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Stability conditions for mean-field limiting
vorticities of the Ginzburg-Landau
equations in 2D
Rémy Rodiac
Abstract. We analyze the limit of stable solutions to the Ginzburg-Landau (GL) equations when ε,
the inverse of the GL parameter, goes to zero and in a regime where the applied magnetic field
is of order ∣ log ε∣ whereas the total energy is of order ∣ log ε∣2 . In order to do that, we pass to
the limit in the second inner variation of the GL energy. The main difficulty is to understand the
convergence of quadratic terms involving derivatives of functions converging only weakly in H1 . We
use an assumption of convergence of energies, the limiting criticality conditions obtained by Sandier-
Serfaty by passing to the limit in the first inner variation, and properties of limiting vorticities to find
the limit of all the desired quadratic terms. At last, we investigate the limiting stability condition
we have obtained. In the case with magnetic field, we study an example of an admissible limiting
vorticity supported on a line in a square Ω = (−L, L)2 and show that if L is small enough, this
vorticiy satisfies the limiting stability condition, whereas when L is large enough, it stops verifying
that condition. In the case without magnetic field, we use a result of Iwaniec-Onninen to prove that
every measure in H−1(Ω) satisfying the first-order limiting criticality condition also verifies the
second-order limiting stability condition.

1 Introduction

1.1 The Ginzburg-Landau equations in the London limit

The Ginzburg-Landau (GL) energy is used to describe the behavior of type-II super-
conductors. In 2D, this energy can be written as

GLε(u, A) = 1
2 ∫Ω

(∣(∇ − iA)u∣2 + 1
2ε2 (1 − ∣u∣

2)2) + 1
2 ∫R2

∣curl A− hex∣2 .(1.1)

Here, Ω ⊂ R2 is a smooth simply-connected bounded domain, ε > 0 is a small param-
eter (the inverse of the GL parameter), hex > 0 is another parameter representing
the exterior magnetic field, and A ∶= (A1 , A2) ∶ Ω → R

2 is the vector-potential of the
induced magnetic field which is obtained by h = curl A ∶= ∂1A2 − ∂2A1. It is sometimes
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2 R. Rodiac

more convenient to see A as a 1-form A = A1dx1 + A2dx2 in R
2 and h as a 2-form

h = dA. We will use both points of view in the following. The complex function
u ∶ Ω → C is called the order parameter. The regions where ∣u∣ ≃ 1 are in a supercon-
ducting phase, whereas the regions where ∣u∣ ≃ 0 are in a normal phase. The covariant
gradient ∇Au = (∇ − iA)u is a vector in C

2 whose coordinates are (∂A
1 u, ∂A

2 u) =
(∂1u − iA1u, ∂2u − iA2u). The limit ε → 0 corresponds to extreme type-II materials,
and this is the regime we consider in this article. Critical points of GLε in the space

X ∶= {(u, A) ∈ H1(Ω,C) ×H1
loc(R2 ,R2); curl A− hex ∈ L2(R2)}(1.2)

are points (u, A) ∈ X such that

dGLε(u, A, v , B) ∶= d
dt
∣
t=0

GLε(u + tv , A+ tB) = 0,

for all (v , B) ∈ C∞(Ω,C) × C∞c (R2 ,R2).(1.3)

They satisfy the Euler-Lagrange equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(∇A)2u = u
ε2 (1 − ∣u∣2) in Ω

−∇⊥h = ⟨iu,∇Au⟩ in Ω
h = hex in R

2/Ω
ν ⋅ ∇Au = 0 on ∂Ω.

(1.4)

Here, the covariant Laplacian is defined by (∇A)2u = ∂A
1 (∂A

1 u) + ∂A
2 (∂A

2 u), and
⟨iu,∇Au⟩ is a vector in R

2 whose coordinates are (⟨iu, ∂A
1 u⟩, ⟨iu, ∂A

2 u⟩) where, for
two complex numbers z, w ∈ C, we have denoted by ⟨z, w⟩ the quantity 1

2 (zw̄ +wz̄).
We also use the notation∇⊥h = (−∂2h, ∂1h), and ν denotes the outward unit normal
to ∂Ω.

We observe that Equation (1.4) and the energy GLε are invariant under gauge
transformations. More precisely, if (u, A) satisfies (1.4), then for any f ∈ H2

loc(R2 ,R),
the couple (ue i f , A+∇ f ) also satisfies (1.4) and GLε(ue i f , A+∇ f ) = GLε(u, A).
Physically, only the gauge-invariant quantities are relevant; these are, for example,
GLε the energy, ∣u∣ the local density of superconducting electrons pairs (in the
Barden-Cooper-Schrieffer theory), h the induced magnetic field, and j ∶= ⟨iu,∇Au⟩
the current vector. In order to deal with this gauge-invariance, one often works in the
so-called Coulomb gauge by requiring

{divA = 0 in Ω
A ⋅ ν = 0 on ∂Ω.(1.5)

It can be shown that if (u, A) is in X and satisfies (1.4), and if A is in the Coulomb
gauge (1.5), then (u, A) ∈ C∞(Ω,C) × C∞(Ω,R2), the bound ∣u∣ ≤ 1 holds, and h is
in H1(Ω); see [32, Proposition 3.8, 3.9, 3.10]. Thus, we can replace the fourth equation
in (1.4) by

h = hex on ∂Ω,(1.6)

and we can replace the term ∫R2 ∣curl A− hex∣2 by ∫Ω ∣curl A− hex∣2 if we consider
solutions to (1.4).
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Stability for limiting GL vorticities 3

The behavior of a family of minimizers {(uε , Aε)}ε>0 of GLε in X in the regime
ε → 0 and hex

∣ log ε∣ → λ > 0 has been previously studied in [29, 32]. The asymptotics of
families of general solutions of (1.4) have also been investigated and can be found in
[31, 32]. In this article, we are interested in the behavior of stable critical points of GLε
in X. Here, (u, A) is a stable critical point of GLε in X if (u, A) satisfies (1.4) and

d2GLε(u, A, v , B) ∶= d2

dt2 ∣t=0
GLε(u + tv , A+ tB) ≥ 0,

for all (v , B) ∈ C∞(Ω,C) × C∞c (R2 ,R2).(1.7)

Our aim is to understand if this stability property produces extra conditions in the
limit ε → 0 compared to general critical points. Note that local minimizers are stable
and thus enter the framework of our study. This question was listed as an open problem
(Open problem 15) in [32]. Before stating our results, we recall briefly some results on
global minimizers and general critical points. For (uε , Aε) ∈ X, we set

jε ∶= ⟨iuε ,∇Aε uε⟩ and μ(uε , Aε) ∶= curl jε + curl Aε .

Theorem 1.1 [32, Theorem 7.2] Let {(uε , Aε)}ε>0 be a family of minimizers of GLε
in X. Assume that hex/∣ log ε∣ → λ as ε → 0 with 0 < λ < +∞. Then

hε

hex
��⇀
ε→0

h∗ weakly in H1(Ω), hε

hex
��→
ε→0

h∗ strongly in W 1, p(Ω),∀ 1 < p < 2,

with h∗ the unique minimizer in { f ∈ H1
1(Ω) = { f ∈ H1(Ω); tr∣∂Ω f = 1}; Δ f ∈M(Ω)}

of

Eλ( f ) ∶= 1
2λ ∫Ω

∣ − Δ f + f ∣ + 1
2 ∫Ω

(∣∇ f ∣2 + ∣ f − 1∣2) ,

and the solution of the obstacle problem

{ h∗ ∈ H1
1(Ω), h∗ ≥ 1 − λ

2 in Ω
∀v ∈ H1

1(Ω) such that v ≥ 1 − λ
2 , ∫Ω(−Δh∗ + h∗)(v − h∗) ≥ 0.

Furthermore,

μ(uε , Aε)
hex

→ μ∗ in (C0,γ(Ω))∗, −Δh∗ + h∗ = μ∗ ,

lim
ε→0

GLε(uε , Aε)
h2

ex
= Eλ(h∗) =

∣μ∗∣(Ω)
2λ

+ 1
2 ∫Ω

(∣∇h∗∣2 + ∣h∗ − 1∣2) .

This result on minimizers is actually obtained through a Γ-convergence result; see
[32, Chapter 7]. Note that the Γ-limit is convex and the limiting magnetic field h∗ and
the limiting vorticity measure μ∗ are uniquely characterized. In particular, whereas
global minimizers of GLε may not be unique, their vortices behave in the same way in
the mean-field limit. We now turn our attention to critical points of GLε . We make two
assumptions which were used in [31] and then relaxed in [32, Chapter 13]. In all this
article, unless stated otherwise, we assume that {(uε , Aε)}ε>0 is a family in X which
satisfies
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4 R. Rodiac

GLε(uε , Aε) ≤ Ch2
ex(1.8)

hex

∣ log ε∣ → λ ∈ (0,+∞) (up to a subsequence),(1.9)

where C denotes a constant which is independent of ε. We can then state the following.

Theorem 1.2 ([31, Theorem 1], [32, Theorem 1.7 and 13.1]) Let {(uε , Aε)}ε>0 be a
family of points in X which solve (1.4) with Aε in the Coulomb gauge (1.5) and such
that (1.8)-(1.9) hold. Then, up to extraction of a subsequence,

hε

hex
��⇀
ε→0

h weakly in H1
1(Ω),

hε

hex
��→
ε→0

h strongly in W 1, p(Ω),∀1 < p < 2,

μ(uε , Aε)
hex

⇀ μ in M(Ω), −Δh + h = μ in Ω h = 1 on ∂Ω,

and

div(Th) = 0 in Ω where (Th)i j = ∂ i h∂ j h −
1
2
(∣∇h∣2 + h2)δ i j , 1 ≤ i , j ≤ 2.

(1.10)

Here, the divergence of a matrix is a vector whose components are obtained as the
divergence of the rows of the matrix. It can be shown – see, for example, [32, Theorem
13.1] – that with the notation of the previous theorem, μ(uε , Aε) is close to a measure
of the form 2π∑Mε

i=1 d ε
i δaε

i
, where Mε ∈ N, aε

i can be thought of as the center of the
vortices of uε and d ε

i ∈ Z as their degrees. As noted in [31], Theorem 1.2 is interesting
mainly for solutions such that

Nε ∶=
Mε

∑
i=1
∣d ε

i ∣(1.11)

is of same order as hex. If this is not the case, then we should look at the limit
of μ(uε , Aε)/Nε instead, but we do not consider this case in this paper. The
matrix (or the tensor) Th is called the stress-energy tensor associated to the energy
L(h) = 1

2 ∫Ω(∣∇h∣2 + h2). Equation (1.10) means that h is a stationary point for L;
that is, that for any vector field η ∈ C∞c (Ω,R2),

d
dt
∣
t=0

L(ht) = 0, with ht(x) = h(x + tη(x)).(1.12)

This condition on h can also be viewed as a criticality condition on the limiting
vorticity1 uniquely determining h via μ = −Δh + h in Ω and h = 1 on ∂Ω. It is obtained
by passing to the limit in the first inner variations (variations of the form (1.12)) of the
energy GLε . Although for global minimizers the limiting vorticity μ∗ is absolutely
continuous with respect to the Lebesgue measure, the criticality condition (1.10)
allows for more singular measures such as measures supported on curves. It was later
shown by Aydi in [5] that some solutions of the GL equations (1.4) satisfying the

1In this article, we always denote by limiting vorticity a limit in the sense of measures of
μ(uε , Aε)/hex.
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Stability for limiting GL vorticities 5

bounds (1.8)-(1.9) have their vorticity measures that concentrate on lines or on circles.2
The implications of the condition (1.10) on the regularity of h and μ were investigated
in [31, 32, 21, 27]. In particular, it was obtained in [27] that if h, μ are as in Theorem 1.2,
then the absolutely continuous part of μ is equal to h1{∣∇h∣=0} (∣∇h∣ was shown to be
a continuous function in [32, Theorem 13.1]), and the orthogonal part is supported by
a locally H1 rectifiable set. Roughly speaking, it says that μ can be supported only by
sets of nonzero Lebesgue measure or by some curves.

1.2 Main results

In this article, we investigate the following problem: does a stability condition on a
family of critical points {(uε , Aε)}ε>0 of GLε in X imply more regularity on their
limiting vorticity measures? In particular, can a family of stable solutions of (1.4) have a
limiting vorticity which concentrates on curves? To answer this question, our strategy
is to pass to the limit in the second inner variation of the GL energy and deduce a
supplementary condition for limiting vorticity measures of stable solutions of (1.4).
Then we examine if this supplementary condition implies more regularity on μ.

We first explain more precisely what we mean by first and second inner variations.
Let η ∈ C∞c (Ω,R2); we consider its associated flow map Φ ∶ R ×Ω → R

2 which
satisfied that for every x ∈ R2, the map t ↦ Φ(t, x) is the unique solution to

{
∂
∂t Φ(t, x) = η(Φ(t, x))

Φ(0, x) = x .(1.13)

It can be seen thanks to the Cauchy-Lipschitz theory that the flow map is well defined
in R ×Ω and that it is in C∞(R ×Ω). The family {Φt}t∈R with Φt(⋅) = Φ(t, ⋅) is a
one-parameter group of C∞-diffeomorphisms of Ω with Φ0 = Id. The first and second
inner variations of GLε at (u, A) in the direction η are defined by

δGLε(u, A, η) = d
dt
∣
t=0

GLε(u ○Φ−1
t , (Φ−1

t )∗A),(1.14)

δ2GLε(u, A, η) = d2

dt2 ∣t=0
GLε(u ○Φ−1

t , (Φ−1
t )∗A).(1.15)

Here, we have denoted by (Φ−1
t )∗A the pullback of A, viewed as a 1-form, by the

diffeomorphism Φ−1
t . The reason for taking the pullback (Φ−1

t )∗A and not only
A ○Φ−1

t is that we need to respect the gauge invariance. This will be explained in details
in Section 2. Note that when working with differential forms, it is customary to take
inner variations as pullbacks by Φ−1

t ; see, for example, [37]. We will also see that (1.14)
and (1.15) are well defined and give their expressions in Section 2. In this paper, we
do not consider inner variations up to the boundary. This is because we are mainly
interested in the regularity of the vorticity measures μ in the interior. For the use of

2Solutions of some GL equations with some rotation term with vortices accumulating on curves
were obtained in [1, 2, 3]. However, these solutions have a number of vortices much smaller than the
rotation field (the analogue of the applied field in our case). Hence, with our renormalization, the
limiting vorticity measure of these solutions would be 0, and we should divide the vorticities by another
factor to have a precise description in the limit.
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6 R. Rodiac

inner variations up to the boundary in different contexts, we refer, for example, to
[24, 6].

Our main result is the following.

Theorem 1.3 Let {(uε , Aε)}ε>0 be a family of points in X which solve (1.4) with Aε
in the Coulomb gauge (1.5) and such that (1.8)-(1.9) hold. Let h be the weak H1-limit of
hε/hex and μ be the limit in the sense of measure of μ(uε , Aε)/hex given in Theorem 1.2.
If we assume that

lim
ε→0

GLε(uε , Aε)
h2

ex
= ∣μ∣(Ω)

2λ
+ 1

2 ∫Ω
(∣∇h∣2 + ∣h − 1∣2) ,(H)

then either h ≡ 1, or for all η ∈ C∞c (Ω,R2), we have

lim
ε→0

δ2GLε(uε , Aε , η)
h2

ex
= ∫

Ω
(∣DηT∇⊥h∣2 − ∣∇h∣2 det Dη + h2[(divη)2 − det Dη])

+ 1
λ ∫Ω

( ∣Dη∣2
2
− det Dη)d∣μ∣ =∶ Qh(η).(1.16)

If in addition we assume that {(uε , Aε)}ε>0 is a family of stable critical points of GLε in
X, then h satisfies

Qh(η) ≥ 0, for all η ∈ C∞c (Ω,R2).(1.17)

It was asked in [32, Open problem 15] if extra conditions such as (1.7) yield more
regularity on the limiting vorticity measure μ. We have found that the stability condi-
tion (1.7) implies (1.17) in the limit. However, we will also see in Proposition 4.1 that a
vorticity measure concentrated on a line can satisfy this former property. Since (1.17)
is obtained by passing to the limit in the second inner variations, this seems to indicate
that stability for inner variations alone is not sufficient to imply regularity (absolute
continuity with respect to the Lebesgue measure) on the limiting vorticity measure.
Inner variations are usually the variations used to deal with singularities in variational
models. However, it still might be possible that, using stability for outer variations
genuinely different from inner variations (i.e., not of the form (Duε .η,−DAε .η +
DηT .Aε)), one could obtain further regularity for the limiting vorticity measure.

We now comment on our assumptions (1.8), (1.9), and (H). Assumption (1.8) is
quite natural and is satisfied by solutions constructed in [5, 32, 11, 10]. Assumption
(1.9) was used in [31] in order to have that

Nε ≤ Chex ,(1.18)

where Nε is defined in (1.11). Stable solutions of the GL equations (1.4) with an exterior
magnetic field much larger than ∣ log ε∣ were constructed in [32, 11, 10], and to this
respect, our assumption may appear restrictive. However, (1.9) is satisfied in [5] where
solutions concentrating on lines were built. Hence, singular measures can appear in
the limit for this intensity of applied magnetic field, and since our purpose is to study if
the stability condition implies some regularity on limiting vorticity measures, it seems
natural to consider first this case. We also refer to [33, 34, 35] and references therein
for more results on stable solutions to (1.4). Our main assumption (H) is satisfied by
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Stability for limiting GL vorticities 7

some solutions constructed in [5]; see Corollary 4.1 and Lemma 4.1 in [5]. A similar
assumption of convergence of energies was used in [22, 23, 24] to pass to the limit in the
second inner variations for the Allen-Cahn problem and also for the nonmagnetic GL
problem in dimension bigger than 3 and in a regime where the energy is bounded by
C∣ log ε∣. However, the argument we use is quite different from the ones in the above-
mentioned articles which rest upon the use of Reshetnyak’s Theorem for the Allen-
Cahn part or on the constancy Theorem for varifolds for the GL part. We note that
passing to the limit in the second inner variations for these problems was later shown
to be possible without the assumption of convergence of energies in [16] and [9].

1.3 The Ginzburg-Landau equations without magnetic field

We also consider the GL energy without magnetic field

Eε(u) =
1
2 ∫Ω

(∣∇u∣2 + 1
2ε2 (1 − ∣u∣

2)2)(1.19)

and the associated Euler-Lagrange equation

−Δu = u
ε2 (1 − ∣u∣

2) in Ω.(1.20)

With a fixed boundary condition g ∈ C1(∂Ω, S1), this problem has been studied by
Bethuel-Brezis-Hélein in [7]. The asymptotic behavior of {uε}ε>0, solutions to (1.20),
depends on the topological degree of g. For a nonzero degree of g, it has been proved
in [7] that {uε}ε>0 converges to some limiting harmonic map with a finite number
of singularities (vortices). Besides, vortices of minimizers converge to minimizers of
a renormalized energy, vortices of critical points converge to critical points of this
renormalized energy, and the stability also passes to the limit as shown in [36]. Here,
we do not prescribe any boundary condition, and we allow the number of vortices
to diverge; however, as in the case with magnetic field, we consider only a family of
solutions satisfying the following bound:

Eε(uε) ≤ C∣ log ε∣2 .(1.21)

A way to understand the limit as ε → 0 of solutions uε to (1.20) is to look at their
phases and at their Jacobian determinants. More precisely, since Ω is simply connected
and since div⟨iuε ,∇uε⟩ = 0 in Ω, then, by using Poincaré’s lemma, we can find Uε ∈
H1(Ω,R) such that

∇⊥Uε = ⟨iuε ,∇uε⟩ in Ω and ∫
Ω

Uε = 0.(1.22)

Note that ∂1uε ∧ ∂2uε = curl ⟨iuε ,∇uε⟩ = ΔUε . Hence, the Laplacian of Uε is the
Jacobian determinant of uε , and this quantity was proved to play a prominent role
in [19]. We can see here the analogy between Uε and the magnetic field hε in the
full GL model. The Γ-limit of Eε in the regime Eε(uε) ≃ ∣ log ε∣2 has been studied
in [20], where results analogous to the ones in [29] are obtained. In particular, in
that case, the Γ-limit of Eε/∣ log ε∣2 is given by ∣μ∣(Ω)2 + 1

2 ∫Ω ∣∇U ∣2, where U is the
weak limit in H1 of Uε/∣ log ε∣ and μ ∈M(Ω) is the limit in the sense of measures
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8 R. Rodiac

of ΔUε/∣ log ε∣ (up to extraction). For solutions to (1.20), the following results were
obtained in [31, 32]: the limit satisfies ΔU = μ ∈ H−1(Ω), and the stress-energy tensor
(SU)i j = 2∂ i U∂ jU − ∣∇U ∣2δ i j for 1 ≤ i , j ≤ 2 is divergence-free in Ω. A way to refor-
mulate this property is to say that the quantity (∂x U)2 − (∂yU)2 − 2i(∂x U)(∂yU) is
homomorphic in Ω. Using complex analysis techniques and techniques from sets of
finite perimeters, it was proved in [26] that if μ satisfies the previous limiting critical
conditions, then μ is supported on a rectifiable set which is locally the the zero set of
a harmonic function. Hence, μ cannot be absolutely continuous with respect to the
Lebesgue measure unless μ = 0. We consider here stable solutions of (1.20) – that is,
solutions satisfying

d2

dt2 ∣t=0
Eε(uε + tv) ≥ 0 ∀v ∈ C∞c (Ω,C).(1.23)

As we did previously, we define the first and second inner variations of Eε with respect
to a η ∈ C∞c (Ω,R2) by

δEε(u, η) = d
dt
∣
t=0

Eε(u ○Φ−1
t ), δ2Eε(u, η) = d2

dt2 ∣t=0
Eε(u ○Φ−1

t ),(1.24)

where Φt is defined in (1.13). We will prove in Section 2 that these quantities are well
defined.

Theorem 1.4 Let {uε}ε>0 be a family of solutions to (1.20) satisfying (1.23) and
Eε(uε) ≤ C∣ log ε∣2. As shown in [31, Theorem 3] or [32], up to a subsequence,
Uε/∣ log ε∣ ⇀ U in H1(Ω) and ΔUε/∣ log ε∣ = curl ⟨iuε ,∇uε⟩/∣ log ε∣ ⇀ μ ∈M(Ω)with

ΔU = μ and (∂x U)2 − (∂yU)2 − 2i(∂x U)(∂yU) is holomorphic in Ω.(1.25)

If we assume that

lim
ε→0

Eε(uε)
∣ log ε∣2 =

∣μ∣(Ω)
2

+ 1
2 ∫Ω

∣∇U ∣2 ,(H’)

then for all η ∈ C∞c (Ω,R2), we have

lim
ε→0

δ2Eε(uε , η)
∣ log ε∣2 = 1

2 ∫Ω
∣DηT∇⊥U ∣2 − ∣∇U ∣2 det Dη + ∫

Ω
( ∣Dη∣2

2
− det Dη)d∣μ∣

=∶ Q̃U(η).(1.26)

Again, we can see that solutions to (1.20) satisfying (1.23) have the property that,
in the limit, Q̃U(η) ≥ 0 for all admissible η. We can also ask if that condition provides
more regularity on the possible limiting vorticies. Here, we obtain that stability for
inner variations never implies regularity for the limiting vorticity measure. Indeed,
thanks to a recent result of Iwaniec-Onninen [18, Theorem 1.12], we are able to prove
that every measure satisfying the limiting criticality conditions (1.25) also satisfies
the limiting stability condition: Q̃U(η) ≥ 0 for all admissible η; see Proposition 4.2.
However, we have used only inner variations, and it still might be possible that stability
for genuine outer variations could lead to further regularity. We should observe that,
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Stability for limiting GL vorticities 9

contrarily to the case of the GL equations with magnetic field, it is still an open problem
to determine if there exist solutions to (1.20) with a diverging number of vortices such
that their limiting vorticities concentrate on curves (which should be locally the zero
set of some, possibly multi-valued, harmonic functions according to [26]).

1.4 Method of proof

For smooth critical points of energies, inner variations are strongly related to outer
variations which are defined, in the case of GLε , for (u, A) ∈ X and (v , B) ∈ C∞(Ω) ×
C∞c (R2) by (1.3) and (1.7). Although outer variations are of more common use
in variational problems, it has been observed that inner variations are useful to
understand the limit of singularly perturbed problems such as the Allen-Cahn (AC)
problem or the GL problem since these are variations which do move the singularities;
see, for example, [7, 17, 25, 8, 28, 31].

More recently, some interest has grown in understanding how the stability con-
dition passes to the limit in the above-mentioned problems. We refer, for example,
to [22, 23, 24, 16, 9]. Again, it turns out that studying the second inner variations
is more appropriate to understand the limiting behavior of stable solutions to the
AC or GL problems. Looking at the expressions given by the first and second inner
variations of GL type functionals – see Proposition 2.2 for the formulas – one can see
that one of the difficulties is to pass to the limit in quadratic expressions involving
derivatives of the unknown functions, whereas only weak convergence in H1 of these
functions is available. For example, the vanishing of the first inner variation of GLε
provides

div(Tε) = 0 in Ω, with (Tε)i j = ⟨∂Aε
i uε , ∂Aε

j uε⟩

− 1
2
(∣∇Aε uε ∣2 +

1
2ε2 (1 − ∣uε ∣2)2 − h2

ε) δ i j .(1.27)

The formula for the second inner variation is given in Proposition 2.2. Let us briefly
recall how Sandier-Serfaty in [31, 32] managed to pass to the limit in (1.27). First we
can see, at least formally, that

Tε

h2
ex
≃ Lε where Lε =

1
h2

ex
(−∂ i hε∂ j hε +

1
2
(∣∇hε ∣2 + h2

ε)) .(1.28)

Although hε/hex converges only weakly in H1, Sandier-Serfaty succeeded in passing
to the limit in the equation div(Tε) = 0 by showing that the convergence of hε/hex
is actually strong in H1 outside a set of arbitrary small perimeter and by using the
equation along with a co-area formula argument. This type of problem has the same
flavor of the problem of understanding the limit of solutions to the incompressible
Euler equations in 2D fluid mechanics; see [13, 12].

To pass to the limit in the second inner variation, we cannot use the same
argument since we have to pass to the limit in an inequality and not in an equality. We
must then understand the limit of all the quadratic terms appearing in the formula
given in Proposition 2.2. Assumption (H) allows us to show that the potential term

1
2ε2 h2

ex
(1 − ∣u∣2)2 converges strongly toward zero in L1(Ω). Next, we say that
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∣∂Aε
1 uε ∣2/h2

ex ⇀ ∣∂2h∣2 + ν1 , ∣∂Aε
2 uε ∣2/h2

ex ⇀ ∣∂1h∣2 + ν2 and ⟨∂Aε
1 uε , ∂Aε

2 uε⟩/h2
ex ⇀

−∂1h, ∂2h + ν3, where ν1 , ν2 , ν3 are Radon measures in Ω and the convergence
takes place in the sense of measures. We can then pass to the limit in the equation
div(Tε/h2

ex) = 0 and use Theorem 1.2 to deduce an equation on ν1 , ν2 , ν3 in the
interior Ω. This equation actually means that ν1 − ν2 − iν3 is holomorphic in Ω. We
use again assumption (H), along with the description of possible limiting vorticity
measures μ obtained in [27], to obtain that ν1 = ν2 = μ/2λ and ν3 = 0 on a ball
contained in Ω if h is not constantly equal to 1. Then the principle of isolated zeros
gives ν1 = ν2 = ∣μ∣/λ and ν3 = 0 in all Ω. Finally, we analyze the inequality obtained
by passing in the limit in the second inner variation. In the case with magnetic field,
we show in one example that we can have Qh(η) ≥ 0, where Qh is defined in (1.16),
for all η ∈ C∞c (Ω,R2) and μ supported by a line. We use similar arguments to treat
the case without magnetic field to pass to the limit in the second inner variation.
We then employ a result of Iwaniec-Onninen [18] to obtain that Q̃U(η) ≥ 0 for all
η ∈ C∞c (Ω,R2), with Q̃U defined in (1.26).

1.5 Organization of the paper

The paper is organized as follows. In Section 2, we compute the expressions of the
first and second inner variations. We also explain the link between inner and outer
variations. Section 3 is dedicated to show how to pass to the limit in the second inner
variation. In order to do this, we study the limit of all the quadratic terms appearing
in the second inner variations of GLε by using an argument of defect measures and by
using the limit of the first inner variation. Finally, Section 4 is devoted to analyze the
limiting stability condition obtained in Theorem 1.3 and Theorem 1.4.

1.6 Notations

For u, v two vectors in R
2, we denote by u ⋅ v their inner product. When u, v are

identified with complex numbers, then we denote also their inner products by ⟨u, v⟩.
If η ∈ C∞(Ω,R2) is a smooth vector field, we use Dη to denote its differential. When
we apply this differential to a vector x ∈ R2, we use Dη.x. The second derivative of a
smooth vector field η applied to two vectors x , y ∈ R2 is denoted by D2η[x , y]. For
two matrices M , N ∈M2(R), we let M ∶ N ∶= tr(MT N) denote their inner product
and ∥M∥ the associated norm, with MT the transpose matrix of M. For two vectors
x , y ∈ R2, we define their tensor products to be a matrix in M2(R) whose entries are
given by (x ⊗ y)i j = x i y j . Note that we have the relation M .x ⋅ y = M ∶ y ⊗ x. For 0
and 1-forms f and A, we denote by d f and dA their exterior derivatives. For a function
h regular enough. we set ∇⊥h = (−∂2h, ∂1h)T . For a Radon measure μ ∈M(Ω), we
denote by ∣μ∣(Ω) its total variation. When we need to evaluate the energy on a
subdomain V ⊂ Ω we write GLε(u, A, V).

2 Inner variations

In this section, we compute the first and second inner variations of GLε defined in
(1.14)–(1.15), and we explain the link with the outer variations (1.3)–(1.7).
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2.1 Variations and gauge invariance

Since the functional GLε and physical quantities are gauge invariant, we should use
variations for which the notion of stationarity does not depend on the gauge. That
is why we have defined inner variations as (u ○Φ−1

t , (Φ−1
t )∗A) and not simply as

(u ○Φ−1
t , A ○Φ−1

t ).

Proposition 2.1 Let (u, A) and (ũ, Ã) be in X such that there exists f ∈ H2
loc(R2 ,R)

with ũ = ue i f and Ã = A+∇ f . Then for any η ∈ C∞c (Ω,R2),

δGLε(u, A, η) = δGLε(ũ, Ã, η) and δ2GLε(u, A, η) = δ2GLε(ũ, Ã, η),(2.1)

with δGLε(u, A, η) and δ2GLε(u, A, η) defined in (1.14)–(1.15).

Proof We let (ut , At) ∶= (u ○Φ−1
t , (Φ−1

t )∗A), where Φt is defined in (1.13). The
gauge invariance implies that

GLε(ut , At) = GLε(ut e i f , At + d f )
= GLε(ut e i f t e i( f− f t) , At + d ft + d( f − ft)),

where ft = f ○Φ−1
t . Since D ft = D f (Φ−1

t ).DΦ−1
t , we find that, as forms, d ft =

(Φ−1
t )∗d f . Hence, we infer that At + d ft = (Φ−1

t )∗(A+ d f ), and thus, using once
again the gauge invariance,

GLε(ut , At) = GLε(ũt , Ãt)

with (ũt , Ãt) = (ũ ○Φ−1
t , (Φ−1

t )∗Ã). Differentiating with respect to t yields (2.1). ∎

It can be checked by direct computation that the quantity d
dt ∣t=0

GLε(u ○Φ−1
t ,

A ○Φ−1
t ) and its second-order analogue are not gauge invariant. However, we

observe that outer variations are also well adapted to the gauge invariance in the
sense that if (u, A) ∈ X is a critical point of GLε . Then (ue i f , A+ d f ) is also a
critical point of GLε in X for f ∈ H2

loc(R2 ,R), and if (u, A) is stable, then so is
(ue i f , A+ d f ). This follows, for example, by observing that for t ∈ R and for any
(v , B) ∈ X, we have GLε(u + tv , A+ tB) = GLε(ue i f + tve i f , A+ d f + tB). Hence
differentiating with respect to t entails that dGLε(u, A).(v , B) = dGLε(ue i f ,
A+ d f ).(ve i f , B) and d2GLε(u, A).(v , B) = d2GLε(ue i f , A+ d f ).(ve i f , B).

2.2 Inner variations and outer variations for the GL energy

To compute the first and second inner and outer variations of the GL energy in the
magnetic and nonmagnetic case, we first rewrite these energies by using the vectorial
setting instead of the complex one. Namely, we see the order parameter as a map u ∶
Ω → R

2, and we write Du ∈M2(R) for its differential (instead of ∇u for its complex
gradient). We can check that the complex covariant gradient (∇ − iA)u corresponds
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to the real matrix (∂1u1 + A1u2 ∂2u1 + A2u2
∂1u2 − A1u1 ∂2u2 − A2u1

). Thus, if we define u⊥ ∶= (−u2
u1
), we

find that (∇ − iA)u corresponds to Du − u⊥AT and

GLε(u, A) = 1
2 ∫Ω

(∣Du − u⊥AT ∣2 + 1
2ε2 (1 − ∣u∣

2)2) + ∫
R2
∣curl A− hex∣2 .(2.2)

General formulas for the first and inner variations of functionals are given in [22,
23, 24]. We present the computations here because our setting is slightly different due
to the presence of the magnetic field and the term (Φ−1

t )∗ ○ A.

Proposition 2.2 Let η ∈ C∞c (Ω,R2), ζ ∶= Dη.η and (u, A) ∈ X. Then, with definitions
(1.14) and (1.15), we have

δGLε(u, A, η) = ∫
Ω
[ 1

2
(∣Du − u⊥AT ∣2 − h2 + 1

2ε2 (1 − ∣u∣
2)2) Id

− (Du − u⊥AT)T(Du − u⊥AT)] ∶ Dη

δ2GLε(u, A, η) = δGLε(u, A, ζ) + ∫
Ω
[∣(Du − u⊥AT)Dη∣2 − ∣Du − u⊥AT ∣2 det Dη

+ h2((divη)2 − det Dη) + 1
2ε2 (1 − ∣u∣

2)2 det Dη].

Proof Let {Φt}t∈R be the flow associated to η ∈ C∞c (Ω,R2) defined in (1.13), and let
(ut , At) ∶= (u ○Φ−1

t , (Φ−1
t )∗A). By definition of the pullback,

At = A1 ○Φ−1
t d(Φ−1

t )1 + A2 ○Φ−1
t d(Φ−1

t )2

= (A ○Φ−1
t ) ⋅ ∂1(Φ−1

t )dx1 + (A ○Φ−1
t ) ⋅ ∂2(Φ−1

t )dx2 .(2.3)

By identifying At with a vector field in R
2, we find that At = DΦ−T

t .(A ○Φ−1
t ). Here,

DΦ−T
t denotes (DΦ−1

t )T . Thus, Dut − u⊥t AT
t = [(Du − u⊥AT) ○Φ−1

t ]DΦ−1
t , and by

using the change of variables x = Φt(y), we find

∫
Ω
∣Dut − u⊥t AT

t ∣2 = ∫Ω
∣(Du − u⊥AT)(Φ−1

t (x))DΦ−1
t (x)∣2dx

= ∫
Ω
∣(Du − u⊥AT)(y)DΦ−1

t (Φt(y))∣2 det DΦt(y)dy

= ∫
Ω
∣(Du − u⊥AT)(y)(DΦt(y))−1∣2 det DΦt(y)dy.

We now look for an expansion of (DΦt)−1 and det DΦt . We use the Taylor formula
with integral remainder and equation (1.13) to say that

Φt(x) = x + t∂t ∣t=0Φt(x) +
t2

2
∂2

t t ∣t=0Φt(x) + O(t3)

= x + tη(Φt(x)) +
t2

2
Dη(x).η(x) + O(t3)(2.4)

where, thanks to the compactness of the support of η the term O(t3), is such that
O(t3)/t3 is bounded uniformly in x ∈ Ω. We can check that we can differentiate
with respect to x under the integral sign giving the term O(t3) to obtain that
DΦt = Id + tDη + t2

2 Dζ + O(t3) with ζ = Dη.η. Now we use that for a matrix
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M ∈M2(R) such that ∥M∥ < 1, we have (I +M)−1 = I −M +M2 + O(∥M∥3) to
conclude that

(DΦt)−1 = Id − tDη − t2

2
Dζ + t2(Dη)2 + O(t3).

To compute the determinant det DΦt , we recall that for two matrices M , N , we have

det(Id + tM + t2

2
N) = 1 + ttr(M) + t2

2
[tr(N) + (tr(M))2 − tr(M2))] + O(t3)

(2.5)

and that

(tr(Dη))2 − tr(Dη)2 = (divη)2 − tr(Dη)2 = 2 det Dη

since

Dη [(divη)Id −Dη] = (∂1η1 ∂2η1
∂1η2 ∂2η2

)( ∂2η2 −∂2η1
−∂1η2 ∂1η1

)

= (∂1η1∂2η2 − ∂2η1∂1η2 0
0 −∂2η1∂1η2 + ∂1η1∂2η2

)

= (det Dη)Id.(2.6)

Thus,

det DΦt = 1 + tdivη + t2

2
divζ + t2 det Dη + O(t3).(2.7)

Hence, we expand

∫
Ω
∣Dut − u⊥t AT

t ∣2 = ∫Ω

⎡⎢⎢⎢⎢⎣
∣(Du − u⊥AT)(Id − tDη − t2

2
Dζ + t2(Dη)2 + O(t3))∣

2

× (1 + tdivη + t2

2
divζ + t2 det Dη + O(t3))

⎤⎥⎥⎥⎥⎦
= ∫

Ω
[∣Du − u⊥AT ∣2 − 2t(Du − u⊥AT) ∶ (Du − u⊥AT)Dη

+ t∣Du − u⊥AT ∣2divη − t2(Du − u⊥AT) ∶ (Du − u⊥AT)Dζ

+ t2

2
∣Du − u⊥AT ∣2divζ + t2∣(Du − u⊥AT)Dη∣2

+ 2t2(Du − u⊥AT) ∶ (Du − u⊥AT)(Dη)2

− 2t2(Du − u⊥AT) ∶ (Du − u⊥AT)Dηdivη

+ t2∣Du − u⊥AT ∣2 det Dη + O(t3)]

= ∫
Ω
[∣Du − u⊥AT ∣2 − 2t(Du − u⊥AT) ∶ (Du − u⊥AT)Dη

+ t∣Du − u⊥AT ∣2divη − t2(Du − u⊥AT) ∶ (Du − u⊥AT)Dζ
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+ t2

2
∣Du − u⊥AT ∣2divζ + t2∣(Du − u⊥AT)Dη∣2

− ∣Du − u⊥AT ∣2 det Dη] + O(t3),(2.8)

where we have used (2.6) again. However, we know that

ht ∶= dAt = d [(Φ−1
t )∗A] = (Φ−1

t )∗dA = (h ○Φ−1
t )(det DΦ−1

t )dx1 ∧ dx2 .

Hence,

∫
Ω
∣ht − hex∣2 = ∫

Ω
∣h(Φ−1

t (x))det DΦ−1
t (x) − hex∣2dx

= ∫
Ω
∣h(y)det DΦ−1

t (Φt(y)) − hex∣2 det DΦt(y)dy

= ∫
Ω
∣h(y)det(DΦt(y))−1 − hex∣2 det DΦt(y)dy.

By using (2.7), we find that

∫
Ω
∣ht − hex∣2 = ∫

Ω

⎡⎢⎢⎢⎢⎣
∣h (1 − tdivη + t2

2
divζ − t2 det Dη + t2(divη)2) − hex∣

2

× (1 + tdivη + t2

2
divζ + t2 det Dη)] + O(t3)

= ∫
Ω
[∣h − hex∣2 − 2t(h − hex)hdivη − t2(h − hex)hdivζ + t2h2(divη)2

− 2t2(h − hex)h det Dη + 2t2(h − hex)h(divη)2

+ t∣h − hex∣2divη + t2

2
∣h − hex∣2divζ + t2∣h − hex∣2 det Dη

− 2t2(h − hex)h(divη)2] + O(t3)

= ∫
Ω
[∣h − hex∣2 − th2divη + th2

exdivη − t2h2divη + t2h2
exdivη

− t2h2 det Dη + h2
ex det Dη + t2h2(divη)2] + O(t3)

= ∫
Ω
[∣h − hex∣2 − th2divη − t2h2divζ − t2h2 det Dη + t2h2(divη)2]

+ O(t3).(2.9)

We have used that, since η has compact support, ∫Ω divη and ∫Ω det Dη =
1
2 ∫Ω div(η ∧ ∂2η, ∂1η ∧ η) vanish. At last, using again (2.7), we compute

∫
Ω
(1 − ∣ut ∣2)2 = ∫

Ω
(1 − u(Φ−1

t (x))∣2)2dx = ∫
Ω
(1 − ∣u(y)∣2)2 det DΦt(y)dy

= ∫
Ω
(1 − ∣u∣2)2(1 + tdivη + t2

2
divζ + t2 det Dη) + O(t3).(2.10)

Putting together (2.8), (2.9), and (2.10) yields the result. ∎
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Similar but simpler computations give the following:

Proposition 2.3 Let η ∈ C∞c (Ω,R2) and let (u, A) ∈ X. Then, with definitions (1.14)
and (1.15), we have

δEε(u, η) = ∫
Ω
[ 1

2
(∣Du∣2 + 1

2ε2 (1 − ∣u∣
2)2)divη − (Du)T Du ∶ Dη],

δ2Eε(u, η) = ∫
Ω
∣DuDη∣2 − ∣Du∣2 det Dη + 1

2ε2 (1 − ∣u∣
2)2 det Dη.

It can be seen that GLε is infinitely Gâteaux-differentiable on X, and its first and
second variations are given in the following proposition.

Proposition 2.4 The first and second outer variations of GLε at (u, A) with respect to
(v , B) ∈ C∞(Ω,R2) × C∞c (R2 ,R2), defined in (1.3)-(1.7) are given by

dGLε(u, A, v , B) = ∫
Ω
(Du − u⊥AT) ∶ (Dv − v⊥AT) − (Du − u⊥AT) ∶ u⊥BT

+ (h − hex)curl B − 1
ε2 (1 − ∣u∣

2)u ⋅ v

d2GLε(u, A, v , B) = ∫
Ω
∣Dφ − u⊥BT − v⊥AT ∣2 + 2(Du − u⊥AT) ∶ v⊥BT + (curl B)2

+ 1
ε2 (1 − ∣u∣

2)∣v∣2 − 2
ε2 (u ⋅ v).

The first and second outer variations of Eε at u with respect to v ∈ C∞c (Ω,R2), defined
in an analogous manner as for GLε , are given by

dEε(u, v) = ∫
Ω

Du ∶ Dv − 1
ε2 (1 − ∣u∣

2)u ⋅ v ,

d2Eε(u, v) = ∫
Ω
∣Dv∣2 + 1

ε2 (1 − ∣u∣
2)∣v∣2 − 2

ε2 (u ⋅ v).

Now we give a link between inner and outer variations when these quantities are
computed at a smooth point. This link was previously observed in [22, 23, 24].

Proposition 2.5 Let η ∈ C∞c (Ω,R2) and let (u, A) ∈ X ∩ (C3(Ω,R2))2 then

δGLε(u, A, η) = dGLε (u, A,−Du.η,−DA.η +DηT .A)

δ2GLε(u, A, η) = dGLε (u, A, D2u[η, η] +Du.ζ , D2 A[η, η] +DA.ζ +DζT .A+ 2DηT DA.η)
+ d2GLε (u, A,−Du.η,−DA.η +DηT .A) .

If u ∈ H1(Ω,R2) ∩ C3(Ω,R2) then

δEε(u, η) = dEε(u,−Du.η)

δ2Eε(u, η) = dEε(u, D2u[η, η] +Du.ζ) + d2Eε(u,−Du.η).
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Proof We first show that, for V ∈ C3(Ω,R2), we have

V ○Φ−1
t (y) = V(y) − tDV(y).η(y) + t2

2
X0(y) + O(t3)

with X0 = D2V[η, η] +DVDη. In order to do that, we use the following Taylor
expansion:

V ○Φ−1
t (y) = V(y) + t∂t ∣t=0(V ○Φ−1

t )(y) +
t2

2
∂2

t t ∣t=0(V ○Φ−1
t )(y) + O(t3)

= V(y) + tDV(y).∂t ∣t=0Φ−1
t (y) +

t2

2
(D2V(y)[∂t ∣t=0Φ−1

t (y), ∂t ∣t=0Φ−1
t (y)]

+DV(y).∂2
t t ∣t=0Φ−1

t (y)) + O(t3).

We first compute the derivatives with respect to t of Φ−1
t . We use the expansion of Φt

given in (2.4) and the relation

x = Φt(Φ−1
t (x)) = Φ−1

t (x) + tη(Φ−1
t (x)) +

t2

2
Dη(Φ−1

t (x)).η(Φ−1
t (x)) + O(t3).

Differentiating with respect to t yields

0 = ∂tΦ−1
t (x) + tDη(Φ−1

t (x)).∂tΦ−1
t + η(Φ−1

t ) + tDη(Φ−1
t (x)).η(Φ−1

t (x)) + O(t2),

and evaluating at t = 0, we find that ∂t ∣t=0Φ−1
t (x) = −η(x). We can differentiate once

more with respect to t to obtain

0 = ∂2
t tΦ
−1
t (x) + 2Dη(Φ−1

t (x)).∂tΦ−1
t (x) +Dη(Φ−1

t (x)).η(Φ−1
t (x)) + O(t).

Evaluating at t = 0 and using the expression previously found for ∂t ∣t=0Φ−1
t (x), we

arrive at ∂2
t t ∣t=0Φ−1

t (x) = Dη(x).η(x). By the Taylor formula with integral remainder,
we know that

Φ−1
t (x) = x − tη(x) + t2

2
Dη(x).η(x) + O(t3),(2.11)

and we can check that we can differentiate under the integral sign giving the term in
O(t3) to obtain also that DΦ−1

t (x) = Id − tDη(x) + t2

2 Dζ(x) + O(t3), where ζ(x) =
Dη(x).η(x). Thus, we obtain

V ○Φ−1
t = V − tDV .η + t2

2
(D2V[η, η] +DV .(Dη.η)) + O(t3).(2.12)

Now we recall from (2.3) that, with some abuse of notation, (Φ−1
t )∗A = DΦ−T

t (A ○
Φ−1

t ). Thus, by using the formula (2.11), we can write

(Φ−1
t )∗A = (Id − tDη(x) + t2

2
Dζ(x) + O(t3))

T

× (A− tDA.η + t2

2
(D2A[η, η] +DA.ζ) + O(t3))
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= A− t(DA.ζ + (Dη)T .A)

+ t2

2
(D2A[η, η] +DA.ζ +DζT .A+ 2DηT .(DA.η)) + O(t3).

Thus, if we let (ut , At) ∶= (u ○Φ−1
t , (Φ1

t)∗A), by using (2.12) applied to V = u and by
assuming that (u, A) ∈ (C∞(Ω,R2))2, we find that

GLε(ut , At) = GLε(u − tDu.η + t2

2
(D2u[η, η] +Du) + O(t3), A− t(DA.η +DηT .A)

+ t2

2
(D2 A[η, η] +DA.ζ +DζT .A+ 2DηT .(DA.η)) + O(t3))

= GLε(u, A) + tdGLε(u, A,−Du.η,−DA.η + (Dη)T A)

+ t2

2
dGLε(u, A, D2u[η, η] +Du.ζ , D2 A[η, η] +DA.ζ +DζT .A+ 2DηT .(DA.η))

+ t2

2
d2GLε(u, A)(−Du.η,−DA.η +Dη)T .A) + O(t3).

By identification, we conclude. A density argument allows us to extend this result for
(u, A) ∈ (C3(Ω,R2))2. Similar computations for Eε give the result. ∎

Since critical points of the GL energy in the Coulomb gauge are smooth, we can
use Proposition 2.5, and we can deduce that stable critical points of GLε satisfy that
they have a nonnegative second inner variation. This is summarized in the following
corollary.

Corollary 2.6 Let (u, A) be in X such that dGLε(u, A, v , B) = 0 for any (v , B) ∈
(C∞c (Ω,R2))2 and with A in the Coulomb gauge, then δGLε(u, η) = 0 for any η ∈
C∞c (Ω,R2). If we assume furthermore that d2GLε(u, A, v , B) ≥ 0 for any (v , B) ∈
(C∞c (Ω,R2))2, then δ2GLε(u, A, η) ≥ 0 for any η ∈ C∞c (Ω,R2). Similar results hold
for the nonmagnetic GL energy.

2.3 Some remarks about inner variations

The link between inner and outer variations for regular argument was already
observed in [22, 23, 24]. In order to make a direct link between the first and
second inner variations when the argument is regular, one can also use that for
η ∈ C∞c (Ω,R2),

(divη)2 − tr(Dη)2 = 2 det Dη = div[(divη)η −Dη.η],

and integrate by parts several times.
To examine the difference between inner and outer variations from the point of

view of stability, we can start by considering the 1D case. Let Ω = (a, b) ⊂ R be an open
interval with a < b. By using, for example, [24, Lemma 2.4], we can show that for an
energy of the form E(V) = ∫

b
a F(V , V ′) = ∫

b
a (∣V ′∣2/2 + f (V))dx with f ∶ R→ R a

smooth function, the second inner variation is given by

δ2E(V , η) = ∫
Ω

∂2
ppF(V , V ′)[V ′ , V ′]∣η′∣2 = ∫

b

a
∣η′∣2∣V ′∣2
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18 R. Rodiac

for all η ∈ C∞c ((a, b),R). Surprisingly, this quantity does not depend on f and is
always nonnegative. This allows us to recover the following known result about strictly
monotone solutions of ODEs in 1D.

Proposition 2.7 Let V ∈ C2((a, b),R) be a critical point of E(V) =
∫

b
a (∣V ′∣2/2 + f (V)) with f ∈ C∞(R,R) (i.e., a solution of −V ′′ + f ′(V) = 0 in
(a, b)). Assume furthermore that V is strictly monotone. Then V is stable; that is,

∫
b

a
(∣φ′∣2 + f ′′(V)φ2) ≥ 0, ∀φ ∈ C∞c ((a, b)).

Proof We first observe that V is in C∞((a, b). Then every φ ∈ C∞c ((a, b)) can
be written as φ = V ′η since V ′ does not vanish in (a, b). We can thus use a
result analogous to Proposition 2.5 – see, for example, [24, Corollary 2.3] – and
the fact that dE(V , D2V[η, η] +DV .(Dη.η)) = 0 since D2V[η, η] +DV .(Dη.η) ∈
C∞c ((a, b),R) to conclude that

d2E(V , φ) = δ2(E ,− φ
V ′
) = ∫

b

a
∂2

ppF(V , V ′)[V ′ , V ′]∣ ( φ
V ′
)
′

∣2 ≥ 0

for all φ ∈ C∞c ((a, b)). ∎

For a classical proof of the above fact, we refer to Proposition 1.2.1 and Definition
1.2.1 in [14].

3 Passing to the limit in the second inner variation

From the expression of the second inner variation of GLε given in Proposition 2.2,
it appears that to understand the limit of δ2GLε(uε , Aε , η)/h2

ex for {(uε , Aε)}ε>0 a
family of critical points of the GL energy, we need to understand the limit of all the
quadratic terms in the derivatives ∣∂Aε

1 uε ∣2/h2
ex , ∣∂Aε

2 uε ∣2/h2
ex and ⟨∂Aε

1 uε , ∂Aε
2 uε⟩/h2

ex.
This is the object of this section.

3.1 The case with magnetic field

The following proposition is mainly the lower-bound for the Γ-convergence result of
GLε/h2

ex obtained in [32]. We present the proof here to underline the fact that, thanks
to assumption (H), we know the limit of the energy density.

Proposition 3.1 Let {(uε , Aε)}ε>0 be a family of critical points of GLε satisfying (1.8)-
(1.9). We set jε = ⟨iuε , (∇ − iAε)uε⟩ and hε = curl Aε .
1) Up to a subsequence,

μ(uε , Aε)
hex

∶= curl ( jε + Aε)
hex

��→
ε→0

μ in (C0,γ(Ω))∗

for every γ ∈ (0, 1) and

jε

hex
��⇀
ε→0

j, hε

hex
��⇀
ε→0

h in L2(Ω)
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with −∇⊥h = j and μ = −Δh + h. Furthermore,

lim inf
ε→0

GLε(uε , Aε)
h2

ex
≥ lim inf

ε→0

1
2h2

ex
∫

Ω
(∣∇hε ∣2 + ∣hε − hex∣2)

≥ ∣μ∣(Ω)
2λ

+ 1
2 ∫Ω

(∣∇h∣2 + ∣h − 1∣2) .

2) We set gε(uε , Aε) ∶= 1
2 (∣∇uε ∣2 + ∣hε − hex∣2 + 1

2ε2 (1 − ∣uε ∣2)2). Let us assume that
(H) holds then,

gε(uε , Aε)
h2

ex
⇀ 1

2λ
∣μ∣ + 1

2
(∣∇h∣2 + ∣h − 1∣2) in M(Ω),(3.1)

∣∇hε ∣2
∣uε ∣2h2

ex
⇀ ∣∇h∣2 + 1

λ
∣μ∣, ∣∇hε ∣2

h2
ex

⇀ ∣∇h∣2 + 1
λ
∣μ∣, ∣∇Aε uε ∣2

h2
ex

⇀ ∣∇h∣2 + 1
λ
∣μ∣

(3.2)

and

1
h2

ex
(∣∇∣uε ∣∣2 +

1
2ε2 (1 − ∣u∣

2)2) ⇀ 0 in M(Ω).(3.3)

Proof We recall that if (u, A) is a solution to (1.4), then ∣u∣ ≤ 1 in Ω; see, for example,
[32, Chapter 3]. We also observe that near points where u does not vanish, we can write
u = ρe iφ . Even if the phase φ is not globally defined, it can be seen that its gradient is
globally defined. Using the second equation in (1.4), we find that

−∇⊥h = ρ2(∇φ − A).

We can also see that

∣∇Au∣2 = ∣∇∣u∣∣2 + ρ2∣∇φ − A∣2 ,

GLε(uε , Aε) =
1
2 ∫Ω

∣∇∣uε ∣∣2 + ∣uε ∣2∣∇φε − Aε ∣2 + ∣hε − hex∣2 +
1

2ε2 (1 − ∣uε ∣2)2

= 1
2 ∫Ω

∣∇∣uε ∣∣2 +
∣∇hε ∣2
∣uε ∣2

+ ∣hε − hex∣2 +
1

2ε2 (1 − ∣uε ∣2)2(3.4)

≥ 1
2 ∫Ω

∣∇∣uε ∣∣2 + ∣∇hε ∣2 + ∣hε − hex∣2 +
1

2ε2 (1 − ∣uε ∣2)2 .(3.5)

Then, we can use the energy bound GLε(uε , Aε) ≤ Ch2
ex to deduce that hε/hex is

bounded in H1(Ω) and thus converges weakly in that space, up to a subsequence,
to some h ∈ H1(Ω). We also observe that, since we consider solutions to (1.4), then
jε = −∇⊥hε and μ(uε , Aε) = curl jε + hε = −Δhε + hε ⇀ −Δh + h = μ in H−1(Ω). We
now show the convergence of με ∶= μ(uε , Aε) in (C0,γ(Ω))∗ and the lower bound.
Since we assume in (1.9) that hex ≤ C∣ log ε∣, we have from (1.8) that GLε(uε , Aε) ≤
Ch2

ex ≤ C∣ log ε∣2. We can then apply Proposition 1.1 in [29] (see also [32, Theorem
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4.1])3 to find a family of balls (depending on ε) (B i)i∈Iε = (B(a i , r i))i∈Iε such that

{x; ∣uε(x)∣ ≤
1
2
} ⊂ ⋃

i∈Iε

B(a i , r i),

∑
i∈Iε

r i ≤
1

∣ log ε∣6
1
2 ∫B i

∣∇hε ∣2 ≥ π∣d i ∣∣ log ε∣(1 − oε(1))

with hε = curl Aε , d i = deg( uε
∣uε ∣

, ∂B i) if B i ⊂ Ω and 0 otherwise.
We let Vε ∶= ⋃i∈Iε B i . Then by using (3.5), we find

GLε(uε , Aε , Vε) ≥
1
2 ∫Vε

∣∇hε ∣2 ≥ π ∑
i∈Iε

∣d i ∣∣ log ε∣ (1 − oε(1)) .

Note that (3.5) and (1.8) imply that∑i∈Iε
∣d i ∣ ≤ C∣ log ε∣ ≤ Chex. Now let U be an open

sub-domain of Ω; working in U will be useful to prove point 2). We can write

GLε(uε , Aε , U) = GLε(uε , Aε , Vε) +GLε(uε , Aε , U/Vε)

= 1
2 ∫Vε

∣∇hε ∣2 +
1
2 ∫U/Vε

(∣∇hε ∣2 + ∣hε − hex∣2)(3.6)

≥ π∑
i
∣d i ∣∣ log ε∣ + 1

2 ∫U/Vε

(∣∇hε ∣2 + ∣hε − hex∣2) − o(h2
ex).(3.7)

We divide by h2
ex to obtain

GLε(uε , Aε , U)
h2

ex
≥ 1

2h2
ex
∫

U
∣∇hε ∣2 + ∣hε − hex∣2(3.8)

≥ π∑i ∣d i ∣
hex

∣ log ε∣
hex

+ ∫
U/Vε

∣∇hε

hex
∣
2
+ ∣ hε

hex
− 1∣

2
− o(1).

Since ∑i∈Iε
r i ��→ε→0

0, we can extract a subsequence εn → 0 such that if we set AN ∶=
⋃n≥N Vεn , we have ∣AN ∣ → 0 when N → +∞. By weak convergence of hε in H1(Ω),
for every N fixed,

lim inf
n→+∞ ∫U/Vεn

∣∇hεn

hex
∣
2
+ ∣hεn

hex
− 1∣

2
≥ lim inf

n→+∞ ∫U/AN

∣∇hεn

hex
∣
2
+ ∣hεn

hex
− 1∣

2

≥ ∫
U/AN

∣∇h∣2 + ∣h − 1∣2 .

We then pass to the limit N → +∞ to find

lim inf
n→+∞ ∫U/Vεn

∣∇hεn

hex
∣
2
+ ∣hεn

hex
− 1∣

2
≥ ∫

U
∣∇h∣2 + ∣h − 1∣2 .(3.9)

However, coming back to (3.7) and using that GLε(uε , Aε) ≤ Ch2
ex, we find that

1
hex
∑i∈I ∣d i ∣ stays bounded. Hence, 2π

hex
∑i d i δa i converges, up to a subsequence in

3The reason why we refer to [29] is that the lower bound is explicitly stated in terms of ∫∪B i
∣∇hε ∣2

there and not in terms of the full energy.
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(C0
0(U))∗). We then use the Jacobian estimate of Theorem 6.1 in [32] in U to say

that this limit is also the limit of με and thus is equal to μ = −Δh + h. Theorem 6.2 in
[32] applied in Ω implies that με converges toward μ in (C0,γ

0 (Ω))∗. We then pass to
the limit in (3.8), and we use (3.9) to obtain

lim inf
n→+∞

GLεn(uεn , Aεn , U)
h2

ex
≥ 1

2h2
ex
∫

U
(∣∇hεn ∣2 + ∣hεn − hex∣2)

≥ 1
2λ
∣μ∣(U) + 1

2 ∫U
(∣∇h∣2 + ∣h − 1∣2) .(3.10)

This proves point 1).
To prove point 2), we assume that (H) holds. Then we set

gε ∶=
1
2
(∣∇uε ∣2 + ∣hε − hex∣2 +

1
2ε2 (1 − ∣uε ∣2)2)dx .

We have that gε(Ω) → ( 1
2λ ∣μ∣ +

1
2 (∣∇h∣2 + ∣h − 1∣2)) (Ω) and

lim inf
ε→0

gε(U) ≥ (
1

2λ
∣μ∣ + 1

2
(∣∇h∣2 + ∣h − 1∣2)) (U)

for every open set U ⊂ Ω. We can then apply Proposition 1.80 in [4] to deduce that
(3.1) holds. By using (3.4)-(3.5) and the strong convergence of hε

hex
in L2(Ω), we also

arrive at (3.2) and (3.3). ∎

We are now ready to examine the convergence of the quadratic terms appearing in
the formula for the second inner variation in Proposition 2.2.

Proposition 3.2 Let {(uε , Aε)}ε>0 be a family of critical points of GLε satisfying (1.8)
and (1.9). Let us assume that (H) holds. Then, either the limiting vorticity is constant
equal to 1 in all of Ω or, in the sense of measures,

∣∂Aε
1 uε ∣2
h2

ex
⇀ ∣∂2h∣2 + ∣μ∣

2λ
,
∣∂Aε

2 uε ∣2
h2

ex
⇀ ∣∂1h∣2 + ∣μ∣

2λ
⟨∂Aε

1 uε , ∂Aε
2 uε⟩

h2
ex

⇀ −∂1h∂2h.

Proof Thanks to (1.8), the measures ∣∂
Aε
1 uε ∣

2

h2
ex

, ∣∂
Aε
2 uε ∣

2

h2
ex

and ⟨∂
Aε
1 uε ,∂Aε

2 uε⟩

h2
ex

are bounded.
Thus, there exist ν1 , ν2 , ν3 in M(Ω) such that, in the sense of measures,

∣∂Aε
1 uε ∣2
h2

ex
⇀ ∣∂2h∣2 + ν1 ,

∣∂Aε
2 uε ∣2
h2

ex
⇀ ∣∂1h∣2 + ν2 ,

⟨∂Aε
1 uε , ∂Aε

2 uε⟩
h2

ex
⇀ −∂1h∂2h + ν3 .

We use that from Corollary 2.6, we have that δGLε(uε , Aε , η) = 0 for all η ∈
C∞c (Ω,R2), and this implies, thanks to the expressions in Proposition 2.2, that

1
h2

ex
div(Tε) = 0 in Ω, where Tε is defined in (1.27). Then, by using (3.3), we pass to

the limit when ε → 0 in the sense of distributions to find that

−div(Th) + div(ν1 − ν2 ν3
ν3 ν2 − ν1

) = 0,(3.11)
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where (Th)i j = ∂ i h∂ j h − 1
2 (∣∇h∣2 + h2)δ i j . But we can use Theorem 1.2 obtained

in [31, 32] to say that div(Th) = 0 and deduce that div(ν1 − ν2 ν3
ν3 ν2 − ν1

) = 0. This

equation can be rewritten as the Cauchy-Riemann system

{∂1(ν1 − ν2) + ∂2ν3 = 0
∂1ν3 − ∂2(ν1 − ν2) = 0

or ∂z̄(ν1 − ν2 − iν3) = 0, where ∂z̄ = 1
2 (∂1 + i∂2). Since the operator ∂z̄ is elliptic, we

deduce that ν1 − ν2 − iν3 is holomorphic in Ω. Now we can show that if Ω = supp μ,
then h is constantly equal to 1. Indeed, by contradiction, if there exists x0 ∈ Ω such
that ∣∇h(x0)∣ ≠ 0, then from [27, Theorem 3.1]4 there exists a neighbourhood ωx0 of
x0 in which we have μ = ±2∣∇h∣H1

⌊supp μ∩{∣∇h∣>0} with supp μ ∩ {∣∇h∣ > 0}, which is
a C1 curve. Hence, we find that ∣μ∣ vanishes in a small ball included in ωx0 and not
intersecting this curve. This is a contradiction, and thus, we find that h is constant,
and h being equal to 1 on ∂Ω, we conclude that h = 1 and μ = −Δh + h = 1 in Ω.

Hence, if h ≠ 1, then supp μ ≠ Ω, and thus, there exists a ball B ⊂ Ω such that
∣μ∣⌊B = 0. We thus deduce from (3.2) that hε/hex converges strongly to h in B and
ν1 = ν2 = 0 in B since ν1 + ν2 = ∣μ∣/λ and ν1 , ν2 ≥ 0.

From (3.2), we also find that ∣∇hε ∣
2

h2
ex ∣uε ∣2

⇀ ∣∇h∣2 in B. Since ∣∇h∣2dx does not charge
the boundary ∂B from [15, Theorem 1.40], we deduce that

∫
B

∣∇hε ∣2
h2

ex∣uε ∣2
→ ∫

B
∣∇h∣2 .

Since hε/hex → h in H1(B), we can also assume that, up to a subsequence,∇hε/hex →
∇h a.e. in B. From the energy bound (1.8), we also know that ∣uε ∣2 → 1 in L2(Ω), and
hence, up to a subsequence, ∣uε ∣ → 1 a.e. Hence Brezis-Lieb’s lemma implies that

∇hε

hex∣uε ∣
→ ∇h in L2(B).(3.12)

Now if we write, locally near a point where uε does not vanish, uε = ρε e iφε , then

∂Aε
j uε = ∂ juε − iA j

εuε = ∂ j ρε e iφε + iuε(∂ jφε − iAε)
and

⟨∂Aε
1 uε , ∂Aε

2 uε⟩ = ∂1ρε∂2ρε + ρ2
ε(∂1φε − Aε

1)(∂2φε − Aε
2).

Recalling that −∇⊥hε = ρ2
ε(∇φε − Aε), we arrive at

⟨∂Aε
1 uε , ∂Aε

2 uε⟩ = ∂1∣uε ∣∂2∣uε ∣ −
∂2hε∂1hε

∣uε ∣2
.

We use (3.3) to infer that ρε/hex → 0 strongly in H1(Ω), and then we use this together
with (3.12) to find that 1

h2
ex
⟨∂Aε

1 uε , ∂Aε
2 uε⟩ → −∂2h∂1h in L1(B). This implies that ν3 = 0

in B.

4This result is recalled in the appendix for the comfort of the reader.
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We have thus obtained that ν1 − ν2 − iν3 vanishes in the ball B. This quantity being
holomorphic, the principle of isolated zeros implies that ν1 = ν2 and ν3 = 0 everywhere
in Ω. Since ν1 + ν2 = ∣μ∣/λ, we find that ν1 = ν2 = ∣μ∣2λ and ν3 = 0. ∎

3.2 The case without magnetic field

In this section, we state the analogue of Proposition 3.1 and 3.2 in the case of the GL
energy without magnetic field. Since the proofs require only minor adaptations of the
previous paragraph, they are left to the reader.

Proposition 3.3 Let {uε}ε>0 be a family of critical points of Eε satisfying (1.21). We
set j̃ε = ⟨iuε ,∇uε⟩ and Uε ∈ H1(Ω) the unique function such that ∇⊥Uε = j̃ε and
∫Ω Uε = 0.
1) Up to a subsequence,

μ(uε)
∣ log ε∣ ∶=

curl j̃ε

∣ log ε∣ ��→ε→0
μ in (C0,γ(Ω))∗(3.13)

for every γ ∈ (0, 1) and

j̃ε

∣ log ε∣ ��⇀ε→0
j, Uε

∣ log ε∣ ��⇀ε→0
h in L2(Ω)(3.14)

with −∇⊥U = j̃ and μ = −ΔU. Furthermore,

lim inf
ε→0

Eε(uε)
∣ log ε∣2 ≥

∣μ∣(Ω)
2

+ 1
2 ∫Ω

∣∇U ∣2 .(3.15)

2) Let us assume that (H’) holds. Then, if we set eε(u) ∶= 1
2 (∣∇u∣2 + 1

2ε2 (1 − ∣u∣2)2),
then

eε(uε)
∣ log ε∣2 ⇀

1
2
∣μ∣ + 1

2
(∣∇U ∣2) in M(Ω),(3.16)

∣∇Uε ∣
2

∣ log ε∣2 ⇀ ∣∇U ∣2 + ∣μ∣ in M(Ω) and ∣∇Uε ∣
2

∣uε ∣2 ∣ log ε∣2 ⇀ ∣∇U ∣2 + ∣μ∣ in M(Ω).

Proposition 3.4 Let {uε}ε>0 be a family of critical points of Eε . Let us assume that (H’)
holds, then, in the sense of measures,

∣∂1uε ∣2
∣ log ε∣2 ⇀ ∣∂2U ∣2 + ∣μ∣

2
, ∣∂2uε ∣2
∣ log ε∣2 ⇀ ∣∂1U ∣2 +

∣μ∣
2

(3.17)

⟨∂1uε , ∂2uε⟩
∣ log ε∣2 ⇀ −∂1U∂2U .(3.18)

Proof The proof follows the same lines as the proof of Proposition 3.2. However, we
use [26, Theorem 1.3]5 to say that μ is locally supported on a union of curves instead
of the results in [27, Theorem 3.1]. ∎

5cf. Appendix.
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3.3 Proofs of the main theorems

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let η ∈ C∞c (Ω,R2). We want to understand the limit of

δ2GLε(uε , Aε , η)
h2

ex
= 1

h2
ex
∫

Ω
(∣(Du − u⊥AT)Dη∣2 − ∣Du − u⊥AT ∣2 det Dη

+ h2 [(divη)2 − det Dη] + 1
ε2 (1 − ∣u∣

2)2 det Dη).

We note that

∣(Du − u⊥AT)Dη∣2 = ∣∂A
1 u∣2∣∇η1∣2 + ∣∂A

2 u∣2∣∇η2∣2 + 2⟨∂A
1 u, ∂A

2 u⟩∇η1 ⋅ ∇η2 .

Now, since ∣∇Au∣2/h2
ex and (1 − ∣u∣2)2/h2

ex are bounded sequences in L1(Ω), we can
extract subsequences for which we have the following convergence in the sense of
measures:

∣∂Aε
1 uε ∣2
h2

ex
⇀ ∣∂2h∣2 + ν1 ,

∣∂Aε
2 uε ∣2
h2

ex
⇀ ∣∂1h∣2 + ν2 ,

⟨∂Aε
1 uε , ∂Aε

2 uε⟩
h2

ex
⇀ −∂1h∂2h + ν3 , (1 − ∣u∣2)2

ε2h2
ex

⇀ ν4 ,

with ν1 , ν2 , ν3 , ν4 ∈M(Ω). By using that hε/hex is bounded in H1(Ω), we also have
that, up to a subsequence hε → h strongly in L2(Ω). Thus, we can pass to the limit and
we find that

δ2GLε(uε , Aε , η)
h2

ex
��→
ε→0 ∫Ω

[(∣∂2h∣2 + ν1)∣∇η1∣2 + (∣∂1h∣2∣ + ν2)∣∇η2∣2

− (2∂1h∂2h − 2ν3)∇η1 ⋅ ∇η2

+ (∣∇h∣2 + ν1 + ν2)det Dη + h2 [(divη)2 − det Dη] + ν4 det Dη].

Now, if we assume the convergence of energy (H), then (3.3) and Proposition 3.2 give
that ν1 = ν2 = ∣μ∣/2λ, ν3 = 0 and ν4 = 0. This allows us to rewrite

lim
ε→0

δ2GLε(uε , Aε , η)
h2

ex
= ∫

Ω
(∣∂2 h∣2 ∣∇η1 ∣2 + ∣∂1 h∣2 ∣∇η2 ∣2 − 2∂1 h∂2 h∇η1 ⋅ ∇η2

+ ∣∇h∣2 det Dη + h2 [(divη)2 − det Dη] ) + ∫
Ω
( ∣Dη∣2

2
− det Dη) d∣μ∣

λ
.

We can conclude since ∣DηT∇⊥h∣2 = ∣∂2h∣2∣∇η1∣2 + ∣∂1h∣2∣∇η2∣2 − 2∂1h∂2h∇η1 ⋅
∇η2. To finish the proof, we need to show the validity of (1.17). This is a consequence of
the link between inner and outer variations cf. Corollary 2.6, the definition of stability,
and the limit of the second inner variation previously obtained. ∎

The proof of Theorem 1.4 follows the same lines by using Proposition 3.4 and is left
to the reader.
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4 Analyzing the limiting stability condition

As a consequence of Corollary 2.6 and Theorem 1.3, we can see that if {(uε , Aε)}ε>0 is
a family of stable critical points of GLε , then Qh(η) ≥ 0 for every η ∈ C∞c (Ω,R2), with
Qh defined in (1.16). We would like to analyze if this limiting stability condition implies
more regularity on the limiting vorticity. In the case with magnetic field, we take a
specific example of an admissible limiting vorticity supported on a line in the Lipschitz
bounded domain6 Ω = (−L, L)2, and we show that the associated limiting magnetic
field h satisfies that Qh(η) ≥ 0 for every η ∈ C∞c (Ω,R2) if L > 0 is small enough,
whereas there exists η ∈ C∞c (Ω,R2) such that Qh(η) < 0 for L large enough. This
shows that the link between limiting stability of the vorticity measure and regularity
might be subtle and may depend on other factors such as the size of the domain. In
the case without magnetic field, the situation is even worse in a sense. Indeed, we can
use a result of Iwaniec-Onninen [18] to prove that every limiting vorticity measure
satisfies that Q̃U(η) ≥ 0 for every η ∈ C∞c (Ω,R2), where Q̃U is defined in (1.26). This
shows that no supplementary regularity can be obtained from our limiting stability
condition in that case.

4.1 The case with magnetic field

Proposition 4.1 Let Ω = (−L, L)2. We set h(x , y) = e−∣x ∣ for (x , y) ∈ Ω. Then h
satisfies −Δh + h = μ in Ω with μ = −2H1

⌊{x=0}, and h satisfies (1.10). With Qh defined
in (1.16), we have that
1) if L > 0 is small enough, then Qh(η) ≥ 0 for all η ∈ C∞c (Ω,R2),
2) if L > 0 is large enough, then Qh(η) < 0 for η = (cos πx

2L sin π y
2L ,− sin πx

2L cos π y
2L )

T .

Proof We can check by direct computation that −Δh + h = −2H1
⌊{x=0} since the

1D function satisfies −h′′ + h = −2δx=0. Besides, the condition (1.10) is equivalent to
(∣h′∣2 − h2)′ = 0 in (−L, L) since h is a function of one variable. But we have that
∣h′∣2 = ∣h∣2 so (1.10) is satisfied. We now consider the stability/instability properties.
1) We first observe that

∣det Dη∣ = ∣∂1η ∧ ∂2η∣ ≤ ∣∂1η∣∣∂2η∣ ≤ 1
2
(∣∂1η∣2 + ∣∂2η∣2) = ∣Dη∣2

2
.(4.1)

Hence,

Qh(η) ≥ ∫
Ω
[∣DηT∇⊥h∣2 − (∣∇h∣2 + h2)det Dη + h2(div η)2]

≥ ∫
Ω
[∣h′∣2∣∇η2∣2 − (∣h′∣2 + h2)det Dη + h2(div η)2] .

Then we show the following Poincaré type inequality: for every η1 ∈ C∞c (Ω,R),

∫
(−L ,L)2

e−2∣x ∣∣η1(x , y)∣2dxdy ≤ 2L(e2L − 1)∫
(−L ,L)2

e−2∣x ∣∣∂1η1(x , y)∣2dxdy.
(4.2)

6Even if we assumed Ω smooth at the beginning, it can be seen that our analysis is still valid for such
Lipschitz domains.
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Indeed, we write

∫
(−L ,L)2

h2∣η1∣2 = ∫
(−L ,L)2

h2(x) (∫
x

−L
∂1η1(s, y)ds)

2
dxdy

≤ ∫
(−L ,L)2

h2(x)∫
x

−L
∣∂1η1(s, y)∣2ds(x + L)dxdy

≤ 2L∫
L

−L
h2(x)dx ∫

(−L ,L)2
∣∂1η1(s, y)∣2dsdy

≤ 2L∫
L

−L
h2(x)dx × e2L × ∫

(−L ,L)2
e−2∣s∣∣∂1η1(s, y)∣2dsdy

≤ 2L(1 − e−2L)e2L ∫
(−L ,L)2

e−2∣s∣∣∂1η1(s, y)∣2dsdy.

We notice that, since ∣h′∣2 = h2 = e−2∣x ∣,

∫
Ω
(∣h′∣2 + h2)det Dη = 1

2 ∫Ω
(∣h′∣2 + h2)div(η ∧ ∂2η, ∂1η ∧ η)

= − 1
2 ∫Ω

(∣h′∣2 + h2)′ η ∧ ∂2η = −∫ (h2)′(η1∂2η2 − η2∂2η1)

= −2∫
Ω
(h2)′η1∂2η2 = −4∫

Ω
hh′η1∂2η2 .

By using successively two Young’s inequalities, by observing that ∣h′∣2 = ∣h2∣ =
e−2∣x ∣, and by employing the former Poincaré’s inequality (4.2), we find that

Qh(η) ≥ ∫
Ω
∣h′∣2∣∇η2∣2 + 4hh′η1∂2η2 + h2(∂1η1 + ∂2η2)2

≥ ∫
Ω
∣h′∣2∣∇η2∣2 − 2α2h2∣η1∣2 − 2∣h′∣2 ∣∂2η2∣2

α2

+ h2(∣∂1η1∣2 + ∣∂2η2∣2 − β2∣∂1η1∣2 −
∣∂2η2∣2

β2

≥ ∫
Ω
∣h′∣2[∣∂2η2∣2(2 −

2
α2 −

1
β2 ) + ∣∂1η2∣2

+ ∣∂1η1∣2 (1 − β2 − 4α2L(e2L − 1)) ].

Now we choose first β so that 1 − β2 > 0 and 2 − 1
β2 > 0. This amounts to take

1/
√

2 < β < 1. Then we choose α big enough so that 2 − 2
α2 − 1

β2 > 0, and it remains
to adjust L to have 1 − β2 − 4α2L(e2L − 1) > 0. Thus. the first point is proved.

2) Let η = (cos πx
2L sin π y

2L ,− sin πx
2L cos π y

2L )
T . We can compute that

Dη = π
2L
(− sin πx

2L sin π y
2L cos πx

2L cos π y
2L

− cos πx
2L cos π y

2L sin πx
2L sin π y

2L .)
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Thus, ∣Dη∣2
2 = π2

4L2 (sin2 πx
2L sin2 π y

2L + cos2 πx
2L cos2 π y

2L ) and det Dη =
π2

4L (− sin2 πx
2L sin2 π y

2 l + cos2 πx
2L cos2 π y

2L ). Thus, we see that

∫
Ω
(∣Dη∣2

2
− det Dη)d∣μ∣ = π2

4L2 ∫
L

−L
2 sin2(0) sin2 πy

2L
dy = 0.

However, direct computations show that

∫
Ω
∣h′∣2∣∇η2∣2 =

π2

4L2 ∫(−L ,L)2
∣h′∣2(cos2 πx

2L
cos2 πy

2L
+ sin2 πx

2L
sin2 πy

2L
)

= π2

4L2 × L × ∫
L

−L
e−2∣x ∣ = π2(1 − e−2L)

4L
,

and

∫
Ω
(∣h′∣2 + h2)det Dη = π2

4L ∫
L

−L
2e−2∣x ∣ (cos2 πx

2L
− sin2 πx

2L
) = π2

2L ∫
L

−L
e−2∣x ∣ cos πx

L

= π2

L ∫
L

0
e−2x cos πx

L
= π2

L
Re∫

L

0
e−2x+ iπx

L

= 2π2L2(1 + e−2L)
(4L2 + π2)L = 2π2L(1 + e−2L)

(4L2 + π2) .

We also observe that divη = 0. Hence,

Qh(η) =
π2(1 − e−2L)

4L
− 2π2L(1 + e−2L)

(4L2 + π2)

= π2

4L(4L2 + π2) [(4L2 + π2)(1 − e−2L) − 8L2(1 + e−2L)]

= π2

4L(4L2 + π2) [−4L2 + π2 − e−2L(12L2 + π2)] .

It is easily seen that when L is large enough, this quantity is negative. ∎

4.2 The case without magnetic field

In the case without magnetic field, the limiting stability condition never implies any
further regularity on the limiting vorticity measure μ.

Proposition 4.2 Let μ be in H−1(Ω) and U be in H1(Ω) satisfying (1.25), then
Q̃U(η) ≥ 0 for every η in C∞c (Ω,R2); with Q̃U defined in (1.26).

Proof By using (4.1), we find that for every η ∈ C∞c (Ω,R2),

Q̃U(η) ≥ ∫
Ω
∣DηT∇⊥U ∣2 − ∣∇U ∣2 det Dη

= ∫
Ω
∇⊥U ⊗∇⊥U ∶ DηDηT − ∣∇U ∣2 det Dη

= ∫
Ω
(∇⊥U ⊗∇⊥U − ∣∇U ∣2

2
Id) ∶ DηDηT + ∫

Ω
∣∇U ∣2 ( ∣Dη∣2

2
− det Dη)
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= ∫
Ω
(∇⊥U ⊗∇⊥U − ∣∇U ∣2

2
Id) ∶ (DηDηT − ∣Dη∣2

2
Id)

+ ∫
Ω
∣∇U ∣2 (∣Dη∣2

2
− det Dη) .

In the last equality, we have used that (∇⊥U ⊗∇⊥U − ∣∇U ∣2
2 Id) ∶ Id =

tr(∇⊥U ⊗∇⊥U − ∣∇U ∣2
2 Id) = 0. Now we remark that (∇⊥U ⊗∇⊥U − ∣∇U ∣2

2 Id) =
−(∇U ⊗∇U − ∣∇U ∣2

2 Id).
We take advantage of the complex structure of R2 ≃ C and, by denoting ∂z = (∂1 −

i∂2)/2 and ∂z̄ = (∂1 + i∂2)/2, we can prove that

∫
Ω
(∇⊥U ⊗∇⊥U − ∣∇U ∣2

2
Id) ∶ (DηDηT − ∣Dη∣2

2
Id) = 8Re∫

Ω
∂zU(∂z̄U)∂z η∂z̄ η

(4.3)

∫
Ω
∣∇U ∣2 ( ∣Dη∣2

2
− det Dη) = 4∫

Ω
(∣∂zU ∣2 + ∣∂z̄U ∣2)∣∂z̄ η∣2 .(4.4)

Indeed, on the one hand,

(∇⊥U ⊗∇⊥U − ∣∇U ∣2
2

Id) ∶ (DηDηT − ∣Dη∣2
2

Id)

=
⎛
⎝

∣∂2 U ∣2−∣∂1 U ∣2
2 −∂2U∂1U

−∂2U∂1U ∣∂1 U ∣2−∣∂2 U ∣2
2

⎞
⎠
∶
⎛
⎝

∣∇η1 ∣
2−∣∇η2 ∣

2

2 ∇η1 ⋅ ∇η2

∇η1 ⋅ ∇η2
∣∇η2 ∣

2−∣∇η1 ∣
2

2

⎞
⎠

= 1
2
(∣∂2U ∣2 − ∣∂1U ∣2)(∣∇η1∣2 − ∣∇η2∣2) − 2∂1U∂2U∇η1 ⋅ ∇η2 ,

and on the other hand,

16Re(∂zU(∂z̄U)∂z η∂z̄ η)

= Re{(∂1U − i∂2U)(∂1U − i∂2U) (∂1(η1 + iη2) − i∂2(η1 + iη2)) (∂1(η1 + iη2) + i∂2(η1 + iη2))}

= Re{(∣∂1U ∣2 − ∣∂2U ∣2 − 2i∂1U∂2U)[(∂1η1 + ∂2η2)(∂1η1 − ∂2η2) − (∂1η2 − ∂2η1)(∂1η2 + ∂2η1)

+ i((∂1η2 − ∂2η1)(∂1η1 − ∂2η2) + (∂1η1 + ∂2η2)(∂1η2 + ∂2η1))]}

= Re{(∣∂1U ∣2 − ∣∂2U ∣2 − 2i∂1U∂2U) (∣∇η1 ∣2 − ∣∇η2 ∣2 + 2i∇η1 ⋅ ∇η2)}

= − [(∣∂2U ∣2 − ∣∂1U ∣2)(∣∇η1 ∣2 − ∣∇η2 ∣2) − 4∂1U∂2U∇η1 ⋅ ∇η2] .

This proves (4.3), and (4.4) is proved in a similar way.
We are thus led to prove that

1
2 ∫Ω

(∣∂zU ∣2 + ∣∂z̄U ∣2)∣∂z̄ η∣2 − Re∫
Ω

∂zU(∂z̄U)∂z η∂z̄ η ≥ 0 ∀η ∈ C∞c (Ω,C).
(4.5)
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Since U is real-valued, it satisfies that (∂zU)2 = (∂zU)(∂z̄U), and from equation
(1.25) (see also [31, Theorem 3] or [32, Theorem 13.2]), we know that (∂zU)2 is
holomorphic in Ω. We can invoke Theorem 1.10 in [18] to conclude that (4.5) is true.
Note that in the statement of Theorem 1.10 in [18], the quantity appearing is

1
2 ∫Ω

(∣∂zU ∣2 + ∣∂z̄U ∣2)∣∂z̄ η∣2 + Re∫
Ω

∂zU(∂z̄U)∂z η∂z̄ η.

But the proof of the nonnegativity of this quantity for U such that (∂zU)(∂z̄U)
is holomorphic and for all η ∈ C∞c (Ω,C) adapts with the minus sign (i.e., for the
quantity appearing in (4.5)). Indeed, the proof of this fact rests upon the inequality

∫
Ω
(∂zU)(∂z̄U)∣∂z̄ η∣2 ≥ ∣∫

Ω
(∂zU)(∂z̄U)∂z η∂z̄ η∣

valid for U satisfying that (∂zU)(∂z̄U) is holomorphic and for all η ∈ C∞c (Ω,C), cf.
Lemma 1.11 in [18], and then we use

−Re∫
Ω

∂zU(∂z̄U)∂z η∂z̄ η ≥ − ∣∫
Ω
(∂zU)(∂z̄U)∂z η∂z̄ η∣

instead of

Re∫
Ω

∂zU(∂z̄U)∂z η∂z̄ η ≥ − ∣∫
Ω
(∂zU)(∂z̄U)∂z η∂z̄ η∣

in the proof of Theorem 1.10 in [18] to arrive at (4.5). ∎

5 Conclusion and perspectives

We have shown, in a certain regime of applied magnetic field (1.9) and for solutions
satisfying the energy bound (1.8), how to pass to the limit in the second inner
variations of the energy GLε if we assume the convergence of energies (H). Since
the Γ- limit Eλ of the sequence of energies GLε is convex, whereas the energies GLε
are not convex, it is not direct to guess a limiting criticality condition (respectively
a limiting stability condition) for solutions to (1.4), (respectively stable solutions) to
(1.1). In particular, whereas limiting vorticity measures of solutions to (1.4) satisfy
−Δh + h = μ in Ω with h which is stationary (i.e., critical for the inner variations) for
L(h) = ∫Ω(∣∇h∣2 + h2), it is not true that stable limiting vorticities of stable solutions
verify that the second inner variation of L is nonnegative since this second inner
variation can be computed to be equal to

δ2L(h, η) = δL(h, Dη.η) + ∫
Ω
(∣DηT∇h∣2 − (∣∇h∣2 − h2)det Dη) .

The right limiting stable condition is given by (1.17)–(1.16). The example analyzed in
Section 4 tends to show that the stability condition does not prevent limiting vorticity
measures to concentrate on curves and that no further regularity for stable limiting
vorticity could be deduced. This is definitely the case for the GL equations without
magnetic field as shown by Proposition 4.2.
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As for [31, Theorem 1], our result Theorem 1.3 is interesting only if the total number
of vortices Nε = ∑Mε

i=1 ∣d ε
i ∣ appearing in (1.11) is of the same order as hex. As explained

in [31, Theorem 2], for {(uε , Aε)}ε>0 a family of solutions to (1.4), if Nε ≫ hex, then
μ(uε , Aε)/Nε converges to zero in the sense of measures, whereas if Nε ≪ hex, then
μ(uε , Aε)/Nε ⇀ μ with μ∇h0 = 0 and h0 the solution to −Δh0 + h0 = 0 in Ω with
h = 1 on ∂Ω, and hence, the support of μ is included in the set of critical points of h0.
For minimizers, it was proved in [30, 32] that vortices accumulate near minimizing
points of h0. We can also ask if there exist supplementary conditions in the limit ε → 0
for stable solutions with Nε ≪ hex such as vortices accumulating toward stable critical
points of h0 in Ω. However, this seems to require different techniques than the ones
used in this paper.

Appendix

Here, we recall two results used in the proof of main theorems. These results aim at
describing the limiting vorticities near regular points of the limiting field h. Note that
we can define regular and critical points of h since it is proved in [32, Theorem 13.1]
that ∣∇h∣2 is continuous in Ω.

Theorem 5.1 [27, Theorem 3.1] Let h ∈ H1(Ω) and μ ∈M(Ω) be such that −Δh + h =
μ and∑2

j=1 ∂ j [2∂ i h∂ j h − (∣∇h∣2 + h2) δ i j] = 0 in Ω for i = 1, 2. Let x0 ∈ supp μ be such
that ∣∇h(x0)∣ ≠ 0. Then there exists R > 0 and H ∈ C1,α(B(x0 , R)) for every 0 < α < 1
such that

supp μ⌊B(x0 ,R) = {x ∈ B(x0 , R) ∶ H(x) = 0} =∶ Γ

and ∇H(x) ≠ 0 for every x ∈ B(x0 , R). Furthermore, μ⌊B(x0 ,R) = +2∣∇h∣H1
⌊Γ or

μ⌊B(x0 ,R) = −2∣∇h∣H1
⌊Γ .

Theorem 5.2 [26, Theorem 1.3] Let h ∈ H1(Ω) and μ ∈M(Ω) be such that Δh = μ
and ∑2

j=1 ∂ j [2∂ i h∂ j h − ∣∇h∣2δ i j] = 0 in Ω for i = 1, 2. Let x0 ∈ supp μ be such that
∣∇h(x0)∣ ≠ 0. Then there exists R > 0 and H a harmonic function in B(x0 , R) such that

supp μ⌊B(x0 ,R) = {x ∈ B(x0 , R) ∶ H(x) = 0} =∶ Γ̃

and ∇H(x) ≠ 0 for every x ∈ B(x0 , R). Furthermore, μ⌊B(x0 ,R) = +2∣∇h∣H1
⌊Γ̃ or

μ⌊B(x0 ,R) = −2∣∇h∣H1
⌊Γ̃ .
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