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Positive Solutions of the Falkner–Skan
Equation Arising in the Boundary Layer
Theory

K. Q. Lan and G. C. Yang

Abstract. The well-known Falkner–Skan equation is one of the most important equations in laminar

boundary layer theory and is used to describe the steady two-dimensional flow of a slightly viscous

incompressible fluid past wedge shaped bodies of angles related to λπ/2, where λ ∈ R is a parameter

involved in the equation. It is known that there exists λ∗ < 0 such that the equation with suitable

boundary conditions has at least one positive solution for each λ ≥ λ∗ and has no positive solutions

for λ < λ∗. The known numerical result shows λ∗
= −0.1988. In this paper, λ∗ ∈ [−0.4,−0.12]

is proved analytically by establishing a singular integral equation which is equivalent to the Falkner–

Skan equation. The equivalence result provides new techniques to study properties and existence of

solutions of the Falkner–Skan equation.

1 Introduction

The well-known Falkner–Skan equation arising in the boundary layer problems:

(1.1) f ′ ′ ′(η) + f (η) f ′ ′(η) + λ[1 − ( f ′)2(η)] = 0 on η ∈ (0,∞)

subject to the boundary condition

(1.2) f (0) = f ′(0) = 0, f ′(∞) = 1,

and the side condition

(1.3) 0 < f ′(η) < 1 for η ∈ (0,∞),

has been used to describe the steady two-dimensional flow of a slightly viscous in-

compressible fluid past wedge shaped bodies of angles related to λπ/2, where η is the

similarity boundary-layer ordinate, f (η) is the similarity stream function and f ′(η)

and f ′ ′(η) are the velocity and the shear stress, respectively. If λ ∈ [−2, 0], the cor-

responding flow is called the corner flow and if λ ∈ [0, 2], the flow is the wedge flow.
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Positive Solutions of the Falkner–Skan Equation 387

When λ = 0, the wedge reduces to a flat plate and the Falkner–Skan equation be-

comes the well-known Blasius equation and when λ = 1/2, it is called the Homann

equation. We refer to [2, 12, 14] for more physical significance on (1.1).

Equation (1.1), (1.2), (1.3) has been widely studied analytically, for example in [1,

4–9,16,17,19–21] and the references therein. We refer to [3,11,13] for the numerical

treatments of (1.1) and (1.2) and to [9, 10] for the study of other solutions of (1.1).

It is well known that (1.1), (1.2), (1.3) has a unique solution for each λ ≥ 0

(see [6, Theorems 6.1, 8.1]) and there exists λ∗ < 0 such that (1.1), (1.2), (1.3) has

at least one solution for each λ ∈ (λ∗, 0), has a unique solution for λ = λ∗ and has

no solutions for λ < λ∗ (see [6, Theorem 7.1], [7, Proposition 1.1, Theorem 1.1],

and [8, Theorem]). Moreover, in all cases mentioned above, the solutions f satisfy

the following condition:

(1.4) f ′ ′(η) > 0 for η ∈ (0,∞).

(see [6, Theorems 6.1, 7.1, 8.1]). Therefore, (1.1), (1.2), (1.3) is equivalent to (1.1),

(1.2), (1.4). The main approaches used are the fixed point theorems for compact

maps in suitable spaces [8,18] or by considering trajectories in the three-dimensional

phase spaces [4, 6, 7]. For example, Hastings [8] employed the Schauder–Tychonov

theorem for compact self-maps defined in closed convex subsets of Fréchet spaces.

Recently, the existence of solutions of (1.1) and (1.2) with (1.4) when λ ≥ 0 was

studied in [17] by considering a singular integral equation of the form

(1.5) z(t) =

∫ 1

t

(1 − s)(λ + λs + s)

z(s)
ds + (1 − t)

∫ t

0

s

z(s)
ds for t ∈ [0, 1],

where it was implicitly assumed that limt→0+ (1 − t)
∫ t

0
s

z(s)
ds = 0. It was proved

in [17] that if λ ≥ 0, then (1.1), (1.2), (1.4) has a unique solution and has no such

solutions when λ ≤ −1/2. Some comparison principles and the Schauder fixed point

theorems in Banach spaces were used in [17]. Moreover, the condition z(0) > 0 is

used in an essential way. Wang, Gao, and Zhang pointed out that their techniques

[17] cannot be applied to treat the existence of solutions of (1.1)–(1.2) and positive

solutions of (1.5) when λ ∈ (−1/2, 0). The main difficulty in treating the case when

λ ∈ (−1/2, 0) is that the integrand in the first integral of (1.5) takes negative values

on an interval [0, δ) and z(0) may be zero.

Yang [19] studied (1.1) and (1.2) with (1.4) when λ ∈ (−1/2, 0) by considering

the existence of positive solutions of a sequence of integral equations related to (1.5).

The approach is to employ the Schauder fixed point theorem to the integral equations

and the Helly selection principle, i.e., there exists a pointwise convergent subsequence

for a bounded infinite sequence of functions of bounded variation whose variations

are bounded (see [15, Corollary 3.2]). It is shown in [19] that there exists λ1 ∈
(−1/2, 0) such that (1.1) and (1.2) with (1.4) have at least one positive solution for

each λ ∈ (λ1, 0). Hence, λ∗ ≤ λ1. An open question is: what exactly is λ∗? The

numerical method shows λ∗
= −0.1988 (see [3, 11, 13]).

In this paper, we shall provide the upper and lower bounds for λ∗; in particular,

we show λ∗ ∈ [−0.4,−0.12]. The approach is to study (1.1) and (1.2) with (1.4) via
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the following singular integral equation of the form

(1.6) z(t) =

∫ 1

t

(1 − s)(λ + λs + s)

z(s)
ds + (1 − t)

∫ t

0

s

z(s)
ds for t ∈ (0, 1).

Unlike [17, 19], we do not consider the end-points t = 0, 1 in (1.6) because it is not

clear that if the limit limt→1−(1 − t)
∫ t

0
s

z(s)
ds always is 0 and if the first integral with

t = 0 in (1.6) converges. We shall show that if z is a solution in C[0, 1] with z(t) > 0

for t ∈ (0, 1), then

lim
t→1−

∫ t

0

s

z(s)
ds = ∞, lim

t→1−
(1 − t)

∫ t

0

s

z(s)
ds = 0.

We shall prove some properties of positive solutions of (1.6) and one property of

solutions of (1.1), (1.2), (1.4) which shows the behaviour of f ′ ′(η) as η → ∞. Us-

ing these properties we prove the equivalence of (1.6) and (1.1), (1.2), (1.4). Some

explicit expressions between positive solutions of (1.6) and solutions of (1.1), (1.2),

(1.4) are given. The new equivalence result plays an important role in estimating λ∗

and studying properties of solutions of (1.1), (1.2), (1.4).

2 Properties of Positive Solutions of a Singular Integral Equation

In this section, we give new properties of positive solutions of the singular integral

equation of (1.6) and prove that (1.6) is equivalent to a first order differential equa-

tion for each λ ∈ (−1/2,∞) and to a second order differential equation for each

λ ∈ [0,∞).

We denote by C[0, 1] the Banach space of continuous functions defined on [0, 1]

with the maximum norm ‖z‖ = max{|z(t)| : t ∈ [0, 1]}. Let

Q = {z ∈ C[0, 1] : z(t) > 0; for t ∈ (0, 1)} and δ := δ(λ) =
−λ

1 + λ
.

It is clear that δ ∈ (0, 1) if and only if −1/2 < λ < 0. We define

Az(t) =

∫ 1

t

fz(s) ds for t ∈ [0, 1] and Bz(t) =

∫ t

0

s

z(s)
ds for t ∈ [0, 1),

where z ∈ Q and fz(s) := (1−s)(λ+λs+s)
z(s)

for s ∈ (0, 1). It is easy to verify that if

λ ∈ (−1/2, 0), then

(2.1) fz(s) ≤ 0 for s ∈ (0, δ) and fz(s) ≥ 0 for s ∈ [δ, 1)

and if z ∈ Q and the improper integral Az(t) converges for t ∈ [0, 1), then fz is

Lebesgue integrable on (t, 1).

The following result provides a range of λ for which (1.6) has no solutions in Q.

Theorem 2.1 If (λ, z) ∈ R × Q satisfies (1.6), then λ > −1/2.
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Proof The proof is by contradiction. Assume that there exist λ ∈ (−∞,−1/2] and

z ∈ Q such that (1.6) holds. Since fz(t) ≤ 0 and (Az) ′(t) = − fz(t) > 0 for t ∈ (0, 1),

Az is strictly increasing on t ∈ (0, 1). This implies limt→0+ Az(t) < (Az)(t0) ≤ 0 for

t0 ∈ (0, 1). Since z(t) = (Az)(t) + (1 − t)Bz(t) and z is continuous from the right at

0, we obtain 0 ≤ limt→0+ z(t) = limt→0+ Az(t) < 0, which is a contradiction. �

By Theorem 2.1, we obtain that if λ ≤ −1/2, then (1.5) has no solutions in Q.

This result generalizes [17, Theorem 2.6] which shows that if λ ≤ −1/2, (1.6) has no

solutions satisfying z(t) > 0 for all t ∈ [0, 1).

If a function z : [0, 1] → [0,∞) satisfies (1.6), then z ∈ C(0, 1). However, z

may not be continuous at the end-points. The following result shows that the limits

of z at the end-points exist under suitable conditions on z and Az(0) and the limit

limt→1−(1 − t)Bz(t) is an indeterminate form of type 0 ×∞.

Proposition 2.2 Let λ ∈ (−1/2,∞) and let z : (0, 1) → [0,∞) be bounded. Assume

that (λ, z) satisfies (1.6) and Az(0) ∈ [0,∞). Then the following assertions hold.

(i) Az(t) ≥ 0 for t ∈ [0, 1].

(ii) limt→1−(1 − t)Bz(t) = 0.

(iii) limt→1− Bz(t) = ∞.

(iv) limt→0+ z(t) = Az(0) and limt→1− z(t) = 0.

Proof (i) If λ ∈ (−1/2, 0), then it follows from (2.1) and (Az) ′(s) = − fz(s) for

s ∈ (0, 1) that

(2.2) Az is increasing on (0, δ) and decreasing on [δ, 1).

Noting that Az(0) ≥ 0, Az(1) = 0, and (2.2), we have

Az(t) ≥ min{Az(0), Az(1)} = Az(1) = 0 for t ∈ [0, 1].

If λ ≥ 0, then fz(s) ≥ 0 for s ∈ (0, 1) and Az is decreasing on (0, 1). This implies

Az(t) ≥ Az(1) = 0 and (i) holds.

(ii) Let M = sup{z(t) : t ∈ (0, 1)}. Then M < ∞ since z is bounded. By (1.6)

and Proposition 2.2(i), we have M > 0 and

(2.3) z(t) ≥ (1 − t)Bz(t) ≥ (1 − t)

M

∫ t

0

s ds =
(1 − t)t2

2M
for t ∈ (0, 1).

Hence, we have for γ ∈ (0, 1) and t ∈ (γ, 1),

Bz(t) ≤ Bz(γ) + 2M

∫ t

γ

1

s(1 − s)
ds = Bz(γ) + 2M

[

ln t − ln(1 − t) − ln
γ

1 − γ

]

.

This, together with limt→1−(1 − t) ln(1 − t) = 0, implies limt→1−(1 − t)Bz(t) = 0.

(iii) Let σ ∈ [δ, 1) if λ ∈ (−1/2, 0) and σ ∈ (0, 1) if λ ≥ 0. Since 0 ≤ λ+λs + s ≤
2λ + 1 for s ∈ [σ, 1), it follows from (2.3) that fz(s) ≤ 2M(2λ + 1)/s2 for s ∈ [σ, 1)

and

(2.4) Az(t) ≤ 2M(2λ + 1)

∫ 1

t

1

s2
ds ≤ 2M(2λ + 1)

σ2
(1 − t) for t ∈ [σ, 1].
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By (2.3), we have

∫ t

σ

s

z(s)
ds ≤ 2M

∫ t

σ

1

(1 − s)s
ds ≤ −2M ln(1 − t) − 2M ln

σ

1 − σ
.

This, together with (1.6) and (2.4) implies that

z(t) = Az(t) + (1 − t)
[

Bz(σ) +

∫ t

σ

s

z(s)
ds

]

≤ (1 − t)[c − 2M ln(1 − t)],

where c =
2M(2λ+1)

σ + Bz(σ) − 2M ln σ
1−σ . Let u(t) = c − 2M ln(1 − t) for t ∈ [σ, 1).

Then du =
2M
1−t

dt and 1
z(t)

≥ 1
(1−t)u(t)

for t ∈ [σ, 1). This implies

∫ 1

σ

s

z(s)
ds ≥ σ

∫ 1

σ

1

(1 − s)u(s)
ds =

σ

2M

∫ ∞

u(σ)

1

u
du = ∞,

and this implies
∫ 1

0

s

z(s)
ds = lim

σ→0+

∫ 1

σ

s

z(s)
ds = ∞.

(iv) By (1.6) and (ii), we have limt→1− z(t) = 0. Since Az(0) ∈ [0,∞) and

limt→0+ (1 − t)Bz(t) = 0, it follows from (1.6) that limt→0+ z(t) = Az(0). �

If z is continuous at the end-points, then by Lemma 2.2(iv) we have the following.

Corollary 2.3 Assume that (λ, z) ∈ (−1/2,∞) × Q satisfies (1.6). Then z(0) =

Az(0) and z(1) = 0.

In some cases, it is convenient to change (1.6) into a first-order or a second order

differential equation with suitable boundary conditions. In fact, we can prove that

they are equivalent.

Theorem 2.4 (i) Let (λ, z) ∈ (−1/2,∞) × Q. Then (λ, z) satisfies (1.6) if and

only if z(1) = 0 and

(2.5) z ′(t) =
−λ(1 − t2)

z(t)
− Bz(t) for t ∈ (0, 1).

(ii) Let (λ, z) ∈ [0,∞)×Q. Then (λ, z) satisfies (1.6) if and only if (λ, z) is a solution

of the following second order differential equation of the form

(2.6) z ′ ′(t) = −λ
( 1 − t2

z(t)

) ′
− t

z(t)
for t ∈ (0, 1)

subject to the boundary condition:

(2.7) z(0) > 0, z(1) = 0 z ′(0) = −λ/z(0).
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Proof (i) Assume that (λ, z) ∈ (−1/2,∞) × Q satisfies (1.6). Differentiating (1.6)

implies (2.5) and it follows from Proposition 2.2(iv) that z(1) = 0. Conversely, we

have for t ∈ (0, 1),

∫ 1

t

∫ s

0

ξ

z(ξ)
dξds =

∫ t

0

[

∫ 1

t

ξ

z(ξ)
ds

]

dξ +

∫ 1

t

[

∫ 1

ξ

ξ

z(ξ)
ds

]

dξ

= (1 − t)Bz(t) +

∫ 1

t

(1 − s)
s

z(s)
ds.

Integrating (2.5) from t to 1, we have

∫ 1

t

z ′(s) ds = −λ

∫ 1

t

1 − s2

z(s)
ds −

∫ 1

t

∫ s

0

ξ

z(ξ)
dξds

= −λ

∫ 1

t

1 − s2

z(s)
ds − (1 − t)Bz(t) −

∫ 1

t

(1 − s)
s

z(s)
ds

= −Az(t) − (1 − t)Bz(t).

This, together with z(1) = 0, implies (1.6).

(ii) Let (λ, z) ∈ [0,∞) × Q satisfy (1.6). It follows from (i) and (2.5) that (2.6)

holds and z(1) = 0. Since λ ≥ 0, z(0) = Az(0) > 0. By (2.5), we have z ′(0) =

−λ/z(0) and (2.7) holds. Conversely, integrating (2.6) from 0 to t implies (2.5). �

By (2.6), (2.7), we obtain z ′ ′(0) = −λ2/z3(0), so z ∈ C2[0, 1) and (2.6) holds for

t ∈ [0, 1). This shows that (2.6), (2.7) is equivalent to [17, (1.6),(1.7)].

Now, we prove properties of positive solutions of (1.6) when λ ∈ (−1/2,∞)

which provide upper and lower bounds of positive solutions.

Proposition 2.5 Assume that (λ, z) ∈ (−1/2,∞) × Q satisfies (1.6). Then the

following assertions hold:

(P1) z(t) ≥ 1
2‖z‖ (1 − t)t2 for t ∈ [0, 1].

(P2) If λ ∈ (−1/2, 0), then 2/27 ≤ ‖z‖ ≤ 1.

(P3) If λ ≥ 0, then
√

(1 + 4λ)/6 ≤ ‖z‖ ≤
√

(1 + 4λ)/3.

Proof (P1): By (1.6) and Proposition 2.2(i), we have

z(t) ≥ (1 − t)Bz(t) ≥ 1 − t

‖z‖

∫ t

0

s ds ≥ 1

2‖z‖ (1 − t)t2 for t ∈ (0, 1).

This implies (P1).

(P2): We define a function h : (−1/2, 0] → [0,∞) by

(2.8) h(λ) =

∫ 1

δ(λ)

(1 − t)(λ + λt + t) dt.
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Then h ′(λ) =
∫ 1

δ(λ)
(1 − t2) dt > 0 for λ ∈ (−1/2, 0] and

h(λ) ≤ h(0) =

∫ 1

0

(1 − t)t dt = 1/6 for λ ∈ (−1/2, 0].

Assume that (λ, z) ∈ (−1/2, 0)×Q satisfies (1.6). Then z(t) > 0 and z(t) ≥ (Az)(t)

for t ∈ (0, 1). By (2.1), fz(t) ≥ 0 for t ∈ [δ, 1) and we have for t ∈ [δ, 1),

−(Az) ′(t)(Az)(t) = fz(t)(Az)(t) ≤ fz(t)z(t) = (1 − t)(λ + λt + t).

Integrating the above inequality from δ (= δ(λ)) to 1 and using Az(1) = 0, we have

(Az)(δ) ≤
√

2h(λ) ≤
√

2h(0) =

√
3/3.

By (2.2), we have (Az)(t) ≤ (Az)(δ) for t ∈ [0, 1] and z(0) = (Az)(0) ≤
√

3/3.

By (2.5) and the continuity of z, we obtain z(t)z ′(t) ≤ −λ(1 − t2) for t ∈ [0, 1].

Integrating the inequality from 0 to t implies

1

2
[z2(t) − z2(0)] ≤ −λ

∫ t

0

(1 − t2)dt ≤ −λ(2/3) ≤ 1/3.

This implies z2(t) ≤ 2/3 + z2(0) ≤ 1 for t ∈ [0, 1] and so, ‖z‖ ≤ 1. This, together

with (P1) implies ‖z‖ ≥ max{ 1
2
(1 − t)t2 : t ∈ [0, 1]} = 2/27.

(P3): Since z(t) ≥ Az(t) and fz(t) ≥ 0 for t ∈ (0, 1), we have

−(Az) ′(t)(Az)(t) ≤ (1 − t)(λ + λt + t) for t ∈ [0, 1).

Integrating the above inequality from 0 to 1 and noting that Az(1) = 0, we have

1

2
(Az)2(0) ≤

∫ 1

0

(1 − t)(λ + λt + t) dt = (2/3)λ + 1/6.

This implies z(0) = Az(0) ≤
√

(1 + 4λ)/3. Since z is decreasing on [0, 1], ‖z‖ ≤
√

(1 + 4λ)/3. Let g(t) =
∫ 1

t
(1− s)(λ + λs + s) ds + (1− t)

∫ t

0
s ds for t ∈ [0, 1). Then

g(t) ≤ g(0) = (2λ)/3 + 1/6 for t ∈ [0, 1]. Since z(t) = Az(t) + (1 − t)Bz(t) ≥
‖z‖−1g(t) for t ∈ [0, 1]. This implies ‖z‖ ≥ ‖z‖−1g(0) and ‖z‖ ≥

√

g(0). �

3 Equivalence between the Falkner–Skan Equation and the Singular
Integral Equation

We denote by Γ the set of solutions of (1.1), (1.2), (1.4), that is,

Γ = {(λ, f ) ∈ R ×C2(R+) : (λ, f ) satisfies (1.1), (1.2), (1.4)}.

We first provide a necessary condition for (λ, f ) to be a solution of (1.1), (1.2), (1.4)

and will use the result to prove the equivalence of (1.6) and (1.1), (1.2), (1.4).
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Lemma 3.1 Assume that (λ, f ) ∈ Γ. Then limη→∞ f ′ ′(η) = 0.

Proof Let ω = inf{ f ′′(η) : η ∈ [1, +∞)}. It follows from (1.4) that ω ≥ 0. By the

mean value theorem, we have that for each n ∈ N, there exists ξn ∈ (n, n + 1) such

that

f ′(n + 1) − f ′(n) = f ′ ′(ξn)[(n + 1) − n] = f ′ ′(ξn) ≥ ω ≥ 0.

Since f ′(∞) = 1, taking limit as n → ∞ implies ω = 0.

We prove that there exists r > 0 such that f is decreasing on (r,∞). In fact, if

λ ≥ 0, it follows from (1.1) that f ′′ ′(η) ≤ 0 for η ∈ (0,∞) and f ′ ′ is decreasing on

(0,∞). If λ < 0, then since limη→0+ f ′ ′ ′(η) = −λ > 0, there exists µ ∈ (0, 1) such

that f ′ ′′(η) > 0 for η ∈ (0, µ] and f ′ ′ is strictly increasing on [0, µ]. Let c ∈ (0, µ).

Then f ′ ′(c) > 0 and f ′ ′(η) > f ′ ′(c) for η ∈ (c, µ). Since ω = 0 and f ′ ′(η) > 0 for

η ∈ (0,∞), there exists r > 1 such that f ′ ′(r) < f ′′(c). Let η0 ∈ (c, r) be such that

f ′ ′(η0) = max{ f ′ ′(η) : η ∈ [c, r]}.

Then f ′ ′(η0) > f ′ ′(c) > f ′ ′(r). We prove that f ′ ′ is decreasing on (r,∞). In fact,

if not, there exist η1, η2 ∈ (r,∞) with η1 < η2 such that f ′′(η1) < f ′ ′(η2). Let

η3 ∈ [η0, η2] be such that f ′ ′(η3) = min{ f ′ ′(η) : η ∈ [η0, η2]}. Then η3 < η2 since

f ′ ′(η1) < f ′ ′(η2) and η3 > η0 since f ′ ′(η3) ≤ f ′′(r) < f ′ ′(η0). It follows from

Fermat’s theorem that f ′ ′′(η3) = 0. We show that f (4)(η3) ≥ 0. In fact, if not, then

f (4)(η3) < 0 and there exists a, b ∈ (η0, η2) with a < η3 < b such that f (4)(η) < 0

for η ∈ [a, b]. By Taylor’s theorem there exists η∗ ∈ (a, η3) such that

f ′ ′(a) − f ′′(η3) = f ′ ′ ′(η3)(a − η3) +
1

2!
f (4)(η∗)(a − η3)2

=
1

2!
f (4)(η∗)(a − η3)2.

Since f ′ ′(a) − f ′′(η3) ≥ 0, we have f (4)(η∗) ≥ 0, a contradiction. Hence,

f (4)(η3) > 0. By (1.1), we have for η ∈ (0,∞),

f (4)(η) = − f ′(η) f ′ ′(η) − f (η) f ′ ′ ′(η) + 2λ f ′(η) f ′ ′(η).

This implies 0 ≤ f (4)(η3) = (−1 + 2λ) f ′(η3) f ′ ′(η3) < 0, a contradiction. Hence,

f ′ ′ is decreasing on (r,∞). It follows that limη→∞ f ′ ′(η) exists whenever λ ≥ 0 or

λ < 0. Since f ′ ′(η) > 0 for η > 0 and ω = 0, it follows that limη→∞ f ′ ′(η) = 0. �

Now, we are in a position to prove that (1.6) is equivalent to (1.1), (1.2), (1.4).

Theorem 3.2 (i) If (λ, f ) ∈ Γ, then (λ, z) satisfies (1.6), where z : [0, 1] → [0,∞)

is defined by

(3.1) z(t) =

{

f ′′(( f ′)−1(t)) if t ∈ [0, 1),

0 if t = 1.

(ii) If (λ, z) ∈ (−1/2,∞) × Q satisfies (1.6), then (λ, f ) ∈ Γ, where f : [0,∞) →
[0,∞) is defined by

(3.2) f (η) =

∫ g−1(η)

0

s

z(s)
ds
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and g : [0, 1) → [0,∞) is defined by

g(t) =

∫ t

0

1

z(s)
ds.

Proof (i) Assume that (λ, f ) ∈ Γ. Then f ′(0) = 0, f ′(∞) = 1 and f ′′(η) > 0

for η ∈ (0,∞). It follows that f ′ is strictly increasing on [0,∞) and its inverse

( f ′)−1 : [0, 1) → [0,∞) is strictly increasing with ( f ′)−1(0) = 0 and

lim
t→1−

( f ′)−1(t) = ∞.

Let η := η(t) = ( f ′)−1(t) for t ∈ [0, 1). Then f ′(η) = t and by (3.1), we have

z(t) = f ′ ′(η) for t ∈ [0, 1). This implies that z(t) > 0 for t ∈ (0, 1) and z is

continuous on [0, 1). By (3.1) and Lemma 3.1, we see that z is continuous from the

left at 1. Hence, we have z ∈ Q. By using the chain rule to z(t) = f ′ ′(η), we obtain

f ′ ′ ′(η) dη
dt

= z ′(t) and by the inverse function theorem, we have dη
dt

=
1

f ′ ′(η)
=

1
z(t)

for t ∈ (0, 1). This, together with f ′(η) = t , implies

f ′ ′ ′(η) = z ′(t)z(t) and f ′(η)
dη

dt
=

t

z(t)
for t ∈ (0, 1).

Integrating the last equality from 0 to s implies f (η(s)) = Bz(s) for s ∈ [0, 1). Sub-

stituting f (η), f ′(η), f ′ ′(η) and f ′ ′ ′(η) into (1.1) implies (2.5). It follows from

Theorem 2.4(i) that (λ, z) satisfies (1.6).

(ii) Assume that (λ, z) ∈ (−1/2,∞) × Q satisfies (1.6). If z(0) > 0, then z(s) > 0

for s ∈ [0, 1). This implies
∫ t

0
1

z(s)
ds < ∞ for t ∈ [0, 1) and g(t) is well defined

on [0, 1). If z(0) = 0, then λ ∈ (−1/2, 0) and Az(0) = z(0) = 0. This implies
∫ 1

0
fz(s) ds =

∫ δ/2

0
fz(s) ds +

∫ 1

δ/2
fz(s) ds = 0 and

Az(δ/2) = −
∫ δ/2

0

fz(s) ds ≥ −λ

2

(

1 − δ

2

)

∫ δ/2

0

1

z(s)
ds.

This implies g(δ/2) < ∞ and g is well-defined on [0, 1). It follows from Corol-

lary 2.3 that limt→1− g(t) = ∞. It is obvious that g is strictly increasing on [0, 1) with

g(0) = 0 and its inverse g−1 : [0,∞) → [0, 1) is strictly increasing with g−1(0) = 0

and g−1(∞) = 1. Let t := t(η) = g−1(η) for η ∈ (0,∞). Then dt
dη = (g−1) ′(η) =

1
g ′(t)

= z(t). By (3.2), we have f (η) = Bz(t). This implies

g−1(η) = f ′(η) =
t

z(t)

dt

dη
= t, f ′ ′(η) = z(t), f ′ ′ ′(η) = z ′(t)z(t).

This, together with (2.5), implies (1.1). It is easy to see that f satisfies (1.2) and the

result follows. �
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4 Positive Solutions of the Falkner–Skan Equation

In this section, we prove properties of the positive solutions of the Falkner–Skan

equation (1.1), (1.2), (1.3) and provide the estimates for λ∗ mentioned in the Intro-

duction, which will be given below again.

We state the following result which can be derived from some well-known results

in [6, 9]; see also [7, 8].

Lemma 4.1 (i) (1.1), (1.2), (1.3) has a unique solution for λ ≥ 0. Moreover, the

solution satisfies (1.4) with η ∈ [0,∞).

(ii) There exists λ∗ ∈ (−∞, 0) such that (1.1), (1.2), (1.3) has at least one solution

for λ ∈ (λ∗, 0), and the solutions are not unique and the solutions satisfy (1.4).

(iii) (1.1), (1.2), (1.3) has a unique solution λ = λ∗ and the solution satisfies (1.4).

(iv) (1.1), (1.2), (1.3) has no solutions for λ < λ∗.

Lemma 4.1(i) is Theorems 6.1 and 8.1 with α = β = 0 in [6]. The other results of

Lemma 4.1 follow from both Theorem 7.1 with α = β = 0 in [6] and [9, Theorem

A].

Remark 4.2. By Theorems 2.1, 3.2 and Lemma 4.1, we have λ∗ ∈ (−1/2, 0) and by

Lemma 4.1 we see that (1.1), (1.2), (1.3) is equivalent to (1.1), (1.2), (1.4).

Let H : [−1/2, 0] → R be a function defined by

(4.1) H(λ) =
2(−4λ + 3)λ

−λ + 1
2

√

−λ

−λ + 1
2

+
(2λ + 1)3

(λ + 1)2
+

3(2λ + 1)

λ + 1

( −λ

λ + 1

) 2

.

By computation [19], we have H(0) = 1 and H(− 1
2
) = − 5

√
2

2
. Hence, the set of

solutions of H(λ) = 0 in [−1/2, 0] is non-empty. Let

λ1 = max{λ ∈ [−1/2, 0] : H(λ) = 0}.

Then λ1 ∈ (−1/2, 0).

We need the following known result obtained by Yang [19], which shows λ∗ ≤ λ1.

Lemma 4.3 (1.1), (1.2), (1.3) has at least one solution for each λ ∈ (λ1, 0)

In the following, we shall improve Lemma 4.3 and provide better estimates for λ∗.

We first prove some useful properties of H defined in (4.1).

Lemma 4.4 (h1) The function H defined above is strictly increasing on (−1/6, 0].

(h2) λ1 ∈ (−0.14,−0.12).

Proof (h1): Let u(λ) =

√

−2λ
1−2λ . By computation, we have for each λ ∈ (−1/2, 0),

H(λ) = 12λ

∫ u(λ)

0

(1 − s2) ds + 6

∫ 1

δ(λ)

(1 − s)(λ + λs + s) ds + 6(1 − δ(λ))

∫ δ(λ)

0

s ds,
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and H ′(λ) = H1(λ) + 6H2(λ), where

H1(λ) = 12

∫ u(λ)

0

(1 − s2) ds + 12λ(1 − u2(λ))u ′(λ)

and H2(λ) =
∫ 1

δ(λ)
(1 − s2) ds− λ(1 − δ2(λ))δ ′(λ) − δ ′(λ)

∫ δ(λ)

0
s ds. Since u ′(λ) < 0

and δ ′(λ) < 0 for λ ∈ (−1/2, 0), we have H1(λ) > 0 for λ ∈ (−1/6, 0) and

H2(λ) = 2/3 − δ(λ)(1 − δ2(λ))/3 − δ(λ) + δ2(λ)(1 − 2λ)/2(1 + λ2)

≥ 2/3 − 2δ(λ) + δ3(λ)/3 ≥ 2/3 − 2/5 > 0.

This implies (h1).

(h2): By calculation, we have

H(−0.14) = −623
√

224

12800
+

1135404

1987675
< 0,

H(−0.12) = −1044
√

186

24025
+

163723

266200
> 0.

The result follows. �

Let k(λ) =
∫ δλ

0
(1 − t)(λ + λt + t) dt and let h be same as in (2.8), that is, h(λ) =

∫ 1

δ(λ)
(1 − t)(λ + λt + t) dt . We define a function Φ : [−1/2, 0] → R by Φ(λ) =

k(λ) +
√

2h(λ). Then

(4.2) Φ(λ) =
1 + 4λ

6
− (2λ + 1)3

6(1 + λ)2
+

√
3(2λ + 1)3/2

3(1 + λ)
.

The following result gives the properties of Φ.

Lemma 4.5 The function Φ defined in (4.2) is strictly increasing on [−1/2, 0] and

there exists a unique λ0 ∈ (−0.4,−0.38) such that Φ(λ0) = 0.

Proof Since k ′(λ) =
∫ δ(λ)

0
(1 − s2) ds > 0 and h ′(λ) =

∫ 1

δ(λ)
(1 − s2) ds > 0 for

λ ∈ (−1/2, 0), Φ is strictly increasing. By computation, we have

Φ(−0.4) = − 14

135
+

√
15

45
< 0 and Φ(−0.38) = − 13357

144150
+

12
√

2

155
> 0.

The result follows. �

Notation. Let Γ
∗ := {(λ, f ) ∈ [λ∗, 0]×C2[0,∞) : (λ, f ) satisfies (1.1), (1.2), (1.3)}.

Now we prove the following new result which shows λ∗ ≥ λ0.

Theorem 4.6 If (λ, f ) ∈ Γ
∗, then λ ≥ λ0.
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Proof Let (λ, f ) ∈ Γ
∗. By Theorem 3.2(i), there exists z ∈ Q such that (1.6) holds.

Since λ + λs + s ≤ 0 for s ∈ (0, δ(λ)], it follows from Proposition 2.5(P1) that

z(s) ≤ 1 for s ∈ (0, 1) and fz(s) ≤ (1 − s)(λ + λs + s) for s ∈ (0, δ(λ)]. Hence, we

have
∫ δ(λ)

0
fz(s) ds ≤ k(λ). This, together with (1.6), implies

0 ≤ z(0) =

∫ δ(λ)

0

fz(s) ds + Az(δ(λ)) ≤ Φ(λ)

and hence, λ ≥ λ0. �

By Theorem 4.6 and Lemma 4.3, we see that λ∗ ∈ [λ0, λ1]. Moreover, by Lemmas

4.4 and 4.5, we obtain the following.

Corollary 4.7 (1.1), (1.2), (1.3) has at least one solution for each λ ∈ [−0.12, 0) and

has no solutions for each λ ∈ (−∞,−0.4].

We denote by BC[0,∞) the Banach space of continuous bounded functions de-

fined on [0,∞) with the norm ‖ f ‖ = sup{| f (x)| : x ∈ [0,∞)}.

We end the section by giving properties of positive solution of (1.1), (1.2), (1.3).

In particular, we give better estimates for f ′ ′(0) when λ ≥ 0. It is known that the

initial value f ′ ′(0) of f ′ ′(η) is of importance in the hydrodynamical problem, where

it determines the skin friction on the wedge involved.

Theorem 4.8 Assume that (λ, f ) ∈ [λ∗,∞) × C2[0,∞) satisfies (1.1), (1.2), (1.3).

Then f has the following properties.

(i) f (η) < η for η ∈ (0,∞).

(ii) limη→∞ f (η)/η = 1.

(iii) If λ ∈ [λ∗, 0), then 2/27 ≤ ‖ f ′ ′‖ ≤ 1.

(iv) If λ ≥ 0, then
√

(1 + 4λ)/6 ≤ f ′ ′(0) ≤
√

(1 + 4λ)/3.

Proof (i): Let ξ(η) = η − f (η) for η ∈ [0,∞). By the proof of Theorem 3.2, we

have f ′(η) = g−1(η) for η ≥ 0. Since ξ ′(η) = 1 − g−1(η) > 0 for η ∈ (0,∞), we

have ξ(η) > ξ(0) = 0 and f (η) < η for η ∈ (0,∞).

(ii): Using L’Hopital’s rule we have limη→∞ f (η)/η = limη→∞ g−1(η) = 1.

(iii): By the proof of Theorem 3.2, we see that z(t) = f ′ ′(η), where f ′(η) = t .

The result follows from Proposition 2.5(P2).

(iv): By the proof of Proposition 2.5(P3), we see that if λ ≥ 0, then z is decreasing

on [0, 1] and ‖z‖ = z(0). Hence, we have f ′ ′(0) = ‖z‖ and the result follows from

Proposition 2.5(P3). �

Remark 4.9. When λ ∈ [0, 1/4), Theorem 4.8(iv) generalizes a result in [4, p. 107]

due to Weyl [18], where f ′ ′(0) ≥
√

4λ/3 and the second inequality in (iv) was

established only for λ ≥ 1/2.
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