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THE DEPENDENCE OF TEMPERATURE PROFILES IN ICE
SHEETS ON LONGITUDINAL VARIATIONS IN VELOCITY
AND SURFACE TEMPERATURE

By A. S. Jongs*

(Visiting Research Fellow, School of Mathematics and Physics, University of East Anglia,
Norwich NR4 7T], England)

ApstracT. Formulae for calculating temperature profiles in steady-state ice sheets are derived in terms
of the horizontal and vertical velocities of the surface ice, and of the variation in surface temperature along
the flow lines. Two models are considered: parallel flow and radial flow. In each case the result consists of
a “stationary” term (equivalent to Robin’s equation), a term dependent on the horizontal velocity, and a
term arising from the temperature variations. This last term produces reversals in the temperature field such
as are measured in practice,

REsuMe.  Détermination des profils de températures dans les calottes glaciaires par les variations longitudinales de
vitesse et de température de surface. Des formules pour le calcul des profils de températures dans des calottes
glaciaires en état d’¢équilibre sont établies en fonction des vitesses verticales et horizontales de la glace de
surface et des variations de la température de surface le long des lignes de courant. Deux modéles sont
considérés: I’écoulement paralléle et I’écoulement radial, Dans chaque cas, le résultat se compose d’un terme
“'stationnaire” (équivalent 4 I'équation de Robin), d’un terme dépendant de la vitesse horizontale et d’un
terme déduit des variations de températures. Ce dernier terme provoque des inversions dans le champ des
températures telles que celles que 'on mesure dans la pratique.

ZusAMMENFAssUNG. Die Abhdngigkeit von Temperaturprofilen in Eisdecken von der Lingsverteilung der Geschwindig-
keit und der Oberflichentemperatur. Fiir die Berechnung von Temperaturprofilen in stationiren Eisdecken aus
der horizontalen und vertikalen Geschwindigkeit der Eisoberfliche und aus der Temperaturverteilung
entlang der Stromlinien werden Formeln hergeleitet. Zwei Modelle werden betrachtet: paralleles und
radiales Fliessen. In beiden Fillen besteht das Ergebnis aus einem “stationiren” Term (gleichwertig mit
Robins Gleichung), einem Term, der von der Horizontalgeschwindigkeit abhingt und einem Term fiir die
Temperaturverteilung. Der letzte bewirkt eine Umkehr im Temperaturfeld, wie sie in der Praxis beobachtet
wurde,

INTRODUCTION

This analysis was prompted by the need to estimate basal temperatures beneath the ice
caps which covered Britain in the last Devensian period, particularly to determine the areas
in which melting was likely to occur. Budd and others ([1970]) tackled a similar problem for
the Antarctic ice sheet numerically, but this procedure is not always convenient. Robin
(1955) gives a formula for the temperature profile in the absence of horizontal velocity
variation, which Weertman (1968) modified in an attempt to fit it to the measured temperature
profile at Camp Century.

In this paper the problem of heat transfer in moving ice sheets is reconsidered ab initio. In
common with other authors the following assumptions are made:

1. The ice sheet is in a steady state. That is, accumulation rates, mean surface tempera-
tures, and surface geometry of the ice sheet do not vary with time.

2. The horizontal ice velocity is uniform with depth. An immediate consequence of this
assumption is that the vertical ice velocity is proportional to the distance from the bed.

3. There is no internal heat generation in the ice sheet. At the bottom of the ice sheet we
have a constant geothermal heat flux and a frictional heating term proportional to the
horizontal velocity.

Two basic models are considered. In the first the ice is assumed to be spreading from a
central ridge line with stream-lines which are parallel in plan (see Fig. 1), while in the second
(Fig. 2) the flow diverges uniformly from a central origin,
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The first model will be treated in some detail, while the essential features only will be
given in the second case. Since these latter results involve confluent hypergeometric functions,
which are not normally tabulated, a short table of values is included.
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PLAN VIEW VERTICAL SECTION

Fig. 1. Parallel flow model : streamlines.

PLAN VIEW VERTICAL SECTION

Fig. 2. Radial flow model : streamlines.

PARALLEL FLOW MODEL

Using X as the horizontal variable in the direction of ice flow and  as the vertical variable,
the heat-convection—diffusion equation is
[T 2T 8 8T
(axz+‘a—zz)‘— Usxt oz (1)
where K is the thermal diffusivity (36.3 m?/year for ice), 7 is the temperature, and U and V
are the horizontal and vertical velocities respectively.
If the ice thickness is H and the net surface accumulation rate is A, both of which are
initially assumed to be independent of X, it follows that U = AX|H and V= —AZJH.

If we substitute these values into Equation (1) and scale the variables by a factor g so that we
use non-dimensional co-ordinates

x = BX
=
where B2 = A[2KH, we obtain
*T 2T eT eT

ﬁ W=Q.‘Ea—2€a—z, (2)
for which a general solution can be written in the form (Pillow, 1964)
= Z Hp(x) (Ay ierfc (2) +By ierfc (—2)), (3)

n
where Hy(x) is the nth Hermite polynomial, and ierfc (2) is the nth iterated integral of the
complementary error function.*

* There are various notations for this function. Its properties are listed by Pillow (1964) and also by
Abramowitz and Stegun (1964) and by Magnus and others (1966).
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The constants A, and B, are found from the boundary conditions. At the base, the ice is
heated by the geothermal heat flux and by frictional heating. This yields

cT Th
5= —v—p U
T]JA

where y, is the geothermal heat-flux gradient, 7y, is the basal shear stress (constant), and £ is
the ice conductivity. In non-dimensional co-ordinates this becomes
c Yg 27Th .
— = —————— Klx|.
2z B i | (4)
For the upper surface ; = BH (= h, say) we assume initially a constant temperature 7.
Applying these boundary conditions to Equation (3) we obtain

i
T () = Tu—i——QE lerf () —erf (2)]+

B
_L-rhf{ < Hypm(—1)"T(n+1) (_ie;}c (z) ierfc (—h) —ierfc (h) ierfec (—2))
Lk (2n—1) n! =t ;. - 0 ’ (5)
= ierfc (k) +ierfc (—h)

The first two terms are the Robin equation, and the sum represents the correction to this
to account for the movement of the ice.

While this equation is theoretically valid, it is difficult to use computationally. Some
information can, however, be obtained. At the base of the ice sheet the temperature is

2mpK [N (—1)7 ' T(nt )
E | (2n—1) ganti(pl)2qd

n =0
ac 2n

5 ierfc (k) (—1)n 1T (n+4)
.(Qn-— 1)(n!) 220

1
TYe

T(x,0) = Ts s

erf (k)

Hzn(r\')‘

an 2n HZ”(I)
« —olerfc (k) +ierfc (—1)

The second of these sums is O(exp (—A?)), while the first reduces to

e °2+l'2 :

which takes the value 1/7 at x = o and is asymptotic to |x|/7* as |x| tends to infinity. This
suggests that we can usefully assume that the temperature field is linear in x. This assumption
is equivalent to ignoring the effects of horizontal diffusion of heat compared with the hori-
zontal convection of heat. As the above results indicate, this assumption is likely to break
down for small x and small A, that is when the convection velocities involved are themselves
small. Even so, the difference between the two solutions is negligible. For x = o, # = 2.0,
the sum in Equation (5) takes its maximum value of 0.64 when z = o, so that the discrepancy
is at most 0.647,A/k & o0.015 deg.

In addition to neglecting horizontal diffusion the upper-surface boundary condition will be
varied to include a variable surface temperature. In keeping with the linear approximations
made above, we assume that the surface temperature is given by 7 = T,+ T, X for X > o,
ie. that T — T+ Tyx/B for x = 0. We now have the equation

2T T eT
= R
ox 0z

0z%
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with boundary condition

TR R e
T
T'= Tt = g=il;
B
whose solution is
: K [ierfc (—h) ierfc (2) —ierfe (k) ierfe (—
T To*F% (ert (h)—crf(z))+2T; x |lerfc (—h) 1f:rc (2) 1|ltrc( ) ierfe (—2) 4
ierfc (h) f-ierfc (—h)

+_’]-—g_x ie;fc (z)—{—ic;'fc (—2) (6)

P Lieche Ry p-deste B
This solution can be reduced to tabulated functions (Abramowitz and Stegun, 1964) by using

the formulae

ie;fc () = W—z(l—crf (2))s

I 1 . )
ierfc (z) +ierfc (—2) = gfa—z—)—kzz erf (2),

e
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Fig. 3a. Velocity-dependent temperature gradients, Fig. 3b. Velocity-dependent temperature gradients,
parallel flow. radial flow.
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so that Equation (6) becomes
T{s, &) = { Tlo, 1)+ 23 (e (fz)—crf(z))}+

2 exp (—2?)

27pRx | 't TEGERE ) 3
— 2 g
k 2P s o o
ki

b il S erf (2)
) s (7)

rk
QLXP—E——%— 2h erf (h)

—(T(x, h)—T(o, k) | 1

T

where the first term is again the Robin equation, the second term is the contribution from the
velocity field, and the final term arises from the variation in the surface temperature.

Graphs of the expressions in square brackets in Equation (7) for selected values of & are
given in Figures 3a and 4a.

This solution can now be modified to account for variations in net accumulation, surface
temperature, and ice thickness.

If the local accumulation rate is A(x), then the vertical velocity at the surface is

—A(x) = —dA(x)+-U(x) dH/dx, so that 4 is replaced by A(x) and the parameter B by
B(x) = (A(x)/2KH(x))*.
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Fig. ga. Surfuce lemperature variation effect, parallel Fig. 4b. Surfuce temperature variation effect,
Slow. radial flow.
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The factor 27, Kx/k which comes from the basal temperature gradient is equal to ™y U(x) [kB,
so that, finally, we have for the temperature field

ik
T(X, ) = {T(X,H(X)H-Q—Eg (exf (BH) —erf (Bz>}+

2exp (RN | gz et (B2)

SR8 B 20 0 E

exp (—(BH)?
Q—La(g‘—)l—PQBHcrf(ﬁH)

™

2o CBRP) ozt (B2)
—(T(o, H(0))— T(X, H(X)) | 1 -

2 exp (—(BH)?
—'Ls@_)+2‘BHCTf (BH)
=

Note that all these quantities, with the exception of T(o, H(0)), the surface temperature at
the centre of the ice field, are local. Hence the temperature profile can be estimated without
knowing values for intermediate sites.

RADIAL FLOW MODEL

If we denote the radial variable by R and the vertical variable by J and again scale with
respect to B = A/2KH, the solution corresponding to Equation (3) is

T— Z T (Z) (An ierfc (2)+Bn ierfc (—2)), g
where r = BR and Ly is the nth Laguerre polynomial, while that corresponding to Equation
(7) 1s

T mhyg
b 2] = & T k)= 28 (erf (h)—erf (2) ¢+

ok (k) $(2)

S A TR {wﬂd—lﬁ(d}—('f{o, h) —T(r, h)) {l—m}, (10)

where ¢(z) is the confluent hypergeometric function
$(z) = Fi(—0-25;0.5; —2%),
and
$(z) = z.F(0.25; 1.55 —2%).
A short table of values of ¢ and ¢ is given in the Appendix.
Finally, in terms of the physical quantities we have

T(R, 2) = T(R, H(R) +%’g (erf (BH) —ext (B2))+

T H
+“—TL‘;§@ (;‘jjgg—ﬂﬁ 4(82) —¢<Bz))~

— (T (o, H(0))—T(R, H(R)) (1_9’(—5}'7))' (11)
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COMPARISONS AND COMMENTS
Figures 3b and 4b present graphs of (4(h) ¢(2)/d(h) —i(2)) and (1—¢(z)/p(k)) for the

same values of & as used in I'igures ga and 4a. The graphs in Figure 3 represent the effects
of heating due to the motion of the ice. It will be seen that there is more heating in the case
of radial flow than in that of parallel flow and that the heat penetrates further into the ice.
Thhis is because, for a fixed accumulation rate, the ice must travel twice as far in the radial
case as in the parallel case to reach the same velocity. Hence both frictional heating and
penetration are enhanced in this case.

On the other hand, Figure 4 shows that the radial flow is less sensitive to temperature
variations than the parallel flow. This is to be expected since the amount of ice at the local
temperature is proportional to the distance from the origin in the radial case but is constant
in the parallel case.

z z z

2:0 2.0 @ 10 @
Parallel flow | Radial flow Parallel flow
B-0:001 m™ B=0-001 m- B=0-0005m™

08|

0-6

04t

0-2

16 7 0 3 5 24 33 a0 78

deg | : . deg : ; deg
1. Robin’s equation 2. Robin’s equation with 3. Full solution
velocity dependent correction

Fig. 5. Comparative graphs. 1: Robin’s equation; 2: Robin’s equation with velocity dependent correction; 3: Full solution
(a) parallel flow, B = o.001 m™, (b) radial flow, B = o.001 m~', (¢) parallel flow, B — 0.000 5 m=1.

Figures 5a and 5b show the effects of the velocity and temperature difference on a typical
Robin profile for the parallel and radial flows respectively. The values have been chosen
arbitrarily as f = o.0otm™', h — 2.0, T,—7T = 10 deg and u — 10 m/year. In both cases
the temperature initially decreases with depth before rising again as the bottom is approached.
The temperature inversion is more pronounced in the case of parallel flow and also penetrates
further. Itisimmediately seen that the temperature inversion is a consequence of the variation
in surface temperature. In Figure 5¢, we have the case of parallel flow for g = 0.000 5,
h = 1.0, T,—T = 10deg, and u = 10 m/year. This corresponds to Figure 5a with the
accumulation rate cut to a quarter of its previous value. The temperature variation is now
monotonic, showing that the inversion will normally only occur in regions with high accumula-
tion rates, or where the surface temperature differences are large. Also, the temperature
inversion is more likely to occur in parallel flow than in radial flow.

Applying the formula for the case of parallel flow to the “Byrd” bore hole, very good
agreement between the theoretical and actual temperature profiles is obtained using A — 0.30
m/year, ¥ = 29 m/year, and T (o, H(0)) = —30.7°C, as can be seen from Figure 6. It should
be noted however that these values for the parameters were arrived at in an ad hoc fashion
since the author has been unable to obtain the correct figures.
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Fig. 6. Comparison of measured and computed temperature profiles for the **Byrd” bore hole. (Measured values are denoted aJ

CONGLUSIONS

While the approximations derived in this paper are not universally applicable, they should
prove useful in many cases where an estimate of the temperature field of an ice sheet is required.

The implicit requirement that A be positive restricts the application of the method to
regions above the equilibrium line, and the surface temperature should he a monotonic
function of distance from the centre. Since the surface temperature usually increases with
height above sea-level, this latter requirement is normally satisfied.

The formulae have already been used by Boulton and others (1977) to estimate bedrock
temperatures and regions of basal melting under the Quaternary British ice sheet, and
these estimates seem to agree with the features measured in the field.

MS. received 28 June 1976 and in revised form 30 May 1977
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APPENDIX
TABLE OF VALUES OF ¢(z) AND #(2), 2 = 0.1, (0.1), 3.0
2 ® W z ¢ i z ¢ ]
0.1 1.005 0 0.099 8 0 ¢ 1.463 5 0.931 1 2.1 2.062 2 1.392 9
0.2 1.019 8 0.198 7 1.2 1.528 1 0.990 4 2.2 2,114 1 1.428 4
0.3 1.044 O 0.295 6 1.3 1.592 5 1.046 0 2.9 2.164 6 1.462 8
0.4 1.076 g9 0.389 7 1.4 1.656 2 1.098 0 2.4 2.213 8 1.496 2
0.5 1.117 6 0.480 4 1.5 1.718 8 1.146 g 2.5 2.261 8 1.528 8
0.6 1.165 1 0.567 0 1.6 1.780 0 1.193 0 2.6 2.308 7 1.560 6
0.7 1.218 1 0.649 2 1.7 1.839 7 1.236 7 2.7 2.354 6 1.591 6
0.8 1.275 6 0.726 6 1.8 1.897 7 1.278 3 2.8 2.399 5 1.621 g
0.9 1.336 3 0.799 4 1.9 1.954 2 1.318 0 2.9 2.443 5 1.651 7
1.0 1.399 3 0.867 5 2.0 2.008 9 1.356 2 3.0 2.486 7 1.680 g
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