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We consider a situation where the distribution of a random variable is being estimated
by the empirical distribution of noisy measurements of that variable. This is common
practice in, for example, teacher value-added models and other fixed-effect models
for panel data. We use an asymptotic embedding where the noise shrinks with the
sample size to calculate the leading bias in the empirical distribution arising from
the presence of noise. The leading bias in the empirical quantile function is equally
obtained. These calculations are new in the literature, where only results on smooth
functionals such as the mean and variance have been derived. We provide both
analytical and jackknife corrections that recenter the limit distribution and yield
confidence intervals with correct coverage in large samples. Our approach can be
connected to corrections for selection bias and shrinkage estimation and is to be
contrasted with deconvolution. Simulation results confirm the much-improved sam-
pling behavior of the corrected estimators. An empirical illustration on heterogeneity
in deviations from the law of one price is equally provided.

1. INTRODUCTION

Let θ1, . . . ,θn be a random sample from a distribution F that is of interest. Suppose
that we only observe noisy measurements of these variables, say ϑ1, . . . ,ϑn.
A popular approach is to do inference on F and its functionals using the empirical
distribution of ϑ1, . . . ,ϑn. This is common practice when analyzing panel data
with heterogenous coefficients. In the literature on student achievement, for
example, θi is a teacher effect, ϑi is an estimator of it obtained from data on
student test scores, and we care about the distribution of teacher value-added
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(see, e.g., Jackson, Rockoff, and Staiger, 2014 for an overview). In the same
vein, Guvenen (2009), Browning, Ejrnæs, and Alvarez (2010), and Magnac and
Roux (2021) estimate heterogenous earning profiles, whereas Ahn et al. (2014)
find substantial heterogeneity in ambiguity aversion. In a nonlinear fixed-effect
model, the marginal effect is heterogenous across units and interest lies in the
distribution of these effects as well as its functionals (Chamberlain, 1984; Hahn
and Newey, 2004). Although the plug-in approach is popular, using ϑ1, . . . ,ϑn

rather than θ1, . . . ,θn introduces bias that is almost entirely ignored in practice.
Barras, Gagliardini, and Scaillet (2021)), who are interested in the distribution of
the skill of fund managers, find that not accounting for bias leads to substantial
overestimation of tail mass and fails to pick up the substantial asymmetry in the
skill distribution.

We analyze the properties of the plug-in estimator of F in a location-scale setting
where

ϑi = θi + σi√
m

εi, εi |(θi,σ
2
i ) ∼ i.i.d. (0,1),

where m is a parameter that grows with n. As the variance of the (heteroskedastic)
noise is σ 2

i /m, this device shrinks the noise as the sample size grows. This is a very
natural asymptotic embedding in settings where ϑi is an estimator of θi obtained
from a sample of size m, as in a panel data setting or meta-analysis (Vivalt, 2015).
It is related to, yet different from, an approach based on small measurement-error
approximations as in Chesher (1991, 2017),1 and has precedent in the analysis of
fixed-effect models for panel data, although for different purposes, as discussed in
more detail below (see, e.g., Hahn and Kuersteiner, 2002; Alvarez and Arellano,
2003).

Efron (2011) essentially entertains the homoskedastic setting with normal noise,
where

ϑi|θi ∼ N(θi,σ
2/m),

and defines selection bias as the tendency of the ϑi’s associated with the (in
magnitude) largest θi’s to be larger than their corresponding θi. He proposes to
deal with selection bias by using the well-known Empirical-Bayes estimator of
Robbins (1956), which here is equal to

ϑi + σ 2

m
∇1 logp(ϑi),

1Chesher (1991) provides expansions for densities, whereas we focus on distribution and quantile functions. Chesher
(2017) discusses the impact of noise in the explanatory variables in a quantile-regression model; this is a different
setup than the one considered here. Evdokimov and Zeleneev (2020) use our device of measurement error that shrinks
with the sample size to correct inference in generalized method-of-moment problems.
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where p is the marginal density of the ϑi and ∇1 denotes the first-derivative
operator. For example, when θi ∼ N(0,ψ2), this expression then yields the
(infeasible) shrinkage estimator(

1− σ 2/m

σ 2/m+ψ2

)
ϑi,

a parametric plug-in estimator of which would be the James and Stein (1961)
estimator. More generally, nonparametric implementation would also require esti-
mation of p and its first derivative. Shrinkage to the overall mean (in this case zero)
is intuitive, as selection bias essentially manifests itself through the tails of the
empirical distribution of the ϑi being too thick.2 Shrinkage is commonly applied
in empirical work (see, e.g., Rockoff, 2004; Chetty, Friedman, and Rockoff, 2014).
It should be stressed, though, that, while shrinkage improves on ϑ1, . . . ,ϑn in terms
of estimation risk, it does not lead to preferable estimators of the distribution F or
its moments.

The approach taken here is different from Efron (2011). Without making
parametric assumptions on F, we calculate the (leading) bias of the naive plug-
in estimator of the distribution,

F̂(θ) := n−1
n∑

i=1

1{ϑi ≤ θ}.

This calculation allows to construct estimators that correct for the bias directly.
In the James–Stein problem, where θi ∼ N(η,ψ2), for example, the bias under
homoskedastic noise equals

−θ −η

2

σ 2/ψ2

m
φ

(
θ −η

ψ

)
+o(m−1).

Thus, the empirical distribution is indeed upward biased in the left tail and
downward biased in the right tail. A bias order of m−1 implies incorrect coverage of
confidence intervals unless n/m2 → 0. We present plug-in and jackknife estimators
of the leading bias and show that the bias-corrected estimators are asymptotically
normal with zero mean and variance F(θ)(1 − F(θ)) as long as n/m3 → 0. So,
bias correction is preferable to the naive plug-in approach for typical data sizes
encountered in practice, where m tends to be quite small relative to n. We also
provide corresponding bias-corrected estimators of the quantile function of F.

If the distribution of σi εi is fully known, recovering F is a (generalized) decon-
volution problem that can be solved for fixed m. Deconvolution-based estimators

2The same shrinkage factor is applied to each ϑi, a consequence of the noise being homoskedastic. How to deal with
heteroskedastic noise in an Empirical-Bayes framework is not obvious. Discussion and a recent contribution can be
found in Weinstein et al. (2018).
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are well studied (see, e.g., Carroll and Hall, 1988; Delaigle and Meister, 2008).
However, they have a very slow rate of convergence, and it is well documented
that they can behave quite poorly in small samples.3 In response to this, Efron
(2016) has recently argued for a return to a more parametric approach. Our
approach delivers intuitive estimators that enjoy the usual parametric convergence
rate and are numerically well behaved. Although it does not deliver a fixed-m
consistent estimator, bias correction further ensures that size-correct inference can
be performed, provided that n/m3 is small. It is not clear how to conduct inference
based on deconvolution estimators.

Working out the statistical properties of F̂ (and of its quantile function) is
nontrivial because F̂ is a nonsmooth function of the data ϑ1, . . . ,ϑn. As such, the
approach taken here is different from, and complementary to, recent work on esti-
mating average marginal effects in panel data models, which only looks at smooth
functionals such as the mean and variance (see, e.g., Fernández-Val and Lee, 2013;
Okui and Yanagi, 2019). The impact of noise on smooth transformations of the ϑi

can be handled using conventional methods based on Taylor-series expansions. We
contrast such an approach with our derivations below. How to perform inference
on the quantiles of marginal effects in nonlinear panel models is a long-standing
open question (Dhaene and Jochmans, 2015), and the current work can be seen as
a first step in that direction.

In work contemporaneous to our own, Okui and Yanagi (2020) derive the bias
of a kernel-smoothed estimator of F and its derivative. Such smoothing greatly
facilitates the calculation of the bias, making it amenable to conventional analysis.
However, it also introduces additional bias terms that require much stronger
moment conditions as well as further restrictions on the relative growth rates of
n, m, and the bandwidth that governs the smoothing. Nevertheless, the (leading)
bias term obtained in Okui and Yanagi (2020, Thm. 3) coincides with ours in
Proposition 1. Additional discussion on and comparison between the two different
approaches is given in Okui and Yanagi (2020, pp. 169–170).

2. LARGE-SAMPLE PROPERTIES OF PLUG-IN ESTIMATORS

Let F be a univariate distribution on the real line. We are interested in estimation of
and inference on F and its quantile function q(τ ) := infθ {θ : F(θ) ≥ τ }. If a random
sample θ1, . . . ,θn from F would be available, this would be a standard problem.
We instead consider the situation where θ1, . . . ,θn themselves are unobserved and
we observe noisy measurements ϑ1, . . . ,ϑn, with variances σ 2

1 /m, . . . ,σ 2
n /m for a

positive real number m which, in our asymptotic analysis below, will be required
to grow with n. We assume the following.

3There are also solutions to the measurement-error problem based on repeated measurements (or instrumental
variables), coupled with suitable independent restrictions (see, for example, Horowitz and Markatou, 1996; Li and
Vuong, 1998; Hu, 2008; Hu and Schennach, 2008; Bonhomme, Jochmans, and Robin, 2016a, 2016b). These can
be useful alternatives in static models for panel data, where the object of interest is the distribution of the random
intercept, as in the work of Horowitz and Markatou (1996), for example.
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Assumption 1. The variables (θi,σ
2
i ,ϑi) are i.i.d. across i, with

E(ϑi |θi,σ
2
i ) = θi , E((ϑi − θi)

2 |θi,σ
2
i ) = σ 2

i

m
,

and σ 2
i ∈ [σ 2,σ 2] ⊂ (0,∞) for all i.

Our setup reflects a situation where the noisy measurements ϑ1, . . . ,ϑn converge
in squared mean to θ1, . . . ,θn at the rate m−1. A leading case is the situation where
ϑi is an estimator of θi obtained from a sample of size m that converges at the
parametric rate.4 We allow θi and σ 2

i to be correlated, implying that the noise ϑi −θi

is not independent of θi. Hence, we allow for measurement error to be nonclassical.
Recovering the distribution of θi from a sample of (ϑi,σ

2
i ) is, therefore, not a

standard deconvolution problem.
It is common to estimate F(θ) by

F̂(θ) := n−1
n∑

i=1

1{ϑi ≤ θ},

the empirical distribution of the ϑi at θ . As we will show below, under suitable
regularity conditions, that such plug-in estimators are consistent and asymptoti-
cally normal as n → ∞ provided that m grows with n so that n/m2 converges to
a finite constant. The use of ϑ1, . . . ,ϑn rather than θ1, . . . ,θn introduces bias of the
order m−1, in general. This bias implies that test statistics are size distorted and the
coverage of confidence sets is incorrect unless n/m2 converges to zero.

The bias problem is easy to see (and fix) when interest lies in smooth functionals
of F,

μ := E(ϕ(θi)),

for a (multiple-times) differentiable function ϕ. An (infeasible) plug-in estimator
based on θ1, . . . ,θn would be

μ̃ := n−1
n∑

i=1

ϕ(θi).

4Everything to follow can be readily modified to different convergence rates as well as to the case where

var(ϑi|θi,σ
2
i ) = σ 2

i /mi,

with mi := pim for a random variable pi ∈ (0,1]. It suffices to redefine σ 2
i as σ 2

i /pi. When the ϑi represent estimators,
this device allows for the sample size to vary with i. For example, in a panel data setting, it would cover unbalanced
panels under a missing-at-random assumption. Furthermore, the requirement that ϑi is unbiased can be relaxed to
allow for standard nonlinearity bias of order m−1. We do not do this here as it is possible quite generally to reduce
the bias down to O(m−3/2), for example, via a jackknife or bootstrap correction, making it negligible in our analysis
below. Furthermore, the split-sample jackknife approach to bias correction that we discuss below would automatically
take care of this additional m−1 bias without modification.
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Clearly, this estimator is unbiased and satisfies μ̃
a∼ N(μ,σ 2

μ/n) as soon as
σ 2

μ := var(ϕ(θi)) exists. For the feasible plug-in estimator of μ,

μ̂ := n−1
n∑

i=1

ϕ(ϑi),

under standard regularity conditions, a Taylor-series expansion of ϕi(ϑi) around θi

yields

E(μ̂−μ) = bμ

m
+O(m−3/2), bμ := E(∇2ϕ(θi)σ

2
i )

2
,

and

var(μ̂) = σ 2
μ

n
+O

(
n−1m−1

)
.

Hence, letting z ∼ N(0,1), we have

μ̂−μ

σμ/
√

n

a∼ z+
√

n

m2

bμ

σμ

∼ N(cbμ/σμ,σ 2
μ),

as n/m2 → c2 < ∞ when n,m → ∞. The noise in ϑ1, . . . ,ϑn introduces bias unless
ϕ is linear. It can be corrected for by subtracting a plug-in estimator of bμ/m
from μ̂. Doing so, again under regularity conditions, delivers an estimator that
is asymptotically unbiased as long as n/m3 → 0.

2.1. Distribution function

The machinery from above cannot be applied to deduce the bias of F̂ as it is a step
function and, hence, nondifferentiable. We will derive its leading bias under the
following conditions. To state them, we let

εi := ϑi − θi

σi/
√

m

and write f for the density function of F.

Assumption 2. The variables εi are independent of (θi,σ
2
i ), and their distribu-

tion is absolutely continuous and has finite fourth-order moment. The function f
is three times differentiable with uniformly bounded derivatives, and one of the
following two sets of conditions holds:

A. The function E(σ
p+1
i |θi = θ) is p-times differentiable for p = 1,2, the joint

density of (θi,σi) exists, the conditional density function of θi given σi is twice
differentiable with respect to θi, and the derivatives are bounded in absolute value
by a function e(σi) such that E(e(σi)) < ∞.
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B. There exists a deterministic function σ so that σi = σ(θi) for all i; and σ is
three times differentiable and has uniformly bounded derivatives.

Assumption 2 imposes smoothness on certain densities and conditional
expectations but not on the estimator of F.

Define the function

β(θ) := E(σ 2
i |θi = θ) f (θ)

2
,

which is well behaved under Assumption 2, and let

bF(θ) := β ′(θ)

be its derivative. We also introduce the covariance function

σF(θ,θ ′) := F(θ ∧ θ ′)−F(θ)F(θ ′),

where we use θ ∧ θ ′ to denote min{θ,θ ′}. Proposition 1 summarizes the large-
sample properties of F̂.

Proposition 1. Let Assumptions 1 and 2 hold. Then, as n,m → ∞,

E(F̂(θ))−F(θ) = bF(θ)

m
+O(m−3/2), cov

(
F̂(θ),F̂(θ ′)

) = σF(θ,θ ′)
n

+O(n−1m−1),

where the order of the remainder terms is uniform in θ . If furthermore n/m2 → c ∈
[0, +∞), then

√
n

(
F̂(θ)−F(θ)− bF(θ)

m

)
�GF(θ),

where GF(θ) is a mean-zero Gaussian process with covariance function σF(θ1,θ2).

Proof. The proof is in Appendix A. �

To illustrate the result, suppose that σ 2
i is independent of θi and that θi has density

function

f (θ) = 1

ψ
φ

(
θ −η

ψ

)
,

as in the James and Stein (1961) problem. Letting σ 2 denote the mean of the σ 2
i ,

an application of Proposition 1 yields

bF(θ) = −θ −η

2

σ 2

ψ2
φ

(
θ −η

ψ

)
.

Thus, F̂(θ) is upward biased when θ < η and is downward biased when θ > η.
This finding is a manifestation of the phenomenon of regression to the mean
(or selection bias, or the winner’s curse; see Efron, 2011). It implies that the
empirical distribution tends to be too disperse.
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2.2. Quantile function

The bias in F̂ translates to bias in estimators of the quantile function. A natural
estimator of the quantile function is the left inverse of F̂. With this definition, the
plug-in estimator of the τ th quantile is

q̂(τ ) := ϑ(τn�),

where ϑ(τn�) is the τn�th-order statistic of our sample, where a� delivers the
smallest integer at least as large as a.

To calculate the leading bias in q̂(τ ), observe that it is an approximate solution
to the empirical moment condition

F̂(q)− τ = 0

(with respect to q). From Proposition 1, we know that

E(F̂(q(τ )))− τ = bF(q(τ ))

m
+O(m−3/2),

uniformly in τ , so the moment condition that defines the estimator q̂(τ ) is biased.
Letting

bq(τ ) := −bF(q(τ ))

f (q(τ ))
, σ 2

q (τ ) := τ(1− τ)

f (q(τ ))2
,

we obtain the following result.

Proposition 2. Let Assumptions 1 and 2 hold. For τ ∈ (0,1), assume that f > 0
in a neighborhood of q(τ ). Then,

√
n

(
q̂(τ )−q(τ )− bq(τ )

m

)
d→ N(0,σ 2

q (τ )),

as n,m → ∞ with n/m2 → c ∈ [0, +∞).

Proof. The proof is in Appendix A. �

As an example, when θi ∼ N(η,ψ2), independent of σ 2
i , we have

bq(τ ) = σ 2/ψ2

2
(q(τ )−η),

which, in line with our discussion on regression to the mean above, is positive for
all quantiles below the median and negative for all quantiles above the median. The
median itself is, in this particular case, estimated without plug-in bias of order m−1.
It will, of course, still be subject to the usual n−1 bias arising from the nonlinear
nature of the estimating equation.
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3. ESTIMATION AND INFERENCE

Propositions 1 and 2 complement the existing results on the bias in smooth
functionals (Fernández-Val and Lee, 2013; Okui and Yanagi, 2019) of the distri-
bution of heterogenous parameters in panel data models. Our calculations confirm
that the order of the bias in the empirical distribution and in the quantile function
is of the same order as in the smooth case, m−1.

3.1. Split-panel jackknife estimation

Importantly, our results validate a traditional jackknife approach to bias correction
as in Hahn and Newey (2004) and Dhaene and Jochmans (2015). Such an approach
exploits the fact that the bias is proportional to m−1 and is based on re-estimating
θ1, . . . ,θn from subsamples. The simplicity of such a method makes it very useful
in panel data applications, for example.

To illustrate how the jackknife would work here, consider a stationary (balanced)
n×m panel. Let ϑi,m1 be an estimator of θi constructed from the n×m1 subpanel
consisting of the first m1 cross sections only. Then

F̂m1(θ) := n−1
n∑

i=1

1{ϑi,m1 ≤ θ}

is the plug-in estimator of F(θ) based on this subpanel alone. From Proposition 1,
it follows that

E(F̂m1(θ)) = F(θ)+ bF(θ)

m1
+O(m−3/2

1 ).

Using the remaining m2 := m − m1 cross sections from the full panel, we can
equally calculate estimators ϑi,m2 and subsequently construct

F̂m2(θ) := n−1
n∑

i=1

1{ϑi,m2 ≤ θ},

for which

E(F̂m2(θ)) = F(θ)+ bF(θ)

m2
+O(m−3/2

2 )

follows in the same way. Consequently,

b̃F(θ) := m1F̂m1(θ)+m2F̂m2(θ)−mF̂(θ)

is a split-panel jackknife estimator of the leading bias term bF(θ). Hence,

F̃(θ) := F̂(θ)− b̃F(θ)

m

is a nonparametric bias-corrected estimator.

https://doi.org/10.1017/S0266466622000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000378


INFERENCE ON A DISTRIBUTION FROM NOISY DRAWS 69

A jackknife estimator of the quantile function can be defined in the same
way. Moreover, let ϑ(τn�),m1 and ϑ(τn�),m2 be the τn�th-order statistic of the re-
estimated quantities in the first and second subsamples, respectively. Recall that
ϑ(τn�),m1 is the (approximate) solution to F̂m1(q)− τ = 0, and so is our estimator
of q(τ ) as obtained from the information in the n×m1 subpanel only. As before,

b̃q(τ ) := m1ϑ(τn�),m1 +m2ϑ(τn�),m2 −mϑ(τn�)

is a nonparametric estimator of bq(τ ) that gives rise to a jackknife bias-corrected
estimator of the quantile function.

The large-sample behavior of these jackknife estimators is the same as for the
analytic corrections in Propositions 3 and 4. The split-sample jackknife is simple
to implement but requires access to the original data from which ϑ1, . . . ,ϑn were
computed. This can be infeasible in meta-analysis problems, where each of the ϑi

is an estimator constructed from a different dataset that need not all be accessible.
It can also be complicated in structural econometric models, where ϑi may be the
solution to a cumbersome optimization program that can be time-consuming to
solve. We discuss an alternative bias-correction estimator next.

3.2. Analytic bias correction

We will formulate regularity conditions for a plug-in estimator of the bias to be
consistent under the maintained assumption that the σ 2

1 , . . . ,σ 2
m are known. We

conjecture that, under suitable conditions, the results below will continue to go
through when the σ 2

i are replaced by estimators.
A bias-corrected estimator based on Proposition 1 takes the form

F̌(θ) := F̂(θ)− b̂F(θ)

m
, b̂F(θ) := −

(nh2)−1 ∑n
i=1 σ 2

i k′
(

ϑi−θ

h

)
2

,

where k′ is the derivative of kernel function k and h is a nonnegative band-
width parameter. Thus, we estimate the bias using standard kernel methods. For
simplicity, we will use a Gaussian kernel throughout, so k′(η) := −ηφ(η).

We establish the asymptotic behavior of F̌ under the following conditions.

Assumption 3.
(i) The conditional density of θi given σi is five times differentiable with respect to
θi and the derivatives are bounded in absolute value by a function e(σi) such that
E(e(σi)) < ∞.
(ii) There exists an integer ω > 2, and real numbers κ > 1+(1−ω−1)−1 and η > 0
so that supθ (1 + |θ |κ) f (θ) = O(1) and supθ (1 + |θ |1+η) |∇1bF(θ)| = O(1), and
supθ |bF(θ)| = O(1).
(iii) The density of ε, g, satisfies g(ε) ≤ C (1 + |ε|)−α for finite constant C and
α ≥ κ +1.
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Assumption 3 contains simple smoothness and boundedness requirements on
the conditional density of θi given σ 2

i , as well as tail conditions on the marginal
density of the θi and on the bias function bF(θ).

We have the following result.

Proposition 3. Let Assumptions 1–3 hold, and let ε := (3 −ω−1)ω−1 > 0. If
h = O(m−1/2), h−1 = O(m2/3−4/9ε), and h−1 = O(n), as n → ∞ and m → ∞ with
n/m4 → 0, then

√
n(F̌(θ)−F(θ)) �GF(θ)

as a stochastic process indexed by θ , whereGF(θ) is a mean-zero Gaussian process
with covariance function σF(θ1,θ2).

Proof. The proof is in Appendix A.5. �

The implications of Proposition 3 are qualitatively similar to those for smooth
functionals discussed above. Indeed, for any fixed θ , it implies that

F̌(θ)
a∼ N(F(θ),F(θ)(1−F(θ))/n)

as n → ∞ and m → ∞ with n/m4 → 0. Thus, the leading bias is removed from F̂
without incurring any cost in terms of (asymptotic) precision. Given the correction
term, the sample variance of

1{ϑi ≤ θ}+ 1

2

1

mh2
σ 2

i κ ′
(

ϑi − θ

h

)

is a more natural basis for inference in small samples than is that of 1{ϑi ≤ θ}.
A data-driven way of choosing h is by cross validation. A plug-in estimator

of the integrated squared error
∫ +∞
−∞ (F̌(θ) − F(θ))2 dθ (up to multiplicative and

additive constants) is

v(h) :=
n∑

i=1

n∑
j=1

σ 2
i σ 2

j

h2
φ′(ϑi,ϑj;h)+

n∑
i=1

∑
j �=i

σ 2
i
h

(
mφ′

(
ϑi −ϑj

h

)
− nm

n−1
φ

(
ϑi −ϑj

h

))
,

where we use the shorthand

φ′(ϑi,ϑj;h) := 1

4

1√
2h

φ

(
ϑi −ϑj√

2h

)(
1

2
− (ϑi +ϑj)

2

4h2
+ ϑiϑj

h2

)
.

See Appendix B for details on the derivation. The cross-validated bandwidth then
is ȟ := argminh v(h) on the interval (0, +∞).
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Now, turn the bias-corrected estimation of the quantile function. Proposition 2
readily suggests a bias-corrected estimator of the form

q̂(τ )− b̂q(τ )

m
, b̂q(τ ) := − b̂F(q̂(τ ))

f̂ (q̂(τ ))
,

using obvious notation. While (under suitable regularity conditions) such an
estimator successfully reduces bias, it has the unattractive property that it requires
a nonparametric estimator of the density f, which further shows up in the
denominator.

An alternative estimator that avoids this issue is

q̌(τ ) := ϑ(τ̂∗n�), τ̂ ∗ := τ + b̂F(q̂(τ ))

m
.

The justification for this estimator comes from the fact that E(F̂(q(τ ))) − τ ∗ =
O(m−2), where τ ∗ = τ +bF(q(τ ))/m, and its interpretation is intuitive. Given the
noise in the ϑi relative to the θi, the empirical distribution of the former is too heavy-
tailed relative to the latter, and so q̂(τ ) estimates a quantile that is too extreme, on
average. Changing the quantile of interest from τ to τ ∗ adjusts the naive estimator
and corrects for regression to the mean.

Proposition 4. Let the assumptions stated in Proposition 3 hold. For τ ∈ (0,1),
assume that f > 0 in a neighborhood of q(τ ). Then,

√
n
(
q̌(τ )−q(τ )

) d→ N(0,σ 2
q (τ )),

as n,m → ∞ with n/m4 → 0.

Proof. The proof is in Appendix A.5. �

The corrected estimator has the same asymptotic variance as the uncorrected
estimator. It is well known that plug-in estimators of σ 2

q can perform quite poorly
in small samples (Maritz and Jarrett, 1978). Typically, researchers rely on the
bootstrap, and we suggest doing so here. Moreover, draw (many) random samples
of size n from the original sample ϑ1, . . . ,ϑn and re-estimate q(τ ) by the bias-
corrected estimator for each such sample. Then construct confidence intervals for
q(τ ) using the percentiles of the empirical distribution of these estimates. Note that,
again, this bootstrap procedure does not involve re-estimation of the individual θi.

4. NUMERICAL ILLUSTRATIONS

4.1. Simulated data

To support our theory, we provide simulation results for a James and Stein (1961)
problem where θi ∼ N(0,ψ2) and we have access to an n×m panel on independent
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realizations of the random variable

xit|θi ∼ N(θi,σ
2).

This setup is a simple random-coefficient model. It is similar to the classic many
normal means problem of Neyman and Scott (1948). While their focus was on
consistent estimation of the within-group variance, σ 2, for fixed m, our focus is on
between-group characteristics and the distribution of the θi as a whole. We estimate
θi by the fixed-effect estimator, i.e.,

ϑi = m−1
m∑

t=1

xit.

The sampling variance of ϑi|θi is σ 2/m. Rather than assuming this variance to be
known, we implement our analytical bias correction using the estimator

s2
i := (m−1)−1

m∑
t=1

(xit −ϑi)
2.

We do not make use of the fact that the ϑi are homoskedastic in estimating the
noise or in constructing the bias correction. Moreover, the implementation of our
procedure is nonparametric in the noise distribution.

A deconvolution argument implies that

ϑi ∼ N(0,ψ2 +σ 2/m).

Thus, indeed, the empirical distribution of the fixed-effect estimator is too fat-
tailed. In particular, the sample variance of ϑ1, . . . ,ϑn,

ψ̂2 := 1

n−1

n∑
i=1

(ϑi −ϑ)2, ϑ := n−1
n∑

i=1

ϑi,

is a biased estimator of ψ2. To illustrate how this invalidates inference in typically
sized datasets, we simulated data for ψ2 = 1 (so F is standard normal) and σ 2 = 5.
The panel dimensions (n,m) reported on are (50,3), (100,4), and (200,5). Table 1
reports the bias and standard deviation of ψ̂2 as well as the empirical rejection
frequency of the usual two-sided t-test for the null that ψ2 = 1. The nominal size
is set to 5%. In practice, however, the test rejects in virtually all of the 10,000
replications. The table provides the same summary statistics for the bias-corrected
estimator

ψ̌2 := 1

n−1

n∑
i=1

(
(ϑi −ϑ)2 − s2

i

m

)
.

The adjustment reduces the estimator’s bias relative to its standard error and brings
down the empirical rejection frequencies to just over their nominal value for the
sample sizes considered.
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Table 1. Inference on ψ2 in the James–Stein problem from n×m panel data

Bias Std SE/Std Size (5%)

n m ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2

50 3 1.616 −0.054 0.525 0.577 0.964 0.971 0.973 0.082

100 4 1.224 −0.028 0.321 0.337 0.966 0.969 0.997 0.073

200 5 0.989 −0.010 0.199 0.205 0.985 0.985 1.000 0.062

Notes: ψ̂2 is the plug-in estimator of ψ2. ψ̌2 is its (analytically) bias-corrected version constructed
using estimators of the variance of the noise distributions. The table reports the bias and standard
deviation of these estimators, along with the ratio of the average standard error to the standard deviation
and empirical rejection frequencies of a two-sided t-test for the null that ψ2 = 1, which is the value
with which the data were generated.

A popular approach in empirical work to deal with noise in ϑ1, . . . ,ϑn is
shrinkage estimation (see, e.g., Chetty et al., 2014). This procedure is not designed
to improve estimation and inference of F or its moments, however. In the current
setting, the (infeasible, parametric) shrinkage estimator is simply(

1− σ 2/m

σ 2/m+ψ2

)
ϑi.

Its exact sampling variance is(
ψ2

σ 2/m+ψ2

)
ψ2 = ψ2 − σ 2/ψ2

m
+o(m−1).

It follows that the sample variance of the shrunken ϑ1, . . . ,ϑn has a bias that is
of the same order as that in the sample variance of ϑ1, . . . ,ϑn. Interestingly, note
that, here, this estimator overcorrects for the presence of noise, and so will be
underestimating the true variance, ψ2, on average.

The upper two plots in Figures 1–3 provide simulation results for the distribution
function F for the same Monte Carlo designs (see the online version of the paper
for color figures). The figures deal with the sample sizes (50,3), (100,4), (200,5),
respectively. The left plots contain (the average over the Monte Carlo replications
of) the analytically bias-corrected estimator (solid blue line), with the bandwidth
chosen according to a cross-validation procedure, together with 95% confidence
bands placed around in. Each of the plots also provides the average of the naive
plug-in estimator (dashed red line), the empirical distribution of the Empirical-
Bayes point estimates (dash-dotted purple line), and the actual standard-normal
distribution that is being estimated (solid black line).5 The upper right plots in

5Empirical Bayes was implemented nonparametrically (and correctly assuming homoskedasticity) based on the
formula stated in the Introduction using a kernel estimator and the optimal bandwidth that assumes knowledge of
the normality of the target distribution.
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Figure 1. Estimation of F and q in the James–Stein problem from 50 × 3 panel data. Notes: The
upper plots contain the average (over the Monte Carlo replications) distribution function (full blue
line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right
plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each
plot also contains the true curve (full black line) and the average of the empirical distribution function
of the estimated θi (dashed red line) and of their Empirical-Bayes adjustments (dash-dotted purple
line). The lower plots contain corresponding QQ-plots of the average bias-corrected quantile function
(blue ∗) at each of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black
line) corresponds to the truth. Average estimates for the naive (red ∗) and Empirical-Bayes (purple ∗)
estimators are equally pictured.

Figures 1–3 have the same structure, and only now the bias-corrected estimator
being plotted is the split-sample jackknife.

The simulations clearly show the substantial bias in the naive estimator. This
bias becomes more pronounced relative to its standard error as the sample size
grows and, indeed, F̂ starts falling outside of the confidence bands (of the bias
corrected estimator) as the sample size increases. The Empirical-Bayes estimator
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Figure 2. Estimation of F and q in the James–Stein problem from 100 × 4 panel data. Notes: The
upper plots contain the average (over the Monte Carlo replications) distribution function (full blue
line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right
plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each
plot also contains the true curve (full black line) and the average of the empirical distribution function
of the estimated θi (dashed red line) and of their Empirical-Bayes adjustments (dash-dotted purple
line). The lower plots contain corresponding QQ-plots of the average bias-corrected quantile function
(blue ∗) at each of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black
line) corresponds to the truth. Average estimates for the naive (red ∗) and Empirical-Bayes (purple ∗)
estimators are equally pictured.

is less biased than F̂. However, its bias is of the same order and so, as the sample
size grows, it does not move toward F but, rather, toward F̂.6 The confidence
bands of F̌ and F̃ settle around F as the sample grows. The results also show near

6Recall that the Empirical-Bayes estimator is not designed for inference on F but, instead, aims to minimize risk
in estimating θ1, . . . ,θn. In terms of RMSE, it dominates ϑ1, . . . ,ϑn. For the three sample sizes considered here, the
RMSEs are 1.667, 1.246, and 1.000 for the plug-in estimators and 1.233, 1.018, 0.874 for Empirical Bayes.
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Figure 3. Estimation of F and q in the James–Stein problem from 200 × 5 panel data. Notes: The
upper plots contain the average (over the Monte Carlo replications) distribution function (full blue
line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right
plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each
plot also contains the true curve (full black line) and the average of the empirical distribution function
of the estimated θi (dashed red line) and of their Empirical-Bayes adjustments (dash-dotted purple
line). The lower plots contain corresponding QQ-plots of the average bias-corrected quantile function
(blue ∗) at each of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black
line) corresponds to the truth. Average estimates for the naive (red ∗) and Empirical-Bayes (purple ∗)
estimators are equally pictured.

identical performance of the split-sample approach and the analytical approach
based on our bias formula. Indeed, the curves in the left and right plots are virtually
indistinguishable.

The reduction in bias in our estimators of F is again sufficient to bring the
empirical size of tests in line with their nominal size. To see this, Table 2 provides
empirical rejection frequencies of two-sided tests at the 5% level for F at each of its
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Table 2. Inference on F in the James–Stein problem from n×m panel data

τ .1 .2 .3 .4 .5 .6 .7 .8 .9

(n,m) = (50,3)

F̂ 0.4814 0.5518 0.3695 0.1530 0.0681 0.1598 0.3801 0.5610 0.4828

F̌ 0.0600 0.0928 0.1039 0.0785 0.0563 0.0745 0.1029 0.0891 0.0628

(n,m) = (100,4)

F̂ 0.6962 0.7304 0.5564 0.2280 0.0566 0.2312 0.5586 0.7352 0.7034

F̌ 0.0608 0.0848 0.0920 0.0664 0.0494 0.0734 0.0932 0.0782 0.0532

(n,m) = (200,5)

F̂ 0.926 0.902 0.7634 0.3288 0.0576 0.3212 0.7646 0.903 0.9146

F̌ 0.0536 0.0828 0.0996 0.0770 0.0496 0.0792 0.0978 0.0780 0.0554

Notes: F̂ is the empirical distribution of the ϑi. F̌ is its (analytically) bias-corrected version constructed
using estimators of the variance of the noise distributions. The table provides, for several combinations
of (n,m), rejection frequencies of the associated two-sided tests of the null that F(�−1(τ )) = τ for a
range of different quantiles τ ; the data were generated with F set to the standard-normal distribution
function.

deciles using both F̂ and F̌. The rejection frequencies based on the naive estimator
are much too high for all sample sizes and deciles and get worse as the sample gets
larger. Empirical size is much closer to nominal size after adjusting for noise, and
this improvement is observed at all deciles of the distribution.

The lower two plots in Figures 1–3 provide corresponding simulation results for
estimators of the deciles of F. The presentation is constructed around a QQ-plot of
the standard normal, pictured as the dash-dotted black line in each plot. Along the
QQ-plot, the averages (over the Monte Carlo replications) of the naive estimator
(red), Empirical Bayes (purple), and the bias-corrected quantiles (blue) are shown
by ∗ symbols. Again, the left plots deal with the analytical correction and the right
plots show results for the split-sample approach. Confidence intervals around the
corrected estimators (in blue, -o) are also again provided. Like the naive estimator,
the Empirical-Bayes estimators reported are the appropriate order statistics of
ϑ1, . . . ,ϑn, after shrinkage has been applied to each. Visual inspection reveals that
the results are in line with those obtained for the distribution function. As the
sample size grows, only q̌ successfully adjusts for bias arising from estimation
noise in ϑ1, . . . ,ϑn. Here, the split-sample correction is slightly more effective than
our analytical approach.

4.2. Empirical illustration

We use quarterly panel data on a set of 48 consumer price index items in 52 U.S.
cities. The data span the period of 1990–2007, yielding 72 time series observations.
They were used by Parsley and Wei (2001), Crucini, Shintani, and Tsuruga (2015),
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Figure 4. Deviations from the law of one price. Notes: The empirical distribution functions of
the means (left), standard deviations (middle), and autocorrelations (right) of the time series of
xcit = log(pcit)− log(p1it) for all city/item combinations (dashed red line) along with 95% confidence
bands constructed from the split-sample jackknife estimator of each of these distributions (shaded blue
region).

and Okui and Yanagi (2019, 2020) to investigate the cross-sectional heterogeneity
in deviations from the law of one price. Let pcit be the price of item i in city c at
time t and define the random variable

xcit = log

(
pcit

p1it

)
= log(pcit)− log(p1it)

for all (52 − 1) × 48 = 2,448 city/item combinations apart from the reference
city (which here is Albuquerque, New Mexico). For each city/item combination,
we estimate the mean, standard deviation, and first-order autocorrelation of xcit

nonparametrically from the time dimension of our panel. Our interest lies in
the distribution functions of their population counterparts. We estimate these
three distributions by the empirical distributions of the cross-sectional estimates,
and then correct for plug-in bias via the split-sample jackknife procedure. Our
results complement the analysis of Okui and Yanagi (2020, Figure 1), which gives
corresponding estimates of the associated density functions.

The results are collected in Figure 4. The plots contain the empirical distribution
functions (dashed red lines) together with 95% confidence bands based on the split-
sample jackknife (shaded blue regions). The correction for regression to the mean
to the empirical distribution is clearly visible for the mean (left plot). It is also
statistically significant, with the tails of the empirical distribution falling out of
the confidence region. The sample standard deviation and autocorrelation obtained
from the time series are biased estimators and so the empirical distribution function
for these parameters (middle and right plots, respectively) suffer from an additional
bias that is of the same order of magnitude as is the bias due to estimation noise (see
the discussion on Footnote 4). The split-sample jackknife corrects for both these
sources of bias automatically. Here, the bias adjustment leads to a pronounced
shift of the empirical distribution; the corrected distribution functions all but
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stochastically dominate the naive plug-in estimators. The differences between the
corrected and uncorrected functions are quantitatively large, and, given the small
standard error, they are also statistically significant.

5. CONCLUSIONS

In this paper, we have considered inference on the distribution of latent variables
from noisy measurements. In an asymptotic embedding where the variance of
the noise shrinks with the sample size, we have derived the leading bias in the
empirical distribution function of the noisy measurements and suggested both
an analytical and a jackknife correction. They provide a simple and numerically
stable (approximate) solution to a generalized deconvolution problem that, in addi-
tion, yields valid inference procedures. The split-sample jackknife is particularly
straightforward to implement, and we recommend its use whenever possible.

APPENDIX A:

Notational Convention: We let ∇q
pϕ denote the qth derivative of ϕ with respect to

its pth argument. We omit the subscript for univariate ϕ.

Proof of Proposition 1

The following result is useful to prove Proposition 1.

Lemma A.1 (Komlós, Major, and Tusnády, 1975). Let Gn denote the empirical cumu-
lative distribution of an i.i.d. sample of size n from a uniform distribution on [0,1]. Let Bn
denote a sequence of Brownian bridges. Then,

sup
u∈[0,1]

∣∣√n(Gn(u)−u)−Bn(u)
∣∣ = Op(log(n)/

√
n).

Proof of Proposition 1. We begin with the bias calculation. Suppose, first, that Part A
of Assumption 2 holds. Then, (θi,σi) have a joint density, h(θi,σi), say. We will denote the
marginal density of σi by h(σi) and the conditional density of θi given σi by h(θi|σi). For
any real number δ, let

G(θ,δ) := E(1{θi + δσi ≤ θ}) = ∫ σ
σ

∫ θ−δσ
−∞ h(ϑ,σ )dϑ dσ .

Note that G(θ,0) = F(θ) and that

E(F̂(θ)) = E(1{ϑi ≤ θ}) = E

(
1

{
θi + εi√

m
σi ≤ θ

})
= E

(
G(θ,εi/

√
m)

)
. (A.1)

Assumption 2 implies that G is smooth and differentiable in its second argument. By
definition of the function e(σi),
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sup
θ

sup
δ

|∇3
2 G(θ,δ)| = sup

θ

sup
δ

∣∣∣∫ σ
σ σ 3 ∇2

1 h(θ − δσ |σ)h(σ )dσ

∣∣∣ ≤ ∫ σ
σ σ 3 e(σ )h(σ )dσ,

(A.2)

which equals E(σ 3
i e(σi)) and is finite by assumption. Therefore, by (A.1) and a third-order

expansion of G(θ,εi/
√

m) in its second argument around zero, we find that

E(F̂(θ)) = F(θ)+ 1

2

∇2
2 G(θ,0)

m
+ 1

6

E(ε3
i ∇3

2 G(θ,ε∗
i /

√
m))

m3/2
= 1

2

∇2
2 G(θ,0)

m
+O(m−3/2),

where ε∗
i is some value between zero and εi, and where, in addition to (A.2), we have used

that E(εi) = 0 and E(ε2
i ) = 1 by construction and that E(|εi|3) < ∞ by assumption. By

direct calculation,

∇2
2 G(θ,0) = 2bF(θ).

Therefore,

E(F̂(θ)) = F(θ)+ bF(θ)

m
+O(m−3/2),

as claimed.
Suppose, next, that Part B of Assumption 2 holds. Then, we have a deterministic

relationship between θi and σi. We may define G(θ,δ) as above but have to take care
when Taylor expanding in δ, as the function may be noncontinuous. A noncontinuity occurs
whenever the number of solutions t (on the real line) to the equation t+δσ (t) = θ changes.
However, at δ = 0, the only solution to this equation is t = θ , and because we assume that
the function σ(θ) has uniformly bounded derivative σ ′, there always exists η > 0 such that,
for all δ ∈ (−η,η) and all real θ , the equation t + δσ (t) = θ has a unique solution in t on
the real line. We denote this solution by t∗(θ,δ), that is, we have t∗(θ,δ)+δσ (t∗(θ,δ)) = θ .
Using this, we find that, for δ ∈ (−η,η), we have

G(θ,δ) = F(t∗(θ,δ)), ∇1
2 t∗(θ,δ) = − σ(t∗(θ,δ))

1+ δ σ ′(t∗(θ,δ))
,

where the last equation is obtained by taking derivatives of t∗(θ,δ)+ δσ (t∗(θ,δ)) = θ with
respect to δ and then solving for the derivative. Because we have that t∗(θ,0) = θ we then
find

G(θ,0) = F(θ), ∇1
2 G(θ,0) = −σ(θ)f (θ), ∇2

2 G(θ,0) = 2bF(θ).

Differentiating further, we see that ∇3
2 G(θ,0), and ∇4

2 G(θ,0) are functions of the derivatives
of f and σ up to third order. Our assumption that these derivatives are uniformly bounded
implies that

sup
θ

sup
δ∈[−η,η]

∣∣∣∇4
2 G(θ,δ)

∣∣∣ < ∞. (A.3)

The only obstacle that now prevents us from proceeding with an expansion as we did under
Assumption 2.A is that the bound (A.3) is restricted to a neighborhood around zero. To
complete the derivation of the bias, we argue that the restriction that δ ∈ (−η,η) relaxes
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sufficiently fast as m grows. We do so as follows. Note, first, that, by Markov’s inequality,

P(|εi| > η
√

m) ≤ m−2 E(ε4
i )

η4
= O(m−2).

Then,

E(F̂(θ)) = E
(
G(θ,ε/

√
m)

)
= E

({|εi| ≤ η
√

m}G(θ,ε/
√

m)
)+E

({|εi| > η
√

m}G(θ,ε/
√

m)
)

= E
({|εi| ≤ η

√
m}G(θ,ε/

√
m)

)+O(m−2),

uniformly in θ , because

sup
θ

E({|εi| > η
√

m}G(θ,εi/
√

m)) ≤ P(|εi| > η
√

m) = O(m−2),

noting that supθ supδ G(θ,δ) ≤ 1 by definition of the function G. Next, a Taylor expansion
of G around δ = 0 gives

E(F̂(θ)) = E(G(θ,εi/
√

m)) = F(θ)+ 1

2

∇2
2 G(θ,0)

m
+ 1

6

∇3
2 G(θ,0)

m3/2
+R(θ)+O(m−2),

where we have used that F(θ) = G(θ,0), that E(εi) = 0, and that E(ε2
i ) = 1, and have

introduced the notational shorthand

R(θ) := R2(θ)−R1(θ)

for

R1(θ) := P(|εi| > η
√

m)F(θ)

+ E({|εi| > η
√

m}εi)
∇1

2 G(θ,0)√
m

+ 1

2
E({|εi| > η

√
m}ε2

i )
∇2

2 G(θ,0)

m

+ 1

6
E({|εi| > η

√
m}ε3

i )
∇2

3 G(θ,0)

m3/2

and

R2(θ) := 1

24

E({|εi| ≤ η
√

m}ε4
i ∇4

2 G(θ,ε∗
i /

√
m))

m2
;

here, ε∗
i lies in between zero and εi. To validate our bias expression, it remains only to

establish that supθ |R(θ)| = O(m−3/2). To do so, we show that supθ |R1(θ)| = O(m−2), and
that supθ |R2(θ)| = O(m−2), in turn. By Hölder’s inequality,

|E({|εi| > η
√

m}εi)| ≤ E({|εi| > η
√

m})3/4 E(ε4
i )

1/4 = O(P(|εi| > η
√

m)
3/4) = O(m−3/2).
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In the same way,

|E({|εi| > η
√

m}ε2
i ) = O(m−1), |E({|εi| > η

√
m}ε3

i ) = O(m−1/2),

follow. Consequently,

sup
θ

|R1(θ)| = O(m−2) sup
θ

(1+∇1
2 G(θ,0)+∇2

2 G(θ,0)+∇3
2 G(θ,0)) = O(m−2),

using that all relevant derivatives on the right-hand side are bounded. Next, noting that, as
|ε∗

i | ≤ |εi|, the event |εi|/√m ≤ η implies that |ε∗
i |/√m ≤ η, we have

sup
θ

|R2(θ)| = 1

24

supθ E({|εi|/√m ≤ η}ε4
i ∇4

2 G(θ,ε∗
i /

√
m))

m2

≤ 1

24

supθ supδ∈[−η,η]|∇4
2 G(θ,δ)|E(ε4

i )

m2

= O(m−2),

because of (A.3). Therefore, supθ |R(θ)| = O(m−2), and so

E(F̂(θ)) = F(θ)+ bF(θ)

m
+O(m−3/2),

as before.
Now, turning to the result on the covariance, note that

cov(F̂(θ1),F̂(θ2)) = E(F̂(θ1 ∧ θ2))−E(F̂(θ1))E(F̂(θ2))

n

depends only on E(F̂(θ)) which, up to O(m−3/2) and uniformly in θ , has been calculated
above. Moreover,

cov(F̂(θ1),F̂(θ2)) =
(

F(θ1 ∧ θ2)+O(m−1)
)

−
(

F(θ1)+O(m−1)
)(

F(θ2)+O(m−1)
)

n

= F(θ1 ∧ θ2)−F(θ1)F(θ2)

n
+O(n−1m−1)

= σF(θ1,θ2)

n
+O(n−1m−1),

as stated in the proposition.
To complete the proof, it remains only to verify the limit distribution of the scaled

empirical distribution function. Let Fm(θ) := E(1{ϑi ≤ θ}), the distribution function of
ϑi. Our assumptions imply that Fm is continuous and that it has no mass points. With
ui := Fm(ϑi), we therefore have that ui is i.i.d. uniformly distributed on [0,1] by the
probability integral transform. An application of Lemma A.1 with u = Fm(θ) and exploiting
monotonicity of distribution functions then gives

sup
θ

∣∣∣√n(F̂(θ)−Fm(θ))−Bn(Fm(θ))

∣∣∣ = Op(log(n)/
√

n).
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We have already shown that, uniformly in θ ,

Fm(θ) = F(θ)+ bF(θ)

m
+O(m−3/2).

Therefore, using that n/m3 → 0 if n/m2 → c ∈ [0, +∞) as n,m → ∞,

√
n(F̂(θ)−Fm(θ)) = √

n

(
F̂(θ)−F(θ)− bF(θ)

m

)
+o(1),

holds uniformly in θ . Furthermore, our bias calculation implies that Fm(θ)−F(θ) converges
to zero uniformly in θ as m → 0, so that applying Lévy’s modulus-of-continuity theorem,
that is,

lim
ε→0

sup
t∈[0,1−ε]

|Bn(t)−Bn(t + ε)|√
ε log(1/ε)

= O(1), ε > 0,

to our problem yields supθ |Bn(Fm(θ)) − Bn(F(θ))| p→ 0 as m → ∞. We thus have
that Bn(Fm(θ)) � Bn(F(θ)). Putting everything together and noting that, by definition,
Bn(F(θ)) = GF(θ), we obtain

sup
θ

∣∣∣∣√n

(
F̂(θ)−F(θ)− bF(θ)

m

)
−GF(θ)

∣∣∣∣ = op(1),

which completes the proof of the proposition. �

Proof of Proposition 2

Lemma A.2. Let Assumptions 1 and 2 hold. Let fm denote the density function of ϑi.
Then:

(i) supθ |fm(θ)− f (θ)| = O(m−1),
(ii) supθ |∇1fm(θ)−∇1f (θ)| = O(m−1),
(iii) supθ |∇2fm(θ)−∇2f (θ)| = O(1),
(iv) supθ |∇3fm(θ)−∇3f (θ)| = O(1).

Proof. From the argument in the proof of Proposition 1, we have

Fm(θ)−F(θ) = 1

2

E(ε2
i H(θ,ε∗

i /
√

m))

m

by a second-order expansion, where ε∗
i is a value between zero and εi and we introduce the

function

H(θ,δ) := ∫ σ
σ σ 2∇1

1 h(θ − δσ |σ)h(σ )dσ,

where h(θi|σi) and h(σi) are the density functions of θi given σi and of σi, respectively.
Differentiating with respect to θ yields the first conclusion of the lemma as

sup
θ

|fm(θ)− f (θ)| = sup
θ

∣∣∣∣∣1

2

E(ε2
i ∇1

1 H(θ,ε∗
i /

√
m))

m

∣∣∣∣∣ ≤ E(σ 2
i )

m

supθ supδ |∇1
1 H(θ,δ)|

2
= O(m−1),
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which follows from the inequality

sup
θ

sup
δ

|∇1
1 H(θ,δ)| = sup

θ

sup
δ

∣∣∣∫ σ
σ σ 3 ∇2

1 h(θ − δσ |σ)h(σ )dσ

∣∣∣ ≤ ∫ σ
σ σ 3 e(σ )h(σ )dσ < ∞

and the definition of the function e(σ ) in Assumption 2. The second conclusion of the
lemma follows in the same manner, differentiating once more. Finally, the third and fourth
conclusions are obtained similarly. The point of departure is now the following identity,
which is derived in the proof of Proposition 1,

Fm(θ) = E
(
G(θ,ε∗

i /
√

m)
)
,

where

G(θ,δ) := ∫ σ
σ

∫ θ−δσ
−∞ h(ϑ |σ)h(σ )dϑ dσ .

Repeated differentiation shows that

sup
θ

sup
δ

|∇3
1 G(θ,δ)| = sup

θ

sup
δ

|∫ σ
σ ∇2

1 h(θ − δσ |σ)h(σ )dσ | ≤ |∫ σ
σ e(σ )h(σ )dσ | < ∞,

sup
θ

sup
δ

|∇4
1 G(θ,δ)| = sup

θ

sup
δ

|∫ σ
σ ∇3

1 h(θ − δσ |σ)h(σ )dσ | ≤ |∫ σ
σ e(σ )h(σ )dσ | < ∞,

and so supθ |∇3Fm(θ)| = O(1) and supθ |∇4Fm(θ)| = O(1) follow. Furthermore,

sup
θ

|∇2fm(θ)−∇2f (θ)| ≤ sup
θ

|∇2fm(θ)|+ sup
θ

|∇2f (θ)| = O(1),

sup
θ

|∇3fm(θ)−∇3f (θ)| ≤ sup
θ

|∇3fm(θ)|+ sup
θ

|∇3f (θ)| = O(1),

follows because f has uniformly bounded derivatives up to third order by assumption. This
completes the proof. �

Proof of Proposition 2. The ϑi are i.i.d. draws from the distribution Fm which according
to Lemma A.2 has nondegenerate density fm, that is, the ϑi are continuously distributed.
Thus,

u(k) := Fm(ϑ(k))

is the kth-order statistic of a uniform sample. We set k = τn� for the rest of the proof. Then,
q̂(τ ) = ϑ(k). Since k/n → τ by construction, it is well known that

√
n(u(k) − τ)

d→ N(0,τ (1− τ)). (A.4)

Let qm(τ ) := F−1
m (τ ), the τ th-quantile of Fm. By expanding the function F−1

m around τ ,
we find that

q̂(τ ) = F−1
m (u(k)) = qm(τ )+ u(k) − τ

fm(qm(τ ))
+ r(k)
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for the remainder term

r(k) := − f ′
m(ξ(k))

fm(ξ(k))
3

(
u(k) − τ

)2
,

where ξ(k) is a value between F−1
m (τ ) and F−1

m (u(k)). From (A.4), we have u(k) −
τ = OP(n−1/2). This implies that ξ(k)

p→ τ . Using Lemma A.2, we may conclude that

fm(ξ(k))
p→ fm(τ ) → f (τ ) > 0, and, therefore, that r(k) = Op(n−1). We thus have

q̂(τ ) = qm(τ )+ u(k) − τ

fm(qm(τ ))
+Op(n−1).

Again using Lemma A.2 and our assumption that f (θ) > 0 in a neighborhood of
q(τ ) = F−1(τ ), we have fm(qm(τ ))−1 = f (q(τ ))−1 +O(m−1), and therefore

q̂(τ ) = qm(τ )+ u(k) − τ

f (q(τ ))
+Op(n−1 +n−1/2m−1). (A.5)

From Proposition 1, we know Fm(θ) = E(F̂(θ)) = F(θ) + bF(θ)/m + O(m−3/2), and
therefore

qm(τ ) = q(τ )− bF(q(τ ))/f (q(τ ))

m
+O(m−3/2). (A.6)

Combining (A.4)–(A.6) gives the statement of the theorem. �

Proof of Proposition 3

Lemma A.3. Let the assumptions of Proposition 3 hold. Then:

(i) sup
θ

E(b̂F(θ)−bF(θ)) = O(m−1)+O(h2),

(ii) sup
θ

var(b̂F(θ)) = O(n−1h3),

(iii) sup
θ

(1+|θ |1+η) |∇1b̂F(θ)−∇1bF(θ)| = Op(h
−(ω+1)/ω).

Lemma A.4. Let Assumption 1 hold and define

bi(θ) := −σ 2
i

h2

φ′ (ϑi−θ
h

)
2

.

If f is bounded, then, for any ε > 0,

sup
θ

E(|bi(θ)−E(bi(θ))|ε)1/ε = O(h−2+ε−1
).

The proofs of those two lemmas are provided below, after the proof of the main text
results.
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Proof of Proposition 3. We first show that

sup
θ∈R

∣∣∣b̂F(θ)−bF(θ)

∣∣∣ = O(m−1)+O(h2)+O(n−1/2 h−3/2−ε).

The result of the proposition then follows readily. For a finite ν, introduce the function

t(θ) := sgn(θ)
1− (1+|θ |)−ν

ν
.

Note that t maps to the finite interval (−ν−1,ν−1) and is monotone increasing; moreover,
∇1t(θ) = (1+|θ |)−(1+ν). Now, consider the reparameterization τ = t(θ); note that τ lives
in a bounded interval. From Lemma A.3(iii), using the chain rule of differentiation, it
follows that

sup
τ∈(−ν−1,ν−1)

∣∣∣∇1
τ b̂F(t−1(τ ))−∇1

τ bF(t−1(τ ))

∣∣∣ = Op(h−(1+ω−1)), (A.7)

where we use the notation ∇τ to indicate derivatives with respect to τ . We therefore have
that b̂F(t−1(τ ))−bF(t−1(τ )), as a function τ , has a uniformly bounded Lipschitz constant.
Now, let Ih be a partition of (−ν,−ν−1) with subintervals that are (approximately) of length

lh := h3−ω−1
. Then, (A.7) implies that

sup
θ

|b̂F(θ)−bF(θ)| = sup
τ∈(−ν,ν)

|b̂F(t−1(τ ))−bF(t−1(τ ))|

is equal to

max
τ∈Ih

|b̂F(t−1(τ ))−bF(t−1(τ ))|+Op(h2). (A.8)

Here, the order of the remainder terms follows from the choice of lh. Now, introduce the
shorthand

�̂(θ) := b̂F(θ)−E(b̂F(θ)).

Then,

max
τ∈Ih

|b̂F(t−1(τ ))−bF(t−1(τ ))| ≤ max
τ∈Ih

|�̂(t−1(τ ))|+ sup
θ

|E(b̂F(θ))−bF(θ)|,

and so Lemma A.3(i) implies that

max
τ∈Ih

|b̂F(t−1(τ ))−bF(t−1(τ ))| ≤ max
τ∈Ih

|�̂(t−1(τ ))|+O(m−1 +h2).

Moving on, observe that the number of subintervals making up Ih is equal to l−1
h � =

h−3+ω−1�, where a� delivers the smallest integer at least as large as a. We therefore
have
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E

((
max
τ∈Ih

∣∣∣�̂(t−1(τ ))

∣∣∣)ω)
= E

(
max
τ∈Ih

∣∣∣�̂(t−1(τ ))

∣∣∣ω)

≤ E

⎛
⎝∑

τ∈Ih

∣∣∣�̂(t−1(τ ))

∣∣∣ω
⎞
⎠

=
∑
τ∈Ih

E
(∣∣∣�̂(t−1(τ ))

∣∣∣ω)
≤

⌈
h−3+1/ω

⌉
sup
θ∈R

E
∣∣∣�̂(θ)

∣∣∣ω.

(A.9)

Let bi(θ) := − 1
2 h−2 σ 2

i φ′ (ϑi−θ
h

)
and �i(θ) := bi(θ)−Ebi(θ). We may then write �̂(θ) =

n−1 ∑n
i=1 �i(θ). Notice that �i(θ) are independent and mean zero. By Rosenthal (1970,

Thm. 3), we therefore have that

⎛
⎝E

⎛
⎝

∣∣∣∣∣∣n−1/2
n∑

i=1

�i(θ)

∣∣∣∣∣∣ω
⎞
⎠

⎞
⎠

1/ω

is bounded from above by

c max

⎧⎪⎨
⎪⎩

⎛
⎝n−1

n∑
i=1

E
(
�i(θ)2

)⎞⎠
1/2

, n−1/2

⎛
⎝ n∑

i=1

E
(|�i(θ)|ω)⎞⎠

1/ω
⎫⎪⎬
⎪⎭,

where the constant c only depends on ω. Using Lemma A.3(ii), we obtain

sup
θ∈R

⎛
⎝n−1

n∑
i=1

E(�i(θ)2)

⎞
⎠

1/2

= sup
θ∈R

(
nvar b̂F(θ)

)1/2 = O(h−3/2).

Using Lemma A.4, we obtain

n−1/2 sup
θ∈R

⎛
⎝ n∑

i=1

E
(|�i(θ)|ω)1/ω

⎞
⎠ = n−1/2+1/ω sup

θ∈R
(
E |�i(θ)|ω)1/ω

= O(n−1/2+1/ω h−2+1/ω) = O(h−3/2),

where in the last step we used the condition that h−1 = O(n). We can therefore conclude
from Rosenthal’s inequality above that

(
sup
θ∈R

E
(
|�̂(θ)|ω

))1/ω

= n−1/2

⎛
⎝E

⎛
⎝

∣∣∣∣∣∣n−1/2
n∑

i=1

�i(θ)

∣∣∣∣∣∣ω
⎞
⎠

⎞
⎠

1/ω

= O(n−1/2h−3/2).

Using this and (A.9), we obtain

max
τ∈Ih

∣∣∣�̂(t−1(τ ))

∣∣∣ = O(h(−3+1/ω)/ω n−1/2 h−3/2) = O(n−1/2 h−3/2−ε),
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where ε = 3/ω−1/ω2. Combining this with (A.8) and (A.9), we thus conclude

sup
θ∈R

∣∣∣b̂F(θ)−bF(θ)

∣∣∣ = O(m−1)+O(h2)+O(n−1/2 h−3/2−ε),

as claimed.
Now, with h = O(m−1/2) and h−1 = O(n1−2ω−1

), we find

sup
θ∈R

√
n

m

∣∣∣b̂F(θ)−bF(θ)

∣∣∣ = OP(n1/2m−1h2 +n1/2m−2 +m−1h−3/2−ε)

= OP(n1/2m−2 +m−4/9ε2
)

= oP(1),

where in the last step we also used that n/m4 → 0 and that m → ∞. The result of
Proposition 3 now follows immediately from Proposition 1. �

Proof of Proposition 4

Let Gn(u) := F̂(F−1
m (u)) be the empirical distribution function of the i.i.d. sample

ui = Fm(ϑi). Lemma A.1 and Theorem 1 in Doss and Gill (1992) give

sup
τ∈[0,1]

∣∣√n
(
G

←
n (τ )− τ

)+Bn(τ )
∣∣ = oP(1), (A.10)

where G
←
n again denotes the left inverse of GnBn(τ ) is the sequence of Brownian bridges

that previously appeared in Lemma A.1.
Equation (A.10) yields

G
←
n (τ̂∗)−G

←
n (τ ) = (τ̂∗ − τ)−n−1/2 [

Bn(τ̂∗)−Bn(τ )
]+op(n−1/2).

Furthermore, τ̂∗ − τ = Op(m−1) follows from the results above. Lévy’s modulus-of-
continuity theorem then implies that Bn(τ̂∗)−Bn(τ ) = oP(1). Therefore,

G
←
n (τ̂∗)−G

←
n (τ ) = Op(m−1)+op(n−1/2).

By definition, we have q̌(τ ) = F̂←(τ̂∗) and q̂(τ ) = F̂←(τ ), and also that G
←
n (τ ) =

Fm(F̂←(τ )). Substituting this into the last displayed equation yields

Fm(q̌(τ ))−Fm(q̂(τ )) = Op(m−1)+op(n−1/2).

Lemma A.2 and our assumptions guarantee that Fm(τ ) has a density fm(τ ) that is bounded
from below in a neighborhood of q(τ ) for the quantile of interest τ . The last result therefore
also implies that

q̌(τ )− q̂(τ ) = Op(m−1)+op(n−1/2). (A.11)

Next, The result (A.10) implies
√

n(G←
n (τ ) − τ) � B(τ ) for a Brownian bridge B. For

q̌(τ ) = F̂←(τ̂∗), we have Fm(q̌(τ )) = G
←
n (τ̂∗), and therefore

√
n(Fm(q̌(τ ))− τ̂∗) � B(τ ).
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From Proposition 1, we know that Fm(θ) = E(F̂(θ)) = F(θ) + bF(θ)/m + O(m−2),
uniformly in θ . We then find

√
n

(
F(q̌(τ ))− τ + bF(q̌(τ ))− b̂F(q̂(τ ))

m
+O(m−2)

)
d→ N(0,τ (1− τ)).

From the proof of Proposition 3, we also know that supθ (
√

n/m)

∣∣∣b̂F(θ)−bF(θ)

∣∣∣ = op(1),

and therefore

√
n

(
F(q̌(τ ))− τ + bF(q̌(τ ))−bF(q̂(τ ))

m
+O(m−2)

)
d→ N(0,τ (1− τ)).

Smoothness of the function bF and (A.11) imply bF(q̌(τ )) − bF(q̂(τ )) = O(m−1) +
op(n−1/2). We thus obtain

√
n
(
F(q̌(τ ))− τ

) d→ N(0,τ (1− τ)) An application of the delta
method with transformation F−1 then gives the result. This completes the proof. �

APPENDIX B: Proofs of Lemmas A.3 and A.4

Before proving Lemmas A.3 and A.4, we first state one known result and establish two
further intermediate lemmas.

Lemma B.1 (Mason, 1981). Let Gn be the empirical cumulative distribution of an i.i.d.
sample of size n from a uniform distribution on [0,1]. Then, as n → ∞,

sup
u∈(0,1)

[u(1−u)]−1+ε |Gn(u)−u| → 0,

almost surely, for any 0 < ε ≤ 1/2.

Lemma B.2. Let Assumption 1 hold. Then, if supθ (1+|θ |κ ) f (θ) < ∞,

sup
θ

(1+|θ |κ ) fm(θ) = Op(1)

holds.

Proof. The conditional density of ϑi − θi given θi evaluated in ε is

p(ε|θ) := E

(
1

σi/
√

m
g

(
ε

σi/
√

m

)∣∣∣∣θi = θ

)
.

We thus have

fm(ϑ) = ∫ ∞
−∞p(ϑ − θ |θ) f (θ)dθ = ∫ ϑ/2

−∞ p(ϑ − θ |θ) f (θ)dθ + ∫ ∞
ϑ/2 p(ϑ − θ |θ) f (θ)dθ .

Without loss of generality, we will take the value ϑ to be positive throughout. We have the
bound

fm(ϑ) ≤ sup
θ

f (θ)
∫ ϑ/2

−∞ p(ϑ − θ |θ)dθ + supθ≥ϑ/2 f (θ)
∫ ∞

ϑ/2 p(ϑ − θ |θ)dθ . (B.1)

Consider the second term on the right-hand side in (B.1). supθ≥ϑ/2 f (θ) = O(1+|ϑ/2|−κ )

by assumption and so it suffices to show that the integral is finite for all ϑ . To see that this
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is so, observe that

∫ ∞
ϑ/2 p(ϑ − θ |θ)dθ = ∫ ϑ/2

−∞ p(ε|ϑ − ε)dε = ∫ ϑ/2
−∞E

(
1

σi/
√

m
g
(

ε
σi/

√
m

)∣∣∣θi = ϑ − ε
)

dε

and use the change of variable ε∗ = √
mε

∫ ∞
ϑ/2 p(ϑ − θ |θ)dθ ≤ ∫ ∞

−∞ maxσ∈[σ,σ ]

{
1

σ/
√

m
g
(

ε
σ/

√
m

)}
dε

= ∫ ∞
−∞ maxσ∈[σ,σ ]

{
1
σ g

(
ε
σ

)}
dε

≤ C
∫ ∞

−∞ maxσ∈[σ,σ ]

{
1
σ

(
1+ ∣∣ ε

σ

∣∣)−α
}

dε

≤ C
∫ ∞

−∞ 1
σ

(
1+

∣∣∣ ε
σ

∣∣∣)−α
dε = C/(α −1) = O(1).

Next, for the first right-hand side term in (B.1), recall that supθ f (θ) < ∞, and so we need
to show that the integral vanishes sufficiently fast as ϑ → ∞. To see that this is the case,
we proceed as before by observing that

∫ ϑ/2
−∞ p(ϑ − θ |θ)dθ = ∫ ∞

ϑ/2E
(

1
σi/

√
m

g
(

ε
σi/

√
m

)∣∣∣θi = ϑ − ε
)

dε

to obtain∫ ϑ/2
−∞ p(ϑ − θ |θ)dθ ≤ ∫ ∞

ϑ/2 maxσ∈[σ,σ ]

{
1

σ/
√

m
g
(

ε
σ/

√
m

)}
dε

≤ ∫ ∞√
mϑ/2 maxσ∈[σ,σ ]

{
1
σ g

(
ε
σ

)}
dε

≤ C
∫ ∞√

mϑ/2
1
σ

(
1+ ε

σ

)−α
dε = O(1+ (

√
mϑ/2)1−α).

Thus, as long as α > 1 and α ≥ κ +1, we have

fm(ϑ) = O(1+|ϑ/2|−κ )

uniformly in ϑ , as claimed. This completes the proof of the lemma. �

Lemma B.3. Let Assumptions 1 and 2 hold, and let

γ r
m(θ) := E(σ r

i |ϑi = θ) fm(θ), γ r(θ) := E(σ r
i |θi = θ) f (θ).

Then, for any integer r,

sup
θ

|∇qγ r
m(θ)−∇qγ r(θ)| = O(m−1)

provided that the conditional density h(θ |σ) is (q+2) times differentiable with respect to θ

and that there exists a function e so that |∇q+2
1 h(θ |σ)| ≤ e(σ ) and E(e(σi)) < ∞.

Proof. Fix r throughout the proof. First note that, by Bayes’ rule and Assumption 1, we
may write

γ r
m(ϑ) = ∫ σ

σ

∫ ∞
−∞σ r 1

σ/
√

m
g
(

ϑ−θ
σ/

√
m

)
h(θ,σ )dσ dθ .
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A change of variable from θ to ε := (ϑ − θ)/(σ/
√

m) then allows to write

γ r
m(ϑ) = E

(
Br(ϑ,εi/

√
m)

)
, Br(θ,δ) := ∫ σ

σ σ r h(θ − δσ,σ )dσ .

Observe that Br(ϑ,0) = γ r(ϑ). Now, by a Taylor expansion,

∇qγ r
m(ϑ)−∇qγ r(ϑ) =

E
(
ε2

i ∇q
1∇2

2 Br(ϑ,ε∗
i /

√
m)

)
m

.

Furthermore, as

∇p
1∇q

2 Br(θ,δ) = (−1)q ∫ σ
σ σ r+q ∇p+q

1 h(θ − δσ,σ )dσ

for any pair of integers (p,q), we have that

sup
θ

sup
δ

|∇q
1∇2

2 Br(θ,δ)| ≤ σ r+q sup
θ

sup
δ

|∫ σ

σ
∇2+q

1 h(θ − δσ |σ)h(σ )dσ | ≤ σ r+q
∫ σ

σ
e(σ )h(σ )dσ,

which is finite. Therefore, uniformly in θ ,

∇qγ r
m(θ)−∇qγ r(θ) = O(m−1),

as claimed. This completes the proof. �

Proof of Lemma A.3
Part (i): With

βm(θ) := E(σ 2
i |ϑi = θ) fm(θ)

2
,

a change of variable and integration by parts yield

E(b̂F(θ)) = −∫ ∞
−∞

βm(ϑ)

h2 φ′ (ϑ−θ
h

)
dϑ = ∫ ∞

−∞∇1βm(θ +hε)φ(ε)dε.

Taylor expanding ∇1βm around ε = 0 and using our assumptions of the distribution of ε,
we obtain

E(b̂F(θ)) = ∇1βm(θ)+h2

∫ ∞
−∞∇3βm(θ +hε∗)ε2 φ(ε)dε

2
,

where ε∗ lies between ε and zero. From Lemma B.3, we have

∇1βm(θ) = ∇1β(θ)+O(m−1) = bF(θ)+O(m−1),

uniformly in θ , and supθ |∇3βm(θ)| < ∞. Therefore,

E(b̂F(θ)) = bF(θ)+O(m−1)+O(h2),

as claimed.
Part (ii): Note that

var(b̂F(θ)) = E(b̂F(θ)2)−E(b̂F(θ))2 = n−1

4
E

(
σ 4

i

h4
φ′

(
ϑ − θ

h

)2
)

−bF(θ)2 +o(n−1).
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Now, with

β2
m(θ) := E(σ 4

i |ϑi = θ) fm(θ)

4
,

we have

n−1

4
E

(
σ 4

i

h4 φ′
(

ϑ − θ

h

)2
)

= ∫ ∞
−∞

β2
m(ϑ)

h4 φ′ ( ϑ−θ
h

)2
dϑ ≤ supθ |β2

m(θ)|
n

∫ ∞
−∞φ′ ( ϑ−θ

h

)2
dϑ

h4 ,

which is O(n−1h3) uniformly in θ as supθ |β2
m(θ)| < ∞ because σi is finite and fm is

bounded, and

∫ ∞
−∞φ′ (ϑ−θ

h

)2
dϑ = h

4
√

π
,

independent of θ . This completes the proof.
Part (iii): First observe that

∇1bF(θ) = ∇2β(θ)/2,

so that (1 + |θ |1+η) |∇1bF(θ)| < ∞ follows directly from Assumption 3. What is left to
show is that

sup
θ

(1+|θ |1+η) |∇1b̂F(θ)| = Op(−(1+ω−1)).

Note that

∇1b̂F(θ) = (nh2)−1

2

n∑
i=1

σ 2
i φ′′

(
ϑi − θ

h

)
.

By Hölder’s inequality,

|∇1b̂F(θ)| ≤ h−2

⎧⎪⎨
⎪⎩

⎛
⎝n−1

n∑
i=1

(σ 2
i /2)ω

⎞
⎠

ω−1⎫⎪⎬
⎪⎭×

⎧⎪⎨
⎪⎩

⎛
⎝n−1

n∑
i=1

∣∣∣∣φ′′
(

ϑi − θ

h

)∣∣∣∣ψ
⎞
⎠

ψ−1⎫⎪⎬
⎪⎭,

where ψ := (1 − ω−1)−1. The first term in braces is bounded in probability because
the σ 2

i are finite. For the second term in braces, write Gn for the empirical cumulative
distribution of an i.i.d. sample of size n from the uniform distribution on [0,1] and let
G

′
n(u) := n−1 ∑n

i=1 δui−u, where δa is Dirac’s delta at a. Then, writing ∇u for the derivative
with respect to u, we get

n−1
n∑

i=1

∣∣∣∣φ′′
(

ϑi − θ

h

)∣∣∣∣ψ =
∫ 1

0

∣∣∣∣∣φ′′
(

F−1
m (u)− θ

h

)∣∣∣∣∣
ψ

G
′
n(u)du

= −
∫ 1

0
∇1

u

∣∣∣∣∣φ′′
(

F−1
m (u)− θ

h

)∣∣∣∣∣
ψ

Gn(u)du
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= −
∫ 1

0
∇1

u

∣∣∣∣∣φ′′
(

F−1
m (u)− θ

h

)∣∣∣∣∣
ψ

udu

−
∫ 1

0
∇1

u

∣∣∣∣∣φ′′
(

F−1
m (u)− θ

h

)∣∣∣∣∣
ψ

(Gn(u)−u) du, (B.2)

where we have used integration by parts in the first step and replaced Gn(u) by
u + (Gn(u) − u) in the second step. We now consider each of the integrals on the right-
hand side in turn. First, integrating by parts,

−
∫ 1

0
∇1

u

∣∣∣∣∣φ′′
(

F−1
m (u)− θ

h

)∣∣∣∣∣
ψ

udu = E

(∣∣∣∣φ′′
(

ϑi − θ

h

)∣∣∣∣ψ
)

. (B.3)

Clearly, this term is bounded uniformly on any finite interval. To evaluate it for large values
of θ , observe that

1

h
E

(∣∣∣∣φ′′
(

ϑi − θ

h

)∣∣∣∣ψ
)

=
∫ +∞
−∞

1

h

∣∣∣∣φ′′
(

ϑ − θ

h

)∣∣∣∣ψ fm(ϑ)dϑ

=
∫ θ+h log(1+|θ |)
θ−h log(1+|θ |)

1

h

∣∣∣∣φ′′
(

ϑ − θ

h

)∣∣∣∣ψ fm(ϑ)dϑ

+
∫ ∞

log(1+|θ |)
∣∣φ′′(z)

∣∣ψ fm(θ + zh)dz

+
∫ ∞

log(1+|θ |)
∣∣φ′′(z)

∣∣ψ fm(θ − zh)dz.

Here,

∫ θ+h log(1+|θ |)

θ−h log(1+|θ |)
1

h

∣∣∣∣φ′′
(

ϑ − θ

h

)∣∣∣∣
ψ

fm(ϑ)dϑ ≤ O(log(1+|θ |)) sup
θ

|fm(θ)| = O(log(1+|θ |)),

because supθ |φ′′(θ)|ψ = O(1) and fm is bounded. Furthermore, because

∫ ∞
x |φ′′(z)|ψ dz = O(x2ψ−1 e−ψ x2/2), as x → ∞,

and fm(θ) = O(|θ |−κ ) as |θ | → ∞ by Lemma B.2, we have

∫ ∞
log(1+|θ |)

∣∣φ′′(z)
∣∣ψ fm(θ + zh)dz = O

(
log(1+|θ |)2ψ−1 e−ψ log(1+|θ |)2/2

)
,∫ ∞

log(1+|θ |)
∣∣φ′′(z)

∣∣ψ fm(θ − zh)dz = O
(

log(1+|θ |)2ψ−1 e−ψ log(1+|θ |)2/2
)

.

Then, as

e−ψ log(1+|θ |)2/2 = o(|θ |a) for any a > 0 as |θ | → ∞,

we may conclude that the term in (B.3) is O(h|θ |−κ log(1+|θ |)) uniformly in θ . Next, for
the second term in (B.2), we use Lemma B.1 to establish that, for any ε ∈ (0,1/2], we have
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∣∣∣∣∣∫ 1
0∇1

u

∣∣∣∣φ′′
(

F−1
m (u)−θ

h

)∣∣∣∣ψ (Gn(u)−u) du

∣∣∣∣∣
≤ op(1)

∣∣∣∣∣∫ 1
0

∣∣∣∣∣∇1
u

∣∣∣∣φ′′
(

F−1
m (u)−θ

h

)∣∣∣∣ψ
∣∣∣∣∣
(

u1−ε (1−u)1−ε
)

du

∣∣∣∣∣
= op(1)

∣∣∣∣∣∫ +∞
−∞

∣∣∣∣∣∇1
u

∣∣∣∣φ′′
(

F−1
m (u)−θ

h

)∣∣∣∣ψ
∣∣∣∣∣
(

Fm(ϑ)1−ε (1−Fm(ϑ))1−ε
)

dϑ

∣∣∣∣∣,
where the op(1) term is independent of θ . The integral term can be bounded in the same
way as (B.3). Hence,∣∣∣∣∣∫ 1

0∇1
u

∣∣∣∣φ′′
(

F−1
m (u)−θ

h

)∣∣∣∣ψ (Gn(u)−u) du

∣∣∣∣∣ = op(h|θ |(1−ε)(1−κ) log(1+|θ |))

uniformly in θ . We therefore have that

sup
θ

|b̂F(θ)| ≤ h−2 Op(1)
{
(O(h|θ |−κ log(1+|θ |))+op(h|θ |(1−ε)(1−κ) log(1+|θ |))ψ−1

}
.

For any η > (κ −1)(1− ε)(1−1/ω)−1 > 0, it then follows that

sup
θ

(
1+|θ |1+η

)
|b̂F(θ)| = OP

(
h−(1+ω−1)

)
.

Here, our assumption κ > 1 + (1 − 1/ω)−1 guarantees that we can find ε > 0 such that
η > (κ −1)(1− ε)(1−1/ω)−1 > 0 holds. This concludes the proof. �

Proof of Lemma A.4. First observe that, for any ε > 0,

sup
θ

E(|bi(θ)−E(bi(θ))|ε) ≤ sup
θ

ε∑
p=0

(
ε

p

)
E(|bi(θ)|p)E(|bi(θ)|ε−p) ≤ 2ε sup

θ

E(|bi(θ)|ε).

Therefore,

sup
θ

E(|bi(θ)−E(bi(θ))|ε)ε−1 ≤ 2 sup
θ

(E(|bi(θ)|ε))ε−1

= sup
θ

(∫ ∞
−∞

E(σ 2ε
i |ϑi=ϑ) fm(ϑ)

h2

∣∣φ′ ( ϑ−θ
h

)∣∣ε dϑ

)ε−1

≤ sup
ϑ

(E(σ 2ε
i |ϑi = ϑ) fm(ϑ))ε

−1

(
supθ

∫ ∞
−∞

∣∣φ′ ( ϑ−θ
h

)∣∣ε dϑ
)ε−1

h2

= O(hε−1−2),

where we have used the definition of bi(θ) in the first step, boundedness of the σi and fm in
the second step, and the fact that

∫ ∞
−∞

∣∣∣φ′ (ϑ−θ
h

)∣∣∣ε dϑ = O(h),

independent of θ , in the final step. This completes the proof. �

https://doi.org/10.1017/S0266466622000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000378


INFERENCE ON A DISTRIBUTION FROM NOISY DRAWS 95

APPENDIX C: Least-Squares Cross Validation

The integrated squared error of

F̌(θ) = F̂(θ)− b̂F(θ)

m

is

∫
(F̌(θ)−F(θ))2 dθ =

∫
b̂F(θ)2 dθ

m2
− 2

∫
(F̂(θ)−F(θ)) b̂F(θ)dθ

m
+ term independent of h.

Using the definition of b̂F and expanding the square, the first right-hand side term can be
written as∫

b̂F(θ)2 dθ

m2
= m−2

n2

n∑
i=1

n∑
j=1

σ 2
i σ 2

j

h2

1

4

∫
1

h
φ′

(
ϑi − θ

h

)
1

h
φ′

(
ϑj − θ

h

)
dθ,

and using properties of the normal distribution, we calculate

∫
φ′

(
ϑi − θ

h

)
φ′

(
ϑj − θ

h

)
dθ = 1√

2h
φ

(
ϑi −ϑj√

2h

)(
h2

2
− (ϑi +ϑj)

2

4
+ϑiϑj

)
.

Next, exploiting that φ′(η) = −ηφ(η) and using well-known results on the truncated normal
distribution,

−2
∫

F̂(θ) b̂F(θ)dθ

m
= m−1

n2

n∑
i=1

n∑
j=1

σ 2
j

h2

∫ +∞
ϑi

φ′
(

ϑj − θ

h

)
dθ

= m−1

n2

n∑
i=1

n∑
j=1

σ 2
j

h2

∫ +∞
ϑi

(
θ −ϑj

h

)
φ

(
θ −ϑj

h

)
dθ

= m−1

n2

n∑
i=1

n∑
j=1

σ 2
j

h

(
ϑi −ϑj

h

)
φ

(
ϑi −ϑj

h

)

= m−1

n2

n∑
i=1

∑
j �=i

σ 2
i
h

φ′
(

ϑi −ϑj

h

)
.

Omitting terms for which j = i in the last expression is justified by the fact that φ′(0) = 0.
Finally, for the last term, integrating by parts shows that

2
∫

F(θ) b̂F(θ)dθ

m
= −m−1

n

n∑
i=1

σ 2
i
h

∫
φ

(
ϑi − θ

h

)
f (θ)dθ .

The integral in the right-hand side expression represents an expectation taken with respect
to f. A leave-one-out estimator of the entire term is

− m−1

n(n−1)

n∑
i=1

∑
j �=i

σ 2
i
h

φ

(
ϑi −ϑj

h

)
.
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Combining results and multiplying the entire expression through with n2m2 yields the cross-
validation objective function stated in the main text.
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