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A number of completions have been applied to p.o.-groups — the Dedekind-
Macneille completion of archimedean l.o. groups; the lateral completion of l.o.
groups (Conrad [2]); and the orthocompletion of l.o. groups (Bernau [1]). Fuchs
in [3] has considered a completion of p.o. groups having a non-trivial open
interval topology — the only l.o. groups of this form being fully ordered. He
applies an ordering, which arises from the original partial order, to the group
of round Cauchy filters over this topology; Kowalsky in [6] has shown that
group, imbued with a suitable topology, is in fact the topological completion of
the original group under its open interval topology. In this paper a slightly dif-
ferent ordering, also arising from the original order, is proposed for the group
of round Cauchy filters; Fuchs' ordering can be obtained from this one as the
associated order.

§1 introduced the necessary underlying concepts, whilst §2 describes a slight
short cut to the results needed from Kowalsky. §3 brings in new ordering
described above, and shows that it has some desirable properties—the open interval
topology corresponding to it is in fact the topology of the topological completion;
the completion of the completion is o-isomorphic to the completion; and the
completion is the ubique maximal extension of the original p.o. group in which
this latter is sub-dense. In §4 the connection with Fuchs' completion is established,
and it is noted that the tight Riesz property is preserved by completion.

In conclusion, I should like to thank Professor J. B. Miller for his kind
comments and encouragement, both of which have contributed to the compila-
tion of this paper.

1. Preliminaries

A group (A, + ) is a p.o. group if it is a p.o. set under a binary relation ^ ,

such that if a, b and c e A, then a >. b implies each of a + c ^ b + c and c + a

7t c + b. The sets P = {a e A | a ^ 0} and P* = {a e A \ a > 0} are respectively
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[2] Completion of a partially ordered group 223

the positive and strictly positive cones of A, each completely determining the
order ^ by the rule "a 2; b if and only if a — beP". Any subset T* of A will
form the strict positive cone of an order on A if and only if each of (i) T* is normal;
(ii) T* + T* s T*; and (iii) T*n(-T*) = <j> holds.

A p.o. group A is directed if for each a,beA there is a c e /I such that a < c
and fc < c (abbreviated to a, b < c). A directed p.o. group A is called a Riesz
group if, whenever a,b ^ c,d in A, there is an eeA such that a,b ^ e ^ c,d;
it is called a tight Riesz group if, whenever a, b < c, d in A, there is an e e A such
that a,b < e < c,d.

An antilattice A is a Riesz group with no non-trivial meets and joins. It is
dense if, whenever a < c in A, there is a be A such that a <b < c. It can in
fact be shown that dense antilattices are the same thing as tight Riesz groups.

An isomorphism 6 from one p.o. group (A, ^ ) to another, (B, ^ ) , is called
an o-isomorphism whenever 6(a) > 0 in B if and only if a > 0 in A.

On any p.o. group A we can form the open interval topology <?/ by using
as a subbase the set of open intervals — i.e., those sets of the form (a, b) =
= {xeA\a<x<b}. The convention that ffl is the set of open sets, and that
a neighbourhood of a point is an open set containing the point, will be used.
(A, <%) is a topological group if both maps + : A x A-> A and — : A -* A are
continuous; the nature of the subbasic sets makes — continuous, and so the
following conditions are equivalent:

(1) {A,all) is a topological group;

(1A) If F e t and a + beF, then there are neighbourhoods G and H of
a and b respectively such that G + H <= F; and

(IB) If F is a neibourhood ofO, then there are neighbourhoods G and H
of 0 such that G + H c F .

Some authors also require the topology to be Hausdorff; in this case, this
is equivalent to the condition that A has no non-zero elements w for which
x > wox > 0. Such elements are called pseudozeros. Similarly elements w for
which x > w => x > 0 holds, but which are not positive, are called pseudopositives.
If A has no pseudozeros, then the positive and pseudopositive sets together form
the positive set for a new ordering =̂ of A, called the associated order of ^ .
Thus a ̂ = b if and only ifx>a^>x>b.

Generally, operations and relations, when applied to sets, denote complex
ones, for example, F + G = {/+ g \feF, g eG} ; and F > G means that / > g
for e a c h / e F and geG. The exceptions to this rule are filters; the appropriate
operations and relations will be defined later.

A subset B of A will be called sub-dense if, whenever au ••• ,an < b < c1;

••• ,cm in A there is a deB such that au ••• ,an < d < cu ••• ,cm; such a subset
is topologically dense in A under the open interval topology, and vice versa.
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These concepts may be found in Fuchs [3], [4] and [5], and Loy and Miller
[7]; and the terminology is mixture of these and others.

2. O-filters

In establishing the completion of a uniform space, Kowalsky [6] has used
the concept of round Cauchy filters. Because of his different definition of a topo-
logy, and also of a neighborhood, it has been more convenient to use the idea
of an 0-filter rather than a filter.

A filter !F on (A, <W) is a non-empty set of subset of A satisfying (i) if F e J5"
and G c A, with F ^ G, then Ge^; (ii) if F,Ge^, then Fr\Ge&; and
(iii) 4> (the empty set) £ J^.

An 0-filter J5" on (A,%) satisfies these three conditions, but each element
of 2F must also be an open set on A, (i) being altered appropriately.

For any set t% of subsets of A we can define

1% = {X c A | Y c x for some Ye@}.
i—i

We call @) a filter base if 0$ is a filter; an open filter is then a filter which has a
base consisting of open sets. There is an obvious correspondence between open
filters and O-filters; if J5" is an O-filter, then ^ is an open filter, and ^
and if <$ is an open filter, then ^ n ^ is an 0-filter, and WKk = <S.

The sum of two O-filters #" and ^ is defined to be

+ G^H for some F e & and G e ^ } ;

whilst - ^ = {Fe<%\-Fe&r}. Both are clearly O-filters.
Cauchy filters and round filters can both be defined for a uniform space;

topological groups, however, have two associated uniformities, called the 1-uni-
formity and the »--uniformity. Thus on topological groups we have 1- and r-Cauchy
filters, and 1- and r-round filters. Filters which are both 1- and r-Cauchy are
called simply Cauchy, and ones which are 1- and r-round are called round. How-
ever, we shall see that the conjunction of i--Cauchy and 1-round implies the other
two, so that, after this section, the distinction will not be made.

Rather than to define these concepts for a uniform space, and then to apply
these definitions to the uniformities of a topological group, it is easier to give
them in group terminology.

Thus the 0-filter !F is r-Cauchy if, for any neighbourhood VofO, there
is an Fe^ such that F — F c V; further, it is called l-round if, for any F e F ,
there is a neighbourhood V of 0 and a GelF such that G + V s F.

For any a e A, we can form y{a), the set of neighbourhoods of a; ^~(a) is
clearly an 0-filter. We can thus translate each of the above definitions into terms
of O-filters:-
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An 0-filter & is r-Cauchy if & - & = ^"(0); and & is l-round if jF + iT(0)
= &.

If (A, ^) is a topological group, we have

1A: — for any a,be A, r{a) + T(b) = TT(a + b);
and

IB: — -T(O) + -T(0) = y(0).

Thus, as y"(0) = - -^"(0), ^"(0) is both f-Cauchy and /-round, and so the trans-
lated definitions become the r-inverse and r-indentity laws for the set of r-Cauchy
/-round 0-filters. Therefore:

THEOREM. (Kowalsky, [6], p.250) The set A* of r-Cauchy l-round 0-filters
on (A,tfl) is a group under the given operations if and only if(A,<%) is a topo-
logical group.

(In a personal communication, R. Ramsay has provided an example of a
p.o. group which is not a topological group under its open interval topology.)

As the /-inverse and /-indentity laws also hold for the group A*, the 0-filters
must be /-Cauchy and /r-round as well. Moreover, the translation of 1A assures
us of a canonical homomorphism </>: A-*A*, a<j> = ^(a). Further, as Fuchs has
noted in [3], if &,$eA* and & S &, then #" = <8.

3. The completion

In this section we shall suppose (A, ^ ) to be a p.o. group which is a topo-
logical group under its open interval topology. Its (Cauchy) completion (A*, ^ )
is the group A* of round Cauchy 0-filters under the ordering ^ whose strictly
positive cone P* = {&eA*\P*e&). Fuchs' ordering, which will be denoted
by ^ , has as its positive set

Q = {&<=A*\fZ 0 for some feF, for each Fe&).

(Actually, Fuchs gives a condition which also brings in the topological group def-
inition of a Cauchy filter, which he has not specifically given.) Thus we have
& >& in A* if there is an Fe^ and a Ge& such that F > G; Y~{a) > & in A*
if thhere is an Fe& such that a> F; and "^(d) > "T(b) if and only if a> b.

If {A, ^ ) has pseudozeros, then, with 0, they form a subgroup Z. If w is
a pseudozero, then x > w ox > 0, so that each neighbourhood of 0 also contains
w; hence "f~(w) = ^(0). Therefore Z is the kernel of the canonical homomorph-
ism <f>. Thus, if (A, ^ ) has no pseudozeros (that is), if (A, <%) is Hausdorff), then
<f> is a monomorphism; and so, as "T(a) > "T(0) if and only if ir(a)eP*, if and
only if P* e i^{d), if and only if a e P*, if and only if a > 0, A is o-isomorphic
to its image in A* in this case.
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We form the open interval topology Of* on A* in the usual fashion; if we
take l e t , then we can define S(X) = {&eA*\Xe3F}, and thus form another
topology W* on A* by taking {S{X) | l e t } as a basic. If (A,<%) is Hausdorff,
then (A*,W*) is the topological completion of {A,%) (Kowalsky [6], pp. 166,
232, 251), and (A*,W*) is a topological group (also p. 251 of Kowalsky).

LEMMA 1. If !F eA* and FelF, then there is a basic open set J e 2F such
that J S F .

PROOF. & is round, so there is a G e & and aVe -f(0) such that G + F c f .
As V is open, there is a basic open neighbourhood I of 0 such that / £ V. As
3F is also Cauchy, there is an He & such that -H + HzI; so Gr\He&,
(Gr\H) + I^F, and - (Gnjf) + (GnH) £ / .

Take geG(~\H; then -g + (GnH) s J, so that Gn/f s # + / . Further,
# + / s F; so, if we put J = # + 1, then J e J*, J is a basic open set, and J s F.

LEMMA 2. (/I*, j>) has no pseudozeros.

PROOF. Suppose -#"e,4* is such that & > WoP > V(0) in A*, and take
W e "3̂ ". By lemma 1 there is a basic open set

J = n{(a,,6,.)| i = l , - , n }

such that J e - T and J ^ W. Thus ai<J<bi for each i, and so -^(a,) < TT
< -jr(bj) for each i. By definition of iT,y{a^ < -T(0) < ̂ {b^ for each i, and
thus af < 0 < b, for each i; i.e., 0e J , so We ^(O). Hence TT = TT(0) .

LEMMA 3. If Xe<%, then S(X)e<%*.

PROOF. Take &eS(X),so that X e ^ . By lemma 1 there is a basic open set
Ie& such that / £ X. Then / = n {a,-, b,)\i= 1, •••, n} .

Form J = n {-^(a,),-^(foj)) | i = l , - - - ,n} ; now a; < / < bt for each j , so
that T "̂(a,) < SF < ̂ (bi) for each i, and hence ^ eJ. Therefore / is a neighbour-
hood of &.

Take ^eJ, so that ^ (a , ) < <§ < ̂ (b^ for each i. Thus for each i we have
sets Gj and G[e<g such that a, < G; and Gj < bj. So, if

then at<G <bi for each i, and G e IS. Thus G £ / c x , so that X e <$; that is
&eS(X). Hence J is a neighbourhood of & in S(X).

LEMMA 4. Suppose X,YeW. Then;-

(i) S(jf)nS(Y) = S(ln y).
(ii) If X ZY, then S(X) SS(Y).
(iii) S(X) + S(Y) s
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PROOF. Trivial.

LEMMA 5. <%* = W* if {A,<%) is Hausdorff.

PROOF. By lemma 3, TT* C <gr*. Let F be a basic open set of (A*,W*); then

But P* = {^eA* | P*e JF} = S(P*),and so P * e # " * ; thus, as (A*,iT*) is
a topological group, for each i,

(Fit s?.) = (#-; + P*) n (sr, - p*) e ir *,

and so
Thus we may conclude:-

THEOREM 1. (A*,<%*) is the topological completion of (A,®) if {A,°U) is
Hausdorff; if not, then it is the topological completion of (A,W)/Z, where Z is
the group of pseudozeros.

THEOREM 2. (A*, ^ ) is o-isomorphic to its own completion.

PROOF. By lemma 2, (A*, %*) is Hausdorff. As its completion (A*)* is thus
its topological completion, it is complete, i.e., every Cauchy filter has a limit; so
every round Cauchy 0-filter has a limit, so that <f> will be an epimorphism. Hence
<j> is the required o-isomorphism.

THEOREM 3. If (A, 2 )̂ has no pseudozeros, then any extension of (A, ^ ) in
which (A, ^ ) is sub-dence can be extended to a maximal such extension, and
this latter will be o-isomorphic to (A*, ̂ ) .

PROOF. Applying Kowalsky [6] (p. 234), we see that each complete extension
in which (A, ^ ) is sub-dense is o-isomorphic to (̂ 4*, S;). If (B, 2:) is any extension
in which (A, ^ ) is sub-dense, then the image of (A, ^ ) under the canonical homo-
morphism <p: B->B* will be sub-dense in (B*, ^ ) , and this latter is complete;
thus (B*, ̂ ) is o-isomorphic to (A*, ^ ) , and so (B, ^ ) i s o-isomorphic to a sub-
dense subgroup of (A*, ̂ ) .

4. Tight Riesz groups

Fuchs [3] gives his completion for commutative isolated divisible antilattices.
These conditions mean that such a group should be a dense antilattice, and hence
a tight Riesz group. As Loy and Miller [7] have point out, the open intervals
form a base for the open interval topology on a tight Riesz group, and, further,
any tight Riesz group is a topological group under this topology; so we may form
the completion (/I*, 2;).

In this section, then, we shall assume (A, S;) to be a tight Riesz group. We
shall first need a refinement of lemma 1: -
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LEMMA 6. / / J5"e A* and Fe!F, then there are u,veF such that (u,v) s F
and {u,v)

PROOF. By lemma 1 there is an interval (a, b) e !F such that (a, b) £ F; so
we can find (u, v) e ^ and (c, d) e ^(0) such that (u, v) + (c, d) £ (a, b); as {A, ^ )
is a tight Riesz group, (u,v) + (c,d) = (u + c, v + d); so, as c < 0 < d, we find
that M, t> e (t/ + c, t; + d), and hence u,veF, (u, v)e^ and (M, V) S F .

THEOREM 4. (4*, ^ ) is a tight Riesz group.

PROOF. For directedness, take &, $ e A*, and FeJ^ and G e 0. By lemma 6
we can find a,feF and b,geG such that (a,/)e J^, (b,g)e&, (a,f) s F , and
(fr,#) £ G. Taking h>f,g by the directedneessof (4, ^ ) , we see that h > (a,/)
and /i > (b,g); so T^(/I) > &,<&.

For the tight Riesz interpolation property, take J%^ <JJf, JT in A*; so we
can find Fx < H t , F2 < K 2 , Gt < K^, G2<K2, where F j . ^ g ^ , etc.; thus,
putting F = F 1 n F 2 , G = G1nG2 etc., we have that F,G<H,K. By lemma 6,
we can find/i,/26F, g^g^zG, etc. such that (/i,/2)e J* and (/i,/2) S F, etc.
Hence 72,^2 < ^ I . ^ I in ^4; so by the tight Riesz interpolation property of (̂ 4, 2;),
then, there is an aeA such that/2,g2 <a < hukl.

Hence (A.^), (^i,^) < a < (huh2), (kuk2); so &,<$ < r{a) < #,#.
Thus we may now establish the connection with Fuchs' order ing^ (cf. §3).

THEOREM 5. Fuchs' ordering ^= on A* is the associated order of ^ on A*;
i.e., & > & => & > -T(O) if and only if

PROOF. By lemma 2, {A*, ^ ) has an associated order. Suppose !F> <&
> -^(0), and take Ge&\ then, by lemma 6,there are g,heG such that (g,
and (fir, h) ^ G. So, as h > (g, h), we have ir{H) > <$. Hence -T(K) > "T(0), and
so h>0; thus S?> -T(0).

Next suppose that ^ > -f(0) and & >&; then there are Fe J^ and G e ^
such that F > G, and, also, # e G such that 61 ̂  0. Hence F > 3 ^ 0, so that

Fuchs [3] has investigated the problem of finding tight Riesz groups (A, ^ )
whose Fuchs complet ion(4*,» is lattice-ordered; these he calls approximation
antilattices. He, Reilly [8] and Wirth [9] have characterised tight Riesz groups
whose associated order is lattice-ordered, in terms of the subset forming the posi-
tive cone for the tight Riesz order. One of his results may be extended to show
that such a tight Riesz group has its Fuchs completion lattice-ordered; hence so
does any dense subgroup of it.

Noticing that a sub-dense subgroup of a tight Riesz group is in fact a dense
subgroup, and is therefore also a tight Riesz group itself, we can state: -
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THEOREM 6. A tight Riesz group without pseudozeros will have its Fuchs

completion lattice-ordered if and only if it is o-isomorphic to a dense subgroup

of a tight Riesz group with lattice-ordered associated order.
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