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A (MODEST) GENERALIZATION OF THE THEOREMS 
OF WILSON AND FERMAT 

BY 

W. O. J. MOSER 

ABSTRACT. We show that ( l /« 2 )X;^«^(^(«/^)) 2 («/^) J ^! is an 
integer. Special cases include the theorems of Wilson and Fermât. 

The classical congruence of Wilson states that 

(1) (p — 1)! + 1 = 0 (mod /?), p a prime, 

while Fermât's congruence states that 

(2) ap = a (mod p), pâ prime. 

Traditionally these congruences are proved separately (and similarly), but L. Moser 
[2] observed that the same sort of proof yields, at once, the congruence 

(3) ap(p — 1)! = a(p — 1) (mod p)1 p a prime. 

Taking a = 1 in (3) gives (1), and then (1) and (3) give (2). 
In this note we prove that for integers a â 1 and n ^ 2 

<4> ^E a < v(K5)) 2(5)^ ! i s a n i n t e g e r-
d\n 

Here <p(ri), the Euler phi function, denotes the number of integers in {1,2, . . . , n — 1} 
relatively prime to n, and we will be using d | n to denote "d divides AI" and (m, n) to 
denote the greatest common divisor of m and n. When n = p, a prime, (4) reads 

—r {a(p — \)2p + app\} is an integer, 
P 

from which (3) follows, so (4) is indeed a (modest) generalization of (3). 
First we will prove (4) in the case a = 1. 
Consider the set Sn of nl permutations (linear arrangements) 

a = ( a i , a 2 , . . . , a „ ) , a, G {1,2,. . . ,w}, a,-^ a7 if i^j. 
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Let T denote the operation 

T(a) = T(aua2j ...,(*„) = (a2, «3,. • •, <xn, «1), 

and # the operation 

R(a) = /?(ai ,a 2 ? . . . ,ft„) = («i + 1, a2 + 1,. . . ,an + 1), « + 1 = 1. 

It is easy to see that T and R commute i.e., T(R(a)) — R(T(a)) for all a G Sn, that 7 
and /? each generate a cyclic group of order n, and that T and /? together generate a 
group £7 of order n2 (the direct product of the two cyclic groups) whose elements are 
T~mRk(l ^ m, & ^ «). This group acts on 5W, and partitions the set Sn into equivalence 
classes, where a and /3 in Sn are equivalent if, for some m and &, T~mRk(a) = /? or 
/?*(«) = rm(£). 

Let /(«) denote the number of these equivalence classes. J. E. Steggall [3] gave 
a method for computing f(n) which involved setting up and solving a system of 
equations, but he failed to obtain the very simple expression 

/<">=?£ WTO'*-
d\n 

We will obtain this formula by applying Burnside's Lemma (see [2]), which states 
that 

(5) /(/i) = \ I ] ^ (m> *)> where ^ < m > * > = #fe e A I Rk&) = Tm(a)}. 

Note that: 

(6) Rik(a) = (Rk)l(a) = (Rk)l(aua2, ...,<*„) = ( / 3 b f e . . . , / U 

/35 = a5 + /&; (the entries a5 + zl are, of course, reduced 

(mod n) to be in the set {1 ,2 , . . . , n})\ 

(7) Pm(a) = ( r 7 ' ( a ) = (^y ' (a l 7 a 2 , . . . , a„) = (/3b/32,... , / U 

/?5 = ar5+ym; (the subscripts s +jm are, of course, reduced 

(mod n) to be in the set {1 ,2 , . . . , n})\ 

(8) the period of Rk in Ç is 

(9) the period of Tm in £ is 

(",*)' 

« 
(n,m) 
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(10) if Rk(a) = Tm(a) for some a G S„ then (w, k) = (n, m). 

The last assertion can be seen as follows. The first entry of Rknl^k\a) is ot\ 
(this follows from (6) and (8)), while the first entry of Tmn/{n'k)(a) is a\+mn/(n,k) (this 
follows from (7)). Thus, if Rk(a) = Tm(a) then oc\ — a\+mn/(n,k)> implying mnj{n,k) 
is a multiple of n, so that («, k) \ m. Since («, k) \ n it follows that («, &) | («, m). 
Similarly («, m) | (n, k). 

Using (10), (5) becomes 

<n> / w = i E #(»»»*> = ^ £ £ ^<«'*)• 
(m,n)=(k.n) d\n (m,ri)=d 
\^m,kÉn (k,n)=d 

Now for given d, m and & with d | « and (m, n) — (k,n) = J let us determine 
fA£ (ra, k). Suppose that aGSn and 

(12) Rk(a) = Tm(a). 

Then 

r"(o0 = **(<*), i = i , 2 , . . . , ^ 

and hence 

«j+ini = a, + /£, / = 1,2,..., - ; s = 1,2,..., d. 
a 

Thus the entries a j , a 2 , . . . , a^ determine all other entries in (ai, a 2 , . . . , a„), 

a\, a 2 , . . . , a^ are pairwise incongruent (mod £) 

(because Rk has period fl/d), and (a{, a2, • • •, <*d) must be a permutation of (/3i, / 3 2 , . . . , /?</), 
where 

/ ? 1 e { l , l + M + 2 * , . . . , l + ( ^ - l ) * } 

/32G {2,2 + *,2 + 2 * , . . . , 2 + ( ^ - l ) * } 

pd e \d,d + k,d + 2k,...,d+[^-- l ) * } 

Since there are rc/d choices for each /?,-, and each permutation of (j3\, /32, • • •, Pd) leads 
to d\ permutations ( a b a 2 , . . . , a^) there are (n/d)dd\ permutations a satisfying (12): 

9\[(m,k)= (-) d\ if (m,n) = (k,n) = d and d \ n. 
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/<"> = i E E ( 5 ) ' * 
d\n (m,n)=d 

1 (k,n)=d 

d\n (k,n)=d (m,n)=d 

Of course/(w) is an integer so we have (4) when a — \. 
When a ^ 2, (4) is obtained by applying Burnside's Lemma to the set Sn x C«, 

where 
Cn = {(Cl ,C '2 , . . . ,C w ) | C ' i ,C 2 , . . . ,C w G { l , 2 , . . . , w } } 

and the group acting on Sn x G is generated by the two operations 

^ : (a, ç) —» CF(a), 7(c)), where 7(c) = r(ci, c 2 , . . . , c„) = (c 2 , . . . , cw, ci), 

/?:(«,£) —(fl(a),ç). 
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Now we have 

(13) 
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