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Abstract

Integrative modeling enables structure determination for large macromolecular assemblies by
combining data from multiple experiments with theoretical and computational predictions.
Recent advancements in AI-based structure prediction and cryo electron-microscopy have
sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can
be integrated with in situ maps to characterize large assemblies. This approach previously
allowed us and others to determine the architectures of diversemacromolecular assemblies, such
as nuclear pore complexes, chromatin remodelers, and cell–cell junctions. Experimental data
spanning several scales was used in these studies, ranging from high-resolution data, such as
X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron
tomography maps and data from co-immunoprecipitation experiments. Two recurrent mod-
eling challenges emerged across a range of studies. First, these assemblies contained significant
fractions of disordered regions, necessitating the development of new methods for modeling
disordered regions in the context of ordered regions. Second, methods needed to be developed to
utilize the information from cryo-electron tomography, a timely challenge as structural biology
is increasingly moving towards in situ characterization. Here, we recapitulate recent develop-
ments in themodeling of disordered proteins and the analysis of cryo-electron tomography data
and highlight other opportunities for method development in the context of integrative
modeling.

Introduction

Integrative structural modeling is an approach for determining macromolecular structures that
are challenging to determine experimentally (Alber et al., 2007; Sali, Glaeser, Earnest, &
Baumeister, 2003). Data from multiple experiments is combined with physical principles,
statistics of previous structures, and prior models for structure determination. This approach
overcomes the limitations of individual techniques for structure determination and maximizes
the accuracy, precision, completeness, and efficiency of structure determination (Rout & Sali,
2019; Sali, 2021).

Recent advancements in both computational and experimental domains have prompted a
resurgence of interest in integrative modeling (Beck, Covino, Hänelt, & Müller-McNicoll, 2024;
McCafferty et al., 2024). On the one hand, AI-based predictions of structures of proteins and their
complexes with other proteins and nucleic acids have significantly advanced structural biology of
late (Abramson et al., 2024; Akdel et al., 2022; Jumper et al., 2021). This has spurred the
development of numerous methods that aim to integrate AI-based structures with diverse types
of experimental data, including electron diffraction data from X-ray crystallography, electron
density maps from electron cryo-microscopy, and chemical crosslinks from mass spectrometry
(Chang et al., 2022; Stahl et al., 2024; Stahl, Graziadei, Dau, Brock, &Rappsilber, 2023; Terwilliger
et al., 2022; Terwilliger et al., 2023; Zhang et al., 2023). These methods integrate the data in
various ways, ranging from using the data to validate AI-based predictions, to using the data as
additional inputs in the deep learning method, to encoding the data in the loss functions,
resulting in structure predictions that are consistent with the data (O’Reilly et al., 2023; Stahl
et al., 2023, 2024; Terwilliger et al., 2022, 2023; Zhang, Haghighatlari, et al., 2023). On the other
hand, experimental techniques for in situ structure determination of assemblies are also rapidly
advancing, with advancements in both hardware and software for imaging cells using cryo-
electron tomography (Beck et al., 2024; McCafferty et al., 2024). This has led to an increase in
tomography data, concurrent with an increase in the number and resolution of structures solved
using tomography. Together, integrative methods using cryo-electron tomography maps along
with AI-based structure predictions have resulted in significant advancements in structure
determination, for example for nuclear pore complexes and ciliary complexes (Chen et al.,
2023; Fontana et al., 2022; Hesketh, Mukhopadhyay, Nakamura, Toropova, & Roberts, 2022;
McCafferty et al., 2024; Mosalaganti et al., 2022; Zhu et al., 2022).
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Nonetheless, there is immense potential for advancing integra-
tive modeling methods for macromolecular assemblies. Here, we
provide our perspective on two areas warranting immediatemethod
development in the context of integrative modeling: methods for
modeling intrinsically disordered regions (IDRs) of proteins and
approaches for leveraging in situ data. First, unlike ordered proteins,
intrinsically disordered proteins (IDPs) comprise a dynamic ensem-
ble of conformations that are best characterized in statistical terms
rather than as static structures (Baul, Chakraborty, Mugnai, Straub,
& Thirumalai, 2019). They comprise a significant fraction of the
eukaryotic proteome and are involved in critical cellular processes
(Oldfield & Dunker, 2014). They are found in several macromol-
ecular assemblies, for example, the FG-Nups in the nuclear pore
complex (Fontana et al., 2022; Zhu et al., 2022). However, their
intrinsic disorder makes their characterization in these assemblies
challenging. Improved representations for IDPs and methods for
generating realistic IDP ensembles are crucial for understanding
their functions. Second, the structural characterization of macro-
molecules using in situ data relies on accurate particle annotations
on the tomograms (de Teresa-Trueba et al., 2023; Rice et al., 2023).
However, owing to the low signal-to-noise ratio of the acquired tilt
images, the missing wedge effect, and the inherent heterogeneity in
the sample, the localization and identification of macromolecules in
tomograms is time-consuming, laborious, and often challenging
(de Teresa-Trueba et al., 2023; Moebel et al., 2021). Advances in
deep learning methods and integrative approaches for combining
data from other experimental and computational methods with
cryo-electron tomograms can facilitate high throughput in situ
structural characterization of macromolecular species.

In this Perspective, we first briefly review the existing integrative
modeling methods and recent examples of macromolecular assem-
blies characterized using integrative modeling. Then, we discuss
methods developed and opportunities for modeling disordered
regions and leveraging in situ data. Finally, we end with an outlook
summarizing other open problems in integrative modeling.

Integrative modeling methods

Several methods have been developed for integrative structure
determination (Table 1). A subset of these including Integrative
Modeling Platform (IMP), High Ambiguity Driven DOCKing
(HADDOCK), and Assembline (Alber et al., 2007; Dominguez,
Boelens, & Bonvin, 2003; Honorato et al., 2024; Rantos, Karius, &
Kosinski, 2022; Russel et al., 2012) are discussed here. IMP is a
framework for Bayesian integrative modeling that facilitates struc-
ture determination of macromolecular ensembles at multiple reso-
lutions (multi-scale) and multiple states (multi-state) (Alber et al.,
2007; Russel et al., 2012). A wide array of experimental data can be
combined using IMP, for example in vivo genetic interactions,
co-immunoprecipitation, FRET (Förster Resonance Energy Trans-
fer), SAXS (small angle X-ray scattering), XLMS (chemical cross-
links from mass spectrometry), density maps from cryo electron-
microscopy, and atomic structures from X-ray crystallography,
NMR (Nuclear Magnetic Resonance), and AI-based predictions
(Rout & Sali, 2019; Sali, 2021). The Bayesian inference framework
allows for data from multiple sources to be integrated while con-
sidering the uncertainty in the data (Schneidman-Duhovny, Pel-
larin, & Sali, 2014). The modular design of IMP facilitates the
mixing and matching of scoring functions and sampling algo-
rithms. It has been used in the modeling of several large assemblies,
most notably the nuclear pore complex (Akey et al., 2022; Alber

et al., 2007; Rout & Sali, 2019; Sali, 2021; Singh et al., 2024). Recent
advancements in IMP include Bayesian scoring functions for
in vivo genetic interactions (Braberg et al., 2020), Bayesian model
selection for optimizingmodel representation (Arvindekar, Pathak,
Majila, & Viswanath, 2024), automated choice of sampling param-
eters (Pasani & Viswanath, 2021), and annotation of precision for
model regions (Ullanat, Kasukurthi, & Viswanath, 2022).

Assembline is a protocol for integrative modeling that builds
upon IMP, combining Xlink Analyzer, UCSF Chimera, and IMP to
model large assemblies (Rantos et al., 2022). It is applicable for
systems for which medium-resolution EM maps and a large num-
ber of atomic structures of subunits are available. It improves upon
IMP by using pre-computed rigid body fits to EMmaps tomake the
sampling more efficient. HADDOCK is a method for atomistic
integrative modeling of protein complexes (Dominguez et al., 2003;
Honorato et al., 2024). Experimental data from NMR, SAXS,
XLMS, and mutagenesis studies are encoded as Ambiguous Inter-
action Restraints (AIR). Recent improvements to HADDOCK
include the ability to model complexes of up to 20macromolecules,
new restraints based on cryo-EM maps, coarse-grained represen-
tations for efficient sampling, customizable pre- and post-
processing steps, and a user-friendly web server for integrative
modeling (Honorato et al., 2024).

Other than these, several methods allow fitting known protein
structures into medium to low-resolution density maps, including
MDFF and TEMPy-REFF (Beton, Mulvaney, Cragnolini, & Topf,
2024; Trabuco, Villa, Mitra, Frank, & Schulten, 2008). MDFF
(Molecular dynamics flexible fitting) utilizes MD simulations for
fitting structures into density maps by biasing the simulation using
an additional potential derived from the density map (Trabuco
et al., 2008). TEMPy-REFF (Responsibility-based Flexible-Fitting)
refines an initial structure within a density map iteratively using the
Expectation-Maximization algorithm (Beton et al., 2024).

Recent examples in integrative modeling: focus on nuclear
and cell adhesion complexes

Integrative modeling has shed light on diverse cellular processes by
determining the structures of assemblies associated with them. A
list of representative recently characterized integrative structures is
presented (Table 2). Here, we discuss examples of recent integrative
structural biology studies in nuclear trafficking, gene expression
regulation, and cell–cell adhesion. These studies not only provide
novel insights into the structure and function of these assemblies
but also highlight areas for future applications and method devel-
opment.

The nuclear pore complex (NPC) is a large macromolecular
assembly in the nuclear envelope that connects the nucleus and
cytoplasm and plays an important role in nuclear trafficking (Akey
et al., 2022; Alber et al., 2007). Several recent studies have improved
our understanding of the components of the NPC (Bley et al., 2022;
Fontana et al., 2022; Singh et al., 2024; Yu et al., 2023; Zhu et al.,
2022). Some of these studies involve the fitting of AlphaFold and
experimentally determined structures into medium-resolution
cryo-EM maps and cryo-electron tomograms (Bley et al., 2022;
Fontana et al., 2022; Petrovic et al., 2022; Zhu et al., 2022). Other
studies additionally incorporate biochemical data including chem-
ical crosslinks (Singh et al., 2024). Together these studies have been
used to characterize the structures of the cytoplasmic face, cyto-
plasmic ring, the linker-scaffold network, and the nuclear basket of
the NPC. The resulting structures enabled the identification of
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Table 2. A table summarizing a representative subset of recent integrative modeling studies

Macromolecular
assembly

Subcellular
location

Software for
integrative modeling Data used Authors and year

A3G-CRL5-Vif
complex

Nucleus IMP Data from XLMS, and structures from X-ray
crystallography and solution NMR

Kaake et al.
(2021)

Apo-GAFab complex Plasma membrane IMP Data from XLMS, and structures from X-ray
crystallography

Gupta et al.
(2020)

Bovine adenylyl
cyclase 8 in
complex with the
G protein
heterodimer

Plasma membrane HADDOCK Data from XLMS, and structures from X-ray
crystallography and cryo-EM maps

Khanppnavar, B
(2024)

CLOCK-BMAL1
bound to a
nucleosome

Nucleus Rosetta Data from XLMS, and structures from X-ray
crystallography and cryo-EM maps

Michael et al.
(2023)

Desmosomal outer
dense plaque

Plasma membrane IMP Data from cryo-ET, immuno-EM, yeast two-
hybrid experiments,
co-immunoprecipitation, in vitro overlay, in
vivo co-localization assays, in silico
sequence-based predictions of
transmembrane and disordered regions,
and structures from X-ray crystallography
and homology modeling

Pasani et al.
(2024)

Doublecortin-
microtubule
complex

Cytoplasm IMP Data from cryo-EM and XLMS, and structures
obtained from cryo-EM

Rafiei et al.
(2022)

gammaTuSC-
Spc110 dimer
complex

Nuclear membrane IMP Data from XLMS, and structures from cryo-EM
maps

Brilot et al.
(2021)

Human LINE–1
ORF2p

Nucleus IMP Data from cryo-EM and XLMS Baldwin et al.
(2024)

Intraflagellar
transport - A (IFT-
A) complex

Flagella IMP Data from XLMS cryo-ET, and AlphaFold
structure predictions

McCafferty et al.
(2022)

Mis18 Complex
Assembly

Centromere CombDock Data from NS-EM and XLMS, and structures
from X-ray crystallography

Thamkachy et al.
(2024)

Mycobacterial ESX–5
type VII secretion
system pore
complex

Plasma membrane IMP Data from cryo-EM and XLMS, and structures
obtained using X-ray crystallography and
homology modeling

Beckham et al.
(2021)

Table 1. Integrative modeling software

Software Authors Reference URL

ISD Rieping, Habeck, & Nilges, (2005) Rieping et al. (2005) N/A

IMP Russel et al. (2012) Russel et al. (2012) integrativemodeling.org

HADDOCK Dominguez et al. (2003), Honorato et al. (2024) Dominguez et al. (2003), Honorato et al.
(2024)

rascar.science.uu.nl/
haddock2.4

Assembline Rantos et al. (2022) Rantos et al. (2022) embl-hamburg.de/Assembline/

PLUMED-
ISDB

Bonomi & Camilloni, (2017) Bonomi & Camilloni, (2017) plumed.org

BioEn Köfinger et al. (2019) Köfinger et al. (2019) github.com/bio-phys/BioEn

Rosetta Simons, Kooperberg, Huang, & Baker, (1997), Leman et al. (2020) Leman et al., (2020), Simons et al. (1997) rosettacommons.org

CombFold Shor & Schneidman-Duhovny, (2024b) Shor & Schneidman-Duhovny, (2024a) github.com/dina-lab3D/
CombFold

CombDock Inbar, Benyamini, Nussinov, & Wolfson, (2005), Schneidman-
Duhovny & Wolfson, (2020)

Inbar et al. (2005), Schneidman-Duhovny &
Wolfson, (2020)

bioinfo3d.cs.tau.ac.il/
CombDock/download/

A list of commonly used integrative modeling software for large protein complexes. Each of these combines information from three or more experimental and/or computational sources. For a
comprehensive overview, see (Bonomi et al., 2017; Habeck, 2023; Rout & Sali, 2019)
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novel interfaces between disordered nucleoporins (Nups) (Fontana
et al., 2022; Zhu et al., 2022), elucidated the function of nucleopor-
ins—Nup38 and the Cytoplasmic Filament Nucleoporin (CFNC)
(Bley et al., 2022), delineated the role ofMlp/Trp in assistingmRNP
transport (Bley et al., 2022; Fontana et al., 2022; Singh et al., 2024;
Yu et al., 2023; Zhu et al., 2022), and revealed the plasticity and
robustness of the inner ring (Petrovic et al., 2022). Finally, another
study determined the distribution of intrinsically disordered
nucleoporins in the NPC and their motion in the central channel
using fluorescence lifetime imaging of fluorescence resonance
energy transfer (FLIM-FRET) and coarse-grained molecular
dynamic (MD) simulations (Yu et al., 2023).

Whereas the above studies are on components of the NPC,
(Akey et al., 2022, 2023; Mosalaganti et al., 2022) determined
comprehensive integrative structures of the entire NPC. These
studies integrate in situ cryo-electron tomography data with Alpha-
Fold or experimentally determined structures (Mosalaganti et al.,
2022), and additionally cryo-EM maps, chemical crosslinks, and
data from quantitative fluorescence imaging and biochemical stud-
ies to determine comprehensive structures of NPCs (Akey et al.,

2022, 2023). The structures revealed distinct dilated and constricted
states of the complex and characterized the plasticity of the pore
(Akey et al., 2022, 2023;Mosalaganti et al., 2022). Additionally, they
localized precise anchoring sites for the intrinsically disordered
Nups (Mosalaganti et al., 2022) and delineated the function of
Pom153 in ring dilation (Akey et al., 2023).

The Nucleosome Remodeling and Deacetylase (NuRD) com-
plex is a chromatin remodifying assembly that plays an important
role in several cellular processes including transcriptional regula-
tion, cell cycle progression, and cellular differentiation (Arvindekar
et al., 2022). It consists of chromatin remodeling and deacetylase
modules, connected by MBD and GATAD2 proteins. The struc-
tures of three subcomplexes of NuRDwere determined by integrat-
ing data from negative-stain and low-resolution cryo-EM maps,
X-ray crystallography, XLMS, SEC-MALS, DIA-MS, NMR spec-
troscopy, homology modeling, secondary structure predictions,
and physical principles (Arvindekar et al., 2022). The integrative
structures depict MBD in two states in NuRD and elucidate the role
of the intrinsically disordered region of MBD in bridging the
chromatin remodeling and deacetylase modules of NuRD.

Table 2 Continued

Macromolecular
assembly

Subcellular
location

Software for
integrative modeling Data used Authors and year

Nexin-dynein
regulatory
complex

Cilia Assembline Data from XLMS and Alphafold structure
predictions.

Ghanaeian et al.
(2023)

Nuclear Basket of
NPC

Nuclear membrane IMP Data from quantitative mass spectrometry,
XLMS, cryo-ET, immuno-EM, biochemical
studies, and bioinformatics predictions, and
prior integrative models

Singh et al.
(2024)

Nuclear Pore
Complex (NPC)

Nuclear membrane IMP Data from cryo-ET, cryo-EM, XLMS,
quantitative fluorescence imaging, and
biochemical studies, and Alphafold
structure predictions

Akey et al. (2023)

NuRD subcomplexes Nucleus IMP Data from SEC-MALLS, DIA-MS, XLMS,
negative-stain EM, and structures fromX-ray
crystallography, NMR spectroscopy,
secondary structure predictions, and
homology models

Arvindekar et al.
(2022)

SARS-CoV2 Nsp1,
Nsp2 and
nucleocapsid
proteins

Host cytoplasm
and viral
nucleocapsid

CombDock Data from XLMS and structures from
AlphaFold2 and homology modeling

Slavin et al.
(2021)

SMC5/6 complex Nucleus IMP Data from NS-EM and XLMS, and structures
obtained using X-ray crystallography, cryo-
EM, comparative modeling, and coiled-coil
predictions

Yu et al. (2021)

Transglutaminase 2
in complex with
plasma
fibronectin type III
modules 14 and
15

Extracellular
matrix

HADDOCK Data from XLMS, and structures from X-ray
crystallography

Selcuk et al.
(2024)

Type III Secretion
System

Plasma
membrane, cell
wall

Assembline Data from XLMS and structures from cryo-EM
and NMR spectroscopy

Flacht et al.
(2023)

WDR76—SPIN1—
nucleosome
complex

Nucleus HADDOCK, IMP Data from XLMS and structures from X-ray
crystallography and I-TASSER structure
predictions

Liu et al. (2024)

Abbreviations: DIA-MS, Data independent acquisition mass spectrometry; EM, Electron microscopy; ET, Electron tomography; NMR, Nuclear magnetic resonance; NS, Negative staining;
SEC-MALLS, Size exclusion chromatography—multi-angle laser light scattering; XLMS, Crosslinking coupled with mass spectrometry.
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Desmosomes are intercellular junctions that tether the inter-
mediate filaments of adjacent cells in tissues under mechanical
stress (Pasani, Menon, & Viswanath, 2024). The integrative struc-
ture of the desmosomal outer dense plaque (ODP) was determined
by combining data from cryo-electron tomography, X-ray crystal-
lography, immuno-electron microscopy, in vitro overlay, in vivo
co-localization assays, Yeast Two-Hybrid (Y2H), co-immuno pre-
cipitation, in-silico sequence-based predictions of transmembrane
and disordered regions, homology modeling, and stereochemistry
(Pasani et al., 2024). The structure enabled the localization of
disordered regions of Plakophilin (PKP) and Plakoglobin
(PG) and the identification of novel protein–protein interfaces
associated with them, leading to hypotheses about the functions
of these disordered regions.

Two elements emerge as common across the aforementioned
studies: they leverage in situ cryo-electron tomography data and the
characterized systems contain significant fractions of disordered
regions (Figure 1). This highlights two areas of immediate interest
for method development: modeling with intrinsically disordered
proteins (IDP) and utilizing data from cryo-electron tomography
(cryo-TM), discussed in the following sections.

Integrative modeling of intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) are a class of proteins that
lack a well-defined ordered structure in their monomeric state.
Rather, they exist as an ensemble of interconverting conformers
in equilibrium and hence are structurally heterogeneous (Baul et al.,
2019; Lindorff-Larsen & Kragelund, 2021). This heterogeneity of
IDPs also makes it challenging to characterize them both experi-
mentally and computationally (Beck et al., 2024).

Learning Representations for IDPs

Recently, protein language models (pLMs) have emerged as power-
ful tools for learning context-aware representations, providing a
compact and informative approach to characterize the structural
and functional properties of proteins (Bepler & Berger, 2021; Rives
et al., 2021). pLMs enhance the performance of models on down-
stream tasks via transfer learning, eliminating the need to train a
neural network from end to end. This approach is particularly
beneficial while training models with small datasets.

Using pLMs for IDPs presents several challenges. First, pLMs
trained only on sequences may not be able to capture the conform-
ational heterogeneity of IDPs. Second, the databases used to train
pLMs are dominated by ordered protein sequences, leading to a bias
in the learned representations. Third, IDPs often function through
transient interactions and context-dependent conformations,
i.e., the same IDPmay adopt different conformations with different
binding partners. The state-of-the-art pLMs do not account for the
environmental context and interacting partners and thus may not
capture these transient interactions. Finally, the lack of structural
data representative of IDP conformations poses a significant chal-
lenge in training models.

Advances in representation learning techniques are required
for accurately characterizing the behavior of IDPs. Representa-
tions for IDPs could be improved by fine-tuning existing pLMs on
IDP-specific tasks and/or by incorporating additional data on
IDPs. Sequence alone might not be sufficient to capture the
properties of IDPs; incorporating structural information or
physics-based priors might allow pLMs to capture the complex

dynamics of IDPs (Wang, Wang, Evans, & Tiwary, 2024).
Structure-aware pLMs have been recently developed
(Peñaherrera & Koes, 2024; Sun & Shen, 2023; Wang et al.,
2024). The same approach can be extended to IDPs. There is a
need to obtain more structural data for IDPs (Jahn, Marquet,
Heinzinger, & Rost, 2024). Whereas, experimental structural data
remains important, acquiring it might be tedious and time-
consuming. Computational approaches for generating realistic
IDP conformational ensembles, such as MD simulations and
generative models, would provide valuable experimental-like
structural data. In the next section, we discuss methods for gen-
erating IDP ensembles.

Generating IDP ensembles

Determining the conformational ensembles of IDPs is essential for
understanding their functions. MD simulations are widely used
for generating conformational ensembles. However, their reliabil-
ity depends on the accuracy of force fields and the ergodicity of
sampling (Bonomi, Heller, Camilloni, & Vendruscolo, 2017;
Robustelli, Piana, & Shaw, 2018). Force fields typically used for
folded proteins often fail to accurately capture the conformations
of IDPs when compared with experimental data. Efforts for
improving the force fields for IDPs focus on either refining the
protein force field (Baul et al., 2019; Huang et al., 2017; Joseph
et al., 2021), or accurately accounting for protein-water inter-
actions (Best, Zheng, & Mittal, 2014; Nerenberg, Jo, So, Tripathy,
& Head-Gordon, 2012; Robustelli et al., 2018; Vitalis & Pappu,
2009). Coarse-grained models that improve sampling by reducing
the degrees of freedom have also been developed (Baratam &
Srivastava, 2024; Baul et al., 2019; Joseph et al., 2021; Marrink,
Risselada, Yefimov, Tieleman, & de Vries, 2007; Thomasen, Pesce,
Roesgaard, Tesei, & Lindorff-Larsen, 2022).

Deep generative models offer a computationally efficient means
for sampling conformations from a learned data distribution.
Latent space embeddings from variational autoencoder (VAE)
trained on IDP sequences (Mansoor, Baek, Park, Lee, & Baker,
2024), conditional generative adversarial networks (GAN) (Janson,
Valdes-Garcia, Heo, & Feig, 2023), denoising diffusion probabilis-
tic models (DDPM) (Janson & Feig, 2024; Zhu et al., 2024) have
been used for generating all-atom andCα coarse-grained ensembles
of IDPs. More sophisticated approaches such as flowmatchingmay
also be employed for generating ensembles of IDPs. Notably, these
aforementioned generative models leverage MD-generated ensem-
bles for training.

Recent studies demonstrate the combined use of MD simula-
tions andmachine learning approaches to generate IDP conformers
with the aim of predicting the biophysical properties of IDPs and
designing IDP sequences (Lotthammer, Ginell, Griffith, Eme-
necker, & Holehouse, 2024; Pesce et al., 2024; Tesei et al., 2024).
For example, the ALBATROSS deep learning model was developed
for predicting the biophysical properties of IDPs, such as the radius
of gyration, by training on IDP ensembles generated via theMPIPI-
GG model (Lotthammer et al., 2024). Similarly, support vector
regression models were trained to predict chain compaction for
IDP sequences using IDP ensembles generated by the CALVADOS
model (Tesei et al., 2024). Lastly, a method for designing IDP
sequences with pre-defined conformational properties was devel-
oped by combining ensemble generation using CALVADOS with
alchemical free-energy calculations within a Markov Chain Monte
Carlo (MCMC) optimization framework (Pesce et al., 2024).
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Integrating experimental data for generating IDP ensembles

Broadly, experimental data can be utilized for modeling IDPs in
several ways: validation of generated ensembles, reweighting gen-
erated ensembles using experimental data, incorporating experi-
mental data as restraints for sampling conformations, or using
experimental data to improve existing force fields (Bernetti & Bussi,
2023; Chan-Yao-Chong, Durand, & Ha-Duong, 2019; Fisher &
Stultz, 2011). A comprehensive list of methods can be found in
reviews on this topic (Bonomi et al., 2017; Habeck, 2023).

First, ensemble validation involves generating realistic ensembles
of IDPs and validating the results with experimental data (Chan-
Yao-Chong et al., 2019). Due to their ability to capture the dynamics
of IDPs, NMR, and SAS data aremost commonly used for validating
the generated ensembles for IDPs (Baratam & Srivastava, 2024;
Shrestha, Smith, & Petridis, 2021). Second, ensemble weighting
involves using experimental data to refine an existing ensemble, to
minimize deviation of the ensemble from the observed data (Chan-
Yao-Chong et al., 2019). This can be achieved by maximum parsi-
mony (SES Berlin et al., 2013) or maximum entropy (Pitera &
Chodera, 2012; Roux & Weare, 2013; Cavalli, Camilloni, & Ven-
druscolo, 2013) (EROS Różycki, Kim, & Hummer, 2011, (BioEn
Hummer & Köfinger, 2015), and ABSURD (Salvi, Abyzov, & Black-
ledge, 2016). Bayesian inference methods allow consideration of

uncertainty in data (Fisher, Ullman, & Stultz, 2013; Lincoff et al.,
2020). Combining Bayesian inference and maximum entropy
methods helps overcome the limitations of each (Crehuet, Buigues,
Salvatella, & Lindorff-Larsen, 2019; Fröhlking, Bernetti, & Bussi,
2023). Deep learning models in combination with Bayesian and
maximum entropy methods can also be used for refining an initial
pool of conformations (DynamICE: Zhang, Haghighatlari, et al.,
2023). Third, experimental data can also be used as restraints to
guide simulations (Chan-Yao-Chong et al., 2019). Metainference
uses Bayesian inference for incorporating noisy, ensemble-averaged
experimental data using replica-averaged modeling (Bonomi,
Camilloni, Cavalli, & Vendruscolo, 2016; Bonomi, Camilloni, &
Vendruscolo, 2016). Similarly, parallel replica ensemble restraints
based on SAXS data were used in MD simulations of IDPs
(Hermann & Hub, 2019). Finally, experimental data can also be
used for improving existing force fields on the fly using aMaximum
Entropy approach (Cesari, Gil-Ley, & Bussi, 2016).

A holistic understanding of the dynamic behavior of IDPs
requires realistic conformational ensembles that can be generated
using MD simulations and deep generative models. MD simula-
tions can provide experimental-like ensembles for training deep
generative models; the latter may aid in improving force fields,
enhancing sampling of IDP conformations, and analyzing the

Figure 1. Frontiers in integrative structure determination. Schematic describing integrative structure determination for the nucleosome remodeling and deacetylase complex
(orange box) and the desmosomal outer dense plaque (green box) combining data from multiple sources. Input low-resolution cryo-EM and cryo-ET maps and intrinsically
disordered regions in both complexes are highlighted in yellow.
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ensemble generated via MD. Thus, an integrated approach would
enable overcoming the limitations of each and improving our
understanding of the dynamic nature of IDPs.

Integrative structure determination using in situ data

Cryo-electron tomography (cryo-ET) is a cryo-EM imaging tech-
nique that enables structural characterization of macromolecular
species (macromolecules, their complexes, and assemblies), in their
native cellular environment at nanometer resolution (Gubins et al.,
2020; Lamm et al., 2022). High-throughput localization and iden-
tification of macromolecular species within a tomogram can pro-
vide insights into their conformational heterogeneity, potential
interactors, counts, and distributions within the cell (Arvindekar,
Majila, & Viswanath, 2024; Beck et al., 2024; Förster, Han, & Beck,
2010; McCafferty et al., 2024). Integrating cryo-ET data along with
complementary data from experiments such as XLMS, Y2H, cryo-
EM Single Particle Analysis (SPA), FRET, AI-based structure pre-
dictions, and prior structural models can help build a comprehen-
sive structural atlas of the cell (Beck et al., 2024; Förster et al., 2010;
McCafferty et al., 2024). However, the intracellular crowding,
compositional heterogeneity and low copy numbers of macromol-
ecular species, the low signal-to-noise ratio, and the missing wedge
in the tomography data pose significant challenges for localizing
and identifying macromolecules in the tomograms (Moebel et al.,
2021; Pyle & Zanetti, 2021).

Localization and identification of macromolecular species
with known structures

Macromolecular species with known structures are often annotated
in tomograms either manually or by template matching. Manual
particle annotation, however, is time-consuming, laborious, error-
prone, and not suitable for high-throughput workflows (Lamm
et al., 2022). Template matching involves using a low-pass filtered
template of the known structure of a target macromolecule to
localize similar densities in the tomogram (Frangakis et al., 2002).
Methods for template matching are under active development
(Cruz-León et al., 2024; Maurer, Siggel, & Kosinski, 2024). For
example, the use of high-resolution information and template-
specific search parameter optimization for objective, comprehen-
sive, and high-confidence localization and identification of macro-
molecular species in tomograms was recently proposed (Cruz-León
et al., 2024).

In addition to template matching, several supervised learning
methods have also been recently developed. Two such deep
learning-based methods, DeepFinder and DeePiCt, utilize convo-
lutional neural networks (CNNs) for simultaneous localization and
identification of macromolecular species (de Teresa-Trueba et al.,
2023; Moebel et al., 2021). Another deep learning-based object
detection method, MemBrain, was developed for estimating the
localizations and orientations of membrane-embedded macromol-
ecules (Lamm et al., 2022, 2024). These approaches have been
shown to outperform template matching for localizing macromol-
ecules (de Teresa-Trueba et al., 2023; Gubins et al., 2020; Lamm
et al., 2022; Moebel et al., 2021). However, similar to manual
annotation and template matching, these supervised learning
approaches are limited to macromolecules with known structures.
They are not suitable for high-throughput workflows and de novo
structural characterization of macromolecular species (de Teresa-

Trueba et al., 2023; Gubins et al., 2020; Lamm et al., 2022; Moebel
et al., 2021).

de novo localization and identification of species

For de novo structural characterization of macromolecular species
with unknown structures, deep metric learning-based approaches,
such as TomoTwin, and unsupervised learning approaches, such as
Multi-Pattern Pursuit (MPP) and Deep Iterative Subtomogram
Clustering Approach (DISCA) were recently developed (Rice
et al., 2023; Xu et al., 2019; Zeng et al., 2023). These approaches
aim to cluster subtomograms based on their structural similarity.
Subtomogram averaging on the clustered subtomograms can aid in
the structural characterization of macromolecular species at 10–
20 Å resolutions (Rice et al., 2023; Zeng et al., 2023). These
approaches are currently sensitive to noise in the tomograms and
the size and abundance of the macromolecular species. However,
they hold great promise for de novo high-throughput structural
characterization ofmacromolecular species using tomographic data.

Visual proteomics

Visual proteomics is an approach that aims to build molecular
atlases that encapsulate structural descriptions of macromolecules
within the cell using methods such as cryo-ET (Beck et al., 2024;
Förster et al., 2010; McCafferty et al., 2024). This approach is
inherently integrative. Given a tomogram, large macromolecular
species with known atomic structures can be localized and identi-
fied within it using methods like template matching. Densities with
unknown macromolecular identities can be obtained using the de
novo approaches described above. The in situ structures of these
uncharacterized macromolecular species can then be determined
using an integrative approach by rigid fitting of structures obtained
using cryo-EM SPA, X-ray crystallography, and AI-based structure
predictions along with data from orthogonal experiments such as
fluorescence microscopy and XLMS (Beck et al., 2024; Förster et al.,
2010; McCafferty et al., 2024). For example, recent studies used
integrative approaches to combine data from cryo-ET, SPA with
cryo-EM, mass spectrometry, and predictions from AlphaFold to
understand the molecular architecture of the human IFT-A and
IFT-B complexes (Hesketh et al., 2022) andmicrotubule doublets in
mouse sperm cells (Chen et al., 2023). In summary, utilizing cryo-
ET data in an integrative approach can provide insights into inter-
actors of a macromolecular species, associated protein communi-
ties, and larger cellular neighborhoods (Beck et al., 2024; Förster
et al., 2010; McCafferty et al., 2024).

Outlook

Integrative modeling has progressed significantly in the past dec-
ade, as evidenced by the increasing number, size, and precision of
structures deposited to the PDB-Dev and integrated into the PDB
(https://pdb-dev.wwpdb.org) (Saltzberg et al., 2021; Vallat et al.,
2021). Integrative structural biology plays a crucial role in the era of
AI-based structure predictions. Experimental data from rapidly
advancing techniques such as cryo-electron tomography, and
AI-based predictions can complement each other within an inte-
grative framework (Arvindekar, Majila, & Viswanath, 2024; Beck
et al., 2024; McCafferty et al., 2024; Shor & Schneidman-Duhovny,
2024b). This approach has proved powerful for several systems
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such as ciliary complexes and nuclear pore complexes (Chen et al.,
2023; Fontana et al., 2022; Hesketh et al., 2022; McCafferty et al.,
2024; Mosalaganti et al., 2022; Zhu et al., 2022). Alphafold and
similar AI-based prediction methods can increasingly solve struc-
tures for larger and more complex systems (Abramson et al., 2024).
However, their applicability to solving entire structures of large
assemblies remains an open question as they are limited by theGPU
memory as well as the availability of training data. For example,
membrane proteins and IDPs are under-represented in the training
data (Carugo & Djinović-Carugo, 2023; Dobson et al., 2023). The
low-pLDDT regions in Alphafold structures often coincide with
IDRs, suggesting that Alphafold may be used to predict these
regions (Wilson, Choy, & Karttunen, 2022). In contrast, in cases
where Alphafold predicts structures of IDPs with high confidence,
these regions typically represent the folded conformations of the
IDPs, indicating a disorder-to-order transition in the presence of a
partner (Alderson, Pritišanac, Kolarić, Moses, & Forman-Kay,
2023; Wilson et al., 2022). Nonetheless, the static structures from
Alphafold are not an accurate representation of the dynamic
behavior of IDPs, characterized by an ensemble of conformations
(Ruff & Pappu, 2021).

In this Perspective, we highlighted two emerging frontiers for
method development in integrative modeling: modeling disordered
regions and modeling with data from cryo-electron tomography.
Here, we briefly point to other open areas in integrative modeling
that are the subject of current studies and/or may benefit from
timely method development. First, a lack of knowledge about the
system stoichiometry is one of the challenges for starting integrative
modeling. Methods to estimate the stoichiometry based on the
confidence of AI-based predictions are only beginning to be devel-
oped and are not yet generalizable (Chim & Elofsson, 2024; Shor &
Schneidman-Duhovny, 2024b, 2024a). Second, methods for
incorporating in vivo data in modeling are required. Recently,
in vivo genetic interactionmeasurements were encoded as Bayesian
distance restraints for integrative modeling of assemblies (Braberg
et al., 2020). Similarly, methods for integrating other in vivo data
such as data from super-resolution microscopy may also be devel-
oped to model larger cellular neighborhoods. Third, on the model
representation front, it would be beneficial to determine system
representation using objective measures instead of fixing them ad
hoc (Arvindekar, Pathak, et al., 2024; Viswanath & Sali, 2019).
Currentmethods for optimizing representations are limited to assess-
ing a small number of candidate representations (Arvindekar,
Pathak, et al., 2024; Viswanath & Sali, 2019). Methods that enable
sampling and assessing a large number of representations, for
example by dynamically varying the model representations during
sampling, would benefit integrative modeling (Viswanath & Sali,
2019). Fourth, methods for integrative modeling of dynamic systems
with multiple discrete states and/or a continuum of states are also
continually advancing (Habeck, 2023; Hoff, Thomasen, Lindorff-
Larsen, & Bonomi, 2024; Hoff, Zinke, Izadi-Pruneyre, & Bonomi,
2024; Lincoff et al., 2020; Potrzebowski, Trewhella, & Andre, 2018).
Fifth, sampling procedures in integrative modeling may be improved
by leveraging the recent advances in deep learning, particularly in
generative modeling. Specifically, recent generative modeling
methods for protein structure prediction may be extended to incorp-
orate experimental data, potentially leading to more efficient sam-
pling procedures than the current stochastic samplingmethods (Jing,
Berger, & Jaakkola, 2024; Watson et al., 2023; Wu et al., 2024; Zheng
et al., 2024). Finally, methods for comprehensive validation of
integrative models, including assessment of model uncertainty
and Bayesian assessment of fit to different kinds of input data are

also necessary and are under development (Sali et al., 2015; Vallat
et al., 2021). In all, these efforts will facilitate faster, more accurate,
and more precise characterization of larger assemblies (Sali, 2021).
The grand challenge in the field is to construct spatiotemporal
models of entire cells. Integrative models of assemblies can con-
tribute directly to this effort via metamodeling efforts that involve
the integration of models at different scales to address the grand
challenge (Raveh et al., 2021).
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