooth locus of a cone over a smooth proper curve C then
π1(XFv)(p

′) → π1(C)(p′) is an isomorphism. This induces an isomorphism H1(C,Q/Z)(p′) ∼=
H1(XFv ,Q/Z)(p′).

Theorem 2.9. Assume that XFv is the smooth locus of a cone over a smooth proper curve C
of genus g and

|Fv| > (g′ +
√
g′2 − 1)2 where g′ = |im(∂vα)|(g − 1) + 1. (2.1)

The image of invBv contains b∨ if and only if δ0(Frobv) = b∨ ∈ coker(∂vα).

Proof. By Lemma 2.6 and Remark 2.7(i) it suffices to show that if all of the connected com-
ponents of Yb∨ are geometrically connected then it has a Fv-point. By Lemma 2.8 there exists
an étale cover D → C such that Yb∨ = D ×C XFv . We show that D(Fv) �= ∅. Every connected
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component of D is a connected étale im(∂vα)-torsor over C. By the Hurwitz formula this is a
curve of genus g′. The Weil conjectures [Del80] together with condition (2.1) give us what we
want. �

Corollary 2.10. Assume that B → H1(CFv
,Q/Z)(p′) is injective, equivalently, that the asso-

ciated étale cover of CFv
is connected, in the situation of Theorem 2.9. Then B is prolific and

thus induces no Brauer–Manin obstruction to the Hasse principle.

Proof. Dually, the map ∂vα is surjective so coker(∂vα) = 0 and the condition in the theorem is
automatically satisfied. �

We end this subsection with a lemma which allows us to compute ∂v for cyclic algebras.

Lemma 2.11. Let χ ∈ H1(k(X),Z/nZ) and a ∈ H1(k(X), μn) such that (χ, a) ∈ Br(X) ⊂
Br(k(X)). Let v �∈ S be a finite place of k coprime to n such that XFv is irreducible. In
this case the valuation v can be extended to k(X). Assume that χ is unramified at XFv . Let
χ|Fv ∈ H1(Fv(XFv),Z/nZ) be the induced character. Then

∂v((χ, a)) = v(a)χ|Fv . (2.2)

Proof. This is a combination of the second bullet point of [CTS21, p. 37] and applying [CTS21,
Lemma 2.33] to compare the different notions of residue. �

3. Computations for the Brauer–Manin obstruction

Let Xa ⊂ P3
Q be the smooth surface defined by the equation

a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0 (3.1)

for a := (a0, a1, a2, a3) ∈ (Q×)4. Write θa := a0a1a2a3. Two such surfaces are equivalent if one
is obtained from the other by permuting the coefficients, multiplying the coefficients by fourth
powers and multiplying them by a common factor. There is an obvious isomorphism between
any two equivalent surfaces which permutes the coordinates and multiplies them by a constant.

3.1 Constructing Brauer group elements
Assume that Xa has local points everywhere. The following proposition gives two elements
of Br(Xa). The first of these is due to Bright [Bri11, Lemma 2.1] and the second is, written
somewhat differently, due to Swinnerton-Dyer [Swi00, (43)]. We give a different argument that
these Brauer elements are unramified.

Proposition 3.1.

(i) Let Ya be the smooth quadric surface defined by

a0Y
2
0 + a1Y

2
1 + a2Y

2
2 + a3Y

2
3 = 0

and let α : Xa → Ya the morphism given by Yi = X2
i . Because Xa has local points

everywhere, Ya must have local points everywhere and thus has a rational point by
Hasse–Minkowski. Let f be an equation defining the tangent plane at this rational point,
then

A :=
(
α∗f
X2

3

, θa

)
∈ Br(Xa).
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(ii) If θa ∈ Q×2, let {k, �,m, n} = {0, 1, 2, 3} and let Zk�ma be the quadric curve defined
by

akNQ(
√

−(a�/ak))

(
Zk +

√
− a�
ak
Z�

)
+ amZ

2
m = akZ

2
k + a�Z

2
� + amZ

2
m = 0.

For any choice of
√
θa let γ√θa : Xa → Zk�ma be the morphism defined by,

Zk = X2
kX

2
m −

√
θa

akam
X2
�X

2
n,

Z� =
√
θa

a�am
X2
kX

2
n +X2

�X
2
m,

Zm = X4
m +

an
am

X4
n.

A priori this is only a rational map, but it can be extended to a morphism. By Hasse and
Minkowski Zk�ma has a rational point. Let h be an equation defining the tangent line at this
point, then

Bk�m;
√
θa

:=
(
γ∗√

θa

h

Zm
,−akam

√
θa

)
∈ Br(Xa).

These algebras are independent of the choices made as elements of Br(Xa)/Br(Q).

Proof. By the Grothendieck purity theorem [Gro68, III: Theorem 6.1] it suffices to prove that
each of these Brauer elements is unramified at all the divisors of Xa. Note that A is the pullback
along α of the following Brauer element described in [CTX09, § 5.8]:

(
f

Y3
, a0a1a2a3

)
∈ Br(Ya \ {Y3 = 0}). (3.2)

This is independent of the choice of f as an element of Br(Ya \ {Y3 = 0})/Br(Q) which shows
that A is well-defined as an element of Br(Q(Xa))/Br(Q). It follows that A is unramified except
possibly at the divisor {X3 = 0}. But f is ramified at {X3 = 0} of order 2 so by [GMS03,
Proposition 8.2] A is also unramified at this divisor.

We now show that γ√θa is indeed a morphism. To prove this we may work over the algebraic
closure Q by Galois descent. The given equations define γ except when X2

m =
√−(an/am)X2

n

and X2
k = −(

√
θa/akan)

√−(an/am)X2
� for any choice of the square root

√−(an/am). Note
that this includes the cases Xk = X� = 0, Xn = Xm = 0. Multiplying all the coordinates by
(X2

k − (
√
θa/akan)

√−(an/am)X2
� )/(X

2
m − √−(an/am)X2

n) gives coordinates which are defined
in this case. Indeed,

X2
kX

2
m − (

√
θa/akam)X2

�X
2
n

X2
m − √−(an/am)X2

n

= X2
k +X2

n

√−(an/am)X2
k − (

√
θa/akam)X2

�

X2
m − √−(an/am)X2

n

= X2
k +

am
ak

√
− an
am

X2
n

X2
m +

√−(an/am)X2
n

X2
k − (

√
θa/akan)

√−(an/am)X2
�

,
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(
√
θa/a�am)X2

kX
2
n +X2

�X
2
m

X2
m − √−(an/am)X2

n

= X2
� +X2

n

√−(an/am)X2
� + (

√
θa/a�am)X2

k

X2
m − √−(an/am)X2

n

= X2
� +

√
θa

aka�
X2
n

X2
m +

√−(an/am)X2
n

X2
k − (

√
θa/akan)

√−(an/am)X2
�

,

X4
m + (an/am)X4

n

X2
m − √−(an/am)X2

n

= X2
m +

√
− an
am

X2
n. (3.3)

The divisor of h is a square so Bk�m;
√
θa

can only be ramified at the divisors contained in
γ∗{Zm = 0}. By the definition of γ and (3.3) this is the union of{

X2
m =

√
− an
am

X2
n, X

2
k =

√
θa

akan

√
− an
am

X2
�

}

for the two different choices of
√−(am/an). So −akam

√
θa is a square in the residue field.

If we have two choices of tangent lines defined by g1, g2, then their quotient g1/g2 is a
rational function with square divisor and is thus a square up to multiplication by a constant.
The associated quaternion algebras thus differ by a constant algebra. �
Remark 3.2. The algebras A,Bk�m;

√
θa

exist more generally over other fields K as long as the
quadrics Y, Zk�ma have K-points. For the same reason as over Q they are still well-defined
as elements of Br(Xa)/Br(K). We use this in what follows to see that A as an element of
Br(XQp)/Br(Qp) can be computed by taking a tangent line at a Qp-point of Ya. It also implies
that ∂vA ∈ H1(XFp

,Q/Z) can be computed by taking the tangent line at a K-point of Ya for an
unramified K/Qp extension. Analogously for Bk�m;

√
θa

.

3.2 Local computations
In this subsection we compute the local invariants of A utilizing the methods of § 2.3. Let us
first describe when Xa has a Qp-point.

Lemma 3.3. Let p be an odd prime number, then Xa(Qp) �= ∅ only if one of the following two
conditions is true:

(i) there exist k �= � such that −(ak/a�) ∈ Q4
p;

(ii) there exist pairwise distinct k, �,m such that vp(ak) ≡ vp(a�) ≡ vp(am) (mod 4).

Conversely, Xa(Qp) �= ∅ if the first condition holds or if the second one holds and p > 33.

Proof. If Xa(Qp) �= ∅, then by fixing a solution and then taking an equivalent surface while
appropriately changing the solution we may assume that a0 ∈ Z×

p , a1, a2, a3 ∈ Zp and that there
exist x0, x1, x2, x3 ∈ Z×

p such that a0x
4
0 + a1x

4
1 + a2x

4
2 + a3x

4
3 = 0. By reducing modulo p we see

that at least one of the other coefficients is a p-adic unit. If there is exactly one other coefficient ak
which is a p-adic unit, then −(ak/a0) ≡ (xk/x0)4 �≡ 0 (mod p), so by Hensel’s lemma −(ak/a0) ∈
Q×4
p and the first condition holds. Otherwise the second condition holds.

If the first condition holds, then without loss of generality k = 0, � = 1 and [1 : 4
√−a1/a0 :

0 : 0] ∈ Xa(Qp). For the second condition take an equivalent surface such that ak, a�, am ∈ Z×
p .

In this case the equation akX
4
k + a�X

4
� + amX

4
m = 0 defines a smooth proper curve of genus 3

which has a Fp-point if p > 33 because of the Weil conjectures [Del80]. It thus has a Zp-point by
Hensel’s lemma. �
Proposition 3.4. Let {k, �,m, n} = {0, 1, 2, 3}. If there exists a prime p > 16 897 such that
vp(an) = 1 and p � aka�am, then Xa has no Brauer–Manin obstruction to the Hasse principle.
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Proof. This is the same as [Bri15, Corolllary 7.10] except that it holds for more primes. The
proof is the same except that we can bound |Br(Xa)/Br(Q)| by 32 because in this case
Br1(Xa) = Br(Xa) due to [IS15, Theorem 1.1] and [GvSk22, Main theorem]. In addition
|Br1(Xa)/Br(Q)| ≤ 32 by [Bri02, Appendix A]. �

Lemma 3.5. Let {k, �,m, n} = {0, 1, 2, 3} and p > 97 an odd prime. If for all i �= j ∈ {0, 1, 2, 3}
we have aiaj �= 1,−1, 2,−2 ∈ Q×/Q×2, θa ∈ Q×2, vp(an) ≡ 2 (mod 4) and p � aka�am, then Xa

has no Brauer–Manin obstruction to the Hasse principle.

Proof. In this situation Br1(Xa) = Br(Xa) because of [IS15, Theorem 1.1] and [GvSk22, Main
theorem]. The only possible case of [Bri02, Appendix A] is A131, hence Br(Xa)/Br(Q) ∼= Z/2Z.
We prove that Bk�m;

√
θa

is prolific. This suffices because in that case Bk�m;
√
θa

generates
Br(Xa)/Br(Q).

We apply Corollary 2.10. Let X be the smooth locus of the integral model given by the same
equation. The special fiber XFp is the smooth locus of the cone over the curve C : akX4

k + a�X
4
� +

amX
4
m = 0. To compute ∂pBk�m;

√
θa

we may work over the maximal unramified extension of Qp

by Remark 3.2. We may thus assume that ak = a� = am = 1 and take h = Zk +
√−1Zm = 0 as

the equation defining a tangent line of Zk�ma . Then

γ∗√
θa

h

Zm
≡ X2

kX
2
m +

√−1X4
m

X4
m

≡ X2
k

X2
m

+
√−1 (mod p).

Lemma 2.11 implies that ∂pBk�m;
√
θa

= X2
k/X

2
m +

√−1 since vp(θa) is odd.
We check that the étale cover of C defined by Y 2 = X2

k +
√−1X2

m is geometrically irreducible
using the Magma function IsAbsolutelyIrreducible(). The full script can be found on the
authors webpage. Hence, Bk�m;

√
θa

is prolific by Corollary 2.10. �

We say that the algebra A is normalized if the coefficients of f in the definition are integral
and coprime. It is clear that we may always assume that A is normalized. More generally, for
any prime p we say that A is p-normalized if all the coefficients are p-adic integers and at least
one of them is a unit. Thus, f and α∗f will be non-zero polynomials when reduced modulo p
which we denote by f̃ and α∗f̃ , respectively. These normalised algebras are useful because we
are then able to write more explicit formulas for the invariant.

Lemma 3.6. Let {k, �,m, n} = {0, 1, 2, 3}. Let p be an odd prime such that p � aka�am, vp(an) =
0, 2, Xa(Qp) �= ∅. If A is p-normalized, then invp(A(·)) = 0.

Proof. Let X be the integral model given by the same equation. It follows from looking at
primitive solutions that X sm(Zp) = Xa(Qp). The special fiber X sm

Fv
is irreducible, so vp can be

extended to Qp(X). By Lemma 2.4 it suffices to show that ∂pA = 0. Since A is normalized α∗f
will be non-zero when reduced modulo p. The reduction α∗f̃ cannot be zero on the special fiber
because it has smaller degree than the defining equation so vp(α∗f/X2

3 ) = 0. We are done by
applying Lemma 2.11. �

Lemma 3.7. Let {k, �,m, n} = {0, 1, 2, 3}. Let p be an odd prime such that vp(am), vp(an) ∈
{1, 3}, p � aka� and Xa(Qp) �= ∅.

If θa �∈ Q×2
p and −(ak/a�) ∈ Q×4

p , then A �∈ Br0(X). If on top of this A is p-normalized, then
for all P ∈ Xa(Qp),

invp(A(P )) =

{
0 if α∗f̃(P ) = 0
1
2 if α∗f̃(P ) �= 0.
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In particular, if p ≡ 1 (mod 4), then A is prolific and if p ≡ 3 (mod 4) then invp(A(·)) is
constant.

Proof. Because −(ak/a�) ∈ Q×4
p and θa �∈ Q2

p we must have −(am/an) �∈ Q×2
p . Let X be the

integral model defined by the same equation. By looking at primitive solutions modulo p4 we see
that X sm(Zp) = Xa(Qp). Let Y be the integral model of Ya given by the same equation. For the
same reason Ysm(Zp) = Ya(Qp).

Take a b ∈ Z×
p such that −(ak/a�) = b4. The special fiber X sm

Fp
is equal to {X4

k = b4X4
� } \

{Xk = 0 = X�}. This has four geometrically connected components, {Xk =
√−1tbX�} for t =

0, 1, 2, 3. It thus has four or three connected components for p ≡ 1 (mod 4) or p ≡ 3 (mod 4),
respectively.

The plane defined by f is tangent to a Q-point of Ya, so it is tangent to a Zp-point of
Ysm. The reduction of this plane modulo p is defined by f̃ because A is normalized. However,
Ysm

Fp
= {Y 2

k = b4Y 2
� } \ {Yk = 0 = Y�} is a disjoint union of 2 planes, so {f̃ = 0} must be one of

these two planes. Over each of these two planes lie two geometric components of X sm
Fp

.
Let D be one of the connected components of X sm

Fp
and Dc the complement in X sm

Fp
. Let

XD := X sm \Dc. The special fiber XD
Fp

= D is connected. By Lemma 2.4 it suffices to compute
the residue ∂DA for XD. We can extend vp to a valuation vD of Qp(X). Since vp(θa) is even and
θa �∈ Q×2

p we can apply Lemma 2.11 to find that

∂DA =
1
2
vD

(
α∗f
X2

3

)
∈ H1(Fp,Z/2Z) ⊂ H1(D,Q/Z).

If D �⊂ {α∗f̃ = 0}, then vD(α∗f/X2
3 ) = 0 so ∂pA = 0.

If we change A by a constant algebra, then ∂DA changes by a constant independent of D.
It thus suffices to show that for a single choice of f we have ∂DA = 1

2 if D ⊂ {α∗f̃ = 0}. By
Remark 3.2 we may take f = Yk − b2Y� and, thus, α∗f = X2

k − b2X2
� . Then

X2
k − b2X2

�

X2
3

= − amX
4
n + anX

4
n

ak(X2
k + b2X2

� )X
2
3

= −pi (am/p
i)X4

m + (an/pi)X4
n

ak(X2
k + b2X2

� )X
2
3

,

where i = min(vp(am), vp(an)), so i is odd, am/pi, an/pi ∈ Zp and at least one of them is a unit.
Because D �⊂ {X2

k = −b2X2
� }, {(am/pi)X4

m + (an/pi)X4
n = 0} we get ∂D(A) = i/2 = 1

2 .
Note that ∂D(A) changes if we change D, so A �∈ Br0(X). The last statement follows by

Hensel’s lemma because α∗{Yk = −b2Y�} = {X2
k = −b2X2

� } has Fp-points if and only if p ≡ 3
(mod 4). �

We are now interested in how the invariant changes as the surface changes. As there is
no uniform formula for A as shown in Corollary 6.3 we are only able to understand this for
certain limited changes. Given u = (u0, u1, u2, u3) ∈ (Q×)4 we let au2 = (aku2

k). Choose a repre-
sentation A = (α∗f/X2

3 , θ) with f =
∑3

i=0 yiaiYi tangent to the point [y0 : y1 : y2 : y3] ∈ Ya(Q).
We then get a point [y0/u0 : y1/u1 : y2/u2 : y3/u3] ∈ Yau2(Q) with a tangent plane defined by
fu =

∑3
i=0 yiuiaiY

2
i . This defines an element Au = (α∗fu/X2

3 ) ∈ Br(Xau2).
Note that if A is p-normalized and ui ∈ Z×

p , then Au will also be p-normalized. From this we
can prove the following proposition.

Proposition 3.8. Let {k, �,m, n} = {0, 1, 2, 3}. Let p be an odd prime such that vp(ak), vp(a�)
have the same parity and vp(am), vp(an) have the other parity.

If θa ∈ Q×2
p , then inv(A(·)) = 0. Otherwise A �∈ Br0(X).

If θa �∈ Q×2
p and p ≡ 1 (mod 4), then A is prolific so induces no obstruction to the

Brauer–Manin obstruction.
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If θa �∈ Q×2
p , p ≡ 3 (mod 4) and −(ak/a�) ∈ Q×4

p , then inv(A(·)) is constant and for all u ∈
(Zp)×4 we have

inv(Au(·)) = inv(A(·)) +
(uku�/p) − 1

4
.

Recall from Lemma 3.3 that because Xa(Qp) �= ∅ either −(ak/a�) ∈ Q×4
p or −(am/an) ∈ Q×4

p ,
the second case can also be handled via this proposition via permuting the indices.

Proof. If θa ∈ Q2
p, then A = 1 as an element of Br(XQp) so invp(A(·)) will be constant.

By taking an equivalent surface we may assume that p � aka�, vp(am), vp(an) ∈ {1, 3} and
−(ak/a�) ∈ Q×4

p . We may then also assume that A is p-normalized. The only thing to show after
applying Lemma 3.7 is the formula for inv(Au(·)). As in the lemma there exists a t such that
α∗f̃ = X2

k − (−1)tX2
� . Let Xau2 be the obvious integral model. By definition, the reduction of α∗f̃

is equal to α∗f̃u = ukX
2
k − (−1)tu�X2

� . The desired statement follows after applying Lemma 3.7
to Xau2 . �

If there exists vk ∈ Qp such that uk = v2
k for all k, then there exists a bijection Xa(Qp) →

Xau2(Qp) : x → xv−1 = [x0v
−1
0 : x1v

−1
1 : x2v

−1
2 : x3v

−1
3 ]. It follows directly from the definitions

that
inv(Au(xv−1)) = inv(A(x)). (3.4)

A fact we need is as follows.

Lemma 3.9. If ak ∈ Z×
p and uk ∈ Zp for all k and if uk is a unit for all but one k, then A is

p-normalized if and only if Au is p-normalized.

Proof. Assume that u0 is the non-unit. Let [y0 : y1 : y2 : y3] ∈ Ya(Qp) be such that f =∑3
i=0 yiaiYi and, thus, fu =

∑3
i=0 yiuiaiYi. If A is p-normalized and Au is not, then vp(y0) = 0

but vp(yi) ≥ 1 for i �= 1. On the other hand, if Au is p-normalized but A is not, then vp(y0) =
−vp(u0) ≤ −1 but vp(yi) ≥ 1 for i �= 1. Both are impossible because

∑3
i=0 aiy

2
i = 0. �

We require the following example.

Lemma 3.10. The surface X : X4
0 − 16X4

1 + 7X4
2 + 7X4

3 = 0 has local points everywhere and A
is locally nowhere prolific.

Proof. It has local solutions because it has a rational point [2 : 1 : 0 : 0] ∈ X(Q).
The quadric Y has a rational point [4 : 1 : 0 : 0] so we have a normalized A = (1 +

4(X2
1/X

2
0 ),−1). The left-hand side is always positive so inv∞(A(·)) = 0. By Lemma 3.6

invp(A(·)) = 0 for p �= 2, 7. Because 7 ≡ 3 (mod 4) Lemma 3.7 implies that inv7(A(·)) is
constant. Lastly, by looking at primitive solutions x = [x0 : x1 : x2 : x3] ∈ X(Q2) modulo 4 we
see that x0 ∈ Z×

2 so we have 1 + 4(x2
1/x

2
0) ≡ 1 (mod 4). The invariant inv2(A(x)) is thus

always equal to (1 + 4(x2
1/x

2
0),−1)2 = (1,−1)2 = 0. �

4. Analytic preliminaries

We want to apply a generalization of the method of [Hea93] to multiple different sums: to do
this we prove a general theorem describing this generalization.

4.1 Frobenian multiplicative functions
We start by slightly generalizing the notion of frobenian multiplicative functions [LM19,
Definition 2.1] to number fields. These are closely related to the frobenian functions of Serre
[Ser12, § 3.3].
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Definition 4.1. Let K be a number field and let S be a finite set of primes of K. A multi-
plicative function ρ : IK → C is a S-frobenian multiplicative function if it satisfies the following
properties.

(i) There exists a H ∈ N such that |ρ(pk)| ≤ Hk for all primes p and k ∈ N.
(ii) For all ε > 0 there exists a constant Cε such that |ρ(n)| ≤ CεN(n)ε

(iii) The reduction of ρ to the totally split primes is S-frobenian, i.e. there exists a Galois
extension L/K with Galois group Γ such that S contains all the primes which ramify in
this extension and a class function ϕ : Γ → C such that for all totally split primes p �∈ S,

ρ(p) = ϕ(Frobp).

The mean of a frobenian multiplicative function is the mean of ϕ, i.e.

m(ρ) =
1
|Γ|

∑
γ∈Γ

ϕ(γ).

Remark 4.2. We only require that the restriction to the set of totally split primes is frobenian
because the non-totally split primes end up only affecting the constant in the asymptotics.

The mean is independent of L since this is true for class functions.
Hecke characters with finite modulus are frobenian multiplicative by class field theory.

For any two functions f, g : IK → C let f ∗ g be their Dirichlet convolution.

Lemma 4.3. If ρ1, ρ2 are S-frobenian multiplicative functions defined by Galois extensions
L1, L2, then their product ρ1ρ2 and their convolution ρ1 ∗ ρ2 are S-frobenian multiplicative
functions defined by the Galois extension L1L2. The implicit constants of ρ1ρ2 and ρ1 ∗ ρ2 are
bounded by those of ρ1, ρ2. The mean of ρ1 ∗ ρ2 is m(ρ1 ∗ ρ2) = m(ρ1) +m(ρ2).

Proof. We first show the required bounds, let H1, C1,ε and H2, C2,ε be the required constants for
ρ1 and ρ2, respectively. Then by the divisor bound

|ρ1ρ2(pk)| = |ρ1(pk)||ρ2(pk)| ≤ (H1H2)k,

|ρ1ρ2(n)| = |ρ1(n)||ρ2(n)| ≤ C1,εC2,εN(n)2ε,

|ρ1 ∗ ρ2(pk)| ≤
k∑
i=0

|ρ1(pi)||ρ2(pk−i)| ≤
k∑
i=0

H i
1H

k−i
2 ≤ (H1 +H2)k,

|ρ1 ∗ ρ2(n)| ≤
∑
d|n

|ρ1(d)|
∣∣∣∣ρ2

(
n

d

)∣∣∣∣ ≤ τ(n)C1,εC2,εN(d)εN
(

n

d

)ε


ε C1,εC2,εN(n)2ε.

If p is totally split, then ρ1ρ2(p) = ρ1(p)ρ2(p), ρ1 ∗ ρ2(p) = ρ1(p) + ρ2(p). The class function
of ρ1ρ2 and ρ1 ∗ ρ2 is thus the product and the sum of the class functions, respectively, of ρ1

and ρ2. �

We require the following lemma.

Lemma 4.4. Let ρ be a frobenian multiplicative function defined by a Galois extension L/K
and χ a Hecke character with finite modulus of K, then m(χρ) �= 0 only if χ corresponds via
class field theory to a character of Gal(L/K).

Proof. For K = Q this is the first part of the proof of [LM19, Lemma 2.4]. The argument gener-
alizes to general number fields. To spell out the details, let L′/L be an extension such that L′/K
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is Galois and χ corresponds via class field theory to a character of Γ := Gal(L′/K), which we also
denote by χ. Let ϕ : Γ → C be the class function defining ρ. The subgroup N := Gal(L′/L) ⊂ Γ
is normal and ϕ is invariant under translation by N . Then

|Γ|m(χρ) =
∑
g∈Γ

χ(g)ϕ(g) =
∑

gN∈Γ/N

ϕ(gN)
∑
h∈gN

χ(h) =
∑

gN∈Γ/N

ϕ(gN)
∑
h′∈N

χ(gh′).

The sum
∑

h′∈N χ(gh′) is 0 unless χ is trivial on N . In that case χ is a character of Γ/N =
Gal(L/K) as desired. �

It will be easier to deal with frobenian multiplicative functions over Q.

Definition 4.5. For any finite field extension K ′/K and any frobenian multiplicative function
ρ over K ′ we define the induced frobenian multiplicative function IndKK′(ρ) for all n ∈ IK by

IndKK′(ρ)(n) :=
∑

N∈IK′
NK′/K(N)=n

ρ(N).

It follows directly from the definition that∑
NK′/Q(N)≤x

ρ(N) =
∑

NK/Q(n)≤x
IndKK′(ρ)(n).

We can thus reduce the study of such sums for general frobenian multiplicative functions to
those over Q. Let us show that these are indeed frobenian multiplicative.

Lemma 4.6. If ρ is a S-frobenian multiplicative function overK ′, then IndKK′(ρ) is a S′-frobenian
multiplicative function of the same mean with

S′ := {p : p ramifies in K ′ or lies under an element of S}.
The required constants of IndKK′(ρ) are bounded in terms of those of ρ and [K ′ : K].

Proof. The multiplicativity is clear. To show that it satisfies the desired inequalities we note
that

∑
NK′/K(N)=n 1 is multiplicative, and is smaller than τ[K′:K](n) as can be seen by looking at

prime powers. By the divisor bound we obtain

|IndKK′(ρ)(pk)| ≤
∑

N∈IK′
NK′/K(N)=pk

|ρ(N)| ≤ τ[K′:K](p
k)Hk ≤ [K ′ : K]kHk, (4.1)

|IndKK′(ρ)(n)| =
∑

N∈IK′
NK′/K(N)=n

|ρ(N)| ≤ τ[K′:K](n)CεN(n)ε 
ε,[K′:K] CεN(n)2ε. (4.2)

It remains to show that the value of IndKK′(ρ) at the totally split primes is determined by a
frobenian function of the same mean. By enlarging L/K ′ we may assume that L/K is Galois.
Let G := Gal(L/K), H := Gal(L/K ′). Assume that ρ has an associated class function ϕ. For
any totally split prime ideal p �∈ S′ of K we have

IndKK′(ρ)(p) =
∑

NK′/K(q)=p

ρ(q) =
∑

N(q)=N(p)

ϕ(Frobq).

Consider the set of prime ideals P ∈ IL lying over p. This set has a transitive G-action. Let us
show that the prime ideal q = P ∩ OK′ has the property N(q) = N(p) if and only if FrobP/p ∈ H.
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If N(q) = N(p),3 then FrobP/p = FrobP/q ∈ H. On the other hand if FrobP/p ∈ H then FrobP/p

keeps K ′ invariant so fixes Fq, hence NK′/K(q) = p.
Let f := [FP : Fp] = [FP : Fq]. This is independent of P because L/K is Galois. The set of

prime ideals P ∈ IL lying over p, respectively q has size |G|/f , respectively |H|/f . Thus∑
N(q)=N(p)

ϕ(Frobq) =
f

|H|
∑

P,FrobP/p∈H
ϕ(FrobP/q).

The FrobP/p are equidistributed over the conjugacy class Cp of Frobp, i.e. there are |G|/f |Cp|
primes P with the same FrobP/p. This implies that

IndKK′(ρ)(p) =
|G|

|H||Cp|
∑

h∈H∩Cp

ϕ(h) = IndGH(ϕ)(Frobp).

Where IndGH(ϕ) is the induced class function and the last equality is by definition. This class
function has the same mean as ϕ. �

That the class function of the induced frobenian multiplicative function is the induction of
the class function of the original frobenian multiplicative function justifies the term induced.

Definition 4.7. The L-function of a frobenian multiplicative function ρ for Re(s) > 1 is given
by the Dirichlet series

L(ρ, s) :=
∑
n∈IK

ρ(n)
N(n)s

=
∏
p

(
1 +

ρ(p)
N(p)s

+
ρ(p2)
N(p)2s

+ · · ·
)
.

This converges absolutely in this region because |ρ(n)| ≤ CεN(n)ε for all ε > 0.
The normalized L-function is defined as Ln(ρ, s) = L(ρ, s)ζ(s)−m(ρ).

We remark that the L-function of the induction of a frobenian multiplicative function is
equal to the L-function of the original frobenian multiplicative function.

The normalized L-function can be analytically continued slightly to the left of the line
Re(s) > 1 as in [LM19, Proposition 2.7]. By controlling how far to the left it can be extended we
will be able to derive a Selberg–Delange type asymptotic formula for

∑
N(n)≤x ρ(n). To control

this we need the notion of the conductor of a frobenian multiplicative function.

Definition 4.8. The class function of a frobenian multiplicative function can be written as a
sum of characters of Γ. We define the conductor q(ρ) of a frobenian multiplicative function as
the maximum taken over all characters χ whose coefficient is non-zero of the conductor of the
Artin L-series L(χ, s). This is NK(fχ)d

χ(1)
K , where fχ is the Artin conductor of χ and dK is the

discriminant of K.

The conductor of a frobenian multiplicative function is bounded by the discriminant of L.
We have the inequality q(IndKK′(ρ)) ≤ q(ρ) because the Artin L-series of an induced character is
equal to the L-series of the original character.

We start with the mean 0 case.

Lemma 4.9. Let A > 0 and ρ a frobenian multiplicative function of mean 0 and conductor
q := q(ρ) ≤ (log x)A. For all x ≥ 2 there exists a c > 0 such that∑

N(n)≤x
ρ(n) 
 eO(|S|)xe−c

√
log x.
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The implicit constants depend on n := [K : Q],Γ, Cε, H,A, but for the rest they are independent
of ρ.

Proof. As ϕ is a class function we can write it as a sum over the irreducible characters of Γ:

ϕ =
∑
χ

λχχ.

We have the trivial inequality |λχ| ≤ χ(1)H = OΓ,H(1).
This leads to the equality

L(ρ, s) = G(s)
∏
χ

L(χ, s)λχ ,

where L(χ, s) is the Artin L-function of χ and

G(s) =
∏
p

(
1 +

ρ(p)
N(p)s

+
ρ(p2)
N(p)2s

+ · · ·
) ∏

χ

det
(

1 − πχ(Frobp)
N(p)s

)λχ

.

Here πχ is the representation corresponding to χ.
Let us consider the local factors of G(s), there are three cases. We use the standard notation

s = σ + it.

(i) If p ∈ S, then the contribution of the factors det(1 − πχ(Frobp)/N(p)s) is eOn,Γ,H(|S|). For
the other factors we have a bound for any ε > 0 of

1 +
|ρ(p)|
N(p)σ

+ · · · ≤ 1 + Cε
N(p)ε

N(p)σ
+ · · · = 1 + CεN(p)ε−σ(1 − N(p)ε−σ)−1.

The total contribution of these parts in the vertical strip σ > 3
4 is thus eOn,Γ,H,Cε (|S|).

(ii) The contribution of the primes p which are not totally split is absolutely convergent for
σ > 1

2 and in the vertical strip σ > 3
4 is On,Γ,H,Cε(1).

(iii) For the other primes p we have, by definition, ρ(p) =
∑

χ λχTr(πχ(Frobp)) so the associated
factor is

1 +OΓ,H

( |ρ(p)| + |ρ(p2)|
N(p)2σ

+
|ρ(p)| + |ρ(p2)| + |ρ(p3)|

N(p3σ)
+ · · ·

)
.

For all σ > ε > 0, this is bounded by

1 + CεOΓ,H

(
N(p)2ε

N(p)2σ
+ · · ·

)
= 1 + CεN(p)2ε−2σOΓ

(
(1 − N(p)ε−σ)−1

)
.

The total contribution of all of these primes is thus absolutely convergent for σ > 1
2 and is

On,Γ,H,Cε(1) in the vertical strip σ > 3
4 .

Combining everything we see that G(s) = eOn,Γ,H,Cε (|S|) in the vertical strip σ > 3
4 .

By the Brauer-induction theorem [Ser77, Theorem 18] we may assume that the χ are Hecke
characters such that the L-series L(χ, s) has conductor at most q at the cost of changing λχ.
However, λχ will still be OΓ,H(1).

Let T = e
√

log x. Choose 1 > 1 − δ ≥ 3
4 such that s has at least a distance δ from every zero

of L(χ, s) for all s in the region
σ ≥ 1 − δ, |t| ≤ T. (4.3)

We can choose δ such that δ �A q
−1/2A ≥ 1/ log T = 1/

√
log x by the standard zero-free region

of Hadamard and de la Vallée Poussin and Siegel’s theorem for Hecke characters [Fog62].
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We have the following inequality in the region (4.3):

| logL(χ, s)| 
A log log qt
A log log T. (4.4)

The case of Dirichlet characters is [MV07, Theorem 11.4]. The proof for general Hecke characters
is the same.

Exponentiating we obtain

|L(χ, s)λχ | = (log T )OA,Γ,H(1) = (log x)OA,Γ,H(1)

and, thus,

|F (s)| = eOn,Γ,H,Cε (|S|)(log x)OA,Γ,H(1). (4.5)

We now apply Perron’s formula [Ten95, Theorem II.3.3] for κ = 1 + 1/ log x:

∑
N(n)≤x

ρ(n) log
(

x

N(n)

)
=

1
2πi

∫ κ+i∞

κ−i∞
F (s)xs

ds

s2
.

The function F (s) has an analytic continuation to the region (4.3). We can, thus, change the
contour to be the straight lines between κ− i∞, κ− iT , 1 − δ/ log(1 + T ) − iT , 1 − δ/ log(1 +
T ) + iT , κ+ iT , κ+ i∞. The integrals over everything except the line between 1 − δ/ log(1 +
T ) − iT , 1 − δ/ log(1 + T ) + iT are


 eOn,Γ,Cε (|S|)(log x)OA,Γ,H(1)x
κ

T

A,Γ,H eOn,Γ,Cε (|S|)xe−(1/2)

√
log x.

The contribution of this last line segment is


 eOn,Γ,H,Cε (|S|)(log x)OA,H(1)x
1−δ

δ

A,Γ,H eOn,Γ,H,Cε (|S|)xe−(1/2)

√
log x.

Equation (4.9) follows from partial summation. �

To deal with the general case we require a uniform upper bound for absolute values of
frobenian multiplicative functions.

Lemma 4.10. Let ρ be a frobenian multiplicative function with implicit constants Cε, then∑
N(n)≤x

|ρ(n)| 
[K:Q] C1/6x(log x)[K:Q]H .

Proof. Consider the induced frobenian multiplicative function IndQ
K(ρ). We may take its H

constant to be H[K : Q] by (4.1) and its C1/3 constant may be taken to be 
 C1/6. The proof
thus reduces to proving that if ρ is a frobenian multiplicative function over Q, then∑

n≤x
|ρ(n)| 
 C1/3x(log x)H .

Write n = mk2 with m square-free. We claim that |ρ(n)| ≤ C1/3τH(m)k. To prove this we
reduce to the case when n is a prime power. If n = p, then |ρ(p)| ≤ H = τH(p). If n = pi for
i > 1, then |ρ(pi)| ≤ C1/3p

i/3 ≤ p
i�/2 =
√
k.

We thus get an upper bound

≤
∑

mk2≤x
|ρ(mk2)| ≤ C1/3

∑
mk2≤x

τH(m)k ≤ C1/3x
∑
m≤x

τH(m)
m

≤ C1/3x(log x)H . �
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Corollary 4.11. If ρ is a frobenian multiplicative function of mean 0, then for all C, ε > 0 and
x ≥ 2 ∑

N(n)≤x
ρ(n) 
ε,C,[K:Q],H q(ρ)εe|S|x(log x)−C .

Proof. If q(ρ) ≤ (log x)([K:Q]H+C)ε−1
, then this follows from Lemma 4.9. Otherwise it follows

from Lemma 4.10. �

We can now prove an asymptotic formula for frobenian multiplicative functions of arbitrary
means. To state the result we need the complex-valued functions γj(z) from [Ten95, II.5]. We
then define

λk(ρ) :=
1

Γ(m(ρ) − k)

∑
h+j=k

1
h!j!

L(h)
n (ρ, 1)γj(m(ρ)). (4.6)

In particular, λ0(ρ) = Ln(ρ, 1).

Theorem 4.12. Let ρ a frobenian multiplicative function of conductor q := q(ρ) and N ∈ Z≥−1.
For all x ≥ 2

∑
N(n)≤x

ρ(n) = x(log x)m(ρ)−1

( N∑
k=0

λk(ρ)
(log x)k

+ eO(|S|)Oε(qε(log x)−N−1)
)
. (4.7)

The implicit constants depend on N, [K : Q],Γ, Cε, H,m(ρ), but for the rest are independent
of ρ.

Proof. By considering the induced frobenian multiplicative function we may assume that K = Q,
note that |S| may increase at most by the amount of prime divisors ω(q) of the conductor q, but
by the divisor bound eO(ω(q)) ≤ τO(1)(q) 
ε q

ε.
The decomposition of L-series L(ρ, s) = Ln(ρ, s)ζ(s)m(ρ) corresponds to writing ρ as a convo-

lution ρn ∗ τm(ρ). Here ρn = ρ ∗ τ−m(ρ). The function τ−m(ρ) is frobenian multiplicative of mean
−m(ρ) by the divisor bound, so ρn is frobenian multiplicative of mean 0 by Lemma 4.3.

By the hyperbola method we have∑
n≤x

ρ(n) =
∑
n≤√

x

ρn(n)
∑

m≤x/n
τm(ρ)(m) +

∑
m≤√

x

τm(ρ)(m)
∑

n≤x/m
ρn(n)

−
∑
n≤√

x

ρn(n)
∑
m≤√

x

τm(ρ)(m). (4.8)

It follows from the Selberg–Delange method [Ten95] that for any M ∈ N, y ≥ 2,

∑
m≤y

τm(ρ)(m) = y(log y)m(ρ)−1

( M∑
j=0

γj(m(ρ))
Γ(m(ρ) − j)j!(log y)j

)

+OM ((log y)m(ρ)−M−2). (4.9)

From this, Corollary 4.11, Lemma 4.10 and partial summation, we deduce that the
contribution of the latter two sums is


B,ε,H,n q
εx(log x)m(ρ)−1−B.

This is part of the error term of (4.7) if we choose B = N + 1.
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Filling (4.9) into the first sum of (4.8) gives an error term


 x(log x)m(ρ)−M−2
∑
n≤√

x

|ρn(n)|
n


 x(log x)m(ρ)−M−2(log x)H+|m(ρ)|.

With the choice M = H + 2�|m(ρ)|� +N this is part of the error term of (4.7).
The remaining part to deal with is the sum over the following terms:

γj(m(ρ))x
Γ(m(ρ) − j)j!

∑
n≤√

x

ρn(n)
n

(
log

x

n

)m(ρ)−1−j
.

We expand (log(x/n))m(ρ)−1−j = (log x− logn)m(ρ)−1−j to obtain(
log

x

n

)m(ρ)−1−j
=

∞∑
h=0

(−1)h
(
m(ρ) − 1 − j

h

)
(log x)m(ρ)−1−j−h(log n)h.

Using the identity
(m(ρ)−1−j

h

)
= Γ(m(ρ) − j)/Γ(m(ρ) − j − h)h!, we have the sum over j, h of

γj(m(ρ))x(log x)m(ρ)−1−j−h

Γ(m(ρ) − j − h)j!h!

∑
n≤√

x

ρn(n)
n

(log n)h.

The sum over n converges by Corollary 4.11 and partial summation. The total series is thus
equal to L(h)

n (ρ, 1) by Abel’s theorem. The resulting error bounds are

∑
n>

√
x

ρn(n)
n

(log n)h 
C,ε (h+ 1)e|S|qε(log x)−C+h,

∞∑
n=1

ρn(n)
n

(log n)h 
C,ε (h+ 1)e|S|qε.

We use the first bound if j + h ≤ N and the second bound if j + h > N . Taking C ≥ 2N + 1,
using the bounds Γ(m(ρ) − j − h) � 1 and [Ten95, II.5.(7)] proves the theorem. �

Remark 4.13. In Corollary 4.11 and Theorem 4.12 we may count in S only those p ∈ S which
do not divide the conductor. This is because for all ε > 0 we have eO(ω(q(ρ))) 
ε q(ρ)ε by the
divisor bound.

4.2 Linked sums
We first introduce relevant definitions.

Definition 4.14. Let I be an index set. A subset UR ⊂ RI
≥0 is downward-closed if (xi)i∈I ∈ UR

implies that {(yi)i∈I ∈ RI
≥0 : yi ≤ xi for all i ∈ I} ⊂ U .

Similarly, let Ki be a number field for all i ∈ I. A subset U ⊂ ∏
i∈I IKi is downward-closed

if (ai)i∈I ∈ U implies that {(bi)i∈I ∈
∏
i IKi : NKi(bi) ≤ NKi(ai) for all i ∈ I} ⊂ U .

The length of a downward-closed set UR ⊂ RI
≥0, respectively U ⊂ ∏

i IKi is

LUR := sup
(xi)i∈I∈UR

∏
xi, LU := sup

(ai)i∈I∈U

∏
i∈I

NKi(ai).

We use the following notation.
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Definition 4.15. Let I be an index set, and Xi a set for all i ∈ I. Let U ⊂ ∏
i∈I Xi, J ⊂ I and

xj ∈ Xj for all j ∈ J . We define the slice of U with respect to the xj as

U [(xj)j∈J ] := U [(xj ∈ Xj)j∈J ] := U ∩
( ∏
j∈J

{xj} ×
∏
i∈I\J

Xi

)
.

Some basic properties of downward-closed sets are as follows.

Proposition 4.16. Let U ⊂ ∏
i∈I IKi be a downward-closed set.

(i) If I is finite, then LU 
Ki #U 
Ki LU (logLU )|I|−1.
(ii) Let J ⊂ I and aj ∈ IKj for j ∈ J . The slice U [(aj)j∈J ] is then also downward-closed.

Similarly, if UR ⊂ RI
≥0 is downward-closed and xj ∈ R≥0, then the slice U [(xj)j∈J ] is

downward-closed.

Proof. The first statement is clear if U is infinite.
If it is finite, choose ai such that LU =

∏
i∈I N(ai). Recall that for any number field K there

exists a constant CK such that #{n ∈ IK : N(n) ≤ T} ∼ CKT as T → ∞. Now note that U
contains the set {(ui)i∈I : N(ui) ≤ N(ai)} which has size � ∏

i∈I N(ai) = LU . It is also contained
in the set {(ui)i∈I :

∏
i∈I N(ui) ≤ LU} which is of size 
 LU (logLU )|I|−1.

The latter statements follow directly from the definitions. �
We require a lemma that positive sums over downward-closed sets can be approximated

by integrals. Note that any downward-closed set UR ⊂ Rn
≥0 defines a downward-closed set U :=

{(ui)i∈I ∈
∏n
i=1 IKi : (N(ui))i∈I ∈ UR}.

Lemma 4.17. For i = 1, . . . , n let fi : IKi → R≥0 be a non-negative arithmetic function and
gi, hi : R≥0 → R≥0 non-negative real functions such that for all x > 0 we have | ∫ x0 gi(xi) dxi −∑

N(ui)≤x fi(ui)| ≤
∫ x
0 hi(xi) dxi. Then∣∣∣∣

∫
x∈UR

n∏
i=1

gi(xi) dxi −
∑
u∈U

n∏
i=1

fi(ui)
∣∣∣∣ ≤ ∑

J�{1,...,n}

∫
UR

∏
j∈J

gj(xj) dxj
∏

i∈{1,...,n}\J
hi(xi) dxi.

Proof. We prove this via induction on n: if n = 1, then the result is equal to the assumption;
otherwise, we can write ∑

u∈U

∏
i∈I

fi(ui) =
∑
u1

f1(u1)
∑

u∈U [u1]

∏
i∈I

fi(ui).

By the induction hypothesis we can approximate the sum over the slice U [u1], because it is
also downward-closed. The error term is∑

u1

f1(u1)
∑

J�{2,...,n}

∫
UR[N(u1)]

∏
j∈J

gj(xj) dxj
∏

i∈{2,...,n}\J
hi(xi) dxi

=
∑

J�{2,...,n}

∫ ∑
N(u1)∈UR[xi:i∈{2,...,n}]

f1(u1)
∏
j∈J

gj(xj) dxj
∏

i∈{2,...,n}\J
hi(xi) dxi.

As UR[xi : i ∈ {2, . . . , n}] is downward-closed, there exists an x > 0 such that it is equal to [0, x]
or [0, x). Applying the inequality

∑
N(u1)≤x f1(u1) ≤

∫ x
0 g1(x1) dx1 +

∫ x
0 h1(x1) dx1 we obtain

∑
{2,...,n}�=J�{1,...,n}

∫
UR

∏
j∈J

gj(xj) dxj
∏

i∈{1,...,n}\J
hi(xi) dxi. (4.10)
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The main term is given by

∑
u1

f1(u1)
∫
UR[N(u1)]

n∏
i=2

gi(xi) dxj =
∫ ( ∑

N(u1)∈UR[xi:i∈{2,...,n}]
f1(u1)

) s∏
i=2

gi(xi) dxi.

Using again that UR[xi : i ∈ {2, . . . , n}] is downward-closed, we can approximate the sum over
u1 using the assumption. The resulting error term is∫

UR

h1(x1) dx1

s∏
i=2

gi(xi) dxi,

which together with (4.10) gives the required error term. The main term is∫
x∈UR

n∏
i=1

gi(xi) dxi

as desired. �
Remark 4.18. An interesting special case is when gi = 0. In this case the lemma says that if
|∑N(ui)≤x fi(ui)| ≤

∫ x
0 hi(xi), then∣∣∣∣ ∑

u∈U

n∏
i=1

fi(ui)
∣∣∣∣ ≤

∫
x∈UR

n∏
i=1

hi(xi) dxi.

We apply Lemma 4.17 to the case when U is defined by inequalities of the type
∏
i x

αi
i ≤ T

for αi ≥ 0. In that case it can be reinterpreted as a form of the hyperbola method on toric
varieties [PS20] which only works if the function f(x1, . . . , xn) can be written as a product of
single variable function fi(xi). However, unlike [PS20, Theorem 1.1], it can also be applied when∑

xi≤T fi(xi) ∼ C(log T )M .

The functions which will link variables are as follows.

Definition 4.19. Let K,L be number fields, A > 0 and q ∈ N, an (A, q)-oscillating bilinear
character is a bilinear morphism α : IK × IL → C such that for all a ∈ IK , b ∈ IL the character
α(a, ·), respectively α(·, b):

(i) is either 0 or a Hecke character of finite modulus m such that NL(m) ≤ qNK(a)A,
respectively NK(m) ≤ qNL(b)A;

(ii) is non-principal if there exists a p � q such that vp(NK(a)) = 1, respectively vp(NL(b)) = 1.

The oscillating bilinear characters used in this paper are described in the following lemma.
We use the notation

( ·
·
)

for the Jacobi symbol of Q and
( ·
·
)
4

for the 4th power residue symbol
of Q(i). Note that for all n ∈ N,m ∈ IQ(i) we have

(
n

N(m)

)
=

(
n2

m

)
4
. This can be seen since they

are both bilinear and take the same value if m is prime.

Lemma 4.20. The following functions α and their inverses are (6, 224)-oscillating bilinear
characters. The functions take the value 0 if the following description is not defined:

(i) (m,n) ∈ N2 → (
n
m

)
;

(ii) (m, n) ∈ IQ(i) × N → (
n
m

)
4
;

(iii) (m, n) ∈ IQ(i) × N → (N(m)
n

)
;

(iv) (m, n) ∈ IQ(i) × N → (
n

N(m)

)
=

(
n2

m

)
4
;

(v) (m, n) ∈ IQ(i) × N → (
n
m

)
4

(N(m)
n

)
;
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(vi) (m, n) ∈ I2
Q(i) →

(N(n)
m

)
4
;

(vii) (m, n) ∈ I2
Q(i) →

(N(n)
m

)
4

(N(m)
n

)
4
;

(viii) (m, n) ∈ I2
Q(i) →

(N(n)
m

)
4

(N(m)
n

)−1

4
.

Even more is true. If p is a prime such that vp(N(u)) = 1 for u ∈ N, IQ(i), then p divides the
norm of the conductor of the Hecke characters α(u, ·), α(·, u).

Proof. That α is bilinear is clear. In what follows, we write u for one of n,m, n,m and v for
the other variable of α to keep the arguments uniform. If we fix the variable v, then α(v, ·),
respectively α(·, v) is a product of a Hecke characters modulo v or a Hecke character of the
field extension Q(

√−1, 4
√

N(v)) which has discriminant dividing 224N(v)6. The norm of
the modulus of this Hecke character must divide this discriminant. It only remains to show
the non-principality.

We first handle the case that u is an odd totally split prime p. It then suffices to show that
there exists a single v ≡ 1 (mod 224) such that the value of α(p, v), respectively α(v, p) is not
1. Except in the cases 5, 6 and 8 this can be done by choosing v as a totally split prime and
applying Chebotarev density.

Consider now the cases of 5, 6 and 8 where we have to choose an ideal v ∈ IZ[i]. Start by
finding a prime q ≡ 1 (mod 224) such that

(N(p)
q

)
4

is equal to i or −i, i.e. N(p) is not a square

modulo N(q). This is possible because of Dirichlet’s theorem. Then α(p, v), respectively α(v, p)
is not equal to 1 for one of two choices v = q, q.

The only remaining case is to find some n ∈ N such that
(
n
p

)
4

(N(p)
n

) �= 1. For this choose
n ≡ 1 (mod 224) which is a not a square modulo N(p). By quadratic reciprocity(

n

p

)
4

(
N(p)
n

)
=

(
n

p

)
4

(
n

N(p)

)
=

(
n3

p

)
4

�= 1.

To deduce the general case assume that p is an odd prime such that vp(N(m)) = 1. In
this case we can write m = pm′ such that N(p) = p and p,N(m′) are coprime. In this case
α(m, ·) = α(p, ·)α(m′, ·) is a product of a non-principal Hecke character such that p divides the
conductor and a Hecke character whose conductor is coprime to p. The conductor of such a
product has to be divisible by p. The case vp(N(n)) = 1 is completely analogous. �

For these oscillating bilinear character we prove an analogue of [Hea93, Lemma 4].

Proposition 4.21. Let K,L be number fields. Let am, bn be complex numbers of absolute value
at most 1 where m, n ranges over IK , IL, respectively. Let U ⊂ IK × IL be a downward-closed
set and α an (A, q)-oscillating bilinear character. There exists a δ > 0 depending only on K,L,A
such that for all M,N ≥ 2,∑ ∑

(m,n)∈U
N(m)≤M
N(n)≤N

ambnα(m, n) 
K,L,A qMN(logMN)δ
−1

(N−δ +M−δ).

The implicit constant are, in particular, independent of U .

Proof. Write B(M,N) for the left-hand side of the expression in Proposition 4.21. We may
assume by symmetry that M ≤ N . Let k be a natural number to be chosen later. By applying
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Hölder’s inequality to the sum over m and switching the order of summation we obtain

|B(M,N)|k 
Mk−1
∑

N(m)≤M

∣∣∣∣ ∑
(m,n)∈U
N(n)≤N

bnα(m, n)
∣∣∣∣
k

≤Mk−1
∑

N(n1),...,N(nk)≤N

∣∣∣∣ ∑
(m,ni)∈U
N(m)≤M

cmα(m, n1 · · · nk)
∣∣∣∣,

where |cm| = 1 is the complex number such that cm(
∑
bnα(m, n))k is a positive real.

At the cost of a factor of k we may sum only over those tuples such that N(n1), . . . ,N(nk−1) ≤
N(nk) ≤ N . Note that the condition (m, ni) ∈ U is then implied by (m, nk) ∈ U because U is
downward-closed. Write l = n1 · · · nk−1. The amount of tuples giving the same l is∑

N(n1),...,N(nk−1)≤N(nk)
n1···nk−1=l

1 ≤ τk−1(l).

Applying Cauchy–Schwarz gives that |B(M,N)|2k is bounded by

k2M2k−2

( ∑
N(nk)≤N

∑
N(l)≤Nk−1

τk−1(l)2
)( ∑

N(nk)≤N

∑
N(m1),N(m2)≤M

∣∣∣∣ ∑
l

α(m1, l)α(m2, l)
∣∣∣∣
)


 k2M2k−2Nk+1(logN)k
2−2k

∑
N(m1),N(m2)≤M

∣∣∣∣ ∑
N(l)≤Nk−1

α(m1, l)α(m2, l)
∣∣∣∣.

Every pair m1,m2 such that vp(NK(m1m2)) �= 1 for all p � q has the property that their
product can be written (non-uniquely) as m1m2 = uv2w3 with N(u)|q. The number of such pairs
is by the divisor bound



∑

N(uv2w3)≤M2

N(u)|q

τ(uv2w3) 

∑

N(u)|q
N(u)1/2

∑
N(v)N(w)3/2≤M

N(vw)1/2 
 qM3/2.

The total contribution of this case is, thus, 
 k2qM2k−1/2N2k(logN)k
2−2k.

We claim that in the other cases α(m1, ·)α(m2, ·) is a non-principal character. As α is an
oscillating bilinear character the norm of its modulus is at most qNK(m1m2)A. The sum over l

is, in this case,


 q1/(dL+1)NK(m1m2)A/(dL+1)(logM)dLN (k−1)((dL−1)/(dL+1))

by Polya–Vinogradov for number fields [Lan18].
The total contribution of this part is, thus,


 k2qM2k+2A/(dL+1)(logM)dLN (2kdL+2)/(dL+1)(logN)k
2−2k.

Choosing k sufficiently large such that (2kdL + 2 + 2A)/(dL + 1) ≤ 2k − 1
2 and dL ≤ 2k, taking

δ = 1/4k and using that M ≤ N gives the desired bound.
It remains to prove the claim. We may assume that there exists a prime p � q such that

vp(N(m1)) = 1 and p � N(m2). There exists a natural number d such that α(m2, ·) = α(m2, ·)d
because it is a Hecke character. We thus have to show that α(m1m

d
2, ·) is non-principal. However,

vp(N(m1m
d
2)) = 1 so this is true by definition. �
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We now consider the following situation. Let f :
∏
i∈I IKi → C be a function and U ⊂ ∏

i IKi

a downward-closed set. Our goal is to evaluate
∑

u∈U f(u) uniformly in U . We require the
following additional data.

(i) Two integers qosc, qfrob and a constant A.
(ii) A relation R ⊂ I × I which is symmetric, i.e. (i, j) ∈ R implies (j, i) ∈ R, and such that

(i, i) �∈ R for all i ∈ I. We say that i is linked to j or that the variable ui is linked to uj if
(i, j) ∈ R.

(iii) A set of indices i which we call frobenian. We also say that the variable ui is frobenian.

These data have to satisfy the following properties.

(i) If i is linked to j, then for all tuples uîj := (uk)k∈I,k �=i,j there are three functions

a(·;uîj) : IKi → C : ui → a(ui;uîj),

b(·;uîj) : IKj → C : uj → b(uj ;uîj),

α(·, ·;uîj) : IKi × IKj → C : (ui, uj) → α(ui, uj ;uîj)

that exist such that f((u�)�∈I) = a(ui;uîj)b(uj ;uîj)α(ui, uj ;uîj). We also require that the
function α(·, ·;uîj) has to be an (A, qosc)-oscillating bilinear character and |a(ui;uîj)|,
|b(uj ;uîj)| ≤ 1. Less formally, the only interaction between ui and uj in f has to come from
an oscillating bilinear function.

(ii) If i is frobenian, then for all tuples uî := (uk)k∈I,k �=i let

S(uî) = {p | qfrob} ∪ {p | N(uk) : k �= i}.
For all uî there has to exist a constant |c(uî)| ≤ 1 and a S(uî)-frobenian multiplicative
function ρ(·;uî) such that f((u�)�∈I) = c(uî)ρ(ui;uî). The frobenian multiplicative function
ρ(·;uî) has to have conductor at most qfrob

∏
j linked to iN(uj)A and its mean is 0 if there

exists an index j linked to i such that uj �= 1.

Given these data, we can prove that some of the variables may be taken to be small or even
equal to 1. This allows us to reduce the number of variables we have to consider.

Theorem 4.22. Let f, U be as before. For all ε, δ, C1 > 0 there exists a C2 > 0 such that∑
u∈U

f(u) =
∑
u∈U

u satisfies (4.11)

f(u) +O
(
qoscq

ε
frobLU (logLU )−C1

)
,

where the condition in the sum is

for every pair of linked variables ui, uj at most one is > (logLU )C2 ,

if ui is a frobenian variable and N(ui) > e(logLU )δ
, then every

variable linked to ui is equal to 1.
(4.11)

The implicit constants and C2 depend only on |I|, A,Ki, ε, δ, C1.

Proof. Choose quantities 1
2 = V0 < 1 = V1 < V2 < · · · < VN = LU such that Vn+1 ≤ 2Vn for all

n and such that there exists m1,m2 such that Vm1 = (logLU )C2 , Vm2 = e(logLU )δ
. We can choose

such quantities with N = O(logLU ). For every tuple V = (Vni)i∈I we can then consider the
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subsum

S(V) =
∑
u∈U

Vni−1<N(ui)≤Vni

f(u).

We bound S(V) for the tuples V which fail (4.11). As there are at most O((logLU )|I|) of
such tuples it suffices to prove that for such V

S(V) 
ε qoscq
ε
frobLU (logLU )−C1−|I|.

Note that the sum is empty if
∏
i∈I Vni−1 > LU so S(V) = 0 in that case. We may thus assume

that
∏
i∈I Vni ≤ 2|I|LU .

If there are two linked variables uj , uk such that Vnj−1, Vnk−1 ≥ (logLU )C2 , then by
assumption we have

S(V) ≤
∑
uĵk

Vni−1<N(ui)≤Vni

∣∣∣∣ ∑ ∑
(uj ,uk)∈U [uĵk]

Vnj−1<N(uj)≤Vnj

Vnk−1<N(uk)≤Vnk

a(uj ;uĵk)b(uk;uĵk)α(uj , uk;uĵk)
∣∣∣∣.

The slice U [uĵk] is downward-closed, so by Proposition 4.21 there exists a δ′ > 0 such that the
inner sum is


A,Kj ,Kk
VnjVnk

log(VnjVnk
)δ

′−1(
V −δ′
nj

+ V −δ′
nk

)
.

Hence,

S(V) 
A,Ki qosc
∏
i∈I

Vni log(VnjVnk
)δ

′−1(
V −δ′
nj

+ V −δ′
nk

) 
 qoscLU log(LU )δ
′−1−C2δ′ .

The desired inequality is true as long as one takes C2 sufficiently large.
If uj is a frobenian variable such that Vnj−1 ≥ e(logLU )δ

and for at least one linked variable
u� we have Vn�

�= 1, then we can consider two cases. We may assume that e(logLU )δ ≥ (logLU )C2

by increasing the implied constant in the theorem.
Either there exists a variable uk linked to uj such that Vnk−1 ≥ (logLU )C2 . In this case we

are in the previous situation. In the other case, we have by assumption Vnk
≤ (logLU )C2 for all

variables uk linked to uj . We then have

S(V) ≤
∑
uĵ

Vni−1<N(ui)≤Vni

|c(uî)|
∣∣∣∣ ∑

uj∈U [ûj ]

Vnj−1<N(uj)≤Vnj

ρ(ui;uî)
∣∣∣∣.

By assumption |c(uî)| ≤ 1 and ρ(ui;uî) is a frobenian multiplicative function of conductor

 qfrob

∏
k linked to j V

A
nk

. It has mean zero because Vn�
�= 1 so there is a linked variable u� �= 1.

Corollary 4.11 implies that for all D > 0,

S(V) 
D,ε

∑
(ui)i�=j∈U [uj=1]
Vni−1<N(ui)≤Vni

eO(
∏

i�=j ω(ui))

(
qfrob

∏
uk linked to uj

V A
nk

)ε

Vnj (log Vnj )
−D.
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Use upper bounds to get rid of the condition induced by U and use that eO(ω(ui)) ≤ τO(1)(ui) to
see that

∑
Vni−1<N(ui)≤Vni

eO(ω(ui)) 
 LU (logLU )O(1) and, hence,

S(V) 
D,ε q
εVnj (logLU )−Dδ(logLU )|I|AC2ε

∏
i�=j

Vni(log Vni)
O(1)


 qεLU (logLU )|I|AC2ε+O(1)−Dδ.

Picking D sufficiently large gives the desired statement. �

5. Counting

Let S be the set of primes p ≤ 16 897, so all the statements in § 3.2 which are only true for
significantly large enough primes will be true for primes p �∈ S. In this section we find asymptotic
formulas for the size of the sets NBr

=�(T ), NBr
=−�(T ), NBr

�=±�(T ) defined in the introduction.
We split these further into certain subsets. Let P2(4) be the set of size 2 subsets of {0, 1, 2, 3},

this has 6 elements. Consider the set

Φ := {A = (A0, A1, A2, A3) ∈ N4 : p | A0A1A2A3 ⇒ p ∈ S or p3 | A0A1A2A3}.

For any A ∈ Φ we define mA := rad(A0A1A2A3
∏
p∈S p), θA := A0A1A2A3. Consider also a

4-tuple M = (M0,M1,M2,M3) of cosets of (Z/8mAZ)×4 in (Z/8mAZ)×.

Remark 5.1. We may replace the set Φ by any subset and the rest of this section will still
hold without any modification. For example, if we only want to count those a with a0, a1, a2, a3

coprime, then we can instead use the subset

Φ′ := {A = (A0, A1, A2, A3) ∈ Φ : gcd(A0, A1, A2, A3) = 1}.

We use the notation {k, �,m, n} = {0, 1, 2, 3} and vk� = v�k := v{k,�}, similarly for any tuple
indexed by P2(4). We also write tk� = vk�wk�, note that vk� and wk� are uniquely determined
by tk�.

We define ak := Aku
2
k

∏
{k,�}∈P2(4) vk�wk� and put a := (a0, a1, a2, a3). Note that due to the

coprimality and square-freeness conditions the tuple a uniquely determines A,M,u,v,w and
that θA = θa = a0a1a2a3 mod Q×2. For each pair A,M of such tuples we define

NA,M(T ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u,v,w)
u ∈ N4

v,w ∈ NP2(4)
:

∣∣∣∣Aku2
k

∏
{k,�}

vk�wk�

∣∣∣∣ ≤ T,

μ

(
mA

∏
k

uk
∏
��=k

vk�wk�

)2

= 1,

p | vk� ⇒ θA ∈ Q×2
p , p | wk� ⇒ θA �∈ Q×2

p ,

u2
k

∏
��=k

vk�wk� (mod 8mA) ∈Mk,

Xa(Qp) �= ∅ for p � mA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The set NA,M(T ) is only non-empty ifM0M1M2M3 is a square because
∏
k u

2
k

∏
{k,�} v

2
k�w

2
k� ∈

M0M1M2M3. Denote the set of pairs of tuples A,M such that M0M1M2M3 is a square by Ψ
and let Ψ(T ) := {(A,M) ∈ Ψ : |Ak| ≤ T}.
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We study the following subsets of NA,M(T ):

NBr
A,M(T ) := {(u,v,w) ∈ NA,M(T ) : Xa has a BM obstruction},

NA
A,M(T ) := {(u,v,w) ∈ NA,M(T ) : Xa has a BM obstruction induced by A},

N loc
A,M(T ) := {(u,v,w) ∈ NA,M(T ) : p | wk� ⇒ p ≡ 3 (mod 4)}.

Let MA := 11/16 if θA ∈ −Q×2 and MA := 15/32 if θA �∈ ±Q×2. It will later turn out that
this is the mean of a certain frobenian multiplicative function.

5.1 Reductions
In this subsection we reduce finding an asymptotic formula for NBr(T ) to finding one for
N loc

A,M(T ).

Lemma 5.2.

#NBr
=�(T ) =

∑
(A,M)∈Ψ(T )
θA∈Q×2

#NBr
A,M(T ),

#NBr
=−�(T ) =

∑
(A,M)∈Ψ(T )
θA∈−Q×2

#NBr
A,M(T ),

#NBr
�=±�(T ) =

∑
(A,M)∈Ψ(T )
θA �∈±Q×2

#NBr
A,M(T ).

Proof. The sets in the right-hand side are disjoint and can be interpreted as a subset of the
right-hand side because A,M,u,v,w are uniquely determined by a. Elements counted by the
right-hand side which are not counted in the left-hand side are tuples a such that there exists
a prime p �∈ S such that vp(a0a1a2a3) = 1 and such that Xa has a Brauer–Manin obstruction.
These tuples cannot exist by Proposition 3.4. �

The following lemma will allow us to bound NBr
=�(T ).

Lemma 5.3. If θA = A0A1A2A3 ∈ Q×2, then we have for T > 2

#NBr
A,M(T ) 
 T 2(log T )2

|θA|1/2 .

Proof. By Lemma 3.5 the left-hand side is bounded by the sum of the sizes of the following
subsets of NA,M(T ). The first is defined by aiaj = 1,−1, 2,−2 ∈ Q×/Q×2 for i �= j and the
second by uk = 1 for all k. We may assume that i = 0, j = 1 when bounding the contribution of
the first subset. Using that tk� = vk�wk� uniquely determines vk�, wk� we see that the size of these
subsets is bounded by a sum over uk and tk�. If a0a1 = 1,−1, 2,−2 ∈ Q×/Q×2, then tk� = 1 for
k, � �= {0, 1}, {2, 3}. We thus obtain an upper bound for the size of the first subset of



∑
t01,t23

∑
uk

|Ak|u2
k

∏
��=k tk�≤T

1 
 T 2

|A0A1A2A3|1/2
∑

t01,t23≤T

1
t01t23


 T 2(log T )2

|A0A1A2A3|1/2
. (5.1)

689

https://doi.org/10.1112/S0010437X22007916 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007916


T. Santens

The size of the second subset is bounded by the sum
∑

Ak
∏

��=k tk�≤T 1. By applying
Lemma 4.17 this sum can be bounded by the integral

26

∫ |Ak|
∏

��=k tk�≤T

tk�≥1/2

∏
{k,�}

dtk�.

Make the change of variables xk = t0k, yk =
∏
��=k tk� for k = 1, 2, 3. The inverse is given by

tk� =
√
yky�xm/ymxkx� for {k, �,m} = {1, 2, 3}. The associated Jacobian determinant is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

√
y2x3

y1y3x1x2

1
2

√
y1x3

y2y3x1x2
−1

2

√
y1y2x3

y3
3x1x2

1
2

√
y3x2

y1y2x1x3
−1

2

√
y1y3x2

y3
2x1x3

1
2

√
y1x2

y3y2x1x3

−1
2

√
y2y3x1

y3
1y3x2x3

1
2

√
y3x1

y1y2x2x3

1
2

√
y2x1

y1y3x2x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

2
√
x1x2x3y1y2y3

.

Enlarging the integral, we obtain

∑
Ak

∏
��=k tk�≤T

1 

∫ x1x2x3≤T/A0,yk≤T/Ak

xk≥1/2,yk≥1/8

1√
x1x2x3y1y2y3

∏
k

dxk dyk


 T 2

|A0A1A2A3|1/2
∫ x1,x2≤4T

x1,x2≥1/2

1
x1x2

dx1 dx2 
 T 2(log T )2

|θA|1/2 . (5.2)

�
We require the following bounds, which are proven in § 5.3.

Lemma 5.4. If θA �∈ Q×, then for all ε, C > 0, T > 2 and i �= j ∈ {0, 1, 2, 3},

#{(u,v,w) ∈ N loc
A,M(T ) : wk� ≤ (log T 2)C for all {k, �}} 
ε,C

T 2(log T )5MA

|θA|1/2−ε , (5.3)

#{(u,v,w) ∈ N loc
A,M(T ) : uk ≤ (log T 2)C for k �= i, j} 
ε,C

T 2(log T )5MA

|θA|1/2−ε . (5.4)

We can now show that most of the surfaces with a Brauer–Manin obstruction have a
Brauer–Manin obstruction induced by A.

Lemma 5.5. If θA �∈ Q×2, then we have for T > 2

#NBr
A,M(T ) = #NA

A,M(T ) +Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
.

Proof. The difference between these two counts is bounded by the amount of surfaces inNBr
A,M(T )

such that A does not generate Br(Xa)/Br(Q). This is bounded by the amount of these surfaces
for which either A ∈ Br(Q) or for which Br(Xa)/Br(Q) �∼= Z/2Z. In the second case there exist
i �= j such that aiaj = 1,−1, 2,−2 ∈ Q×/Q×2 by [Bri02, Appendix A]. The contribution of this
second case can thus be bounded as in the first part of the proof of Lemma 5.3 by (5.1).

A surface such that A ∈ Br(Q) has by Proposition 3.7 the property that wk� = 1 for all {k, �}.
This contribution is thus bounded by the size of the subset of NA,M(T ) defined by wk� = 1. This
is equal to the subset of N loc

A,M(T ) defined by wk� = 1. This is a subset of the left-hand side
of (5.3). �
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Note that for all places v ∈ S ∪ {p | θA} ∪ {∞} the surfaces contained in NA,M(T ) are equiv-
alent over Qv. For v �= 2,∞ this follows from Hensel’s lemma. For v = 2 it follows from the fact
that (Z/2n+2Z)× ∼= Z/2Z × Z/2nZ so the map Z×

2 /Z
×4
2 → (Z/16Z)× is an isomorphism. It is

true for v = ∞ because uk, vk�, wk� > 0. The following condition is thus either true for all these
surfaces, or for none of them:

for all places v ∈ S ∪ {p | θA} ∪ {∞}, Xa(Qv) �= ∅, invv(A(·)) is constant. (5.5)

If this condition fails, then there is certainly no Brauer–Manin obstruction induced by A so
NA

A,M(T ) = 0. Let η(A,M) be the indicator function of condition (5.5).

Lemma 5.6. If θA �∈ Q×2, then for T > 2

#NA
A,M(T ) =

η(A,M)
2

#N loc
A,M(T ) +Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
.

Remark 5.7. This lemma can be interpreted as saying that 50% percent of the surfaces for
which A has locally everywhere a constant evaluation, i.e. is not prolific, have a Brauer–Manin
obstruction induced by A.

Proof. If η(A,M) = 0, then the left-hand side is 0. We may thus assume that condition (5.5) is
satisfied.

Note that NA
A,M(T ) ⊂ N loc

A,M(T ) because of Proposition 3.8.
Let u,v,w be a triple of tuples in N loc

A,M(T ). The associated surface always has Qp-points
for p | mA by condition (5.5). That it is locally soluble at the other primes means by Lemma 3.3
that for all primes p | vk�wk� one of −(ak/a�),−(am/an) is a fourth power in Qp. For a prime
p | wk� at most one of these can be true because θa �∈ Q2

p. For every such tuple, there thus exists
a unique factorization wk� = wLk�w

R
k� (L stands for left and R for right) where

wLk� =
∏
p|wk�

−(ak/a�)∈Q×4
p

p, wRk� =
∏
p|wk�

−(am/an)∈Q×4
p

p.

Note that for all primes p | wLk� we have p ≡ 3 (mod 4), so since −(ak/a�) ∈ Zp the
condition −(ak/a�) ∈ Q×4

p is equivalent to −(ak/a�) ∈ Z×2
p . Analogously for wRk�. In particular,

this condition does not depend on ui.
For every odd prime p fix an injection ψp : Z×

p /Z
×4
p → Z/4Z. Denote ζ = (ζL, ζR, ξL, ξR) ∈

(Z/4Z)4. We can then uniquely factorize vk� =
∏

ζ∈(Z/4Z)4 v
ζ
k�, where

vζ
k� =

∏
p|vk�

ψp(uk/u�)=ζ
L, ψp(um/un)=ζR

ψp(tkm/t�n)=ξL, ψp(t�m/tkn)=ξR

, p.

Now note that because

− ak
a�

= −Ak
A�

u2
k

u2
�

tkmtkn
t�mt�n

, −am
an

= −Am
An

u2
m

u2
n

tkmt�m
tknt�n

(5.6)

there exists a subset Ωp ⊂ (Z/4Z)4 for every prime p with the following property. The surface
Xa has a Qp-point for p | vζ

k� if and only if ζ ∈ Ωp. The point of this factorization is that the
conditions induced by vζ

k� on tij and on ui are independent of each other.
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To summarize, we have constructed a bijection of N loc
A,M(T ) with the set N loc′

A,M(T )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u,vζ,wL,wR)
u ∈ N4

vζ ∈ (NP2(4))(Z/4Z)4

wL,wR ∈ NP2(4)

:

∣∣∣∣Aku2
k

∏
{k,�}

∏
ζ∈(Z/4Z)4

vζ
k�w

L
k�w

R
k�

∣∣∣∣ ≤ T,

μ

(
mA

∏
k

uk
∏
��=k

∏
ζ∈(Z/4Z)4

vζ
k�w

L
k�w

R
k�

)2

= 1,

p | vζ
k� ⇒ θA ∈ Q×2

p , ζ ∈ Ωp and ψp

(
uk
u�

)
= ζL,

ψp

(
um
un

)
= ζR, ψp

(
tkm
t�n

)
= ξL, ψp

(
t�m
tkn

)
= ξR,

p | wLk� ⇒ θA �∈ Q×2
p , −ak

a�
∈ Z×2

p ,

p | wRk� ⇒ θA �∈ Q×2
p , −am

an
∈ Z×2

p ,

u2
k

∏
��=k

∏
ζ∈(Z/4Z)4

vζ
k�w

L
k�w

R
k� (mod 8mA) ∈Mk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.7)

For each triple of tuples vζ,wL,wR choose a tuple u counted by N loc
A,M(T ) and choose a

normalized A for the associated surface. The invariant map of A is constant at all places. For the
places v|mA∞ this is by condition (5.5). For primes p | vk�, wk� this follows from Proposition 3.8.
For other primes this is a consequence of Lemma 3.6.

Consider a different tuple u′. We have an algebra Au′2u−2 on the corresponding surface.
This algebra is p-normalized for all primes p � mA, vk�, w

L
k�, w

R
k� by Lemma 3.9 so for these primes

invp(A(·)) = invp(Au′2u−2(·)) = 0 by Lemma 3.6. The same is true for p | vk� by Proposition 3.8.
In addition, for places p | mA∞ the formula (3.4) implies that invp(A(·)) = invp(Au′2u−2(·)). For
p | wLk�, wRk� we again use Proposition 3.8 to find that

invp(Au′2u−2(·)) = invp(A(·)) +

(u′kuku
′
�u�

p

) − 1

4
if p | wLk�,

invp(Au′2u−2(·)) = invp(A(·)) +

(u′mumu′nun

p

) − 1

4
if p | wRk�.

Summing this over all p we find that

∑
p

invp(Au′2u−2(·)) =
∑
p

invp(A(·)) +

∏
{k,�}

(u′kuku
′
�u�

wL
k�

)(u′mumu′nun

wR
k�

) − 1

4
.

There thus exists a δ := δ(A,M,vζ,wL,wR) ∈ {1,−1}, such that the surface Xa has a
Brauer–Manin obstruction if and only if∏

{k,�}∈P2(4)

(
uku�
wLk�

)(
umun

wRk�

)
= δ.

The indicator function of having a Brauer–Manin obstruction is then given by

1
2
− δ

2

∏
{k,�}∈P2(4)

(
uku�
wLk�

)(
umun

wLk�

)
.
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Hence, to prove the lemma it suffices to bound

∑
vζ

∑
wL

∑
wR

∑
u

(u,vζ ,wL,wR)∈N loc′
A,M(T )

δ
∏
{k,�}

(
uku�
wLk�

)(
umun

wRk�

)
.

For each possible 4-tuple U of cosets of (Z/8mAZ)×4 in (Z/8mAZ)× consider the subsum

∑
vζ

∑
wL

∑
wR

∑
u

(u,vζ ,wL,wR)∈N loc′
A,M(T )

u∈U

δ
∏
{k,�}

(
uku�
wLk�

)(
umun

wRk�

)
.

We will bound this using Theorem 4.22 with qosc = O(1), A = 6. As can be seen in the definition
(5.7) the only conditions induced by N loc′

A,M(T ) and δ for which wL,wR interact with u is the
coprimality condition and the modulo condition coming from M. The coprimality condition is
also contained in the Jacobi symbol and the interaction coming from M has been removed by the
presence of U. The variable wLk�, respectively wRk�, can thus be linked to uk and u�, respectively
to um and un, by Lemma 4.20.

The downward-closed set we are summing over is defined by the inequalities

|Ak|u2
k

∏
��=k

(∏
ζ

vζ
k�

)
wLk�w

R
k� ≤ T.

Taking the product of these inequalities shows that LU ≤ |θA|−(1/2)T 2 which gives an error term
in Theorem 4.22 of 
 |θA|−(1/2)T 2. To obtain the total error term we sum over the possible U,
there are 
 τ4(θA)4 
ε |θA|ε of them due to the divisor bound.

After applying the theorem we can get rid of δ and the Jacobi symbols with a trivial bound.
We can then sum back over the possible U and rewrite vk� =

∏
ζ∈(Z/4Z)4 v

ζ
k�. What remains is

a sum which counts the elements of a certain subset of N loc
A,M(T ). This subset is contained in

the union of the two sets which are defined respectively by the following two conditions, the C
comes from the application of Theorem 4.22.

(i) The first is when uk ≤ (log |θA|−(1/2)T 2)C for at least two k. In this case we can rewrite
wk� = wLk�w

R
k� and get a subset of the left-hand side of (5.4).

(ii) The second is when uk > (log |θA|−(1/2)T 2)C for at least three k. We must then have
wLk�, w

R
k� ≤ (log |θA|−(1/2)T 2)C for all {k, �} by Theorem 4.22. We may rewrite wk� = wLk�w

R
k�

and attempt to bound the size of the larger set defined by wk� ≤ (log T 2)2C . This set is
exactly the left-hand side of (5.3).

�

In the following sections, we prove the following lemma.

Lemma 5.8. If θA �∈ Q×2, then there exists a constant 0 < QA 
ε |θA|ε for all ε > 0 such that
for T > 2 we have

#N loc
A,M(T ) =

T 2(log T )6MA

|θA|1/2 (QA +Oε(|θA|ε(log T )−MA)).

We can now prove the main result.
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Proof of Theorem 1.2. Lemmas 5.2 and 5.3 together imply that

#NBr
=�(T ) =

∑
(A,M)∈Ψ(T )
θA∈Q×2

O

(
T 2(log T )2

|θA|1/2
)
.

Combining Lemmas 5.2, 5.5, 5.6 and 5.8 and recalling thatMA was defined to be 11
16 if θA ∈ −Q×2

and 15
32 if θA �∈ ±Q×2 shows that

#NBr
=−�(T ) = T 2(log T )33/8

∑
(A,M)∈Ψ(T ),
θA∈−Q×2

η(A,M)
2|θA|1/2

(
QA +Oε

( |θA|ε
(log T )11/16

))
,

#NBr
�=±�(T ) = T 2(log T )45/16

∑
(A,M)∈Ψ(T )
θA �∈±Q×2

η(A,M)
2|θA|1/2

(
QA +Oε

( |θA|ε
(log T )15/32

))
.

To prove Theorem 1.2 it remains to show that the three sums converge, and to a non-zero constant
for the latter two. To see that the constant is non-zero it suffices to give a single example of a
surface in which A is locally not prolific at all places, for example as it induces a Brauer–Manin
obstruction, because in that case the corresponding η(A,M) is non-zero. For θa �∈ ±Q×2 such
an example is [Bri11, Proposition 3.3] and for θa ∈ −Q×2 Lemma 3.10 provides the required
example.

We show that the sums converge. By taking upper bounds it suffices to bound∑
(A,M)∈Ψ
|θA|≥T

|θA|−(1/2)+ε

for sufficiently small ε. The amount of M associated to each A is 
 τ4(θA)4 
ε |θA|ε by the
divisor bound, so it suffices to bound ∑

A∈Φ
|θA|>T

|θA|−(1/2)+2ε.

All the tuples A ∈ Φ are such that θA can be written (non-uniquely) as gh3
3h

4
4h

5
5 such that for

all p | g we have p ∈ S and vp(g) ≤ 2. There are thus only a finite number of possibilities for g.
For every θ there exist only τ4(θ) 
ε |θ|ε tuples A ∈ Φ such that θA = θ, so we obtain an upper
bound



∑

g,h3,h4,h5

|gh3
3h

4
4h

5
5|>T

|gh3
3h

4
4h

5
5|−(1/2)+3ε 
ε T

−(1/6)+3ε
∑
h4,h5

h
−2+12ε+2/3−12ε
4 h

−(5/2)+15ε+5/6−15ε
5


 T−(1/6)+3ε.

By taking ε < 1/18 we are done. �

5.2 A sum of linked variables
The goal of this subsection is to simplify #N loc

A,M(T ). For simplicity, we assume that θA �∈ Q×2.
This also allows us to deal with the error terms in the lemmas of the previous subsection. For
this, fix a downward-closed subset U of the set defined by the inequalities:

|Ak|u2
k

∏
��=k

vk�wk� ≤ T. (5.8)
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By taking the product of the inequalities we see that LU ≤ T 2/|A0A1A2A3|1/2. Define
N loc,U

A,M (T ) := N loc
A,M(T ) ∩ U . For a first reading it will be simplest to assume that U is defined

by (5.8) and thus that N loc,U
A,M (T ) = N loc

A,M(T ).
Let

ΓA := (Z/8mA)×/(Z/8mA)×4.

The condition induced by M is then encoded in the standard way as a sum of characters

1
|ΓA|4

∏
k

∑
χk∈Γ∨

A

χk(Mk)χk

(
u2
k

∏
��=k

vk�wk�

)
.

Write χ = (χ0, χ1, χ2, χ3). Substituting this into the main sum and switching the order of
summation shows that

#N loc,U
A,M (T ) =

1
|ΓA|4

∑
χ∈(Γ∨

A)4

∏
k

χk(Mk)SU (χ, T ), (5.9)

where

SUA(χ, T ) :=
∑ ∑ ∑

(u,v,w)∈�NN
loc,U
A,N (T )

χk

(
u2
k

∏
��=k

vk�wk�

)
. (5.10)

If N loc,U
A,M (T ) = N loc

A,M(T ), then we just write SA(χ, T ) := SUA(χ, T ). The goal of this section is
to prove the following lemma.

Lemma 5.9. There exist frobenian multiplicative functions α(·; θA), β(·, θA) of conductor at
most 16|θA|2 such that for T > 2 and all A,χ, U we have

SUA(χ, T ) =
∑ ∑ ∑
(u,d,w)∈U

μ(
∏

k uk
∏

{k,�} dk�wk�)
2=1

∏
k

χk(uk)2
∏
{k,�}

χkχ�(wk�dk�)α(wk�; θA)β(dk�; θA)

+Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
. (5.11)

The functions α(·; θA), β(·, θA) respectively have means 1
2 ,

3
16 if θA ∈ −Q×2 and means 1

4 ,
7
32 if

θA �∈ ±Q×2.

Before proving this lemma we need some preparations. To encode the condition that local
points have to exist we apply Lemma 3.3. From now on assume that k < � and m < n. If p �
mA

∏
{k,�} vk�wk�, then there are always local solutions. If p | vk�wk�, then there local solutions

if and only if −(ak/a�) ∈ Z×4
p or −(am/an) ∈ Z×4

p .
If p | wk�, then this follows from the other conditions on wk�, because in this case p ≡ 3

(mod 4) so Z×4
p = Z×2

p . However, also θa �∈ Q×2
p so −(ak/a�) �≡ −(am/an) mod Z×2

p . Hence, at
least one of them must be a square. To encode the other conditions on wk� we utilize the function
α(w; θ) which is the indicator function of the set

{w : w square-free, p | w ⇒ p ≡ 3 (mod 4), θ �∈ Q×2
p }.

This is a {2, p | θ}-frobenian multiplicative function defined by Q(
√−1,

√
θa) and thus of

conductor at most 16|θ|2. It has mean 1
2 if −θa ∈ Q×2 and mean 1

4 if θa �∈ ±Q2×.
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To encode the properties for vk� we first introduce some functions. Given x, y, z ∈ Q define
�(v;x, y, z) as the indicator function of the set

{v ∈ Z : μ(v)2 = 1, v coprime with x, y, z, p | v ⇒ z ∈ Z×2
p and x or xy2z ∈ Q×4

p }.
This is a multiplicative function in v which encodes the condition on vk� as

v = vk�, x = −ak
a�

= −Akvkmwkmvknwknu
2
k

A�v�mw�mv�nw�nu
2
�

,

y = y�mkn :=
v�mw�mu�um
vknwknukun

, z = z�mkn :=
A�Am
AkAn

due to (5.6). We think of z as being constant. Using these functions we have the following formula
for SU (χ, T ):∑

v

∑
w

∑
u

(u,v,w)∈U
μ(

∏
k uk

∏
{k,�} vk�wk�)

2=1

∏
k

χk(uk)2
∏
k<�

α(wk�; θA)�
(
vk�;−ak

a�
, y�mkn , z

�m
kn

)
χkχ�(vk�wk�). (5.12)

We now give a description of �(vk�;−(ak/a�), y�mkn , z
�m
kn ) as a convolution of simpler functions.

Let β(x; z), γ(x; z), γc(x; z), δ(x; z) be the multiplicative functions which are 0 if 2x is not square-
free and such that for an odd prime p they take the value described in the following table.

β(p; z) γ(p; z) γc(p; z) δ(p; z)

p ≡ 1 (mod 4), z ∈ Q×2
p \ Q×4

p 3/8 1/8 −1/8 1/8
p ≡ 1 (mod 4), z ∈ Q×4

p 3/8 −1/8 1/8 1/8
p ≡ 3 (mod 4), z ∈ Q×2

p = Q×4
p 1/2 0 0 0

Other p 0 0 0 0
Mean if −z ∈ Q×2 3/16 0 0 1/16
Mean if ±z �∈ Q×2 7/32 0 0 1/32

These are {p : p = 2, or vp(z) �= 0}-frobenian multiplicative functions of conductor at most
the discriminant Q(i, 4

√
z) which is at most 224

∏
vp(z) �=0 p

6. The functions β(·, z), δ(·, z) are
defined by the extension Q(

√−1, z) and thus have conductor at most 16
∏
vp(z) �=0 p

2. The means
of these functions in the relevant cases are given in the table. The functions γ and γc are bounded
by δ.

Lemma 5.10. The following expression is equal to �(v;x, y, z):

μ(v)2
∑

deff ′N(g)N(g′)=v

β(d; z)β(e; z)γ(f ; z)γ(f ′; z)δ(N(g); z)γc(N(g′); z)

×
(
x

e

)(
y

f

)(
xy

f ′

)(
x

g

)
4

(
xy2

g′

)
4

, (5.13)

where d, e, f, f ′ range over N and g, g′ range over IQ[i].

Proof. Both sides are multiplicative in v and 0 at higher prime powers so it suffices to check this
equality at primes. This follows from a case analysis. If p ≡ 1 (mod 4), then it factors in Z[i] as
pp. The four characters of F×

p /F
×4
p are 1,

( ·
p

)
,
( ·

p

)
4
,
( ·

p

)
4

and for any fixed choice of z ∈ Z×2
p /Z×4

p

one can check that the expression (5.13) for p = v is exactly the representation of �(p;x, y, z)
as a sum of characters. The same is true for p ≡ 3 but the characters for F×

p /F
×4
p in that case

are 1,
( ·
p

)
. �
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We can now prove Lemma 5.9. We remark that the frobenian multiplicative functions
α(·, θ), β(·, θ) are the same ones that appear in the statement of Lemma 5.9.

Proof. Substituting (5.13) in the sum (5.12) and switching the order of summation gives a sum of
46 variables over a downward-closed set V . To describe this sum we rename some of the variables
and associate to each of them a factor. The sum is over the product of these factors, together
with the condition that these variables are pairwise coprime and square-free.

(i) The uk variables are given a factor χk(uk)2. This is bounded by 1.
(ii) The wk� have a factor α(wk�; θ)χkχ�(wk�) which is bounded by α(wk�; θ).
(iii) Denote the d variable associated to vk� by dk�. It is given a factor

β(dk�; z�mkn )χkχ�(dk�).

This is bounded by β(wk�; z�mkn ).
(iv) The e variable associated to vk� will be denoted by ek�. It has a factor

β(ek�, z�mkn )
(−AkA�tkmtknt�mt�n

ek�

)
χkχ�(ek�).

This is bounded by β(wk�; z�mkn ).
(v) Denote the f variable associated to vk� by fnmk� . The associated factor is

γ(fmnk� , z
�m
kn )

(−AkA�uku�umuntknt�m
fnmk�

)
χkχ�(fmnk� ).

Note that tkn has the first index of the top and bottom of fnmk� and t�m has the second
index of the top and bottom. This is bounded by δ(fnmk� , z

�m
kn ).

(vi) We denote the f ′ variable associated to vk� by fmnk� . Its factor is

γ(fmnk� , z
�m
kn )

(−AkA�uku�umuntkmt�n
fmnk�

)
χkχ�(fmnk� ).

Again note that tkm has the first index of the top and bottom of fmnk� and t�n has the
second index of the top and bottom. It is bounded by δ(fmnk� , z

�m
kn )

(vii) We rename the g variable associated to vk� by gk�. It has a factor

δ(N(gk�); z�mkn )
(−Aktkmtknu2

k

gk�

)
4

(
A�t�mt�nu

2
�

gk�

)−1

4

χkχ�(N(gk�)).

Its factor is bounded by δ(N(gk�); z�mkn ).
(viii) The g′ associated to vk� will be denoted by gck�, (the c standing for complement):

γc(N(gck�); z
�m
kn )

(−Aktkmt�mu2
m

gck�

)
4

(
A�tknt�nu

2
n

gck�

)−1

4

χkχ�(N(gck�)).

This factor is bounded by δ(N(gck�); z
�m
kn ).

We now stop assuming that k < �,m < n and write dk� = d�k, f
mn
k� = fnm�k , . . . . In this way,

we can treat fnmk� and fmnk� uniformly. With this relabeling the downward-closed set V is
equal to

{u,d, e, f ,g,gc : (u, (ek�dk�fmnk� f
nm
k� N(gk�)N(gck�)){k,�},w) ∈ U}.

It is then clear that the length of V is LV = LU ≤ |θA|−(1/2)T 2.
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We now apply Theorem 4.22 with A = 6, qosc = O(1), qfrob = O(1)|θA|O(1). The resulting
error term is Oε(|θA|−(1/2)+εT 2). We use Lemma 4.20 to show that the following pairs of variables
can be linked. Note that the coprimality condition between the linked variables is contained in
the Jacobi or power residue symbols.

(i) The variable ui is linked to fmnk� and to gk� if i = k, � and to fmnk� and gck� if i = m,n.
(ii) The variables wij and dij are both linked to ek�, gk� and gck� if {i, j} �= {k, �}, {m,n}. It is

also linked to fmnk� if {i, j} = {k,m}, {�, n}.
(iii) The variable eij is linked to fmnk� if {i, j} = {k, n}, {�,m}. It is also linked to gk�, g

c
k� if

{i, j} �= {k, �}, {m,n}.
(iv) The variable fmnk� is linked to fn�km, f

mk
�n , f �mkn and fkn�m. It is also linked to gij and gcij as long

as {i, j} �= {k, �}, {m,n}.
(v) The variables gij and gcij are both linked to gk� and gck� as long as {i, j} �= {k, �}, {�,m}.

All the variables are also frobenian. Indeed, if we fix all but one variable, then the product
of the factors is a product of the following quantities.

(i) A constant dependent on the other variables, whose absolute value is bounded by 1.
(ii) Coprimality conditions which only increase the set of bad primes of the frobenian

multiplicative function.
(iii) Factors of the form

(
n
m

)(
m
n

)
. These are Hecke characters modulo 4 by quadratic reciprocity.

(iv) A frobenian multiplicative function of conductor at most O(|θA|6) independent of the other
variables.

(v) The factor χ2
k or χkχ� which is a Dirichlet character modulo 8mA independent of the other

variables.
(vi) A product of Jacobi or quartic residue characters of the same type as defined in Lemma 4.20

corresponding to a linked variable y. The norm of the modulus of this Hecke character is
O(N(y)6) by that lemma.

It is thus a frobenian multiplicative of conductor O(1)|θA|O(1) by Lemma 4.3.
Assume that there is a linked variable y �= 1. Then the mean of this frobenian multiplicative

function is 0 by Lemma 4.4. Indeed, the product of the factors except for the Hecke character
corresponding to y is frobenian multiplicative and defined by a field with discriminant coprime to
N(y) by the coprimality conditions. The Hecke character corresponding to y cannot be defined
by such a field since N(y) is square-free and thus divides the norm of the conductor of the
corresponding Hecke character by Lemma 4.20.

Let us now consider the case when one of the (frobenian) variables x is not equal to 1.
By Theorem 4.22 we may assume that all the linked variables are at most e(2 log T )ε

. Note that
α(·; z), β(·; z) and δ(·; z) depend only on the class of z in Q×/Q×2. Thus, we may replace z�mkn by
θA. Using upper bounds, including to get rid of the dependence of U , we see that the contribution
of this is at most ∑

w

∑
d

∑
e

∑
f

∑
g

∑
gc

∑
u

|Ak|u2
k

∏
��=k tk�≤T

N(y)≤e(log T2)ε for y linked to x

∏
{k,�}

α(wk�; θA)β(dk�; θA)β(ek�; θA)

× δ(N(gk�); θA)δ(N(gck�); θA)
∏

m,n�=k,�
δ(fmnk� ; θA). (5.14)
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We can sum over the uk and enlarge the sum to obtain an upper bound

T 2

|θA|1/2
∑
w

∑
d

∑
e

∑
f

∑
g

∑
gc

N(y)≤e(log T2)ε for y linked to x
N(z)≤T for z not linked to x

∏
{k,�}

α(wk�; θA)
wk�

β(dk�; θA)
dk�

β(ek�; θA)
ek�

× δ(N(gk�); θA)
N(gk�)

δ(N(gck�); θA)
N(gck�)

∏
m,n�=k,�

δ(fmnk� ; θA)
fmnk�

.

The functions α(·; θA), β(·; θA), δ(·; θA), δ(N(·), θA) are frobenian multiplicative of known
means and conductor O(|θA|2). The mean of δ(N(·), θA) is twice that of δ(·, θA) because a prime
p splits in Q(i) if and only if p ≡ 1 (mod 4). Applying Proposition 4.12, partial summation and
using that all of the frobenian multiplicative functions are bounded by 1 we obtain an upper
bound


ε
T 2(log T )W

|θA|1/2−ε
∑

y linked to x

N(y)≤e(log T2)ε

1∏
y N(y)


ε
T 2(log T )W+Nε

|θA|1/2−(N+1)ε
,

where N = 46 is the total number of variables and W is the sum of the means of the frobenian
multiplicative functions corresponding to the unlinked variables, including x. We now compute
W for x = gk�, g

c
k� in the following table. By the notation 2 · 1

2 we mean that there are two
unlinked variables of that type and that the corresponding frobenian multiplicative function has
mean 1

2 .

Case wk� dk� ek� fmn
k� gk� gc

k� W

−θA ∈ Q×2 2 · 1/2 2 · 3/16 2 · 3/16 4 · 1/16 2 · 1/8 2 · 1/8 5/2
±θA �∈ Q×2 2 · 1/4 2 · 7/32 2 · 7/32 4 · 1/32 2 · 1/16 2 · 1/16 7/4

We can now assume that gk�, g
c
k� = 1. Consider now the case that x = fmnk� �= 1. All

the ui are linked to x, by (5.14) we can thus give an upper bound for this contribution
of ∑

w

∑
d

∑
e

∑
f

∑
u

|Ak|u2
k

∏
��=k wk�dk�ek�f

mn
k� fnm

k� ≤T
uk≤e(log T2)ε

∏
{k,�}

α(wk�; θA)β(dk�; θA)β(ek�; θA)
∏

m,n�=k,�
δ(fmnk� ; θA).

Consider the Dirichlet convolution ρ := α ∗ β ∗ β ∗ δ ∗ δ. One can check by looking
at prime powers that |ρ(·; θA)| ≤ 1. Writing tk� = wk�dk�ek�f

mn
k� f

nm
k� we obtain an upper

bound ∑
uk≤e(log T2)ε

∑
|Ak|u2

k

∏
��=k tk�≤T

ρ(tk�; θA) ≤
∑

uk≤e(log T2)ε

∑
|Ak|u2

k

∏
��=k tk�≤T

1.

The inner sum was bounded in the proof of Lemma 5.3. To be precise, (5.2) gives an upper
bound



∑

uk≤e(log T2)ε

T 2(log T )2∏
k uk|θA|1/2 
 T 2(log T )2+4ε

|θA|1/2 .
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We can thus assume that fmnk� = 1. Consider now the case that x = ek� �= 1. We can apply
the same method as for gk�, g

c
k�, but we may assume that gk� = gck� = fmnk� = 1 so they will not

contribute to W . We compute W in the following table.

Case wk� dk� ek� W

−θA ∈ Q×2 2 · 1/2 2 · 3/16 6 · 3/16 5/2
±θA �∈ Q×2 2 · 1/4 2 · 7/32 6 · 7/32 9/4

We recall that MA = 11
16 if θA ∈ −Q×2 and MA = 15

32 if θA = ±Q×2. Thus, in the above cases
W is always strictly smaller than 5MA. Combining everything and changing our ε we find that

SUA(χ, T ) =
∑ ∑ ∑
(u,d,w)∈U

μ(
∏

k uk
∏

{k,�} dk�wk�)
2=1

∏
k

χk(uk)2
∏
{k,�}

χkχ�(wk�dk�)α(wk�; θA)β(dk�; θA)

+Oε

(
T 2(log T )5MA

|θA|1/2−ε
)

as desired. �

5.3 The error terms

Proof of Lemma 5.4. By combining (5.9) and (5.11) we have for all downward-closed sets U

#N loc,U
A,M (T ) 
ε

∑ ∑ ∑
(u,d,w)∈U

∏
{k,�}

α(wk�; θA)β(dk�; θA) +
T 2(log T )5MA

|θA|1/2−ε . (5.15)

We have rid ourselves of the coprimality and square-freeness with a trivial bound.
There are two sets U we have to consider.

(i) The U we have to consider for (5.3) is defined by the inequalities wk� ≤ (log T 2)C for all
{k, �}. Summing over the uk and enlarging the sum gives


ε
T 2(log T )ε

|θA|1/2
∑

wk�≤(log T 2)C

∏
{k,�}

α(wk�; θA)
wk�

∑
dk�≤T

∏
{k,�}

β(dk�; θA)
dk�

.

The functions α(·; θA), β(·; θA) are frobenian multiplicative functions of conductor at most
16|θA|2 and mean given in Lemma 5.9. By Theorem 4.12 and partial summation this is


ε |θA|12ε−1/2T 2(log T )W (C log log T )6 
C |θA|12ε−1/2T 2(log T )5MA .

Here W = 6 · 3
16 <

55
16 = 5MA if θA ∈ −Q×2 and W = 6 · 7

32 <
75
32 = 5MA if θA �∈ ±Q×2.

(ii) We may assume that i = 0, j = 1 when proving (5.4), the condition defining U
is thus u0, u1 ≤ (log T 2)C . Summing first over u2, u3 and then over the wk� ≤
T/|Ak|u2

kdk�
∏
m�=k,� dkmwkm for all (k, �) = (0, 2), (1, 3) together with the trivial bound

α(wk�; θA) ≤ 1 gives the following upper bound after enlarging the sum


 T 2

|θA|1/2
∑

u0,u1≤(log T 2)C

1
u0u1

∑
dk�,wk�≤T

∏
{k,�}�={0,2}

α(wk�; θA)
wk�

∏
{k,�}

β(dk�; θA)
dk�

.

Again, the functions α, β are frobenian of known means so using Theorem 4.12 and partial
summation we obtain


 |θA|10ε−1/2T 2(log T )W (C log log T )2 
 |θA|6ε−1/2T 2(log T )5MA .
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Here W = 4 · 1
2 + 6 · 3

16 <
55
16 = 5MA if θA ∈ −Q×2 and W = 4 · 1

4 + 6 · 7
32 <

75
32 = 5MA if

θA �∈ ±Q×2.
�

We now look at SA(χ, T ). Let λ(·; θ) be the S ∪ {p | θ}-frobenian multiplicative function

λ(t; θ) := μ(t)2
∑
wd=t

(θ
∏

p∈S p,t)=1

α(w; θ)β(d; θ).

To see that it is frobenian multiplicative note that it is bounded by the convolution α(·; θ) ∗
β(·; θ), which is frobenian multiplicative due to Lemma 4.3, and equal to that convolution at all
but finitely many primes t. Its mean Mθ is equal to the sum of the means of α(·; θ), β(·; θ). This
is 11/16 if −θ ∈ Q×2 and 15/32 if ±θ �∈ Q×2. We remark that MθA=MA.

It is bounded by 1 because there exists at most one pair d,w such that the term in the sum
is non-zero. The extension Q(

√−1,
√
θ) defines λ(·; θ) so it has conductor at most 16|θ|2.

Note that χk(x) = 0 if (θA
∏
p∈S S, x) �= 1 so substituting the definition (5.3) into (5.11)

shows that

SA(χ, T ) =
∑
u

∑
t

|Ak|u2
k

∏
��=k tk�≤T

μ

( ∏
k

uk
∏
{k,�}

tk�

)2 ∏
k

χk(u2
k)

∏
{k,�}

χkχ�(tk�)λ(tk�; θA)

+Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
. (5.16)

We first deal with the μ(
∏
k uk

∏
{k,�} tk�)

2 factor via Möbius inversion. Let κ be the
10-variable multiplicative function with Dirichlet series

F (s, s′) =
∑
u

∑
t

μ(
∏
k uk

∏
{k,�} tk�)

2

∏
k u

sk
k

∏
{k,�} t

s′k�
k�

∏
k

ζ−1(sk)
∏
{k,�}

ζ(s′k�)
−1

=
∏
p

(
1 +

∑
k

p−sk +
∑
{k,�}

p−s
′
k�

) ∏
k

(1 − p−sk)
∏
{k,�}

(1 − p−s
′
k�). (5.17)

This converges absolutely as long as si + sk, si + s′k�, s
′
ij + s′k� > 1 for all i, j, k, �. By the

correspondence between arithmetic functions and Dirichlet series we have

μ

( ∏
k

uk
∏
{k,�}

tk�

)2

=
∑
f

fk�|tk�

∑
g

gk|uk

κ(f ,g).

Substituting this into (5.16), rewriting tk� = fk�tk�, uk = gkuk, using that λ(·; θA) is multiplica-
tive and supported on square-free integers and switching the order of summation shows that the
main term of SA(χ, T ) is∑

f

∑
g

∑
u

∑
t

|Ak|g2ku2
k

∏
��=k fk�tk�≤T

(fk�,tk�)=1

κ(f ,g)
∏
k

χk(g2
ku

2
k)

∏
{k,�}

χkχ�(fk�tk�)λ(fk�; θA)λ(tk�; θA). (5.18)

We prove the following lemma to deal with χk.
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Lemma 5.11. If there exists a character χ ∈ Γ∨
A[2] such that χk = χ for all k, then

SA(χ, T ) = SA(1, T ) =
∑
f

∑
g

∑
u

∑
t

|Ak|g2ku2
k

∏
��=k fk�tk�≤T

(mA,
∏

k ukgk)=(fk�,tk�)=1

κ(f ,g)
∏
{k,�}

λ(fk�; θA)λ(tk�; θA)

+Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
. (5.19)

For all other χ we have

SA(χ, T ) = Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
.

Proof. If there exists such a character χ, then χk(g2
ku

2
k) = χ2(gkuk) and χkχ�(fk�tk�) =

χ2(fk�tk�). As χ2 is principal it is the indicator function of the set {x ∈ Z : (x,mA) = 1}. The
equality (5.19) follows from (5.18) after noting that the definition (5.3) of λ already includes the
necessary coprimality condition.

Assume now that no such χ exists. We claim that there exist k �= � such that χkχ� is non-
principal. To prove the claim assume that for all k �= � the character χkχ� is principal. Then for
all pairwise distinct k, �,m, we have χk = χ−1

� = χm. Hence, χk = χm = χ−1
k for all k,m.

We may assume that χ0χ1 is non-principal. First sum over t01 in (5.18). The function
χ0χ1(·)λ(·, θA) is a {p | mAf01}-frobenian multiplicative function of conductor 
 |θA|O(1). The
function λ(t, θ) is strictly positive if t is odd square-free so χ0χ1(·)λ(·, θA) has mean zero by
[LM19, Lemma 2.4]. Corollary 4.11 and the divisor bound thus imply that this sum is


C,ε |θA|εeω(f01)T min
((

log(2T/|A0|u2
0t02t03f01f02f03)

)−2C

|A0|u2
0t02t03f01f02f03

,

(
log(2T/|A1|u2

1t12t13f01f12f13)
)−2C

|A1|u2
1t12t13f01f12f13

)


C,ε |θAf01|ε
T

(
log(2T/u2

0|A0|t02t03f01f02f03)
)−C(

log(2T/u2
1|A1|t12t13f01f12f13)

)−C
u0u1f01(|A0A1|t02t03f02f03t12t13f12f13)1/2

.

Choose C = 2 and use the inequality |χk(·)| ≤ 1. The sum over ui for i = 0, 1 is bounded by
the integral

∫ x2≤T/Aiti2ti3fijfi2fi3

x≥0

(
log(2T/x2Aiti2ti3fijfi2fi3)

)−2

x
dx =

∫ ∞

y2≥2

1
y(2 log y)2

dy 
 1,

where we made the change of variables y = (2T )1/2/x(Aiti2ti3fijfi2fi3)1/2. Summing over the uk
for k = 2, 3 and using the trivial bound λ(fk�, θA) ≤ 1 gives a total upper bound


ε
T 2

|θA|1/2−ε
( ∑

f ,g

|κ(f ,g)|fε−1
01

∑
tk�≤T

∏
{k,�}�={0,1}

λ(tk�; θA)
tk�fk�

+ (log T )5MA

)
.

The sum over f and g is bounded by a value of the series obtained by taking absolute values in the
series F (1, s′), which was defined in (5.17), with s′01 = 1 − ε and s′k� = 1 for {k, �} �= {0, 1}. This
is O(1) for ε ≤ 1

4 because the series is absolutely convergent there. By applying Theorem 4.12 to
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λ(·; θA) and using partial summation we can conclude that

SA(χ, T ) 
ε
T 2(log T )5MA

|θA|1/2−ε . �

Lemma 5.11 implies that

N loc
A,M(T ) =

1
|ΓA|4

∑
χ∈Γ∨

A[2]

∏
k

χ(Mk)SA(1, T ) +Oε

(
T 2(log T )5MA

|θA|1/2−ε
)

=
|Γ∨

A[2]|
|ΓA|4 SA(1, T ) +Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
. (5.20)

The second equality is because
∏
kMk has to be a square so χ(

∏
kMk) = 1 if χ ∈ Γ∨

A[2].

5.4 The main term
It remains to evaluate SA(1, T ). By Theorem 4.12 we have the following asymptotic formula for
all ε > 0 ∑

t≤x
(t,f)=1

λ(t; θ) = (Kθ,fMθ + eO(f)Oε(|θ|ε(log x)−1))x(log x)Mθ−1.

The constant Kθ,f is given by the Euler product

Kθ,f :=
1

Γ(Mθ)Mθ

∏
p �∈S,p�fθ

(
1 +

λ(p, θ)
p

) ∏
p

(
1 − 1

p

)Mθ

.

In particular, Kθ,f ≤ Kθ,1. By applying Theorem 4.12 with N = −1 we see that Kθ,1 
ε |θ|ε.
It follows from the divisor bound that eO(ω(f)) = Oε(fε). Applying partial summations and

noting that Mθ < 1 shows that∑
t≤x

(t,f)=1

λ(t; θ)
t

= Kθ,f (log x)Mθ +Oε((|θ|f)ε). (5.21)

We use the shortened notation MA := MθA , KA,f := KθA,f which is consistent with our earlier
definition of MA.

We now prove an asymptotic formula for the main term.

Lemma 5.12. There exists a positive constant Q′
A 
ε |θA|ε for all ε such that for T > 2 we have

SA(1, T ) =
(
Q′

A +Oε

( |θA|ε
(log T )MA

))
T 2(log T )6MA

|θA|1/2 . (5.22)

Proof. We have to evaluate the right-hand side of (5.19):

∑
f

∑
g

∑
u

∑
t

|Ak|g2ku2
k

∏
��=k fk�tk�≤T

(mA,
∏

k ukgk)=(fk�,tk�)=1

κ(f ,g)
∏
{k,�}

λ(fk�; θA)λ(tk�; θA) +Oε

(
T 2(log T )5MA

|θA|1/2−ε
)
. (5.23)

We first sum over the uk, this sum is (ϕ(mA)/mA)(T/|Ak|1/2gk
∏
��=k fk�tk�) +O(τ(mA)),

it is also 
 T/|Ak|1/2gk
∏
��=k fk�tk�. To deal with the resulting error terms it thus suffices to
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bound

τ(mA)T 3/2

|A1A2A3|1/2
∑
f

∑
g

∑
t

|Ak|g2k
∏

��=k fk�tk�≤T
(mA,

∏
k gk)=(fk�,tk�)=1

|κ(f ,g)|g0
∏
i�=0

√
f0it0i

∏
{k,�} λ(fk�; θA)λ(tk�; θA)∏

k gk
∏

{k,�} fk�tk�
.

Applying the trivial inequality λ(·; θA) ≤ 1, getting rid of the coprimality conditions by an upper
bound, summing over t01 ≤ T/g0t02t03

∏
i�=0 f0i and enlarging the sum gives an upper bound


 τ(mA)T 2

|θA|1/2
∑
f

∑
g

∑
t\{t01}

tk�≤T

|κ(f ,g)|∏{k,�} λ(fk�; θA)λ(tk�; θA)∏
k gk

∏
{k,�} fk�tk�

.

Using the bound λ(fk�; θA) ≤ 1 we see that the sums over f and g are bounded by the series
obtained by taking absolute values in the series defining F (1,1) which was defined in (5.17).
This series converges because F is absolutely convergent at (1,1). The divisor bound gives
τ(mA) 
ε |θA|ε. In addition, the sum over each tk� gives a contribution 
ε |θA|ε(log T )MA by
(5.21). The total error term is thus, after changing ε, given by 
ε T

2(log T )5MA/|θA|1/2−ε. We
find that SA(1, T ) is equal to(

ϕ(mA)
mA

)4 T 2

|θA|1/2
∑
f

∑
g

∑
t

|Ak|g2k
∏

��=k fk�tk�≤T
(mA,

∏
k gk)=(fk�,tk�)=1

κ(f ,g)
∏

{k,�} λ(fk�; θA)λ(tk�; θA)∏
k gk

∏
{k,�} fk�tk�

+Oε(|θA|ε−1/2T 2(log T )5MA). (5.24)

Denote the sum over t by RA(T ; f ,g). We first compare this sum with the slightly different sum

R′
A(T ; f) :=

∑
t∏

��=k tk�≤T
(fk�,tk�)=1

∏
{k,�}

λ(tk�; θA)
tk�

.

The difference between these two sums can be bounded by the sum over i ∈ {0, 1, 2, 3} of the
subsum of R′

A(T,1) defined by the condition T/|Ai|g2
i

∏
j �=i fij ≤

∏
��=i ti� ≤ T . Choose j �= i and

sum over tij . Using the trivial inequality λ(tij ; θA) ≤ 1 and ignoring the coprimality condition
with an upper bound shows that this gives a contribution of


 log
T∏

��=i,j ti�
− log

T

|Ai|g2
i

∏
j �=i fij

∏
��=i,j ti�

= log |Ai|g2
i

∏
j �=i

fij .

Summing over the other tk� ≤ T and applying (5.21) shows that |RA(T ; f ,g) −R′
A(T ; f)| is


ε |θA|5ε log
(
|θA|

∏
k

gk
∏
{k,�}

fk�

)
(log T )5MA 
ε

(
|θA|

∏
k

gk
∏
{k,�}

fk�

)6ε

(log T )5MA .

To evaluate R′
A(T ; f) we apply Lemma 4.17. By (5.21) we may take

gk�(tk�) := KA,fk�

d

dtk�
(log tk�)MA if tk� ≥ 1, 0 otherwise,

hk�(tk�) := Oε((|θA|fk�)ε) if
1
2
≤ tk� ≤ 1, 0 otherwise.
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By enlarging the integrals we see that the error term is bounded by the sum over J � P2(4)
of the integrals

∏
{k,�}∈J

KA,fk�

∫ 4T

1

d

dtk�
(log tk�)MA dtk�

∏
{m,n}�∈J

Oε((|θA|fmn)ε)
∫ 1

1/2
dtmn.

The contribution for {m,n} �∈ J is Oε((|θA|∏{m,n} fmn)
(6−|J |)ε) and the contribution of {k, �} ∈

J is O(|θA||J |ε(log T )|J |MA). The total error term is, thus,

Oε

((
|θA|

∏
{k,�}

fk�

)6ε

(log T )5MA

)
.

The main term is given by the integral

∏
{k,�}

KA,fk�

∫ ∏
��=k tk�≤T

1≤tk�

∏
{k,�}

d

dtk�
(log tk�)MA dtk�.

By making the change of variables sk� = (log tk�/ log T )MA we see that this is equal to

∏
{k,�}

KA,fk�
(log T )6MA

∫ ∑
��=k s

1/MA
k� ≤1

0≤sk�

∏
{k,�}

dsk�.

The integral is equal to a constant 0 < LA ≤ 1 depending on MA. To summarize

RA(T ; f ,g) =
∏
{k,�}

KA,fk�
LA(log T )6MA +Oε

((
|θA|

∏
{k,�}

fk�
∏
k

gk

)ε

(log T )5MA

)
.

We claim that the expression one gets after filling this into (5.24) converges as T → ∞. Using
the inequalities KA,fk�

≤ KA,1, λ(fk�; θA) ≤ 1 it suffices to bound the sums

K6
A,1

∑
f

∑
g

|Ak|g2k
∏

��=k fk�>T for some k

|κ(f ,g)|∏
k g

1−ε
k

∏
{k,�} f

1−ε
k�

.

for sufficiently small ε. By enlarging the sum it suffices to bound the same sum over either the
region defined by gk > (T/|θA|)1/5 for some k or the region defined by fk� > (T/|θA|)1/5 for
some {k, �}. This sum is exactly the remainder of the series gotten by taking absolute values of
the coefficients of F (1 − ε,1 − ε). This Dirichlet series converges absolutely in a large enough
half open plane so that the sum is O(|θA|ε/T ε) for sufficiently small ε. We also recall that
KA,1 
ε |θA|ε. Hence, there exists a constant 0 < FA(1,1) 
ε |θA|ε such that∑

f

∑
g

|Ak|g2k
∏

��=k fk�≤T

RA(T ; f ,g) = FA(1,1)LA(log T )6MA +Oε(|θA|ε(log T )5MA).

Combining everything, we find that

SA(1, T ) =
((

ϕ(mA)
mA

)4

FA(1,1)LA +Oε

( |θA|ε
(log T )MA

))
T 2(log T )6MA

|θA|1/2 .

As (ϕ(mA)/mA)4 ≤ 1, 0 < FA(1,1) 
ε |θA|ε and 0 < LA ≤ 1 we are done. �
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Substituting (5.22) into (5.20) shows that

N loc
A,M(T ) =

|Γ∨
A[2]|

|ΓA|4
(
Q′

A +Oε

( |θA|ε
(log T )MA

))
T 2(log T )6MA

|θA|1/2 .

This proves Lemma 5.8 because |Γ∨
A[2]| ≤ |ΓA|.

6. Uniform formula

One of the difficulties in finding upper and especially lower bounds of NBr(T ) was that we do
not have a uniform description of A as this algebra depends on choosing a rational point on a
quadric. We prove in this section that no such uniform description can exist.

We follow the ideas of [Uem14]. Let k be a field of characteristic 0, π : X → P3
k the universal

diagonal quartic, i.e. X ⊂ P3
k × P3

k is given by

a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0.

Let K := k(P3
k). Write λ = −a1/a0, μ = −a2/a0 and ν = a0a3/a1a2. We see that K = k(λ, μ, ν)

and the generic fiber XK of π is the smooth K-variety defined by the equation

X4
0 − λX4

1 − μX4
2 + λμνX4

3 = 0.

Here λ, μ, ν were chosen to be compatible with [Uem16, § 2].
Uematsu defined a specialization map [Uem14, § 2] whose definition in this particular case we

recall. Let A ∈ Br(XK). Then there exists an open subscheme U ⊂ P3
k and an element Ã ∈ Br(XU )

such that XU is smooth over U and A is the image of Ã under the injection Br(XU ) → Br(XK).
For every P ∈ U(k) we define the specialization of A at P as

sp(A;P ) := Ã|XP
∈ Br(XP ).

We deal with the algebraic and transcendental Brauer groups separately.

Proposition 6.1. If 4
√

2 �∈ k(i,
√

2), then Br(XK)/Br1(XK) = 0.

Proof. For the even torsion we apply [GvSk22, Theorem 3.8], the surface XK is split by the
extension K(i,

√
2, 4

√−λ, 4
√−μ, 4

√
ν) which does not contain 4

√
2.

The odd torsion follows from [GvSk22, Remark 3.10]. To spell out the details, let p be an
odd prime. The remark says that the action of Gal(K/k(λ, μ, ν)) on Br(XK)[p] ∼= Z[

√−1]/p is
given by multiplication with the character Gal(K/k(λ, μ, ν)) → μn corresponding to the quartic
extension given by adjoining the fourth root of λ2μ2ν. The fixed elements of this action are thus
fixed by multiplication with

√−1. The only such element is 0, so

Br(XK)[p]Gal(K/K) ⊂ Br(XK)[p]Gal(K/k(λ,ν,μ)) = 0

and Br(XK)/Br1(XK)[p] by definition injects into this group. �
Theorem 6.2. We have Br1(XK)/Br0(XK) = 0 but H1(K,Pic(XK)) ∼= Z/2Z.

Proof. The Hochschild–Serre spectral sequence [Mil80, Theorem 2.20] Hp(K,Hq(XK ,Gm)) ⇒
Hp+q(XK ,Gm) induces an exact sequence

Br(K) → Br1(XK) → H1(K,Pic(XK))
d1,1

XK−−−→ H3(K,Gm).

It suffices to prove that the map d1,1
XK

is injective. The group H1(K,Pic(XK)) has been computed
by Bright [Bri02, Chapter 3]. He only mentions number fields, but the same arguments
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work over general fields of characteristic 0. The relevant case in Appendix A of [Bri02]
is A222, B60, C56, D56 or E18 depending on K ∩ Q( 4

√−1) = k ∩ Q( 4
√−1). In all cases

H1(K,Pic(XK)) ∼= Z/2Z.
Consider the open subscheme V := {X3 �= 0} ⊂ XK . It is the affine quartic surface defined

by x4
0 − λx4

1 − μx4
2 + λμν = 0. Let U be the affine quadric surface defined by y2

0 − λy2
1 − μy2

2 +
λμν = 0 and f : V → U the map yi = x2

i . The functoriality of the Hochschild–Serre spectral
sequence gives us the following commutative diagram.

We have H1(K,Pic(UK)) ∼= Z/2Z and the map d1,1
U is injective [Uem16, Proposition 2.2,

Theorem 3.1]. Let φ ∈ H1(K,Pic(UK)) be the generator. It suffices to find an element ψ ∈
H1(K,Pic(XK)) such that ψ|V = f∗φ because then d1,1

XK
ψ = d1,1

U φ �= 0 which implies that ψ

generates H1(K,Pic(UK)) ∼= Z/2Z.
Let α :=

√
λ, α′ :=

√
μ, γ :=

√
ν and β := αγ. We define the following divisors of XK :

L1 : X2
0 = αX2

1 , X
2
2 = βX2

3 ,

L2 : X2
0 = αX2

1 , X
2
2 = −βX2

3 ,

L′
1 : X2

0 = −αX2
1 , X

2
2 = βX2

3 ,

L′
2 : X2

0 = −αX2
1 , X

2
2 = −βX2

3 .

Let H ∈ Pic(XK) be the hyperplane class.
By [Uem16, Corollary 2.3] f∗φ is represented by the cocycle

f∗φ : Gal(K(γ)/K) → Pic(VK) : id → 0, σ → [L1 ∩ V ],

where σ is the generator of Gal(K(γ)/K).
We claim that the following cochain is a cocycle

ψ : Gal(K(γ)/K) → Pic(XK) : id → 0, σ → [L1] −H.

If the claim holds, then ψ|V = f∗φ as desired.
The claim consists of two parts, first that [L1] is Gal(K/K(γ))-invariant. The Galois

conjugates of L1 are L1 and L′
2 so this is equivalent to [L1] − [L′

2] = 0. This follows from

div(X2
0 − αX2

1 − α′X2
2 + α′βX2

3 ) = L1 + {X2
0 = α′X2

2 , αX
2
1 = α′βX2

3},
div(X2

0 + αX2
1 − α′X2

2 − α′βX2
3 ) = L′

2 + {X2
0 = α′X2

2 , αX
2
1 = α′βX2

3}.
That the left-hand side contains the right-hand side is clear. They are thus equal because they
both have degree 8. The second part of the claim is that [L1] + σ[L1] − 2H = 0. This follows
from [L1] + σ[L1] = [L1] + [L2] = [div(X2

0 − αX2
1 )] = 2H. �

This theorem allows us to prove in a precise sense that there exists no uniform formula for
A. Let k = Q,K = Q(λ, μ, ν).

Corollary 6.3. There exists no A ∈ Br(XK) such that

sp(A;P ) = A
for all P ∈ P3

Q(Q) for which this specialization is defined.
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Proof. By Proposition 6.1 and Theorem 6.2 it suffices to show that the subset of P3
Q(Q) on which

A is not constant is Zariski-dense. Let p be an odd prime. By Lemma 3.8 the Zariski-dense set
{[pa0 : pa1 : a2 : a3] : p � a0a1a2a3} is contained in this subset. �
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Fog62 E. Fogels, Über die Ausnahmenullstelle der Heckeschen L-Funktionen, Acta Arith. 8 (1962/63),
307–309; MR 156823.

GMS03 S. Garibaldi, A. Merkurjev and J.-P. Serre, Cohomological invariants in Galois cohomology,
University Lecture Series, vol. 28 (American Mathematical Society, 2003); MR 1999383.

GiSz06 P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in
Advanced Mathematics, vol. 101 (Cambridge University Press, Cambridge, 2006); MR 2266528.

Gro68 A. Grothendieck, Le groupe de Brauer: I, II, III, Dix exposés sur la cohomologie des schémas
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