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Abstract
A graph G is q-Ramsey for another graph H if in any q-edge-colouring of G there is a monochromatic
copy of H, and the classic Ramsey problem asks for the minimum number of vertices in such a graph.
This was broadened in the seminal work of Burr, Erdős, and Lovász to the investigation of other extremal
parameters of Ramsey graphs, including the minimum degree.

It is not hard to see that if G is minimally q-Ramsey for H we must have δ(G)≥ q(δ(H)− 1)+ 1, and
we say that a graph H is q-Ramsey simple if this bound can be attained. Grinshpun showed that this is
typical of rather sparse graphs, proving that the random graph G(n, p) is almost surely 2-Ramsey simple
when log n

n � p� n−2/3. In this paper, we explore this question further, asking for which pairs p= p(n) and
q= q(n, p) we can expect G(n, p) to be q-Ramsey simple.

We first extend Grinshpun’s result by showing that G(n, p) is not just 2-Ramsey simple, but is in fact
q-Ramsey simple for any q= q(n), provided p� n−1 or log n

n � p� n−2/3. Next, when p� ( log n
n

)1/2, we
find that G(n, p) is not q-Ramsey simple for any q≥ 2. Finally, we uncover some interesting behaviour
for intermediate edge probabilities. When n−2/3 � p� n−1/2, we find that there is some finite threshold
q̃= q̃(H), depending on the structure of the instance H ∼G(n, p) of the random graph, such that H is
q-Ramsey simple if and only if q≤ q̃. Aside from a couple of logarithmic factors, this resolves the qualita-
tive nature of the Ramsey simplicity of the random graph over the full spectrum of edge probabilities.
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1. Introduction
1.1. Minimum degrees of minimal Ramsey graphs
We say that a graphG is q-Ramsey for another graphH, and writeG→q H, if, for any q-colouring
of the edges ofG, there exists amonochromatic copy ofH, that is, a copy ofH whose edges all have
the same colour. The fundamental theorem of Ramsey [1] asserts that Kn →q H for sufficiently
large n, and hence at least one such graph G exists for any choice of H and q. It is then natural to
investigate the nature of graphs G that are q-Ramsey for a given graph H. As a first step in this
direction, we can ask how large such a graph G needs to be, leading us to the definition of the
most well-studied concept related to Ramsey graphs, the Ramsey number. In this language, the
q-colour Ramsey number of a graph H, denoted rq(H), is defined as the minimum number of
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vertices in a graph that is q-Ramsey forH. Over the past few decades, this parameter has been stud-
ied extensively for various choices of the graphH. Arguably the most important case is whenH is
a complete graph. It was shown by Erdős [2] and Erdős and Szekeres [3] that r2(Kt) is exponential
in t; more precisely, they proved that 2t/2 ≤ r2(Kt)≤ 22t . Despite decades of continuous effort, the
first improvement in the bases of these exponential bounds came only in 2023, when Campos,
Griffiths, Morris, and Sahasrabudhe [4] announced an upper bound of (4− ε)t (subsequently
optimised by Gupta, Ndiaye, Norin, and Wei [5]). Prior to this breakthrough, all improvements
had been in the lower-order terms, with Sah [6] building on previous work of Conlon [7] to reduce
the upper bound by a superpolynomial factor; from below, Spencer [8] proved the best known
lower bound, a mere factor of two larger than the original bound of Erdős.

In a bid to better understand the Ramsey property, researchers began exploring other parame-
ters of Ramsey graphs in the 1970s, and we shall be interested in the minimum degree, the study
of which began with the paper of Burr, Erdős, and Lovász [9]. Of course, since any supergraph of
a q-Ramsey graph for H is itself q-Ramsey for H, the question of determining the smallest pos-
sible minimum degree among all q-Ramsey graphs for H is rather uninteresting: we can always
add an isolated vertex and make the minimum degree zero. To avoid such trivialities, we restrict
our attention to the subcollectionMq(H) of minimal Ramsey graphs. We say that G is aminimal
q-Ramsey graph for H if G is q-Ramsey for H and contains no proper subgraph with this prop-
erty. In other words, removing any edge or vertex destroys the Ramsey property of the graph. We
can then define the parameter sq(H), introduced in [9] for q= 2, as the smallest minimum degree
among all minimal q-Ramsey graphs for H, that is,

sq(H)=min{δ(G) :G ∈Mq(H)},
where as usual δ(G) denotes the minimum degree of G.

When studying this parameter, there are a couple of easy general bounds one can give. For an
upper bound, observe that since, by definition, Krq(H) →q H, any minimal q-Ramsey subgraph of
this complete graph bears witness to the fact that sq(H)≤ rq(H)− 1. From below, as observed
by Fox and Lin [10], a simple argument using the pigeonhole principle shows that sq(H)≥
q(δ(H)− 1)+ 1. Note that these bounds are typically very far apart: when H =Kt , for instance,
the lower bound is linear in t while the upper bound is exponential.

In their original paper, Burr, Erdős, and Lovász [9] showed that s2(Kt)= (t − 1)2, a surprising
result for two reasons. First, while the two-colour Ramsey number of Kt is still unknown for any
t ≥ 5, we can determine s2(Kt) precisely for every t. Second, s2(Kt) is significantly smaller than
r2(Kt). Informally, this means that a large Ramsey graph for Kt can have a vertex of very low
degree whose removal destroys the Ramsey property.

Since its introduction in [9], the parameter sq(H) has been studied for a number of different
choices of H and for larger q; see, for example, [10–20]. To the best of our knowledge, in all cases
studied the value of sq(H) is far away from the trivial upper bound. On the other hand, the lower
bound of Fox and Lin [10] has been shown to be tight for many graphs. Following Grinshpun
[17], we call such graphs q-Ramsey simple.

Definition 1.1. A graph H without isolated vertices is said to be q-Ramsey simple if

sq(H)= q(δ(H)− 1)+ 1.

If H has isolated vertices, then we say that H is q-Ramsey simple if the graph obtained from H by
removing all isolated vertices is q-Ramsey simple.

Observe that adding isolated vertices to a graph does not affect the structure of the correspond-
ing Ramsey graphs significantly. Indeed, ifH is a graphwithout isolated vertices andH + tK1 is the
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graph obtained fromH by adding t ≥ 0 isolated vertices, it is not difficult to check thatG ∈Mq(H)
if and only if G+ sK1 ∈Mq(H + tK1), where s=max{0, t − (v(G)− v(H))}.

Previous work by Fox and Lin [10], Szabó, Zumstein, and Zürcher [20], and Grinshpun [17]
has established the 2-Ramsey simplicity of a wide range of bipartite graphs. Further results were
proven in [13], including the q-Ramsey simplicity of all cycles of length at least four, for any
number of colours q≥ 2. Based on these results, it is believed that simplicity is a more widespread
phenomenon.

Conjecture 1.2 (Szabó, Zumstein, and Zürcher [20]). Every bipartite graph is 2-Ramsey simple.

The conjecture suggests that Ramsey simplicity is quite common, but it is natural to wonder
whether this extends beyond the bipartite setting. We know that cliques are not simple, but are
they an exceptional case, or is q-Ramsey simplicity atypical for non-bipartite graphs? For a more
concrete question, when can we expect the n-vertex binomial random graph G(n, p), where every
edge appears independently with probability p, to be q-Ramsey simple?

1.2. Random graphs
Random graphs have long played an important role in Ramsey Theory: Erdős’s famous exponen-
tial lower bound on the Ramsey numbers of complete graphs in [2] came from analysing the clique
and independence numbers of random graphs, while a key ingredient in the best modern upper
bounds is showing that graphs without large cliques or independent sets must be random-like.
When it comes to more general Ramsey problems, the work of Rödl and Ruciński [21, 22] estab-
lishes, for a given graph H and number of colours q, the range of values of p for which we have
G(n, p)→q H with high probability.

In these seminal papers, which have inspired a great deal of subsequent research, the random
graph plays the role of the host graph G, while the target graphH is fixed in advance. Surprisingly,
there has been considerably less work in the setting where the target graph H is itself random.
When H ∼G(n, p), Fox and Sudakov [23] and Conlon [24] provided some lower and upper
bounds on r2(H) for different ranges of p, while Conlon, Fox, and Sudakov [25] showed that
log r2(H) is well concentrated.

In this paper we shall focus on the minimum degree of Ramsey graphs for the random graph
G(n, p), with the goal of determining when it is q-Ramsey simple. This line of research was initi-
ated by Grinshpun [17], who proved that sparse random graphs are 2-Ramsey simple with high
probability.

Theorem 1.3 (Corollary 2.1.4 in [17]). Let p= p(n) ∈ (0, 1) and H ∼G(n, p). If log nn � p� n−2/3,
then a.a.s. H is 2-Ramsey simple.

In this range of edge probabilities the random graph is almost surely not bipartite (in fact,
its chromatic number is unbounded), showing that Conjecture 1.2 does not tell the full story.
Moreover, the argument in [17] can easily be extended to prove, for any fixed q ∈N, q-Ramsey
simplicity for G(n, p) in the above range of p. This begs two natural questions: what happens
when the number of colours q grows with n, and what happens in other ranges of the edge
probability p?

1.3. Results
In this paper, we settle this question for a wide range of parameters, uncovering some unexpected
behaviour in the process. Our main result qualitatively describes the Ramsey simplicity of the
random graph G(n, p) as the edge probability p grows.
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Theorem 1.4. Let p= p(n) ∈ (0, 1) and H ∼G(n, p). Then the following statements hold asymptot-
ically almost surely.

(a) If 0< p� n−1 or log n
n � p� n− 2

3 , then H is q-Ramsey simple for all q= q(n).

(b) If n− 2
3 � p� n− 1

2 , there is some finite q̃(H) such that H is q-Ramsey simple if and only if
q≤ q̃(H).

(c) If
(
log n
n

) 1
2 � p< 1, then H is not q-Ramsey simple for any q≥ 2.

There are a few comments to be made at this point. First, observe that these results suggest
some monotonicity in q – in parts (a), (b), and (c), we have that, if H is q-Ramsey simple, then
it is also (q− 1)-Ramsey simple. This is in fact a general phenomenon, true for all graphs H and
all numbers of colours q, and we shall show this in Section 2. Given this monotone behaviour, we
define the Ramsey simplicity threshold

q̃(H) := sup{q : H is q-Ramsey simple}
for every graphH. Note that every graph is, by definition, 1-Ramsey simple, since the onlyminimal
1-Ramsey graph for H is H itself, and so s1(H)= δ(H). Thus, when a graph H is not q-Ramsey
simple for any number of colours q≥ 2, we have q̃(H)= 1. At the other extreme, ifH is q-Ramsey
simple for any number of colours q, we have q̃(H)= ∞.

On the other hand, as we shall also remark in Section 2, we do not have monotonicity in H.
Indeed, a Ramsey simple graph can have subgraphs and supergraphs that are not Ramsey simple,
and vice versa. However, Theorem 1.4 shows that in the random graph, there is some large-scale
negative correlation between the density of the graph and its Ramsey simplicity. That is, part (a)
shows that very sparse random graphs are always Ramsey simple, while (c) asserts that somewhat
denser random graphs are never Ramsey simple.

Meanwhile, part (b) shows that random graphs of intermediate density lie somewhere between
these two extremes, as they are simple when we have few colours and not simple when we have
many. We shall in fact prove a more precise version of this theorem (see Theorem 5.1), which
shows that the Ramsey simplicity ofH is essentially determined by the subgraph F induced by the
neighbourhood of the vertex of minimum degree, and will give lower and upper bounds on q̃(H)
in terms of F. By analysing the random graph, we can then give quantitative bounds on q̃(H) in
this middle range.

Corollary 1.5. Let k≥ 2 be a fixed integer, let n− k
2k−1 � p� n− k+1

2k+1 , and let H ∼G(n, p). Then,
asymptotically almost surely, we have

(1+ o(1))
np
k2

≤ q̃(H)≤ (1+ o(1))
np

k− 1
.

This corollary determines the threshold q̃(H) – the largest number of colours for whichH is q-
Ramsey simple – up to a constant factor, and shows that its small-scale behaviour is quite different
from its large-scale behaviour. Indeed, while Theorem 1.4 shows q̃(H) decreases from infinity to

1 as p increases from log n
n to

(
log n
n

) 1
2 , Corollary 1.5 shows that q̃(H) grows as p goes from n− k

2k−1

to n− k+1
2k+1 , for each fixed k≥ 2. Thus, the overall decrease of q̃(H) cannot be monotone in p, as

illustrated in Figure 1. Note that a more precise version of the above statement can be found in
Corollary 5.2.

Our proofs shed some light on why this phenomenon occurs. We show in Section 3 that if we
write F for the subgraph of H induced by the neighbourhood of its minimum degree vertex, then
H being q-Ramsey simple is essentially equivalent to being able to pack q edge-disjoint copies
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Figure 1. Bounds on the simplicity threshold q̃(G(n, p)).

of F on a set of q(δ(H)− 1)+ 1 vertices. For fixed k, as p increases from n− k
2k−1 to n− k+1

2k+1 , the
minimum degree of H grows, and so the order of F increases. However, the complexity of F does
not – the order of its largest component remains k. Thus, we have more space to work with,
while the packing does not become much harder, which affords us the flexibility to pack more
copies of F.

1.4. Organisation and notation
In Section 2, we discuss the monotonicity of Ramsey simplicity and shall in particular justify the
existence of the Ramsey simplicity threshold q̃(H). We then discuss general necessary and suffi-
cient conditions for Ramsey simplicity in Section 3, relating the Ramsey simplicity problem for a
particular class of graphs to a packing problem. Next, we turn to random graphs, collecting some
useful properties in Section 4. In Section 5 we prove Theorem 1.4. The constructions of Ramsey
graphs that establish q-Ramsey simplicity of H are provided in Section 5.1, while the results on
non-q-Ramsey simplicity are proven in Section 5.2. The final section, Section 6, is devoted to
concluding remarks and open problems.
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The notation used in this paper is mostly standard, except that for a graph G, we write λ(G)
for the order of the largest connected component in G. Throughout the paper, a q-colouring is an
edge-colouring of a given graph with q colours and, unless otherwise specified, we will take [q]
to be our colour palette. A q-edge-coloured graph � is simply a graph � equipped with an edge-
colouring f : E(�)→ [q]. Given a graph � with a q-colouring f and any colour i ∈ [q], the colour-i
subgraph �i of � is the graph �i = (V(�), f−1(i)) consisting of all edges of � with the colour i.

2. Monotonicity in q
In this section we will prove that the property of being q-Ramsey simple is monotone decreasing
in the number of colours; that is, we will show that if a graph is not q-Ramsey simple for some q,
then it cannot be q′-Ramsey simple for any q′ ≥ q.

Lemma 2.1. If H is not q-Ramsey simple, then H is not (q+ 1)-Ramsey simple.

Note that q-Ramsey simplicity does not observe any monotonicity with respect to the graph
H. Indeed, we know that any tree on t vertices is 2-Ramsey simple [20], whereas the clique Kt is
not [9]. Similarly, there exist graphs that are q-Ramsey simple but contain subgraphs that are not.
For instance, Theorem 2.1.3 in [17] shows that any 3-connected graph H containing a vertex v of
minimum degree such that N(v) is contained in an independent set of size 2δ(H)− 1 is 2-Ramsey
simple. Hence, while Kδ for δ ≥ 3 is not 2-Ramsey simple, the following supergraph of it is: add
2δ − 1 new vertices to Kδ with a complete bipartite graph connecting them to the clique, and then
add another vertex v connected to exactly δ of the 2δ − 1 new vertices.

Proof of Lemma 2.1. Assume H is not q-Ramsey simple, that is, sq(H)> q(δ(H)− 1)+ 1.
Suppose for a contradiction that there exists a graph G ∈Mq+1(H) such that G contains a vertex
v of degree (q+ 1)(δ(H)− 1)+ 1. Let e be an arbitrary edge incident to v.

By the minimality of G, we know that the graph G− e has an H-free (q+ 1)-colouring c. Now,
if there are at most δ(H)− 2 edges that are incident to v and have colour q+ 1 under c, then we can
give e colour q+ 1 to obtain anH-free (q+ 1)-colouring ofG, contradictingG ∈Mq+1(H). Hence
we may assume that there are at least δ(H)− 1 edges incident to v that have colour q+ 1. Let G0
be the subgraph of G containing all edges that have colours in [q] under c together with the edge
e, i.e., G0 =G− c−1(q+ 1). We then know that dG0 (v)≤ (q+ 1)(δ(H)− 1)+ 1− (δ(H)− 1)=
q(δ(H)− 1)+ 1< sq(H). If G0 is not q-Ramsey for H, then G0 has an H-free q-colouring c′, and
extending c′ to the graph G by colouring the edges in E(G) \ E(G0) with colour q+ 1 gives an
H-free (q+ 1)-colouring of G, a contradiction. Therefore, G0 →q H.

But dG0 (v)< sq(H), so G0 cannot be minimal q-Ramsey for H, and in particular, the vertex v
cannot be part of a minimal q-Ramsey subgraph of G0. Thus G0 − v→q H. But the restriction of
c to G0 − v is H-free by our choice of c, which again leads to a contradiction.

Hence, H cannot be (q+ 1)-Ramsey simple. �

3. Conditions for Ramsey simplicity
The goal of this section is to establish necessary and sufficient conditions for Ramsey simplic-
ity, which we will later apply to the random graph to prove several parts of Theorem 1.4 (and
Theorem 5.1). More specifically, we will relate the problem of determining whether a graph is
q-Ramsey simple to a certain packing problem.

Throughout this section we will assume that H is a connected graph with a unique vertex of
minimum degree, denoted by u. Further, we will write F for the subgraph induced by the neigh-
bourhood of u in H, that is, F =H[N(u)]. As suggested by the statement of Theorem 5.1, the
structure of this graph F will play a key role in determining whether H is q-Ramsey simple.

We begin with the necessary condition.
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Proposition 3.1. Let q≥ 2, let H be a connected graph containing a unique vertex u of minimum
degree, and let F =H[N(u)]. Suppose H is q-Ramsey simple. Then there exists a q-edge-coloured
graph � on q(δ(H)− 1)+ 1 vertices such that for every set U ⊆V(�) of δ(H) vertices and for every
colour i ∈ [q], there exists a copy FU,i of F in �[U] whose edges are all of colour i.

Proof. Let G be a minimal q-Ramsey graph for H with a vertex w of degree q(δ(H)− 1)+ 1. Let
� =G[N(w)] be the subgraph of G induced by the neighbourhood of w. By minimality, there is a
q-colouring c of G−w, and in particular of �, without any monochromatic copies of H.

Since G itself is q-Ramsey forH, no matter how we extend the colouring c to the edges incident
tow, wemust create amonochromatic copy ofH. Given any subsetU of δ(H) vertices in� and any
colour i ∈ [q], colour the edges fromw toU with colour i, and colour the remaining edges incident
to w evenly with the other colours, so that each is used δ(H)− 1 times. Any monochromatic copy
of H must involve at least δ(H) edges incident to w, and hence must be of colour i and contain all
the vertices in U. As w has degree δ(H) in this monochromatic subgraph, it must play the role of
u in H, and therefore we must find a colour-i copy of F in �[U]. �

As it turns out, under some additional constraints, the above necessary condition becomes
sufficient. Since our aim will be to apply these conditions to a random graph, we describe several
pseudorandom properties concerning the degrees, connectivity, and expansion of the target graph
H that will help us in the construction of minimal Ramsey graphs with vertices of low degree.
These properties are collected in the definition below. As might be expected, for a large range of
values of p, the random graph G(n, p) is very likely to satisfy these properties.

Definition 3.2 (Well-behaved). We say an n-vertex graph H is well-behaved if it satisfies the
following properties:

(W1) H has a unique vertex u of minimum degree δ(H),
(W2) every pair of vertices in H has codegree at most 1

2δ(H),
(W3) H is 3-connected, and
(W4) removing at most δ(H) vertices from H cannot create a component of size k ∈ [ 1

2δ(H), 12n
]
.

We now show that a well-behaved graph H is guaranteed to be q-Ramsey simple if it admits
the existence of a colour pattern as in Proposition 3.1 in which the maximum degree of each �i is
not too large.

Proposition 3.3. Let q≥ 2, let H be an n-vertex well-behaved graph, and let F =H[N(u)] be the
subgraph induced by the neighbourhood of the unique minimum degree vertex u. Suppose there
exists a q-edge-coloured graph � on q(δ(H)− 1)+ 1 vertices such that:

(i) for every set U ⊆V(�) of δ(H) vertices and for every colour i ∈ [q], there exists a copy FU,i
of F in �[U] whose edges are all of colour i, and

(ii) for each i ∈ [q], the colour-i subgraph �i of � has maximum degree at most δ(H)− 1.

Then H is q-Ramsey simple.

Propositions 3.1 and 3.3 imply that, when establishing the q-Ramsey simplicity of a well-
behaved graph H, we can focus our attention on the neighbourhood of the minimum degree
vertex. We remark that the extra conditions required in Proposition 3.3, the well-behavedness
of H and property (ii), may not be necessary but they enable us to more easily maintain control
over potential copies of H when constructing the minimal q-Ramsey graph G.
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Given the graph �, when we build from it a q-Ramsey graph G we shall, as is common practice
in the field, make extensive use of signal senders, which are gadgets that allow us to prescribe
colour patterns on the edges of a graph.

Definition 3.4 (Signal senders). Given a graph H, a number of colours q≥ 2, a distance d ≥ 1, and
two edges e and f , a positive (or negative) signal sender S+(H, q, d, e, f ) (or S−(H, q, d, e, f )) is a
graph S that contains e and f and satisfies:

(i) S can be q-coloured without monochromatic copies of H,
(ii) in any such colouring, e and f have the same (or different) colour(s), and
(iii) the edges e and f are at distance at least d in S.

The edges e and f are called the signal edges of S.

Fortunately for us, signal senders exist for all 3-connected graphs, as shown by Rödl and Siggers
[26], building on earlier work of Burr, Erdős, and Lovász [9] and Burr, Nešetřil, and Rödl [27].

Theorem 3.5 ([26]). If H is 3-connected, then for any q≥ 2 and d ≥ 1, there are positive and
negative signal senders S+(H, q, d, e, f ) and S−(H, q, d, e, f ).

The utility of signal senders lies in the ability to force pairs of edges in an H-free colouring of a
graph G to have the same (or different, in the negative case) colours. This is achieved through the
process of attachment; given a graph G and a pair of distinct edges h1, h2 ∈ E(G), we attach to G
a signal sender S+(H, q, d, e, f ) (or S−(H, q, d, e, f )), defined on a disjoint set of vertices, between
h1 and h2 by identifying the signal edges e and f of S with the edges h1 and h2 of G. In this next
result, we show that attachment cannot create unexpected copies of our target graph H, provided
that the signal edges are sufficiently far apart.

Lemma 3.6. Let q≥ 2, let H be any 3-connected graph, and let d ≥ v(H). Let S= S+(H, q, d, e, f )
or S= S−(H, q, d, e, f ) be a signal sender, let G be any graph on a disjoint set of vertices, and let
g, h ∈ E(G) induce a matching in G. If the graph G′ is formed by attaching S to g and h, then, for any
copy H0 of H in G′, we have either H0 ⊆G or H0 ⊆ S.

Proof. Let H0 be a copy of H in G′ and suppose for the sake of contradiction that H0 is neither
fully contained inG nor in S. We can then find edges h1 ∈ E(H0)∩ (E(S) \ E(G)) and h2 ∈ E(H0)∩
(E(G) \ E(S)). Since the only edges of S spanned by V(G) are e and f , which are identified with
g, h ∈ E(G), it follows that h1 must contain a vertex x ∈V(S) \V(G). Similarly, since g and h induce
a matching inG, they are the only edges ofG spanned byV(S), and hence h2 must contain a vertex
y ∈V(G) \V(S).

Now, by 3-connectivity, H0 contains three internally-vertex-disjoint paths between x and y.
Since V(S)∩V(G)= e∪ f , each of these paths must pass through a distinct endpoint of one of the
signal edges e and f . There must be one path meeting e and another meeting f , and the portions
of these paths that lie within the signal sender contain a path from e to f within V(H0)∩V(S).
However, this contradicts e and f being at distance d ≥ v(H). �

Armed with these preliminaries, we can now prove Proposition 3.3.

Proof of Proposition 3.3. We shall take a slightly indirect route to certifying the q-Ramsey
simplicity of H. Rather than constructing a minimal q-Ramsey graph with minimum degree
q(δ(H)− 1)+ 1, we will instead build a graph G such that:

(a) G→q H,
(b) G has a vertex w of degree q(δ(H)− 1)+ 1, and
(c) G−w �→q H.
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Figure 2. Construction of G.

SinceG is q-Ramsey forH, it must contain a minimal q-Ramsey subgraphG′ ⊆G. By virtue of (c),
we have w ∈V(G′), and hence δ(G′)≤ dG′(w)≤ dG(w)= q(δ(H)− 1)+ 1. In light of the general
lower bound, we must in fact have equality, and henceG′ bears witness to the q-Ramsey simplicity
of H.

To construct this q-Ramsey graph G, we start with the graph �. Recall that, for each set U
of δ(H) vertices of � and for each colour i ∈ [q], there is a colour-i copy FU,i of F in �[U].
We will wish to complete these to potential monochromatic copies of H. To this end, let R=
H − ({u} ∪N(u)) be the remainder of H after we remove the minimum degree vertex u and its
neighbourhood. Then, for every U and i, we include a copy RU,i of R on a disjoint set of ver-
tices, adding the necessary edges so that RU,i ∪ FU,i forms a copy of H − u. We call the resulting
graph �+.

Now recall that the graph � comes with an edge-colouring, which we extend by colouring the
edges in RU,i and between RU,i and FU,i with the colour i. Denote by c the resulting colouring of
�+. To force the correct colouring, we shall use signal senders. Note that, sinceH is well-behaved,
property (W3) ensures H is 3-connected, and hence by Theorem 3.5 positive and negative signal
senders exist.

We introduce a matching e1, e2, . . . , eq of q edges, again on a set of new vertices. For every pair
i< j, we attach a negative signal sender Si,j = S−(H, q, v(H), ei, ej) between ei and ej. As we shall see
later, this will ensure that these edges all receive distinct colours in an H-free colouring. Now, for
every edge f in �+, we attach a positive signal sender Sf = S+(H, q, v(H), ec(f ), f ) between ec(f ) and
f . Finally, we introduce a new vertex w and make it adjacent to every vertex in �. This completes
our construction of the graph G, which is depicted in Figure 2.

Observe that dG(w)= v(�)= q(δ(H)− 1)+ 1, and so condition (b) is already satisfied. We
shall now verify conditions (a) and (c) in the following claims.

Claim 3.7. The graph G is q-Ramsey for H.
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Proof. Suppose for a contradiction that we have anH-free q-colouring ofG. First observe that, by
Definition 3.4(ii), if the signal sender Si,j is H-free, then the edges ei and ej must receive different
colours. As this is true for each pair i< j, we may, relabelling colours if necessary, assume that
each edge ei receives colour i.

Next, for each edge f in �+, consider the signal sender Sf . If this does not contain a monochro-
matic copy of H, then ec(f ) and f must have the same colour, and thus f receives the colour c(f ).
Hence we have forced the desired colouring on �+.

This brings us to the vertex w. Since it has degree q(δ(H)− 1)+ 1, there must be some colour i
and a set U ⊆V(�) of size δ(H) such that the edges between w and U are all of colour i. However,
appealing to condition (i) of Proposition 3.3, we find a colour-i copy FU,i of F in �[U], which
we can complete to a monochromatic copy of H by attaching w and RU,i, contradicting our
supposition. �
Claim 3.8. The graph G−w is not q-Ramsey for H.

Proof. We provide an H-free q-colouring of G−w. To start, we give �+ the colouring c, and,
for each i ∈ [q], colour the edge ei of the matching with the colour i. Observe that, under this
colouring, the signal edges of each positive signal sender Sf in G have the same colour, while those
of negative signal senders Si,j receive different colours. By Definition 3.4, we can find an H-free
colouring of each signal sender that agrees with the colouring of the signal edges. We use these to
extend our colouring to the signal senders as well, thereby obtaining a q-colouring of G−w.

Now suppose for a contradiction that this colouring gives rise to a colour-i copy H0 of H for
some i ∈ [q]. First, observe that it follows from Lemma 3.6 that H0 is fully contained either in a
signal sender or in �+ ∪ {ei : i ∈ [q]}. Since the signal senders were coloured without monochro-
matic copies of H, and the edges {ei : i ∈ [q]} are isolated in the latter graph, we need only show
that we cannot have H0 ⊆ �+.

We next claim thatH0 can onlymeet at most one subgraph RU,j, for some subsetU and colour j.
First, note that since all edges incident to the vertices inRU,j are of colour j, andH0 is of colour i, we
must have j= i. Now, suppose instead that there are two sets U and U ′ such that V(H0)∩V(RU,i)
and V(H0)∩V(RU ′,i) are both nonempty. As the sets V(RU,i) and V(RU ′,i) are disjoint, we may
assume without loss of generality that |V(H0)∩V(RU,i)| ≤ 1

2n.
Since RU,i is only attached to � through the vertices in U, the set U must be a cut-set for the

subgraph H0. Let x ∈V(H0)∩V(RU,i) be an arbitrary vertex, and let K be the component of x in
H0 −U. We clearly have |K| ≤ |V(H0)∩V(RU,i)| ≤ 1

2n.
On the other hand, observe that x is also in the copy HU,i of H supported on {w} ∪V(FU,i)∪

V(RU,i). In HU,i, the set U is the neighbourhood of w, and, since H is well-behaved, condition
(W2) implies x has at most 1

2δ(H) neighbours in U. As dH0 (x)≥ δ(H), this means x must have at
least 1

2δ(H) neighbours in H0 −U. Hence, we also have |K| ≥ 1
2δ(H). However, this contradicts

condition (W4), as the removal of the vertices in U ∩V(H0) cannot create a component in H0 of
size between 1

2δ(H) and 1
2n.

Thus, H0 meets at most one subgraph RU,i. Now, by property (ii) of the colouring c of �, we
have that any vertex is incident to fewer than δ(H) edges of colour i in �. Thus, in order to be part
of H0, a vertex from � must have neighbours in RU,i as well. However, the only such vertices are
those inU, and since |U ∪V(RU,i)| = n− 1, this does not leave us with enough vertices for a copy
of H.

Our colouring is therefore indeed H-free, proving the claim. �
This shows that the graph G satisfies conditions (a), (b), and (c), completing the proof of

Proposition 3.3. �
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4. Properties of G(n, p)
In this section we shall establish various properties of the random graph G(n, p) needed for the
proof of Theorem 1.4 (and Theorem 5.1) and the deduction of Corollary 1.5 (and Corollary 5.2).

4.1. Facts about G(n, p)
We start by describing some properties of G(n, p) for different values of p. As most of the results
presented in this section are well known, we will be very brief in the proofs. We start with
some bounds on the degrees and edge distribution in the random graph, for which we require
the following well-known concentration bounds due to Chernoff (see [28, Theorem 2.3] and
[29, Theorem 23.6]).

Lemma 4.1. Let X ∼ Bin(n, p) and μ =E[X].

(a) If 0< ε < 1, then P(X ≥ (1+ ε)μ)≤ exp
(−με2

3

)
and P(X ≤ (1− ε)μ)≤ exp

(−με2

2

)
.

(b) For all t ≥ 7μ, we have P(X ≥ t)≤ exp(−t).

The following two lemmas collect some folklore bounds on the degrees and number of edges
in G(n, p). We start by controlling the degrees.

Lemma 4.2 (Degrees in G(n, p)). Let p= p(n) ∈ (0, 1), and let H ∼G(n, p). Then a.a.s. the
following bounds on the maximum degree hold:

(a) for any fixed integer k≥ 2, we have �(H)≥ k− 1 when p� n− k
k−1 , and

(b) for any f = f (n) satisfying 1� f = no(1), we have �(H)≥ log n
log(f log n) when p= 1

nf .

Moreover, if p� log n
n , then with probability at least 1− n−2 we have

(c) dH(v)= (1± o(1))np for every v ∈V(H).

Proof. If p� n− k
k−1 for any integer k≥ 2, then H a.a.s. contains a star with k− 1 edges, and

hence �(H)≥ k− 1; see Theorem 5.3 in [29] for more details. If p= 1
nf , a straightforward cal-

culation shows that the expected number of vertices of degree at least log n
log(f log n) tends to infinity,

which combined with an application of the second moment method (or of Theorem 3.1(ii) in
[30]) establishes the desired result. Part (c) follows by applying Lemma 4.1(a) to the degree of
each vertex, and then taking a union bound over all n vertices. �

We can also bound the number of edges, both globally and, provided the edge probability
is not too low, in all large induced subgraphs. Both parts follow from simple applications of
Lemma 4.1(a), in the second case in combination with a union bound, so we omit the proof.

Lemma 4.3 (Edge counts inG(n, p)). Let p= p(n) ∈ (0, 1)with p� n−2, and let H ∼G(n, p). Then
a.a.s. the following statements hold:

(a) e(H)= (1± o(1))n
2p
2 , and

(b) if p� log n
n , then with probability at least 1− n−2, every set S⊆V(H) of size s≥ 20 log n

p
satisfies eH(S)≥ 1

4 s
2p.

Aside from knowing how many edges the random graph contains, we shall also need some
knowledge about how they are distributed. The following result describes the structure of sparse
random graphs.
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Lemma 4.4. Let p= p(n) ∈ (0, 1) with p� n−1, and let H ∼G(n, p). Then a.a.s. H is a forest, and
moreover the order λ(H) of its largest component satisfies the following bounds:

(a) λ(H)≤ log n,

(b) if p� n− k+1
k for some constant k ∈N, then λ(H)≤ k, and

(c) if p= 1
nf for some f = f (n) satisfying 1� f = no(1), then λ(H)≤ (1+ o(1)) log nlog f .

Proof. That H contains no cycles, and hence is a forest, can be shown by taking a union bound
over all possible cycles; see Theorem 2.1 in [29] for the details. Now suppose H were to contain a
tree on t vertices. There are

(n
t
)
choices for the vertex set of the tree and tt−2 possible labelled trees

on that set, each of which appears with probability pt−1. Thus, the probability thatH contains any
t-vertex tree is at most

(n
t
)
tt−2pt−1. It is then straightforward to verify that, in each of the above

cases, plugging in the claimed bound on λ(H) for t makes the corresponding probability o(1). �
Switching to a much denser range, we find that when the edge probability is sufficiently large,

not only does G(n, p) contain cycles, but every edge is contained in a triangle. The proof is an easy
application of the union bound and is thus omitted.

Lemma 4.5. Let p= p(n) ∈ (0, 1) be such that p�
√

log n
n , and let H ∼G(n, p). Then a.a.s. every

edge of H is contained in a triangle.

Finally, as might be expected, random graphs are highly likely to be well-behaved (recall
Definition 3.2). This intuition is confirmed by the following lemma; we include a brief sketch
of the proof.

Lemma 4.6. If log n
n � p� 1, then a.a.s. H ∼G(n, p) is well-behaved.

Proof. Properties (W1) and (W3) are established in Theorem 3.9(i) of [30] and Theorem 4.3 in
[29], respectively. Moreover, by Lemma 4.2(c) we may condition on δ(H)= (1± o(1))np. For
property 2, observe that the distribution of the codegree of a given pair of vertices is Bin(n− 2, p2).
Now, considering the two cases p2 ≥ 10 log n

n and p2 ≤ 10 log n
n separately and applying parts (a) and

(b) of Lemma 4.1 respectively yields the required result. Finally, for property (W4), note that for
any fixed integers 1≤ s≤ δ(H) and k ∈ [ 1

2δ(H), 12n
]
and sets U ∈ (V(H)

s
)
and K ∈ (V(H)−U

k
)
, the

probability that removing U from H leaves K isolated is precisely (1− p)k(n−k−s). Now taking a
union bound over all choices of s, k,U, and K shows that the probability that property (W4) fails
is o(1). �

4.2. Transference lemma
As we will we see in the statement of Theorem 5.1, our bounds on the simplicity threshold ofH ∼
G(n, p) depend on the subgraph induced by the neighbourhood of the minimum degree vertex
(which, by virtue of Lemma 4.6 and property (W1), we may assume to be unique for p� log n

n ).
Our next lemma allows us to transfer what we know about the random graph G(δ(H), p) to this
subgraph.

Lemma 4.7. Let p= p(n) ∈ (0, 1) be such that log n
n � p� 1. For every s ∈ [0.5np, 2np], let Ps be a

graph property, and assume that a random graph Gs ∼G(s, p) satisfies

P (Gs ∈Ps) = 1− o(1).

Then H ∼G(n, p) a.a.s. has a unique minimum degree vertex u and H[N(u)] ∈PdH(u).
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Proof. We will follow an approach similar to that used in the proof of Corollary 2.1.4 in [17].
Before we proceed with the proof, we introduce some notation and facts that we will need later
on. Let us first fix some βn = o(1) such that

P (Gs /∈Ps) = o(βn) (4.1)

for every s ∈ [0.5np, 2np]. Moreover, let Xδ denote the event that H has a unique vertex of mini-
mum degree and 0.5np≤ δ(H)≤ 2np. By Lemma 4.6, specifically property (W1), and Lemma 4.2
we know that Xδ holds with high probability. In particular, we can find δn = o(1) such that

P(0.5np≤ δ(H)≤ 2np)≥ P(Xδ)= 1− δn.

We will also use the following two facts:

(1) There exists γn = o(1) such that, for any d ≥ 0, we have P[δ(H)= d]≤ γn.
(2) For any d ≥ 0, if H′ ∼G(n− 1, p), we have P[δ(H′)≥ d − 1]≥ P[δ(H)≥ d].

Part (1) follows from the proof of Theorem 3.9(i) in [30]. Part (2) follows from the fact that
removing a vertex from a graph can reduce the minimum degree by at most one and that we
can sample a graphH ∼G(n, p) by first samplingH′ ∼G(n− 1, p) and then adding each potential
edge containing the last vertex with probability p, independently of all previous choices.

Next, let εn = o(1) be chosen such that εn = ω(max{βn, γn, δn}). We further let tn be the small-
est integer such that P(δ(H)≤ tn)≥ 1− εn. Note that, by the minimality of tn, we then have
P(δ(H)≤ tn − 1)< 1− εn. Using (1) for d = tn, we conclude

1− εn ≤ P(δ(H)≤ tn)= P(δ(H)≤ tn − 1)+ P(δ(H)= tn)≤ 1− εn + γn. (4.2)

Moreover, since εn > γn + δn, we obtain P(δ(H)≤ tn)< 1− δn < P(δ(H)≤ 2np) and thus tn ≤
2np.

SinceH ∼G(n, p), the subgraphH − v, for any fixed vertex v, has the distribution G
(
n− 1, p

)
.

In the following we will condition on the event Xδ , and whenever we do so, we will always let u
denote the unique minimum degree vertex in H and write d = dH(u). We will be interested in the
subgraphH′ =H − u, and first need to determine how conditioning on Xδ affects its distribution.

Suppose S⊆V(H′) is the neighbourhood of u. As u is the only vertex of degree at most d inH,
we must have dH′(v)≥ d + 1 for all v ∈V(H′) \ S, and dH′(v)≥ d for all v ∈ S; let CS be the event
that these lower bounds on the degrees in H′ hold. Aside from CS, however, Xδ yields no further
information about the graph H′, as the edges in G(n, p) are independent. Thus, we have

PG(n,p)(H[S] ∈Pd|Xδ ∧ {N(u)= S})= PG(n−1,p)(H′[S] ∈Pd|CS). (4.3)

Now, by the Law of Total Probability,

PG(n,p)(H[N(u)] ∈PdH(u)|Xδ)

=
∑

0≤d≤n−1

∑
S∈

(
V(H′)

d

) PG(n,p)(H[S] ∈Pd|Xδ ∧ {N(u)= S}) · PG(n,p)(N(u)= S|Xδ)

≥
∑

0.5np≤d≤tn

∑
S∈

(
V(H′)

d

) PG(n−1,p)(H′[S] ∈Pd|CS) · PG(n,p)(N(u)= S|Xδ). (4.4)

Now let d ∈ [0.5np, tn] and S ∈ (V(H′)
d

)
be fixed. To estimate the first factor, we observe that

PG(n−1,p)(CS)≥ P(δ(H′)≥ d + 1)≥ P(δ(H)≥ d + 2)
≥ P(δ(H)≥ tn + 2)≥ P(δ(H)≥ tn + 1)− γn ≥ εn/2, (4.5)
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where the second inequality follows from (2), for the third inequality we use d ≤ tn, the fourth
inequality follows from (1), and the last inequality comes from (4.2) and since εn = ω(γn). Hence
we have

PG(n−1,p)(H′[S] ∈Pd|CS)= 1− PG(n−1,p)
(
H′[S] /∈Pd|CS

)

= 1− PG(n−1,p)
({H′[S] /∈Pd} ∧ CS

)
PG(n−1,p)(CS)

≥ 1− PG(n−1,p)
(
H′[S] /∈Pd

)
PG(n−1,p)(CS)

≥ 1− PG(d,p) (Gd /∈Pd)

εn/2
= 1− o(1),

where for the second inequality we use (4.5) and that H′[S]∼G(d, p) and the final estimate uses
(4.1) and βn = o(εn). Putting this into (4.4), we conclude that

PG(n,p)(H[N(u)] ∈PdH(u)|Xδ)≥
∑

0.5np≤d≤tn

∑
S∈

(
V(H′)

d

) (1− o(1))PG(n,p)(N(u)= S|Xδ)

= (1− o(1))PG(n,p)
(
0.5np≤ δ(H)≤ tn|Xδ

)
= (1− o(1))

PG(n,p)({δ(H)≤ tn} ∧ Xδ)
P(Xδ)

≥ (1− o(1))
1− PG(n,p)(δ(H)> tn)− PG(n,p)(Xδ)

P(Xδ)

≥ (1− o(1))
1− εn − δn

1− δn
= 1− o(1).

This proves the lemma. �

4.3. The smallest neighbourhood
We can now combine the results from Section 4.1 with Lemma 4.7 to obtain a sequence of
corollaries describing the subgraph F induced by the neighbourhood of the minimum degree
vertex, which we shall later apply when proving Theorem 1.4 (and Theorem 5.1). As the proofs
of the results in this section follow from simple applications of Lemma 4.7 combined with the
corresponding results from Section 4.1, we choose to omit them.

To start with, for the proof of the Ramsey simplicity of H in case (a) of Theorem 1.4, when
log n
n � p� n− 2

3 , it will be important that F is an empty graph. This is guaranteed by the following
corollary.

Corollary 4.8. Let p= p(n) ∈ (0, 1) be such that log n
n � p� n− 2

3 , and let H ∼G(n, p). Then a.a.s.
H has a unique minimum degree vertex u, and e(N(u))= 0.

For larger values of p, we can control the number of edges appearing in F, which we will require
for the proofs of both simplicity and non-simplicity.

Corollary 4.9. Let p= p(n) ∈ (0, 1) be such that n− 2
3 � p� 1, and let H ∼G(n, p). Then a.a.s. H

has a uniqueminimum degree vertex u, and the graph F =H[N(u)] satisfies 1
16n

2p3 ≤ e(F)≤ 4n2p3.

Finally, in the range n− 2
3 � p� n− 1

2 , when determining the q-Ramsey simplicity ofH, we will
make use of the fact that F is typically a forest with small components, while also appealing to the
fact that its maximum degree cannot be too small.
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Corollary 4.10. Let p= p(n) ∈ (0, 1) be such that n− 2
3 � p� n− 1

2 , and let H ∼G(n, p). Then a.a.s.
H has a unique minimum degree vertex u, the graph F =H[N(u)] induces a forest, and the order
λ(F) of the largest component in F satisfies the following bounds:

(a) λ(F)≤ 1
2 log n,

(b) if p� n− k+1
2k+1 for some fixed integer k≥ 2, then λ(F)≤ k, and

(c) if p= n− 1
2 f−1 for some f = f (n) satisfying 1� f = no(1), then λ(F)≤ ( 1

4 + o(1)
) log n
log f .

Moreover, the maximum degree �(F) of F a.a.s. satisfies the following:

(d) if p� n− k
2k−1 for some fixed integer k≥ 2, then �(F)≥ k− 1, and

(e) if p= n−1/2f−1 for some 1� f = f (n)= no(1), then �(F)≥ ( 1
2 − o(1)

) log n
log(f 2 log n) .

5. Proof of Theorem 1.4 and Corollary 1.5
In this section we prove Theorem 1.4 and Corollary 1.5 by showing the following more precise
result.

Theorem 5.1. Let p= p(n) ∈ (0, 1) and H ∼G(n, p). If log n
n � p� 1, then H almost surely con-

tains a unique vertex u of minimum degree; in this case, we define F =H[N(u)] to be the subgraph
of H induced by the neighbourhood of u, and denote by λ(F) the order of the largest connected
component in F. Then a.a.s. the following bounds hold:

(a) q̃(H)= ∞ if 0< p� n−1.

(b) q̃(H)= ∞ if log n
n � p� n− 2

3 .

(c) q̃(H)≥ (1+ o(1)) max
{

δ(H)
λ(F)2 ,

δ(H)
80 log n

}
if n− 2

3 � p� n− 1
2 .

(d) q̃(H)≤min
{

δ(H)
�(F) + 1, δ(H)2

2e(F)

}
if n− 2

3 � p� 1.

(e) q̃(H)= 1 if
(
log n
n

)1/2 � p< 1.

Note that parts (a) and (b) of this theorem yield Theorem 1.4(a), and together with part (c) they
are proven in Section 5.1. Part (e) of this theorem is the same as Theorem 1.4(c), and together with
part 4 it is proven in Section 5.2. Lastly, Theorem 1.4(b) follows from Lemma 2.1 and the bounds
in parts (c) and (d) of the above theorem.

Additionally, by taking parts (c) and (d) of Theorem 5.1 and plugging in the bounds on δ(H),
e(F), λ(F) and �(F) obtained in Lemma 4.2 and Section 4.3, we can easily deduce the following
quantitative result, which includes the statement of Corollary 1.5. We omit the details of these
calculations.

Corollary 5.2. Let k≥ 2 be a fixed integer and let f = f (n) satisfy 1� f = no(1). Let p= p(n) satisfy

n− 2
3 � p�

(
log n
n

) 1
2 and let H ∼G(n, p). Then a.a.s. the following bounds hold:

(a) if n− k
2k−1 � p� n− k+1

2k+1 , then (1+ o(1))npk2 ≤ q̃(H)≤ (1+ o(1)) np
k−1 .

(b) if p= 

(
n− k+1

2k+1
)
, then (1+ o(1)) np

(k+1)2 ≤ q̃(H)≤ (1+ o(1)) np
k−1 .
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(c) if p= n− 1
2 f−1, then (1+ o(1)) np

log n max
{
16 log2 f
log n , 1

80

}
≤ q̃(H)≤ (2+ o(1))np log(f

2 log n)
log n .

(d) if n− 1
2 � p�

(
log n
n

) 1
2 , then 1≤ q̃(H)≤ 8

p .

5.1. Simplicity for G(n, p)
In this section we prove the lower bounds on q̃(G(n, p)) from Theorem 5.1. These are the positive
results, showing that with high probability H ∼G(n, p) is q-Ramsey simple for the appropriate
values of q.

To begin, we observe that we have nothing new to prove in case (a). By Lemma 4.4 we knowH
is a forest with high probability when p� n−1. Szabó, Zumstein, and Zürcher [20] proved that all
forests are 2-Ramsey simple, and their proof extends directly to show q-Ramsey simplicity for all
q≥ 3 as well. For completeness, we provide the argument in Appendix A.

For the remaining cases, we will show thatH is typically such that one can construct a minimal
q-Ramsey graphG forH with δ(G)= q(δ(H)− 1)+ 1, provided, in case (c), that q is not too large.
By Lemma 4.6, we know that when log n

n � p� 1, the random graph H ∼G(n, p) is well-behaved
with high probability, and hence we are in a position to apply Proposition 3.3. Thus, to prove
the required results it is sufficient to show that a coloured graph � satisfying conditions (i) and
(ii) almost surely exists. We shall therefore use the results of Section 4 to describe the subgraph
F induced by the minimum degree vertex in H. This subgraph evolves as the edge probability p
increases, and in each range we will construct an appropriate coloured graph � that satisfies the
conditions of the proposition.

We start with the sparse range, where p� n− 2
3 .

Proof of Theorem 5.1(b). Let q≥ 2, let p satisfy log n
n � p� n− 2

3 , and let H ∼G(n, p). By
Lemma 4.6 and Corollary 4.8, we have with high probability that H is well-behaved and the sub-
graph F =H[N(u)] induced by the neighbourhood of the minimum degree vertex u is empty.
In this case, we can simply take � to be an empty graph on q(δ(H)− 1)+ 1 vertices. Properties
(i) and (ii) of Proposition 3.3 are then trivially satisfied, and so it follows that H is q-Ramsey
simple. �

When p� n− 2
3 , we will begin to see edges in the neighbourhood of the minimum degree ver-

tex. Provided p� n− 1
2 , though, the neighbourhood remains simple in structure, and we can get

reasonably sharp bounds on the number of colours for which the random graph is Ramsey simple.

Proof of Theorem 5.1(c), first bound. Let n−2/3 � p� n−1/2 and H ∼G(n, p). By Lemma 4.6,
we know that with high probability H is well-behaved. Given any ε > 0, we shall show that, as n
tends to infinity, H is with high probability q-Ramsey simple for every q≤ (1− 5ε) δ(H)

λ(F)2 .
Corollaries 4.9 and 4.10 show that F =H[N(u)], the subgraph induced by the neighbourhood

of the minimum degree vertex u, is with high probability a very sparse forest. More precisely, if
we denote by T1, T2, . . . , Tt the components of F that contain at least one edge, then each Tj is a
tree spanning at most λ(F) vertices, and

∑
j v(Tj)≤ εδ(H).

To prove simplicity, we provide a geometric construction of an edge-coloured graph � on
q(δ(H)− 1)+ 1 vertices. Let s be the largest prime number that is at most (1− ε) δ(H)

λ(F) . By the
upper bound of Baker, Harman, and Pintz [31] on prime gaps, we have s≥ (1− 2ε) δ(H)

λ(F) . Now
consider the finite affine plane F2

s , which has s2 points. Each line in the plane consists of s points,
and the set of lines can be partitioned into s+ 1 parallel classes C1, C2, . . . , Cs+1 of s lines each.

To form the graph �, we take as vertices an arbitrary set of q(δ(H)− 1)+ 1 points from F
2
s .

Note that our choices of q and s ensure that q(δ(H)− 1)+ 1≤ s2 and q≤ s≤ δ(H). Then, given
x, y ∈V(�), we add the edge {x, y} if and only if the line they span lies in one of the first q parallel
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classes. We colour the edges by the parallel classes; that is, if the corresponding line lies in Ci, for
some i ∈ [q], we give the edge {x, y} the colour i.

We shall now show that � satisfies properties (i) and (ii) of Proposition 3.3, which will show
that H is q-Ramsey simple. We start with the latter property. The colour-i subgraph �i of � con-
sists of pairs of points in lines in the parallel class Ci. Each such line gives rise to a clique in �, and
since the lines are parallel, these cliques are vertex-disjoint. Finally, since each line has at most s
points in �, it follows that �(�i)≤ s− 1≤ δ(H)− 1, and hence property (ii) holds.

For property (i), we need to show that, for any δ(H)-set U ⊆V(�) and any colour i ∈ [q], we
can find a copy of F in �i[U]. We shall embed the trees Tj one at a time. Suppose, for some j≥ 1,
we have already embedded T1, T2, . . . , Tj−1, and let U ′ ⊆U be the set of vertices we have not yet
used. Since F has at most εδ(H) non-isolated vertices, it follows that |U ′| ≥ (1− ε)δ(H).

As observed when showing property (ii), the colour-i subgraph �i is a disjoint union of at most
s cliques. Hence, by the pigeonhole principle,U ′ meets one of these cliques in at least |U ′|

s vertices.
By our choice of s, this is at least λ(F), and so �i[U ′] contains a clique on λ(F) vertices, in which
we can freely embed Tj.

Repeating this process, we can embed all the trees, thereby obtaining a copy of F in �i[U].
Hence property (i) is satisfied as well, and thus H is indeed q-Ramsey simple. �

The above construction allows us to obtain lower bounds on q̃(H) whenever n−2/3 � p�
n−1/2. However, when p= n− 1

2−o(1) and λ(F) gets larger, a probabilistic construction yields a
better bound.

Proof of Theorem 5.1(c), second bound. Let p� n− 1
2 , and let H ∼G(n, p). Our goal is to show

that if q≤ δ(H)
80 log n , then with high probability H is q-Ramsey simple. We again start by collecting

some information about the random graph H, before constructing an appropriate graph � for
Proposition 3.3.

By Lemma 4.2(c) and Lemma 4.6, we may assume that H is well-behaved with δ(H)= (1±
o(1))np. Furthermore, applying Corollaries 4.9 and 4.10, we know that with high probability, the
subgraph F =H[N(u)] induced by the neighbourhood of the minimum degree vertex is a for-
est with o(δ(H)) edges, and whose largest tree has at most log n vertices. We label the nontrivial
components of F as T1, T2, . . . , Tt .

We now define the q-coloured graph� onN = q(δ(H)− 1)+ 1 vertices. We take � ∼G
(
N, 12

)
to be a random graph with edge probability 1

2 . Once we have sampled the graph, we also equip it
with a random colouring, colouring each edge independently and uniformly at random from the
q colours.

Observe that for each colour i ∈ [q], the colour-i subgraph �i ⊆ � has the distribution
G

(
N, 1

2q

)
. Hence, it follows from Lemma 4.2(c), combined with a union bound over the num-

ber of colours q, that with high probability �(�i)≤ (1+ o(1)) N2q < δ(H) for every i ∈ [q]. This
establishes property (ii) of Proposition 3.3.

We now need to show that property (i) also holds with high probability. That is, we need to
ensure that, for every colour i ∈ [q] and every set U ⊆V(�) of δ(H) vertices, we can find a copy
of F in �i[U]. We shall once again do this by proving the stronger fact that, taking ε ≥ 0, for any
set U ′ of (1− ε)δ(H)≥ 1

2np vertices, and any tree T on at most log n vertices, we can embed a
copy of T in �i[U ′]. We can then greedily embed the components of F one at a time; as F only has
o(δ(H)) edges, we will always have at least (1− ε)δ(H) vertices remaining when embedding one
of its components.

Applying Lemma 4.3(b) combined with a union bound over the colours i ∈ [q], we know that
with high probability the monochromatic subgraphs �i have the property that the number of
edges spanned by any set of 1

2np>
20 logN
1/(2q) vertices is at least 1

4
( 1
2np

)2 1
2q > 2np log n.
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Since the set U ′ spans at least 2np log n edges, the average degree in any such subgraph is at
least 2 log n. By repeatedly removing low-degree vertices, we obtain a subgraph with minimum
degree at least log n. It is then trivial to embed a tree on at most log n vertices in this subgraph,
as at each vertex, we will always have enough unused neighbours to embed its children. Thus, we
can find disjoint copies of the trees T1, T2, . . . , Tt , thereby constructing a copy of F in �i[U]. This
proves property (i), and so by Proposition 3.3 it follows that H is q-Ramsey simple. �

5.2. Non-simplicity for G(n, p)
In this section we prove the upper bounds on q̃(H) from Theorem 5.1. These are the negative
results, showing that with high probability H ∼G(n, p) is not q-Ramsey simple for large values
of q.

We begin with the upper bounds for case (d) of our theorem. For this, we shall make use of the
necessary condition provided by Proposition 3.1. In the proof below, we first establish that, if the
neighbourhood of the minimum degree vertex exhibits a high maximum degree, then H cannot
be q-Ramsey simple for a large enough q. For this, we will need the following result from [32].

Theorem 5.3 ([32]). Let G be an n-vertex graph of average degree d and let k ∈N. Then there is a
set U of at least (k+ 1)n/(d + k+ 1) vertices such that �(G[U])≤ k.

Proof of Theorem 5.1(d). Let n−2/3 � p� 1 and H ∼G(n, p). By Lemma 4.6, we know that
H has a unique vertex u of minimum degree. As before, we set F =H[N(u)]. Suppose that H
is q-Ramsey simple; it follows from Proposition 3.1 that there is an edge-coloured graph � on
N = q(δ − 1)+ 1 vertices such that the induced graph on every δ(H)-subset of the vertices of �

contains, in each colour, a copy of F.
We are now ready to prove that q̃(H)≤ δ(H)

�(F) + 1. The above observation implies that the
induced graph on each δ(H)-set has, in each colour, a vertex of degree at least �(F). However,

the average degree of the sparsest colour class in � is at most
2
(
N
2

)
qN = N−1

q = δ − 1. Thus, by
Theorem 5.3, � has a set of �(F)N

δ(H)+�(F)−1 vertices that induce a graph with maximum degree less
than �(F) in this colour. Hence, we must have

�(F)N
δ(H)+ �(F)− 1

≤ δ(H)− 1,

which rearranges to give q≤ δ(H)+�(F)−1
�(F) − 1

δ(H)−1 ≤ δ(H)
�(F) + 1, from which the conclusion

follows.
We turn our attention to the second bound, namely q̃(H)≤ δ(H)2

2e(F) . For any subset U ⊆V(�) of
size δ(H), there must be a colour i ∈ [q] such that there are at most 1

q
(
δ(H)
2

)
edges of colour i inside

U. Using once again our observation above, we know that �[U] contains a copy of F in colour i,
and therefore we must have 1

q
(
δ(H)
2

) ≥ e(F), which yields the claimed bound. �
We end this section with a proof of Theorem 5.1(e).

Proof of Theorem 5.1(e). Let p�
√

log n
n andH ∼G(n, p). By Lemma 2.1, it suffices to show that

a.a.s. H is not q-Ramsey simple for q= 2.
For this, following Lemma 4.5, we may assume that every edge inH belongs to a triangle. Now

suppose for a contradiction that H is 2-Ramsey simple. Let G be a minimal 2-Ramsey graph for
H such that G has a vertex w with dG(w)= 2δ(H)− 1. By the minimality of G, we can find an
H-free 2-colouring c of the graph G−w. Now fix an arbitrary vertex v ∈NG(w) and observe that,
by the pigeonhole principle, there must be a set W ⊆NG(w) \ {v} of size δ(H)− 1 such that all
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edges between v and any of its neighbours inW have the same colour; without loss of generality,
let this be colour 1 and set U =W ∪ {v}. We can extend the colouring c by giving colour 1 to
all edges from w to NG(w) \U and giving colour 2 to all edges from w to vertices in U. With
this colouring we cannot create a monochromatic copy of H in colour 1, as w is only incident
to δ(H)− 1 edges of colour 1. On the other hand, w is incident to exactly δ(H) edges of colour
2, which all lie between w and U. Hence, if there were a monochromatic copy of H in colour 2,
the edge wv would need to be part of it. However, since all edges in U involving v are of colour
1, that means the edge wv is not contained in any triangle of colour 2, and hence cannot be in a
monochromatic copy of H. �

6. Concluding remarks and open problems
In this paper we built upon the work of Grinshpun [17] and studied the q-Ramsey simplicity
of H ∼G(n, p) for a wide range of values of p and q. We encountered three different types of
behaviour: for very sparse ranges, i.e., when p� 1

n or log n
n � p� n− 2

3 , we showed that a.a.s. H is
q-Ramsey simple for every possible number of colours q; for much denser ranges, i.e., when p�(
log n
n

) 1
2 , a.a.s. we do not have Ramsey simplicity even when q= 2; in between these ranges, when

n− 2
3 � p� n− 1

2 , there exists a finite threshold value q̃(H)≥ 2 on the number of colours q such
that H is q-Ramsey simple if and only if q≤ q̃(H). We determined this threshold up to a constant
or, when p= n− 1

2−o(1), logarithmic factor.We note further that in the range log n
n � p� n−1/2, we

can actually show that the following stronger statement is true almost surely for the same values
of q as in Theorem 5.1: not only does there exist a minimal q-Ramsey graph for H ∼G(n, p) that
contains a vertex of degree q(δ(H)− 1)+ 1, but we can actually show that there exist minimal
q-Ramsey graphs with arbitrarily many vertices of this degree; we provide the details in the arXiv
version of this paper.

Several natural questions remain open. First, our main result does not provide any information
on the Ramsey simplicity of G(n, p) when p is between 1

n and log n
n .

Question 6.1. What can be said about q̃(H) when H ∼G(n, p) and p= �
( 1
n
)
and p=O

(
log n
n

)
?

In particular, is H a.a.s. 2-Ramsey simple in this case?

In the range p� log n
n our simplicity proofs rely heavily on the fact that a.a.s. H ∼G(n, p) is 3-

connected, implying the existence of signal senders forH, which in turn allow us to deduce a fairly
general recipe for constructing suitable Ramsey graphs. When p� 1

n , we know that H ∼G(n, p)
is a.a.s. a forest, and simplicity follows from the construction of Szabó, Zumstein, and Zürcher
[20], which works for certain bipartite graphs. When 1

n � p� log n
n , however, the random graph

G(n, p) becomes more complex (in particular, it is non-bipartite) but it is not yet connected. As a
result, resolving the aforementioned question will likely require new ideas.

Second, in the range between p= �
(
n− 1

2
)
and p=O

((
log n
n

) 1
2
)
, we proved that q̃(H)=

O(p−1), which shows that the threshold value here is of smaller order than when p= n− 1
2−o(1), as

demonstrated in Corollary 5.2. However, we did not provide any nontrivial lower bounds, and we
wonder if that might not be possible.

Question 6.2. Is it true that H is a.a.s. not 2-Ramsey simple when H ∼G(n, p) with p= �
(
n− 1

2
)

and p=O
((

log n
n

) 1
2
)
?
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In this case, signal senders forH do exist, but the neighbourhood of theminimumdegree vertex
becomes more complex than just a forest, making it difficult to construct a graph as described in
Proposition 3.1. On the other hand, the presence of isolated verticesmakes it likely that amore del-
icate argument than the one used in part (e) would be needed to show non-simplicity for smaller
q. Nevertheless, we tend to believe that a.a.s. q̃(H)= 1 for all p� n− 1

2 .
The bounds on q̃(H) presented in Corollary 5.2 (a) and (c) are already quite close, but it would

be interesting to close the remaining gaps.

Question 6.3. Let H ∼G(n, p) with n−2/3 � p� n−1/2. What are the asymptotics of q̃(H)?

In this range, as we have seen in Section 3, the question about q-Ramsey simplicity is tightly
linked to the problem of finding a q-coloured graph � on q(δ(H)− 1)+ 1 vertices such that the
following holds: For every setU ⊆V(�) of δ(H) vertices and for every colour i ∈ [q], there exists a
copy FU,i of F =H[N(u)] in �[U] whose edges are all of colour i. The proofs of our lower bounds
in Section 5.1 are obtained by finding such � (with additional properties as given in Proposition
3.3) through explicit constructions or probabilistic arguments. In order to prove that a.a.s. H is
not q-Ramsey simple, it would suffice to prove that such � does not exist, that is, every q-coloured
graph � on q(δ(H)− 1)+ 1 vertices contains at least one subset U ⊆V(�) of size δ(H) such that
�[U] is missing a copy of F in at least one colour. Note that in the proof of our second bound in
case (d) of Theorem 5.1 we obtain such a result by a simple counting argument which guarantees
that we cannot pack q copies of F into any graph on δ(H) vertices. Related to this argument, it
seems challenging to determine how many copies of a given random graph can be packed into a
complete graph, leading us to suggest the following question.

Question 6.4. Let H ∼G(n, p) with 0< p< 1. How many copies of H can be packed into Kn?

In the densest range, that is, when p�
(
log n
n

) 1
2 , we know that H ∼G(n, p) is a.a.s. not q-

Ramsey simple for any q≥ 2. We wonder, however, what the behaviour of sq(H) in this case
is; in particular, it would be interesting to determine whether sq(H) is still typically close to
the easy lower bound q(δ(H)− 1)+ 1. Note that the answer is no if p= 1 and q≥ 2, since

s2(Kn)= (n− 1)2. However, when
(
log n
n

) 1
2 � p� 1, we do not know of any bounds other than

the general ones mentioned in the introduction. In particular, we propose the following problem,
similar to one posed by Grinshpun, Raina, and Sengupta [16].

Question 6.5. How large is s2(H) for H ∼G
(
n, 12

)
a.a.s.?

Related to the above discussion, we also note that our methods can be applied to the 2-colour
asymmetric Ramsey setting, in which a graphG is said to be 2-Ramsey for a pair of graphs (H1,H2)
if every red-/blue-colouring of its edges leads to a red copy of H1 or a blue copy of H2. In this
setting, we define minimal Ramsey graphs and the smallest minimum degree s2(H1,H2) in the
obvious way; the general lower bound is replaced by s2(H1,H2)≥ δ(H1)+ δ(H2)− 1 and again
we call a pair (H1,H2) 2-Ramsey simple if this lower bound is attained. Our constructions can
be modified to show that for H1 ∼G(n, p1) and H2 ∼G(n, p2) the pair (H1,H2) is a.a.s. 2-Ramsey
simple if log n

n � p1 ≤ p2 � n−1/2. When p1, p2 � n−1, then again a modification of the argument
of Szabó, Zumstein, and Zürcher [20] can be used to show that we a.a.s. have 2-Ramsey simplicity.
Still, the following questions remain.

Question 6.6. Let H1 ∼G(n, p1) and H2 ∼G(n, p2) with p1 � n−1 and log n
n � p2 � n−1/2. Is the

pair (H1,H2) a.a.s. 2-Ramsey simple?What happens if one of the graphs comes from the dense range?

We also remark that our ideas from Section 5.1 can be used to resolve a special case of a con-
jecture due to Grinshpun [17], stating that all triangle-free graphs are 2-Ramsey simple. In [16],
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Grinshpun, Raina, and Sengupta use a construction similar to ours to show that the conjecture is
true for all regular 3-connected triangle-free graphs satisfying one extra technical condition. Our
approach allows us to prove that every well-behaved triangle-free graph is q-Ramsey simple for
any q≥ 2.

Finally, let us emphasise that there has been little study of (minimal) Ramsey graphs for
G(n, p). The only results we are aware of concern the Ramsey number of G(n, p), as mentioned
in Section 1.2. Hence, as a more general direction for future research, it would be interesting to
explore other aspects of the Ramsey behaviour of G(n, p) as the target graph.
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A. Forests are Ramsey simple

Lemma A.1. For every forest F without isolated vertices and every integer q≥ 2, we have sq(F)= 1.

For two colours, Lemma A.1 follows from the general result for bipartite graphs of Szabó,
Zumstein, and Zürcher [20, Theorem 1.3 and Corollary 1.5]. Their proof generalises easily to
more colours. For the sake of completeness, we include a simplified version of that proof here,
dealing only with the case of forests.

Proof. Given F, fix a bipartition V(F)=A∪ B, where |A| ≤ |B| and the size of A is minimised.
Set a= |A|, b= |B|, B1 = {v ∈ B : dF(v)= 1}, and B≥2 = B \ B1. We start by showing that |B≥2| ≤
a− 1. Indeed, let T1, . . . , Tk be the components of F and, for each i ∈ [k], let ri be an arbitrary
vertex in A∩V(Ti). Viewing Ti as a tree rooted at ri, we note that each element of B≥2 ∩V(Ti)
must have a child in A∩V(Ti) and, since Ti is a tree, all of these children must be different.
Thus, |A∩V(Ti)| ≥ |B≥2 ∩V(Ti)| + 1 for all i ∈ [k], and summing up over all components yields
|A| ≥ |B≥2| + 1.

Now, set r = q(a− 1), s= qr+1v(F), and t = sbq, and let G be the graph constructed as follows:

• let V(G)= X∪̇Y∪̇Z, where |X| = r, |Y| = s, and |Z| = t,
• add a complete bipartite graph between X and Y , and
• partition Z into s subsets of size bq, indexed by the elements of Y . That is, let Z = ⋃

y∈Y
Zy,

where |Zy| = bq. For each y ∈ Y , connect y to all vertices of Zy.

Each vertex v ∈ Z then satisfies dG(v)= 1. We will now show that (i) G− Z �→q F, and
(ii)G→q F. From this it follows directly thatGmust contain a graph fromMq(F) with minimum
degree one, and hence that sq(F)= 1.

To see property (i), colour E(G− Z) as follows: take any partition X = X1 ∪ . . . ∪ Xq with
|Xi| = a− 1 for every i ∈ [q], and colour E(Xi, Y) in colour i. Then each colour class is a bipar-
tite graph with a partite set of size smaller than a. By the definition of a, there cannot be a
monochromatic copy of F.

We prove (ii) next. Consider any q-colouring ϕ : E(G)→ [q]. Each vertex y ∈ Y has bq neigh-
bours in Zy, and hence there must be a subset Z′

y ⊆ Zy of size b such that the edges from y to
Z′
y are monochromatic. As we use only q colours, there must be a subset Y ′ ⊆ Y of s

q vertices
y1, . . . , ys/q such that, without loss of generality, the edges between yi and Z′

yi are all colour 1 for
each i ∈ [s/q]. Further, set Z′ = ⋃

yi∈Y ′
Z′
yi . Next, let X = {x1, . . . , xr}. For every yi ∈ Y ′, we consider

the vector ci := (ϕ(x1yi), . . . , ϕ(xryi)) ∈ [q]r , the colour profile of yi. As |Y ′| = s/q= qrv(F), there
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must be at least v(F) vertices in Y ′ with the same colour profile c. By symmetry, we may assume
that c1 = c2 = . . . = cv(F) = c. We consider two cases.

Case 1: There is a colour i ∈ [q] that appears at least a times in c. This gives a copy of Ka,v(F)
between X and {y1, . . . , yv(F)} that is monochromatic in colour i. As Ka,v(F) contains a copy of F,
we are done.

Case 2: Every colour is used exactly (a− 1) times in c. In particular, we find a subset X′ ⊆ X
of size a− 1 such that the edges between X′ and {y1, . . . , yv(F)} are monochromatic in colour 1.
Using the edges between yi and Z′

yi , for i ∈ [v(F)], we find a monochromatic copy of F: embed A
into {y1, . . . , yv(F)} arbitrarily, embed B1 into Z′ by respecting the adjacency relation, and embed
B≥2 into X′ arbitrarily. �
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