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ON ALMOST CONTINUOUS MAPPINGS 
AND BAIRE SPACES 

BY 

S H W U - Y E N G T. LIN A N D Y O U - F E N G LIN 

ABSTRACT. It is proved, in particular, that a topological space X 
is a Baire space if and only if every real valued function / : X - > R is 
almost continuous on a dense subset of X. In fact, in the above 
characterization of a Baire space, the range space R of real numbers 
may be generalized to any second countable, Hausdorfï space that 
contains infinitely many points. 

1. Introduction. In 1966 T. Husain [2] (see, also [3]) introduced the concept 
of almost continuous mappings and investigated some of their properties. 
Subsequently, many papers including Lin [5], Long and Carnahan [7], Long 
and McGehee [8], Singal and Singal [10] and Noiri [9], to name a few, have 
appeared. Following Husain [2], a mapping / : X - » Y, from a topological space 
to another, is said to be almost continuous at xeX if and only if for each 
neighborhood V of f(x), Int CI /_1(V) is a neighborhood of x; the function / is 
almost continuous o n A c X , if it is almost continuous at every point xe A. A 
Baire space is a topological space in which the intersection of each countable 
family of open dense subsets is dense [1], [4], [6]. 

In a previous paper [5], the first author has proved the following theorem 
which motivates the present article. 

THEOREM 1. If f:X-+ Y is a mapping from a Baire space X to a topological 
space Y that satisfies the second axiom of countability, then the mapping f is 
almost continuous on a dense subset of X. 

Proof. See [5]. 

Working on a converse of Theorem 1, we have come up with the following 
result. 

THEOREM 2. Let Y be an arbitrary infinite Hausdorff space. If X is a 
topological space such that every mapping f:X-*Y is almost continuous on a 
dense subset D(f) of X, then X is a Baire space. 

The proof of Theorem 2 is given in the next section. We observe that by 
taking the common ground of the range space Y in both Theorems 1 and 2, 
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and combining these two theorems, results in the following new characteriza­
tion of a Baire space. 

THEOREM 3. Let Y be an arbitrary second countable, infinite Hausdorff space. 
Then a topological space X is a Baire space if and only if every mapping 
f:X—> Y is almost continuous on a dense subset of X. 

A particularly interesting special case of Theorem 3 is obtained by using the 
usual space R of real numbers in place of the space Y in Theorem 3. Thus, 

THEOREM 4. A topological space X is a Baire space if and only if every real 
valued function on X is almost continuous on a dense subset of X. 

2. Proof of the main theorem. Before proving Theorem 2, we shall need the 
following lemma which is taken from Problem 14, page 147 of Long [6]. 

LEMMA. Every infinite Hausdorff space contains a countably infinite discrete 
subspace. 

Proof of Theorem 2. We shall prove, equivalently, that if X is not a Baire 
space, then there exists a mapping /:X—»Y such that the set D of almost 
continuity of / is not dense in X For this purpose, suppose now, on the 
contrary, that X is a topological space that does not satisfy the condition of 
Baire. Then, there exists a sequence of dense open sets 

DbD2,D3,... 

such that the intersection f)7= i&i is not dense in X. Consequently, there exists 
a nonempty open subset, say I/, of X such that 

LTeX-nD^UCX-A), 
i = l i = l 

where ~ denotes the complementation of sets. Notice that each X~Dt is 
nowhere dense in X: For, 

Int C1(X ~ Dt) = Int(X ~ Dt) = • (the empty set), 

for all i. 
Let I/j=[7 —Df. Then l /=Ur=i^ r Without losing generality, we may 

assume that these Ut are pairwise disjoint (and not empty); for, otherwise, we 
may instead choose 

U'1=U1,U'n=Un~
n\JUh for all n 

and drop the empty ones. 
Since the space Y is Hausdorff and containing infinitely many points, by the 
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lemma stated earlier, there exists a countably infinite discrete subspace S of Y 
which we exhibit as 

S = {yi,y2 ,y3 , . . . ,yn,. . .}. 

We then consider the mapping / :X-> Y defined by: 

(yn+1, if xeUn for somen, 

lyl5 otherwise. 

It is readily seen that / is a well-defined mapping. Therefore, by the hypothsis 
of the theorem, this mapping / : X-> Y is almost continuous on a dense subset 
D(f) of X. Since the set U is not empty and open, we must have 

l / n D ( / ) * D . 

Choose an arbitrary fixed point x0e UC\D(f). Then, since x0e Um for some 
Um, we have 

/(*o) = ym+i. 

Since S is a discrete subspace of Y, there exists an open neighborhood Vm+1 of 
ym+1 such that Vm+1HS = {ym+1}. Then, since Um^X~Dm and Um is 
nowhere dense, for any neighborhood V of /(x0) such that V c Vm+1, 
IntCl/_1(V) is an empty set, which cannot be a neighborhood of x0. This 
shows that / is not almost continuous at JC0 e £>(/), a contradiction. Therefore, 
X is a Baire space. 

3. Open problems. 1. Let / : X-» Y be a mapping from a Baire space X to a 
second countable space Y If / is almost continuous and has a closed graph; 
that is, the set {{x,f(x))\xeX} is closed in the product space XxY. Is / 
necessarily continuous? 

2. Do Theorems 1 and 3 remain true without assuming second countability 
on the range space Y? 
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