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Abstract
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez
that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a prob-
lem asking whether for a given sequence of graphs (Gn) converging to a limit L and a vertex r of L, it is
possible to find a sequence of vertices (rn) such that L rooted at r is the limit of the graphs Gn rooted at
rn. A counterexample was found by Christofides and Král’, but they showed that the statement holds for
almost all vertices r of L. We offer another perspective on the original problem by considering the size of
definable sets to which the root r belongs. We prove that if r is an algebraic vertex (i.e. belongs to a finite
definable set), the sequence of roots (rn) always exists.
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1. Introduction
The field of graph convergence studies asymptotic properties of large graphs. The goal is to
define a well-behaved notion of a limit structure that describes the limit behaviour of a con-
vergent sequence of graphs. Several different approaches are studied. The two most prominent
types of convergence are defined as sequences of dense [2, 9, 8] and sparse graphs [1, 4]. The
recently introduced notion of structural convergence by Nešetřil and Ossona de Mendez offers a
generalising framework for these cases using ideas from analysis, model theory, and probability
[10, 11].

Structural convergence is a framework of convergence for general relational structures; how-
ever, we follow the usual approach that we restrict to the language of graphs and rooted graphs
without loss of generality. Our arguments remain valid in the general case (e.g. as in [3]). The
Stone pairing of a first-order formula φ in the language of graphs and a finite graph G, denoted
by 〈φ,G〉, is the probability that φ is satisfied by a tuple of vertices of G selected uniformly at ran-
dom (for a sentence φ, we set 〈φ,G〉 = 1 if G |= φ, and 〈φ,G〉 = 0 otherwise). A sequence of finite
graphs (Gn) is said to be FO-convergent if the sequence (〈φ,Gn〉) of probabilities converges for
each formula φ. The limit structure L, called modelling, is a graph on a standard Borel space with
a probability measure ν satisfying that all the first-order definable sets are measurable. The value
〈φ, L〉 is defined as the measure of the set φ(L), the set of solutions of φ in L, using the appro-
priate power of the measure ν. A modelling L is a limit of an FO-convergent sequence (Gn) if
limn〈φ,Gn〉 = 〈φ, L〉 for each formula φ. A modelling limit does not exist for each FO-convergent
sequence of finite graphs. It is known to exist for all sequences of graphs from a class C if and only
if C is a nowhere dense class [12].
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The authors of this framework asked in [10] the following question: given a sequence (Gn)
converging to a modelling L and a vertex of r of L, is there a sequence of vertices (rn) such that the
graphs Gn rooted at rn converge to L rooted at r? Christofides and Král’ [3] provided an example
that the answer is negative in general. However, they also proved that it is always possible to find
such a sequence (rn) for almost all choices of the vertex r. That is, if the root of L is chosen at
random (according to the measure ν), the vertices (rn) exist with probability 1 [3].

In this paper, we refine the original problem by considering the root r to be an algebraic vertex
of L. That is, r belongs to a finite definable set of L [15]. We prove that the sequence of roots (rn)
always exists under such a condition. Our main result reads as follows:

Theorem 1. Let (Gn) be an FO-convergent sequence of graphs with a modelling limit L and r be an
algebraic vertex of L. Then there is a sequence (rn), rn ∈V(Gn), such that (Gn, rn) FO-converges to
(L, r).

Note that Theorem 1 deals with full FO-convergence and not just convergence with respect to
sentences (called elementary convergence), for which it is a trivial statement (see the case of p= 0
in Lemma 3).

In Section 5, we formulate the example from [3] in our context to indicate that Theorem 1 is, in
a way, best possible. Moreover, we give a simple probabilistic construction of an FO-convergent
sequence of graphs that does not admit an FO-convergent rooting when restricting the roots to a
certain definable set.

This article is an extended version of the proceeding paper [5].

2. Notation and tools
We useN= {1, 2, . . . },N0 =N∪ {0} and [n]= {1, 2, . . . , n}, [n]0 = [n]∪ {0}. All graphs are finite
except modelings, which are of size continuum. The vertex set of a graph G is denoted by V(G).
The set of formulas in p free variables in the language of graphs is denoted by FOp, and FO=⋃

p∈N0 FOp is the set of all formulas. Tuples of vertices, free variables, etc., are denoted by boldface
letters, for example, x= (x1, . . . , xp). Multiset is a set that allows multiplicities of its elements. The
power set of a set X is denoted by 2X .

Let G be an arbitrary graph and r one of its vertices. By (G, r), we denote the graph G rooted at
r. Formally, considering G as a structure in the language of graphs, we add a new constant ‘Root’
to the vocabulary and interpret it as r. We refer to the extended language as the language of rooted
graphs. The set of formulas in the extended language is denoted by FO+. Note that FOp ⊆ FO+

p .
The observation that a rooted modelling is again a modelling was a motivation for the original
problem of [10].

Let L be a modelling. A formula φ ∈ FOp is algebraic in L if φ(L) is finite, where φ(L)= {v ∈
V(L)p : L |= φ(v)} is the set of solutions of φ in L. A vertex of L is algebraic if it satisfies an algebraic
formula [15].

We recall Newton’s identities (also known as Girard-Newton formulas) that connect sums of
powers with symmetric polynomials. One of the identities states that for a given a1, . . . , an ∈
R, the coefficients of the polynomial p(x)= ∏n

i=1 (x− ai) can be obtained by basic arithmetic
operations from values z1, . . . , zn, where zk = ∑n

i=1 aki [14].
It is a folklore that the roots of a polynomial continuously depend on the coefficients of the

polynomial: for a polynomial p(x)= ∏n
i=1 (x− ai)= ∑n

j=0 cjxj and ε > 0, there is δ > 0 such that
each polynomial q(x)= ∑n

j=0 djxj with |cj − dj|< δ can decomposed as
∏n

i=1 (x− bi) satisfying
|ai − bi|< ε. All the coefficients and roots are complex [16].

These classical tools will be used in the proof of Theorem 1 and particularly in the key Lemma 6
in Section 4. From Newton’s identities, it follows that the sums z1, . . . , zn determine the values
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a1, . . . , an up to a permutation, which is the fact we utilise. The continuous dependence of roots
on coefficients is used for polynomials created via Newton’s identities with real values. Then the
statement reads as follows: for each a1, . . . , an ∈R and ε > 0, there is δ > 0 such that for each
b1, . . . , bn ∈Rwith

∣∣∣∑n
i=1 aki − ∑n

i=1 bki
∣∣∣< δ for all k= 1, . . . , n holds that there is a permutation

π satisfying |ai − bπ(i)|< ε.

3. Rooting in algebraic sets
We prove Theorem 1 in the following equivalent form.

Theorem 2. Let (Gn) be an FO-convergent sequence of graphs with a modelling limit L and ξ (x) be
an algebraic formula in L. Then there is a sequence (rn), rn ∈V(Gn), and a vertex r ∈ ξ (L) such that
(Gn, rn) FO-converges to (L, r).

Obviously, Theorem 2 is implied by Theorem 1. The converse follows from the fact that ξ has
only finitely many solutions in L and we can root them iteratively one by one until we reach r.

Fix a sequence (Gn) that FO-converges to a modelling L and a formula ξ that is algebraic in L
for the rest of the paper. Without loss of generality, assume that ξ (L) is an inclusion-minimal
definable set in L and |ξ (Gn)| = |ξ (L)| for each n. We prove Theorem 2 in three steps. First,
we consider a single formula φ in the language of rooted graphs and show that we can find the
roots (rn) and r such that lim〈φ, (Gn, rn)〉 = 〈φ, (L, r)〉. Then we consider an arbitrary finite collec-
tion of formulas φ1, . . . , φk and construct a single formula ψ with the property that convergence
of 〈ψ , (Gn, rn)〉 to 〈ψ , (L, r)〉 implies convergence of each 〈φi, (Gn, rn)〉 to 〈φi, (L, r)〉. Finally, a
routine use of compactness extends the previous to all formulas, which proves the theorem.

3.1 Single formula
For a formula φ(x) ∈ FO+

p , let φ−(x, y) ∈ FOp+1 be the formula created from φ by replacing each
occurrence of the term ‘Root’ by ‘y’ (we assume that y does not appear in φ).

Lemma 3. For a given φ ∈ FO+
p , there is a sequence (rn), rn ∈ ξ (Gn), and a vertex r ∈ ξ (L) such that

lim〈φ, (Gn, rn)〉 = 〈φ, (L, r)〉.
Proof. If p= 0, then either the sentence (∀y)(ξ (y)→ φ−(y)) or (∀y)(ξ (y)→ ¬φ−(y)) is satisfied
in L (using the assumption that ξ (L) is an inclusion-minimal definable set); hence, it holds in each
Gn from a certain index on. Therefore, an arbitrary choice of rn ∈ ξ (Gn) and r ∈ ξ (L) meets the
conclusion.

Assume that p≥ 1. Let ν be the measure associated with the modelling L. Define fL :V(L)p →
2ξ (L) to be the function that sends v to the set {u ∈ ξ (L) : L |= φ−(v, u)}. Consider the push-
forward measure μL on 2ξ (L) of the p-th power of ν by fL (note that for each u ∈ ξ (L) is the
set f−1

L (u) measurable). Viewing 2ξ (L) as a lattice, we are mostly interested in the measure of
the filter generated by atoms of 2ξ (L). Let X↑ = {Y ∈ 2ξ (L) : X ⊆ Y} denote the filter generated
by X ∈ 2ξ (L). Observe that for u ∈ ξ (L), we have μL({u}↑)= 〈φ, (L, u)〉. Suppose that |ξ (L)| = t
and define an ordering RL = (u1, u2, . . . , ut) of ξ (L) such that μL(RL)= (μL({ui}↑))i∈[t] satisfies
μL({u1}↑)≥μL({u2}↑)≥ · · · ≥μL({ut}↑). Define similarly for each n the function fn :V(Gn)p →
2ξ (Gn), measure μn (as the pushforward of the uniform measure), and the t-tuple Rn.

We prove that the sequence of vectors
(
μn(Rn)

) ⊂ ([0, 1]t , ‖ · ‖∞) converges to μL(RL). Then
an arbitrary choice of an index i ∈ [t] yields the sequence (rn) and vertex r as the i-th elements of
the tuples Rn and RL, respectively.

Let us argue that the convergence
(
μn(Rn)

) →μL(RL) follows from Lemma 6. We first apply
the lemma for the setM = ξ (L), that is,m= t, and the probability distributionμ=μL to show that
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the values of μL(RL) can be computed from probabilities 〈ψk,	, L〉, 	 ∈ [t]0, k ∈ [(t
	

)]
for certain

formulas ψk,	 ∈ FO.
This can be done as follows. By definition, Pr [Fk	] is the probability that the intersection of k

independently chosenμL-random subsets Si of ξ (L) has size at least 	. To compute the probability,
we sample each set Si = fL(vi)= {u ∈ ξ (L) : L |= φ−(vi, u)} by taking an independent ν-random p-
tuple vi ∈V(L)p, and we verify that the intersection

⋂k
i=1 Si ⊆ ξ (L) contains at least 	 distinct

elements y1, . . . , y	. Therefore, Pr [Fk	] is equal to 〈ψk,	, L〉 for the FO-formulasψk,	(x1, . . . , xk) ∈
FOk·p of the form

(∃y1, . . . , y	)
⎛
⎝

	∧
i=1
ξ (yi)∧

∧
1≤i<j≤	

yi �= yj ∧
k∧

i=1

	∧
j=1
φ−(xi, yj)

⎞
⎠ ,

where, by definition of 〈·, ·〉, the independent ν-random p-tuples vi ∈V(L)p are assigned to the
disjoint p-tuples of variables xi. Moreover, we have directly from the definition that the values of
the multiset A1 from the conclusion of Lemma 6 are exactly the values of μL(RL).

Similarly, by applying Lemma 6 for M = ξ (Gn) and μ=μn, we obtain that μn(Rn) depends
only on 〈ψk,	,Gn〉, 	 ∈ [t]0, k ∈ [(t

	

)]
. Furthermore, since the dependency is continuous, and

〈ψk,	,Gn〉 → 〈ψk,	, L〉 for each k, 	 ∈N by FO-convergence of (Gn) to L, we infer that the vectors(
μn(Rn)

)
indeed converge to μL(RL). �

3.2 Finite collection of formulas
In this part, we use Lemma 3 to prove an analogous statement for a finite collection of formulas.

Lemma 4. For given formulas φ1, . . . , φk, there is a sequence (rn), rn ∈ ξ (Gn), and a vertex r ∈ ξ (L)
such that lim〈φi, (Gn, rn)〉 = 〈φi, (L, r)〉 for each φi.
Proof. Since for sentences any choice of (rn) and r works, we assume that neither of φ1, . . . , φk is
a sentence.

Consider an inclusion-maximal set I ⊆ [k] for which there is v ∈ ξ (L) such that every i ∈ I sat-
isfies 〈φi, (L, v)〉> 0. Denote |I| by k′. If I = ∅, we can choose (rn) and r arbitrarily; hence, assume
otherwise. For i ∈ I, set Ai = {〈φi, (L, u)〉 : u ∈ ξ (L)} ∩ (0, 1]. Take a vector e ∈Nk′ of exponents
with the property that for each distinct a, b ∈Xi∈IAi, we have

∏
i∈I a

ei
i �= ∏

i∈I b
ei
i . Such a vector

exists as each Ai is finite and contains only positive values. The set of bad choices of rational expo-
nents that make the values for particular a, b coincide form a (k′ − 1)-dimensional hyperplane in
Qk′ . We can surely avoid finitely many of such hyperplanes (one for each choice of a and b) to
find a good vector of positive rational exponents and scale them to integers.

Use Lemma 3 for the formula ψ of the form
∧
i∈I

ei∧
j=1
φi(xi,j),

where all the tuples xi,j are pairwise disjoint, to obtain roots (rn) and r. In particular, we can take
the vertex r such that 〈ψ , (L, r)〉> 0 (due to our choice of I).

We have lim〈φi, (Gn, rn)〉 = 〈φi, (L, r)〉> 0 for each i ∈ I as

〈ψ , (L, r)〉 =
∏
i∈I

〈φi, (L, r)〉ei ,

using our selection of exponents e.
Also, it holds that lim〈φj, (Gn, rn)〉 = 〈φj, (L, r)〉 = 0 for each j �∈ I: for the formula χ =∧
i∈I∪{j} φi(xi), we have lim〈χ , (Gn, rn)〉 = 〈χ , (L, r)〉 = 0 due to the maximality of I (this is for
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any choice of (rn) and r). We have

〈χ , (Gn, rn)〉 =
∏

i∈I∪{j}
〈φi, (Gn, rn)〉

and as for some ε > 0, there is n0 such that 〈φi, (Gn, rn)〉> ε for each i ∈ I and n≥ n0, the factor
〈φj, (Gn, rn)〉 must tend to 0. �

We remark that the rationalisation of the fact that the sequence
(〈φj, (Gn, rn)〉

)
for j �∈ I even

converge is the reason why we are proving Theorem 2 instead of Theorem 1. That is, we are using
the fact that we can choose the set I (and the root r for the formula ψ) such that any rooting (rn)
makes the sequence 〈χ , (Gn, rn)〉 converge to 0.

3.3 All formulas
Fix an arbitrary ordering φ1, φ2, . . . of FO+. We call a collection of sequences of roots (rin), rin ∈
ξ (Gn), and ri ∈ ξ (L) extending if for all indices j≤ i ∈N satisfies that lim〈φj, (Gn, rin)〉 = 〈φj, (L, ri)〉
and, moreover, for any i′ ≥ i, it holds 〈φj, (L, ri)〉 = 〈φj, (L, ri′)〉. We prove the existence of such a
collection and then extract the desired sequence (rn) and vertex r by diagonalization.

Lemma 5. There exists an extending collection of sequences of roots (rin), rin ∈ ξ (Gn), and ri ∈ ξ (L).
Proof. Let Sj be the set of possible limit values of 〈φj, (Gn, rn)〉, that is, the values of μL(RL) from
Lemma 3. Let T = (V , E) be an infinite rooted tree defined as follows: V = ⋃

V	, where V	 is the
set of vertices on the level 	 defined as the Cartesian product of the sets Sj for j≤ 	, that is, a vertex
on the 	-th level is a vector with possible limit probabilities for φ1, . . . , φ	. The only element in
V0, the empty set, is the root of the tree. We put an edge between a ∈V	 and b ∈V	+1 if aj = bj
for all j≤ 	, and there are vertices xn ∈ ξ (Gn), x ∈ ξ (L) such that

lim〈φj, (Gn, xn)〉 = 〈φj, (L, x)〉 = bj

for each j≤ 	+ 1. Observe that if ab ∈ E, then b is connected to the root (all edges of the path are
witnessed by the vertices (xn) and x).

By Lemma 4, there is at least one vertex in each set V	 connected to the root. Thus, by König’s
lemma, the tree contains an infinite path ∅ = a0, a1, a2, . . . (all degrees are bounded as each Sj is
finite). The sequence (rin) and vertex ri are defined as the vertices (xn) and x witnessing the edge
from ai−1 to ai. �

Now we are ready to give the proof of Theorem 2.

Proof of Theorem 2. Let (rin) and ri for i ∈N be the vertices from collection of extending
sequences from Lemma 5 above. Let αi = 〈φi, (L, ri)〉, and let Ni to be an index satisfying

(i) 〈φj, (Gn, rin)〉 ∈ (αj − 2−i, αj + 2−i) for each n≥Ni and j≤ i,
(ii) Ni >Nj for each j< i.

Set rn = rin, where i is the minimal positive integer satisfying that n<Ni+1. For the vertex r, we
can set an arbitrary vertex from ξ (L) that appears infinitely many times as ri.

It remains to verify that for an arbitrary formula φj, we have lim〈φj, (Gn, rn)〉 = αj = 〈φj, (L, r)〉.
Obviously, the second equality holds as r = ri for some i≥ j. For the first equality, fix ε > 0
and set k to be a positive integer satisfying 2−k < ε and k≥max{j, 2}. Then for n≥Nk, we
have 〈φj, (Gn, rn)〉 = 〈φj, (Gn, rin)〉 ∈ (αj − 2−i, αj + 2−i) for some i≥ k. Thus 〈φj, (Gn, rn)〉 ∈ (αj −
ε, αj + ε), which concludes the proof. �
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4. A lemma about finite Boolean lattices
LetM be a finite set of sizem. We are going to work with a probability space that allows us to con-
sider random subsets Si of M with P[Si = X]=μ({X}) for each X ⊆M, where μ is a probability
distribution on 2M . Let S1, S2, . . . , Sk be independently chosen random subsets ofM with distribu-
tionμ, denote by EkX the eventX ⊆ ⋂k

i=1 Si and by Fk	 the event |
⋂k

i=1 Si| ≥ 	. LetX↑ stand for the
filter {Y ∈ 2M : X ⊆ Y} andM	 denote the row of 	-element sets, that is, the set {X ⊆M : |X| = 	}.
For 	 ∈ [m]0, we define the multiset A	 = {μ(X↑) : X ∈M	}.
Lemma 6. The values of P[Fk	] for 	 ∈ [m]0 and k ∈ [(m

	

)]
continuously determine the multisets A	

for all 	 ∈ [m]0.
That is, for each ε > 0, there is δ > 0 such that changing each P[Fk	] by at most δ induces a change

of each value in A	 by at most ε.

Proof. We proceed by downward induction on 	. For 	=m, we have μ(M↑)= P[F1m].
Now fix 	 <m and suppose that all A

	
′ for 	′ > 	 are known. We have that

P[Fk	]= P

⎡
⎣ ⋃
X∈M	

EkX

⎤
⎦ .

We apply the inclusion-exclusion principle to the union of events. Observe that for I ⊆ 2M , we
have

⋂
X∈I EkX = Ek⋃ I , where

⋃ I stands for
⋃

X∈I X.

P

⎡
⎣ ⋃
X∈M	

EkX

⎤
⎦ =

(m	)∑
j=1

(−1)j−1
∑

I⊆M	 : |I|=j
P

[
Ek⋃ I

]

Now we gather the terms with the same set Y = ⋃ I together. Let C(j, 	, r) be number of covers
of the set [r] by j distinct subsets of size 	 and define

D(	, r)=
(r	)∑
j=1

(−1)j−1C(j, 	, r).

Then we have
(m	)∑
j=1

(−1)j−1
∑

I⊆M	 : |I|=j
P

[
Ek⋃ I

]
=

m∑
r=	

(−1)r−	
∑

Y∈Mr

D(	, r)P[EkY ].

Moving the known terms to the left-hand side, using that D(	, 	)= 1 and P[EkY ]=μ(Y↑)k, we
obtain

P[Fk	]−
m∑

r=	+1
(−1)r−	

∑
Y∈Mr

D(	, r)μ(Y↑)k =
∑

Y∈M	

μ(Y↑)k, (1)

from which we determine the multiset A	 using Newton’s identities. The identities are applica-
ble as Equation (1) holds for all k ∈ [(m

	

)]
, and all the values on the left-hand side are known by

induction hypothesis (strictly speaking, we know the values μ(Y↑)k only up to a permutation of
Mr , but the formula is symmetric).

Finally, we argue that the values in A	 continuously depend on P[Fk	]. This is proved by
induction. The case 	=m is obvious. For 	 <m, the left-hand side of (1) is a continuous func-
tion of values P[Fk	] and μ(Y

↑)k for Y ∈Mr , r> 	. The later terms continuously depend on
P[Fk	] by induction hypothesis. Obtaining the values in A	 via Newton’s identities is also a
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continuous process as the complex roots of a complex polynomial continuously depend on its
coefficients. �

5. Examples
The original example with bipartite graphs of Christofides and Král’ [3] implies that if the root r of
a modelling does not belong to a finite definable set, the desired sequence of roots (rn) needs not to
exist. Moreover, observe that the root r lies in a countable definable set (vertices from the smaller
part B can be distinguished by the property that they have no twin,that is, another vertex with
the same neighbourhood). Therefore, the finiteness of the definable set is the weakest sufficient
condition for the sequence (rn) to exist regarding the cardinality of definable sets containing r.

Here we give a simple probabilistic construction for the following statement.

Proposition 7. There exists an FO-convergent sequence of graphs (Gn) and a formula ξ (x) (satisfy-
ing Gn |= (∃x)ξ (x) for all n) with the property that there are no roots (rn), rn ∈ ξ (Gn), such that the
sequence (Gn, rn) is FO-convergent.

Note that necessarily lim〈ξ ,Gn〉 = 0; otherwise, the roots exist by the result Christofides and
Král’ [3]. Moreover, the sequence |ξ (Gn)| has to be unbounded; otherwise, the roots exist by
Theorem 2 (see the second paragraph the last section).

It is an interesting question whether the sequence in Proposition 7 can be chosen from a
nowhere dense class [13].

5.1 Proof of Proposition 7
First, we describe the example with bipartite graphs with distinguished parts (i.e. marked by dis-
tinct unary symbols), and then we show how to remove the marks to obtain a sequence of simple
graphs.

Let L= {E,A, B} be a language with one binary relation E and two unary relations A, B. Let T
be the theory of bipartite graph with vertices in the first part marked by the symbol A and vertices
in the other part marked by the symbol B. We denote the parts of G, a model of T, by A and B, by
abuse of notation.

We say that a graph G has bipartite k-extension property if it satisfies the following:

1. For any disjoint X, Y ⊆A, Z ⊆ B with |X| + |Y| + |Z| ≤ k− 1, there exists v ∈ B \ Z such
that ∀x ∈ X : vx ∈ E and ∀y ∈ Y : vy �∈ E.

2. For any disjoint X, Y ⊆ B, Z ⊆A with |X| + |Y| + |Z| ≤ k− 1, there exists v ∈A \ Z such
that ∀x ∈ X : vx ∈ E and ∀y ∈ Y : vy �∈ E.

A countable model of T that has bipartite k-extension property for every k ∈N is called a
bipartite Rado graph whose properties are reminiscent of the Rado graph [7] (also known as
the countable random graph). A standard back-and-forth argument shows that there is only one
bipartite Rado graph BR up to isomorphism and it is ultrahomogeneous. Moreover, if (Gn) is
a sequence of models of T with increasing size of parts and for each k ∈N, there is an index nk
such that for n≥ nk, the graph Gn has the bipartite k-extension property, then (Gn) elementarily
converges to BR. We recall that if a sequence (Gn) elementarily converges to a an ultrahomo-
geneous structure, the question of FO-convergence reduces to convergence with respect to only
quantifier-free formulas, so-called QF-convergence [10, Lemma 2.28].

Let Gn(p)= (An ∪ Bn, En), p ∈ (0, 1), be a model of T with parts of size n2 and n with the edge
between each pair u ∈An, v ∈ Bn with probability p, independently of all the other pairs. A direct
computation yields that for each k ∈N, the probability that Gn(p) does not possess the bipartite
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k-extension property decays exponentially with n. Therefore, using Borel–Cantelli lemma, the
sequence (Gn(p)) elementarily converges to BR almost surely.

Observe that (Gn(p)) is alwaysQF-convergent as almost all t-tuples of vertices induce an inde-
pendent set. This also implies that the sequence (Hn) formed by interlacing (Gn(p)) and (Gn(q))
for some 0< p< q< 1 is almost surely FO-convergent.

We claim that for any sequence of roots (rn) from the smaller components Bn, the sequence
(Hn, rn) does not converge. Fix ε > 0 and consider the event ‘∀u ∈ B : deg u ∈ pn2 ± ε’. This event
holds for all except finitelymany graphs of (Gn(p)) by Chernoff bounds and Borel–Cantelli lemma.
Therefore, the proportion of neighbours of roots rn fromHn oscillates between pn2 ± ε and qn2 ±
ε. Therefore, using ε= (q− p)/3, the sequence (Hn, rn) is almost surely not FO-convergent as
witnessed by the formula φ(x) : x∼ Root.

If we want to remove the marks, we can attach, for example, a triangle to each vertex of the
smaller part and a pentagon to each vertex of the larger part (i.e. preserving the property that the
parts are definable). This operation can be formalised as a gadget construction, where the marks
are considered to be the replaced edges by the gadgets triangle and pentagon, which in these cases
preserves FO-convergence [6, Theorem 5.3, Corollary 5.5].

6. Concluding remarks
An iterative use of Theorem 1 or 2 allows us to gain complete control over the algebraic elements as
we can consider each of them separately. Note that it is also possible to root solutions of algebraic
formulas with multiple free variables (i.e. p-tuples instead of singletons) since the projection to
each coordinate yields an algebraic set.

We would like to point out that Theorem 2 remains valid for FO-convergent sequences
(Gn) without a modelling limit. The proofs are analogous except that the set I in Lemma 4
is defined as an inclusion-maximal set for which there are roots (rn) with the property that
lim〈∧i∈I φi(xi), (Gn, rn)〉> 0.

It can be shown that the sequence of random bipartite graphs constructed for Proposition 7
admits (almost surely) a modelling limit. This together with a rich context will be the subject of a
forthcoming paper.

Besides the original problem in [10], our motivation was the study of structural convergence
of sequences created via gadget construction; see [6]. Using the result of this paper, we conclude
that FO-convergence is preserved by gadget construction if the gadgets replace only finitely many
edges (under additional natural assumptions).

In the typical case, the modelling L is of size continuum, and the set of algebraic vertices (which
is at most countable) has measure 0. Hence, our results reveal only a negligible portion of vertices
of L for which the roots (rn) exist, which shows that there is still room for further research.
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Cite this article: Hartman D, Hons T, and Nešetřil J (2024). Structural convergence and algebraic roots. Combinatorics,
Probability and Computing. https://doi.org/10.1017/S0963548324000427

https://doi.org/10.1017/S0963548324000427 Published online by Cambridge University Press

https://doi.org/10.1017/s0963548315000048
https://doi.org/10.1007/s00493-007-2214-8
https://arxiv.org/abs/https://arxiv.org/abs/2212.10985
https://doi.org/10.5817/cz.muni.eurocomb23-075
https://doi.org/10.1017/cbo9780511551574
https://doi.org/10.1016/j.jctb.2006.05.002
https://doi.org/10.1090/memo/1272
https://doi.org/10.1002/rsa.20719
https://doi.org/10.1017/jsl.2018.32
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1017/cbo9780511609589
https://doi.org/10.1017/cbo9781139015417
https://doi.org/10.1017/S0963548324000427
https://doi.org/10.1017/S0963548324000427

	Introduction
	Notation and tools
	Rooting in algebraic sets
	Single formula
	Finite collection of formulas
	All formulas

	A lemma about finite Boolean lattices
	Examples
	Proof of Proposition 7

	Concluding remarks

