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We present a theoretical asymptotic solution for high-speed transient flow through
microporous media in this work by addressing the inertia effect in the high-pressure-
difference pulse-decay process. The capillaric model is adopted, in which a bundle of
straight circular tubes with a high length–radius ratio is used to represent the internal flow
paths of microporous media so that the flow is described by a simplified incompressible
Navier–Stokes equation based on the mean density, capturing the major characteristics of
mass flow rate. By order-of-magnitude analysis and asymptotic perturbation, the inertial
solution with its dimensionless criterion for the high-pressure-difference pulse-decay
process is derived. To be compared with experimental data, the theoretical solution
involves all three related effects, including the inertia effect, the slippage effect and
the compressibility effect. A self-built experimental platform is therefore established to
measure the permeability of microporous media by both pulse-decay and steady-state
methods to validate the theoretical solution. The results indicate that the relative difference
between two methods is less than 30 % even for permeability at as low as 48.2 nD
(10−21 m2), and the present theoretical solution can accurately capture the inertia effect
in the high-pressure-difference pulse-decay process, which significantly accelerates the
measurements for ultra-low-permeability samples.

Key words: porous media

1. Introduction

Flows and transports in microporous media have many important applications both
in nature and engineering (Huppert & Neufeld 2014; Lionel Pullum & Sofra 2018;
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Neuzil 2019). Darcy’s law is an acknowledged underlying physical law (Adler & Brenner
1988), in which the permeability is defined as an intrinsic property that demonstrates the
ability of porous media to let fluid flow through. Quantitative measurement of this physical
parameter is a basic demand for actual applications.

The steady-state measurement, in which the flow rate is measured under a constant
pressure difference, is a straightforward application of Darcy’s law. Cylindrical samples
with lateral area sealed are commonly used. The choice of the working fluid, gas or
liquid, may influence the measurement and the effects related to the working fluid need
to be eliminated to get the intrinsic permeability in the steady-state measurement. For gas
flow through microporous media, the compressibility effect, slippage effect and inertia
effect need to be considered carefully. For liquid flow, in contrast, the rheology effect
and the saturation influence have to be taken into account. The compressibility effect can
be corrected by integrating Darcy’s law, capturing the characteristics of a constant mass
flow rate (Muskat 1937). The slippage effect in microporous media was first thoroughly
reported by Klinkenberg (1941), and the Klinkenberg plot, i.e. the apparent permeability
under different mean pressures with a small pressure difference versus the reciprocal of
mean pressure, whose intercept is the intrinsic permeability, is widely used to correct
the effect of slippage (Neuzil 2019). The inertia effect originates from the high Reynolds
number and makes the Q-P plot (the mean flow rate versus the pressure gradient) deviate
from linearity (Mei & Auriault 1991; Andrade et al. 1999; Hill, Koch & Ladd 2001; Wood,
He & Apte 2020). This can be avoided by carefully checking the linearity of the Q-P plot
and choosing a small enough pressure difference. The rheology effect can be avoided
by using a Newtonian fluid as the working fluid so that the measured permeability is
believed to be equal to the intrinsic permeability. The elimination of saturation influence
requires a time-consuming pretreatment (Mahabadi et al. 2019). Only after corrections by
eliminating these effects, can the intrinsic permeability be obtained accurately and safely.
However, these corrections may cost large amounts of time and effort for low-permeability
materials with micro/nanoscale pores. For example, quantitatively, one measurement with
one regular pressure gradient for a low-permeability sample at 0.1 mD, (1 mD = 10−3 D
with 1 D ≈ 10−12 m2), took on average 5.5 hours in Wang, Du & Wang (2017). Therefore,
the steady-state method is not suitable for measurements of tight porous samples because
of difficulties in measuring ultra-low flow rate and the long time taken for measurements.

To overcome the difficulties in steady-state measurements, transient measurement
methods have been developed, where a pressure pulse is implemented on one side and
the pressure evolution is monitored instead of the measurement of flow rate (Gensterblum
et al. 2015; Neuzil 2019), including the pulse-decay method (Brace, Walsh & Frangos
1968; Hsieh et al. 1981; Morrow & Lockner 1994; Jones 1997; Cui, Bustin & Bustin
2009; Darabi et al. 2012; Sander, Pan & Connell 2017) and the pressure oscillation
method (Kranz, Saltzman & Blacic 1990). To calculate the permeability from the pressure
evolution data in the pulse-decay process, the analytical solutions have been derived from
the linear parabolic equation, which is based on Darcy’s law and the conservation law,
under the assumption of small pressure difference (Brace et al. 1968). This linearized
pulse-decay method has been very successful, but as pointed out by Jones (1997) and Cui
et al. (2009) the magnitude of the initial pressure difference should be smaller than 10 %
of the initial mean pressure to avoid the compressibility and inertia effects. This model has
been also developed to involve the slippage effect (Jones 1972; Wu & Pruess 1998). Recent
studies have discovered that this linearized model only used the pressure evolution data at
the late-time stage of the linearized-equation domain and developed further the early-time
solution for pulse-decay method with a higher efficiency (Wang et al. 2021, 2022).
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Vu, Pu Vd, Pd

L

Inlet Outlet

R

Figure 1. Diagram of the physical model. A porous medium connects the upstream and downstream chambers,
whose volumes and pressures are Vu, Pu, Vd, Pd , respectively. The internal flow paths in porous medium are
ideally modelled as a bundle of straight circular tubes with uniform radius R and length L.

Intuitively, a higher-efficiency measurement could be further obtained by implementing
a higher pressure difference between inlet and outlet, whereas the consequential local or
overall high-speed flow may break down the linearization of governing equations. The
inertia effect caused by the high Reynolds number has never been clarified in transiently
measuring permeability of microporous media. In fact, both the compressibility effect
and the slippage effect may be important simultaneously as well in ultra-low-permeability
materials, which bring us much more challenges. This research is to present a
new theoretical framework for predicting the intrinsic permeability with the inertia
effect addressed together with the other two effects considered in the high-pressure-
difference pulse-decay measurements through microporous materials.

2. Physical and mathematical models

2.1. Asymptotic analysis and simplification of governing equations
Consider fluid flow through homogeneous, isotropic and rigid porous media driven by
a given pressure difference. In the flow direction, the capillaric model is adopted as the
classical theory used to do (Klinkenberg 1941): the fluid pathway is treated ideally as a
bundle of straight parallel circular tubes with uniform length, L, and radius, R, as shown in
figure 1. A functional radius distribution rather than a uniform one may represent possible
heterogeneity of real samples for further improvement of accuracy. In the capillaric model,
the intrinsic permeability is calculated by κ = φR2/8 with φ representing the porosity.
For a microporous sample, R is usually much smaller than L. Subsequently, the flow of a
compressible fluid through each tube driven by a pressure gradient can be described by the
Navier–Stokes equation as:

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
= μ

(
∂2uz

∂r2 + 1
r

∂uz

∂r
+ ∂2uz

∂z2

)
− ∂P

∂z
, (2.1)

where uz is the flow velocity, ∂P/∂z is the pressure gradient, ρ and μ are density and
dynamic viscosity of fluid, respectively, and z and r are the flow and radial directions,
respectively, in the cylindrical coordinates, and t is the time.

This governing equation of a compressible fluid is difficult to solve analytically.
However, due to large demands of actual applications, the compressible flow in a circular
tube has been thoroughly studied by Arkilic, Schmidt & Breuer (1997), Zohar et al. (2002),
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Cai, Sun & Boyd (2007), Veltzke & Thöming (2012) and Wang, Wang & Chen (2018) and
their results have shown that the mass flow rate of a compressible fluid can be calculated
by (πR4(Pu − Pd)/(8μL))((ρu + ρd)/2) with good accuracy for a slender circular tube as
long as the radius is much smaller than the length. Here, ρu, ρd, Pu, Pd are the density and
the pressure of upstream and downstream chambers, respectively. This is consistent with
the mass flow rate of an incompressible fluid in a circular tube, with an assumption of a
constant density of ρ̄ = (ρu + ρd)/2. Following this idea, the major characteristics of the
permeability, i.e. the mass flow rate, can be captured by adopting the governing equation
of an incompressible fluid with an average density ρ̄:

∂uz

∂t
+ uz

∂uz

∂z
= ν̄

∂2uz

∂z2 + ν̄

(
∂2uz

∂r2 + 1
r

∂uz

∂r

)
− 1

ρ̄

∂P
∂z

, (2.2)

where ν̄ = (νu + νd)/2 is the averaged kinematic viscosity of the upstream and
downstream working fluid, respectively.

To solve (2.2) analytically, a non-dimensionalization of the equation is necessary. It
is very important to find the right non-dimensionalization factor for each term of the
equation. Here, equating the orders of magnitude of the driving force imposed by the
pressure difference and the viscous stress may lead to the magnitude of the mean velocity
ū at �P(t)R2/μ̄L, where �P(t) = Pu(t) − Pd(t), μ̄ = (μu + μd)/2 are the pressure
difference at t and the average dynamic viscosity of the upstream and downstream fluid,
respectively. By this way, we non-dimensionalize the physical quantities in the equation as

z̃ = z
L

, r̃ = r
R

, ũz = uz

ū
, P̃ = P

�P(0)
, t̃ = R2Pu(0)

μ̄L2 t, (2.3a–e)

where the tilde-headed ones are non-dimensionalized. As a result, (2.2) is non-
dimensionalized as

R4Pu(0)

μ̄ν̄L2
∂ ũz

∂ t̃
+ ūL

ν̄

R2

L2 ũz
∂ ũz

∂ z̃
= R2

L2
∂2ũz

∂ z̃2 +
(

∂2ũz

∂ r̃2 + 1
r̃

∂ ũz

∂ r̃

)
− �P(0)R2

μ̄ūL
∂P̃
∂ z̃

. (2.4)

In the physical process, the unsteady term originates from the fluid transport from
the upstream to the downstream and it must be balanced by the viscous dissipation.
Therefore, the magnitude of the unsteady term should be of the same order as the
viscous dissipation term in the z direction, which is R4Pu(0)/(μ̄ν̄L2) � R2/L2. Combining
this with the magnitude of the mean velocity leads to ūL/ν̄ � �P(0)/Pu(0). For
a high-pressure-difference pulse-decay process, the ratio between the initial pressure
difference and the initial upstream pressure is of the order of magnitude of 1, which is

ūL
ν̄

� R2�P(0)

μ̄ν̄
� 1,

�P(0)

Pu(0)
� 1. (2.5a,b)

Thus, (2.4) can be expressed as

ε2 ∂ ũz

∂ t̃
+ ε2ũz

∂ ũz

∂ z̃
= ε2 ∂2ũz

∂ z̃2 +
(

∂2ũz

∂ r̃2 + 1
r̃

∂ ũz

∂ r̃

)
− ∂P̃

∂ z̃
, (2.6)

where ε = R/L is much smaller than 1.
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Consequently, the asymptotic perturbation can be conducted by ε:

ũz = ũ(0)
z + εũ(1)

z + ε2ũ(2)
z + · · · , (2.7)

P̃ = P̃(0) + εP̃(1) + ε2P̃(2) + · · · . (2.8)

A series of equations are obtained by substituting (2.7) and (2.8) into (2.6) as:

O(1) : 0 =
(

∂2ũ(0)
z

∂ r̃2 + 1
r̃

∂ ũ(0)
z

∂ r̃

)
− ∂P̃(0)

∂ z̃
, (2.9a)

O(ε) : 0 =
(

∂2ũ(1)
z

∂ r̃2 + 1
r̃

∂ ũ(1)
z

∂ r̃

)
− ∂P̃(1)

∂ z̃
, (2.9b)

O(ε2) :
∂ ũ(0)

z

∂ t̃
+ ũ(0)

z
∂ ũ(0)

z

∂ z̃
= ∂2ũ(0)

z

∂ z̃2 +
(

∂2ũ(2)
z

∂ r̃2 + 1
r̃

∂ ũ(2)
z

∂ r̃

)
− ∂P̃(2)

∂ z̃
, (2.9c)

where O(1), O(ε), O(ε2) mean the orders of magnitude of the corresponding equations
at 1, ε, ε2, respectively. The equations of O(1) and O(ε) suggest that 0 = (∂2ũz/∂ r̃2 +
(1/r̃)(∂ ũz/∂ r̃)) − ∂P̃/∂ z̃ is always true so that 0 = (∂2ũ(2)

z /∂ r̃2 + (1/r̃)(∂ ũ(2)
z /∂ r̃)) −

∂P̃(2)/∂ z̃. As a result, the asymptotic analysis simplifies the governing equation (2.2) into
two equations of ũ(0)

z as

(
∂2ũ(0)

z

∂ r̃2 + 1
r̃

∂ ũ(0)
z

∂ r̃

)
− ∂P̃(0)

∂ z̃
= 0, (2.10)

∂ ũ(0)
z

∂ t̃
+ ũ(0)

z
∂ ũ(0)

z

∂ z̃
= ∂2ũ(0)

z

∂ z̃2 . (2.11)

Next, we have to solve equations (2.10) and (2.11) analytically in sequence.

2.2. Analytical and truncated solutions
The new governing equations are to be solved analytically with corresponding definite
conditions. To involve the slippage effect, the slip boundary conditions are introduced into
(2.10) by

ũ(0)
z |r̃=1 = −Kn

∂ ũ(0)
z

∂ z̃

∣∣∣∣∣
r̃=1

+ Kn2

2
∂2ũ(0)

z

∂ z̃2

∣∣∣∣∣
r̃=1

, (2.12)

ũ(0)
z |r̃=0 /=∞, (2.13)

where Kn is the Knudsen number defined by Kn = λ/R with λ denoting the mean free
path of gas molecules. A higher-order slip boundary treatment may further enhance
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the accuracy. The analytical solution of the velocity in the circular tubes is

ũ(0)
z = −1

4
∂P̃(0)

∂ z̃
(1 − r̃2 + 2Kn − Kn2). (2.14)

Substituting (2.14) into (2.11), integrating over z̃, averaging across r̃, we obtain the
governing equation for the transient pressure as

∂P̃(0)

∂ t̃
= ∂2P̃(0)

∂ z̃2 + F(Kn)

16

(
∂P̃(0)

∂ z̃

)2

, (2.15)

where F(Kn) = 1 + 4Kn − 2Kn2. The boundary conditions of (2.15) can be derived based
on mass conservation at inlet and outlet. It should be noticed that, as fluid in the upstream
chamber flows into the porous sample, the mass in the upstream chamber decreases with
time, described by

∂(ρuVu)

∂t
= −

(
ρ̄ũ(0)

z × ū
)∣∣∣∣

z=0
NπR2, (2.16)

where (ρ̄ũ(0)
z × ū)|z=0 is the mass flow rate at the inlet for a single tube and NπR2 is the

cross-sectional area of N tubes. The equation of state of compressible gas is used here,
P = ZρRmT , where Rm is the gas constant, T the temperature and Z the compressibility
factor. A non-dimensionalized form of (2.16) is thus obtained as

∂P̃(0)

∂ t̃
= NπR2L

16Vu

μ̄ūL
R2Pu(0)

2P̄(0)

�P(0)(0)

∂P̃(0)

∂ z̃
F(Kn). (2.17)

As stated, the order of magnitude of both μ̄ūL/(R2Pu(0)) and 2P̄(0)/�P(0)(0) is 1, and
in actual measurements their values are usually chosen close to 1. Therefore, the formula
(2.17) can be further simplified as

∂P̃(0)

∂ t̃

∣∣∣∣∣
z̃=0

= aF(Kn)
∂P̃(0)

∂ z̃

∣∣∣∣∣
z̃=0

, (2.18)

and, similarly, the condition at downstream is simplified as

∂P̃(0)

∂ t̃

∣∣∣∣∣
z̃=1

= −bF(Kn)
∂P̃(0)

∂ z̃

∣∣∣∣∣
z̃=1

, (2.19)

where a is 1/16 of the volume ratio between the pore volume of the sample and the volume
of the upstream chamber, and b is 1/16 of the volume ratio between the pore volume of the
sample and the volume of the downstream chamber.
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To make it concise, a new variable w̃ is introduced as follows:

P̃(0) = 16
F(Kn)

ln w̃. (2.20)

Therefore, (2.15) is deformed to

∂w̃
∂ t̃

= ∂2w̃
∂ z̃2 , (2.21)

with the boundary conditions at upstream and downstream ((2.18) and (2.19)) deformed
as

∂w̃
∂ t̃

∣∣∣∣
z̃=0

= aF(Kn)
∂w̃
∂ z̃

∣∣∣∣
z̃=0

, (2.22)

∂w̃
∂ t̃

∣∣∣∣
z̃=1

= −bF(Kn)
∂w̃
∂ z̃

∣∣∣∣
z̃=1

. (2.23)

The third term in (2.15) naturally disappears due to direct substitution of (2.20) into (2.15).
Clearly, this is a classical linear partial differential equation with an infinite series solution
(Polyanin & Nazaikinskii 2015):

w̃
(
z̃, t̃
) = A0 +

∞∑
m=1

Am
[
Θm sin (Θmz̃) − aF (Kn) × cos (Θmz̃)

]
exp(−Θ2

mt̃), (2.24)

where Θm is the mth root of transcendental equation tan Θm = (a + b)F(Kn)Θm/(Θ2
m− abF(Kn)), Am is constant and m = 0, 1, . . .. It is easy to prove that all the following

terms decay to zero much faster than the first one. For experimental usage, this infinite
series can be truncated to the first term. Besides, we truncate P̃ to the zeroth order based
on (2.8), i.e. P̃ = P̃(0). The pressure difference between upstream and downstream can be
calculated in a dimensional form by

ln(w̃u − w̃d) = ln
(

exp
(

F(Kn)

16
P̃u

)
− exp

(
F(Kn)

16
P̃d

))
= A

′ + B
′t. (2.25)

The slope of formula (2.25) is the same as that of the following equation:

ln(eP̃u − eP̃d) = A
′′ + B

′t, (2.26)

where

B
′ = −Θ2

1 R2Pu(0)

μ̄L2 , (2.27)

A
′ and A

′′ are constant, P̃u = Pu(t)/(Pu(0) − Pd(0)), P̃d = Pd(t)/(Pu(0) − Pd(0)),
Θ1 is the smallest positive solution of tan Θ1 = (a + b)F(Kn)Θ1/(Θ

2
1 − abF(Kn)).

After substitution of F(Kn), the equation tan Θ1 = (a + b)F(Kn)Θ1/(Θ
2
1 − abF(Kn)) is

expressed as

[Θ2
1 − ab(1 + 4CΘ1 − 2C2Θ2

1 )] tan Θ1 − (a + b)(1 + 4CΘ1 − 2C2Θ2
1 )Θ1 = 0, (2.28)

where C = λ(P̄)(1/L)
√

Pu(0)/(−μ̄B′). This equation is used to calculate the value of Θ1.

971 R1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.646


Z. Tian, D. Zhang, Y. Wang, G. Zhou, S. Zhang and M. Wang

N2

1

2
PP P

3 4
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5
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1. Nitrogen bottle

2. Intake shut-off valve

3. Upstream valve

4. Upstream needle valve

5. Upstream sealing tube

6. Confining pressure chamber

7. Downstream sealing tube

8. Upstream pressure gauge

9. Confining pressure gauge

10. Downstream pressure gauge

11. Data collection

12. Downstream needle valve

13. Downstream valve

14. Soap-film flowmeter

15. Pressure regulator

Sample

Figure 2. The diagram of experimental set-up. The confining chamber is made by mechanical finishing. The
volumes of upstream and downstream chambers are 1428.68 and 1498.80 mm3 respectively. The set-up can
switch between the transient and steady-state measurements.

Finally, the permeability can be formulated by several measurable parameters in
experiments as

κ = φR2

8
= −B

′μ̄φL2

8Θ2
1 Pu(0)

(2.29)

where B
′ is the slope of the best-fit straight line by (2.26); φ is the material porosity

of the sample. This formula requires no low-pressure-difference and low-flow-velocity
conditions anymore, and takes care of all unconventional effects to extract the intrinsic
permeability of tight porous materials. It is worth mentioning that only when the
dimensionless criterion, (2.5a,b), is satisfied, is (2.29) able to predict the correct and
accurate value of intrinsic permeability for the sample. The current method inherits
the limitations of classical pulse-decay methods, i.e. homogeneous and non-deformable
samples, constant temperature and pure single-phase and non-reactive fluid, while also
exhibiting potentials for inclusion of other mechanisms, provided they can be appropriately
modelled in tubes.

3. Experiments and validation

To validate the analytical solution, we build up an experimental platform as shown in
figure 2. The platform can switch between pulse-decay and steady-state measurements.
The steady-state measurements are used as a benchmark for the transient solution.
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Figure 3. Typical measurement data: (a) pressure evolutions in a pulse-decay measurement. Six sets of data are
obtained by changing the initial upstream pressure. (b) Interpolation for the intrinsic permeability κiner based
on (2.29) for the pulse-decay measurements. (c) Extrapolation for intrinsic permeability κin in the Klinkenberg
plot for the steady-state measurements.

The testing gas is nitrogen. The porous samples are polymer material and are made into
cylinders with R = 1.10 and L = 6.50 mm. The sample is put into a metal nut and the
whole nut is put into the confining chamber as shown in figure 2.

The pressure evolution data of transient measurements for one sample is shown in
figure 3(a). The downstream pressure is kept at atmospheric pressure, and the upstream
pressure is raised to different values. Once released, the downstream pressure rises
up while the upstream pressure goes down until equilibrium is reached. Six sets of
pressure data are used to calculate the permeability by our inertial solution. The full
range of pressure evolution is presented in figure 3(a) to indicate no gas leakage in the
measurements. Only the very beginning of the range is used to calculate permeability
based on (2.29). Figure 3(b) shows the permeability under different initial pressures over
the values of R2�P(0)/(μ̄ν̄), where the intrinsic permeability, R2�P(0)/(μ̄ν̄) = 1, can
be calculated by a cubic spline interpolation. The steady-state measurements for the same
sample are also performed for validation. In our experimental system, the steady-state
measurements can be conducted by maintaining the upstream and downstream pressures
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Figure 4. The comparison between the permeability measurements by the high-pressure-difference
pulse-decay method and the steady-state method. Each point was obtained by the procedure described in
figure 3. The dashed line is the 45◦ line.

with a low-pressure difference at one measurement. Different mean pressures are used
to eliminate the slippage effect by adopting the Klinkenberg plot (Klinkenberg 1941) as
figure 3(c) shows. The extrapolated intercept of the best-fit straight line represents the
intrinsic permeability by the steady-state measurements.

The comparisons between the high-pressure-difference transient measurements and
the steady-state measurements are shown in figure 4. Each point represents a data pair
(κin, κiner). A 45◦ line is plotted and all the data points lie very near to this line, which
shows clearly the consistency between these two measurements.The maximum relative
difference between κin and κiner is 29.05 % at κin = 48.2 nD (10−21 m2). This verifies
the correctness of our analytical solution for the high-pressure-difference pulse-decay
method. Besides, the high-pressure difference also benefits us with a much shorter time for
measurements and higher accuracy. For our measurements with a permeability at 10 nD,
the measurement time is no more than 10 minutes. For a platform fabricated by classical
mechanical finishing, the accuracy can reach 0.1 nD, which is two orders of magnitude
lower than that of cutting-edge commercial ones. Precise machining or microfabrication
techniques may further improve the accuracy.

4. Conclusions

This work presents a theoretical asymptotic solution for high-speed transient flow through
microporous media by addressing the inertia effect as well as the compressibility effect and
the slippage effect in the high-pressure-difference pulse-decay process. An experimental
platform was designed and built to measure the permeability of tight porous materials
by both transient and steady-state methods to validate the theoretical solution. The good
agreements indicate that the present theoretical solution can accurately capture the inertia
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effect in the high-pressure-difference pulse-decay process, which can significantly shorten
the time for measurements for ultra-low-permeability samples.
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