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Abstract We discuss the existence of breather solutions for a discrete nonlinear Schrödinger equation
in an infinite N -dimensional lattice, involving site-dependent anharmonic parameters. We give a simple
proof of the existence of (non-trivial) breather solutions based on a variational approach, assuming that
the sequence of anharmonic parameters is in an appropriate sequence space (decays with an appropriate
rate). We also give a proof of the non-existence of (non-trivial) breather solutions, and discuss a possible
physical interpretation of the restrictions, in both the existence and non-existence cases.
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1. Introduction

The one-dimensional discrete nonlinear Schrödinger (DNLS) equation,

iψ̇n + ε(ψn−1 − 2ψn + ψn+1) + γ|ψn|2ψn = 0, (1.1)

represents an infinite (n ∈ Z) or a finite (|n| � K) one-dimensional array of coupled
anharmonic oscillators, coupled to their nearest neighbours with a coupling strength ε.
Here ψn(t) stands for the complex mode amplitude of the oscillator at lattice site n, and
γ denotes an anharmonic parameter. Setting ε = 1/(∆x)2 reminds us that the model
includes a finite spacing between molecules, and the formal continuum limit, the NLS
partial differential equation, is obtained by taking ∆x → 0. The DNLS equation is one
of the most important inherently discrete models, having a crucial role in the modelling
of a great variety of phenomena, ranging from solid-state and condensed-matter physics
to biology [2,9,11,13,17]. Depending on the size of the lattice, we have to deal with an
infinite or finite system of ordinary differential equations, respectively.

The gauge invariance of the nonlinearity allows for the support of special solutions
of (1.1) of the form ψn(t) = φn exp(iωt), ω > 0. These solutions are called breather
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solutions, due to their periodic time behaviour. Inserting the ansatz of a breather solution
into (1.1), it follows that φn satisfies the nonlinear system of algebraic equations

−ε(φn−1 − 2φn + φn+1) + ωφn = γ|ψn|2ψn. (1.2)

The problem of existence and stability properties of breather solutions of coupled oscil-
lators has been developed as a fascinating subject of research. Starting from the deriva-
tion of the stationary DNLS equation [14], we refer among other contributions to the
derivation of stationary solutions for the (coupled) DNLS equation, by numerical contin-
uation from the so-called anticontinuum limit (the case ε → 0) [10], and the ingenious
construction of localized time-periodic or quasi-periodic solutions of general discrete sys-
tems (starting from periodic solutions of the corresponding anticontinuum limit equa-
tions) [2,18]. We refer to [9,16] for reviews of the existing results and the history of the
problem and for a long list of references.

Motivated by [9, § 3] and [3], in this work we consider higher-dimensional generaliza-
tions of DNLS equations, involving an arbitrary power law nonlinearity and site depend-
ence of the anharmonic parameter γ. For this particular case of nonlinearity, we also
refer to [19–21]. For instance, for breather solutions of the DNLS equation in infinite
higher-dimensional lattices (n = (n1, n2, . . . , nN ) ∈ Z

N ) we consider the equation

iψ̇n + (Aψ)n + γn|ψn|2σψn = 0, (1.3)

where

(Aψ)n∈ZN = ψ(n1−1,n2,...,nN ) + ψ(n1,n2−1,...,nN ) + . . .

+ ψ(n1,n2,...,nN −1) − 2Nψ(n1,n2,...,nN )

+ ψ(n1+1,n2,...,nN ) + ψ(n1,n2+1,...,nN ) + · · · + ψ(n1,n2,...,nN+1). (1.4)

In this case, Equation (1.3) could be viewed as the discretization of the NLS partial
differential equation

iψt + ∆ψ + γ(x)|ψ|2σψ = 0, x ∈ R
N . (1.5)

As in the one-dimensional case, it can easily be seen that any breather solution ψn(t) =
φn exp(iωt) of the DNLS equation (1.3) satisfies the infinite nonlinear system of algebraic
equations

−(Aφ)n + ωφn = γn|φn|2σφn, n ∈ Z
N . (1.6)

Based on a variational approach, which makes use of the famous mountain-pass theo-
rem (MPT), we give a simple proof of the existence of (non-trivial) breather solutions
for (1.3), by showing that the energy functional associated with (1.6) has a critical point
of ‘mountain-pass type’. Our main assumption is that γn decays at an appropriate rate,
in the sense that γn is in an appropriate sequence space. This restriction enables us to use
a compact inclusion between ordinary sequence spaces and weighted sequence spaces, in
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order to justify one of the crucial steps needed for the application of the MPT, namely the
Palais–Smale condition. This is an important difference from the case of constant anhar-
monic parameters, as the analysis of our recent work [15] shows: the latter is associated
with lack of compactness and restricted our study to a finite-dimensional problem (in
a one-dimensional lattice, assuming Dirichlet boundary conditions). We note here that
the case of lack of compactness can be treated by the concentration compactness argu-
ments in the discrete context [26]. We also refer to [22] for an application of an envelope
technique, characterizing the precompactness of minimizing sequences. The application
of the MPT to (1.6) gives rise to some restrictions, which possibly have some physical
interpretation. These restrictions, needed for the support of a non-trivial breather solu-
tion, are imposed on some energy quantities. The restrictions depend on the frequency
ω, the nonlinearity σ and the sequence of anharmonic parameters γn.

On the other hand, it is shown that non-trivial solutions of (1.6) do not exist in a ball
of the space �2, of sufficiently small radius. The proof is based on a fixed-point argument
that is also used in [15]. This result could imply that we should not expect the existence
of breather solutions if the energy of the excitations of the lattice is sufficiently small.

The restrictions posed by the MPT can be combined with those needed for the proof of
the non-existence result to derive a ‘dispersion relation’ of nonlinearity exponent σ versus
the frequency ω of the breather solution, providing information on the behaviour of the
associated energy quantities (see relations (2.47) and (2.48)). For a detailed discussion on
the breather problem in higher-dimensional lattices and the dependence of the frequency
ω on the conserved quantities of the DNLS equation, we refer to [9, § 6].

2. Preliminaries

In this introductory section, we describe the functional setting needed for the treatment of
the infinite nonlinear system (1.6). We also introduce some weighted sequence spaces, and
we prove a compact inclusion between the ordinary sequence spaces and their weighted
counterparts.

For some positive integer N , we consider the complex sequence spaces

�p =

⎧⎪⎪⎨
⎪⎪⎩

φ = {φn}n∈ZN , n = (n1, n2, . . . , nN ) ∈ Z
N , φn ∈ C

‖φ‖�p =
( ∑

n∈ZN

|φn|p
)1/p

< ∞

⎫⎪⎪⎬
⎪⎪⎭

. (2.1)

Between �p spaces the following elementary embedding relation [24] holds:

�q ⊂ �p, ‖φ‖�p � ‖φ‖�q , 1 � q � p � ∞. (2.2)

Note that the opposite holds for the Lp(Ω)-spaces if Ω ⊂ R
N has finite measure. For

p = 2, we get the usual Hilbert space of square-summable sequences, which becomes a
real Hilbert space if endowed with the real scalar product

(φ, ψ)�2 = Re
∑

n∈ZN

φnψ̄n, φ, ψ ∈ �2. (2.3)
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For a sequence of positive real numbers δ = {δn}n∈ZN , we define the weighted sequence
spaces �2δ by

�p
δ =

⎧⎪⎪⎨
⎪⎪⎩

φ = {φn}n∈ZN , n = (n1, n2, . . . , nN ) ∈ Z
N , φn ∈ C

‖φ‖�p
δ

=
( ∑

n∈ZN

δn|φn|p
)1/p

< ∞

⎫⎪⎪⎬
⎪⎪⎭

. (2.4)

For the case p = 2, it is not hard to see that �2δ is a Hilbert space, with scalar product

(φ, ψ)�2δ
= Re

∑
n∈ZN

δnφnψ̄n, φ, ψ ∈ �2δ . (2.5)

For a certain class of weight δ, we have the following lemma, which will play a crucial
role in our analysis.

Lemma 2.1. We assume that the positive sequence of real numbers δ ∈ �ρ, ρ =
(q − 1)/(q − 2) for some q > 2. Then �2 ↪→ �2δ with compact inclusion.

Proof. We use the ideas of [5, Lemma 2.3, p. 79] and (2.2). We consider a bounded
sequence φk ∈ �2 and we denote by (φk)n the nth coordinate of this sequence. It suffices
to show that the sequence φk is a Cauchy sequence in �2δ . For some q > 2 we consider its
Hölder conjugate through the relation p−1 + q−1 = 1. Then, for all positive integers k, l,
we have

‖φk − φl‖2
�2δ

=
∑

n∈ZN

δn|(φk)n − (φl)n|2

�
( ∑

n∈ZN

δn|(φk)n − (φl)n|p
)1/p( ∑

n∈ZN

δn|(φk)n − (φl)n|q
)1/q

. (2.6)

Since φk is a bounded sequence in �2, it follows from (2.2) that φk is bounded in �q. Then
from (2.6) we have that there exists a positive constant c, such that

‖φk − φl‖2
�2δ

� c

( ∑
n∈ZN

δn|(φk)n − (φl)n|p
)1/p

. (2.7)

Since δ ∈ �ρ, it holds that for any ε1 > 0 there exists K0(ε1) such that for all K > K0(ε1)
∑

|n|>K

|δn|ρ < ε1.

Thus, using the boundedness of φk in �q once again, we have

∑
|n|>K

δn|(φk)n − (φl)n|p �
( ∑

|n|>K

|δn|ρ
)1/ρ( ∑

|n|>K

|(φk)n − (φl)n|q
)p/q

< cε
1/ρ
1 . (2.8)
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On the other hand, since the sequence φk is a Cauchy sequence in the finite-dimensional
space C

(2K+1)N

, we get that, for k and l sufficiently large and for any ε2 > 0, it holds
that

∑
|n|�K

δn|(φk)n − (φl)n|p < ε2. (2.9)

Inequality (2.7) can be rewritten as

‖φk − φl‖2p
�2δ

� c

{ ∑
|n|�K

δn|(φk)n − (φl)n|p +
∑

|n|>K

δn|(φk)n − (φl)n|p
}

. (2.10)

Now, from (2.8)–(2.10), and appropriate choices of ε1 and ε2, we may derive that, for
sufficiently large k and l,

‖φk − φl‖�2δ
< ε, for any ε > 0.

That is, φk is a Cauchy sequence in �2δ . �

Let A : D(A) ⊆ X → X be a C-linear, self-adjoint, dissipative operator with dense
domain D(A) on the Hilbert space X, equipped with the scalar product (· , ·)X . The
space XA is the completion of D(A) in the norm ‖u‖2

A = ‖u‖2
X − (Au, u)X , for u ∈ XA,

and we denote by X∗
A its dual and by A∗ the extension of A to the dual of D(A), denoted

by D(A)∗ (Friedrichs extension theory (see [8] and [27, vol. II/A])).
Considering the operator A defined by (1.4), we observe that for any φ ∈ �2

‖Aφ‖2
�2 � 4N‖φ‖2

�2 ; (2.11)

that is, A : �2 → �2 is a continuous operator. Now we consider the discrete operator
L+ : �2 → �2 defined by

(L+ψ)n∈ZN = {ψ(n1+1,n2,...,nN ) − ψ(n1,n2,...,nN )}
+ {ψ(n1,n2+1,...,nN ) − ψ(n1,n2,...,nN )}
...

+ {ψ(n1,n2,...,nN+1) − ψ(n1,n2,...,nN )}, (2.12)

and L− : �2 → �2 defined by

(L−ψ)n∈ZN = {ψ(n1−1,n2,...,nN ) − ψ(n1,n2,...,nN )}
+ {ψ(n1,n2−1,...,nN ) − ψ(n1,n2,...,nN )}
...

+ {ψ(n1,n2,...,nN −1) − ψ(n1,n2,...,nN )}. (2.13)
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Setting

(L+
ν ψ)n∈ZN = ψ(n1,n2,...,nν−1,nν+1,nν+1,...,nN ) − ψ(n1,n2,...,nN ), (2.14)

(L−
ν ψ)n∈ZN = ψ(n1,n2,...,nν−1,nν−1,nν+1,...,nN ) − ψ(n1,n2,...,nN ), (2.15)

we observe that the operator A satisfies the relations

(−Aψ1, ψ2)�2 =
N∑

ν=1

(L+
ν ψ1,L

+
ν ψ2)�2 , for all ψ1, ψ2 ∈ �2, (2.16)

(L+
ν ψ1, ψ2)�2 = (ψ1,L

−
ν ψ2)�2 , for all ψ1, ψ2 ∈ �2. (2.17)

From (2.16), it is clear that A : �2 → �2 defines a self-adjoint operator on �2, and A � 0.
The graph-norm

‖φ‖2
D(A) = ‖Aφ‖2

�2 + ‖φ‖2
�2

is equivalent to that of �2, since

‖φ‖2
�2 � ‖φ‖2

D(A) � (4N + 1)‖φ‖2
�2 .

In our case, we have that XA = �2 equipped with the norm

‖φ‖2
A = ‖φ‖2

X − (Aφ, φ)X =
N∑

ν=1

‖L+
ν φ‖2

�2 + ‖φ‖2
�2 ,

for φ ∈ �2, and is an equivalent norm with the usual one of �2. Moreover, D(A) = X =
�2 = D(A)∗. Obviously, A∗ = A and the operator iA : �2 → �2, defined by (iA)φ = iAφ

for φ ∈ �2, is C-linear and skew-adjoint and iA generates a group (T (t))t∈R of isometries
on �2 (see [6]). The analysis of the operator A is useful if one would like to consider the
DNLS equation (1.3) as an abstract evolution equation [15], and holds for other discrete
operators that are not necessarily discretizations of the Laplacian (for examples of such
operators, we refer the reader to [28]).

2.1. Existence of non-trivial breather solutions in the case of decaying
anharmonic parameters

We shall seek non-trivial breather solutions as critical points of the functional

E(φ) = 1
2

N∑
ν=1

‖L+
ν φ‖2

�2 +
ω2

2

∑
n∈ZN

|φn|2 − 1
2σ + 2

∑
n∈ZN

γn|φn|2σ+2. (2.18)

To establish differentiability of the functional E : �2 → R, we will use the following
discrete version of the dominated convergence theorem, provided by [4].
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Theorem 2.2. Let {ψi,k} be a double sequence of summable functions,∑
i∈ZN

|ψi,k| < ∞,

and let limk→∞ ψi,k = ψi for all i ∈ Z
N . If there exists a summable sequence {gi} such

that |ψi,k| � gi for all values of i and k, we have that

lim
k→∞

∑
i∈ZN

ψi,k =
∑

i∈ZN

ψi.

We then have the following lemma.

Lemma 2.3. Let (φn)n∈ZN = φ ∈ �2σ+2 for some 0 < σ < ∞. Moreover, we assume
that γn ∈ �ρ, ρ = (q − 1)/(q − 2) for some q > 2. Then the functional

F (φ) =
∑

n∈ZN

γn|φn|2σ+2

is a C1(�2σ+2, R) functional and

〈F ′(φ), ψ〉 = (2σ + 2) Re
∑

n∈ZN

γn|φn|2σφnψ̄n, ψ = (ψn)n∈ZN ∈ �2σ+2. (2.19)

Proof. We assume that φ, ψ ∈ �2σ+2. Then, for any n ∈ Z
N , 0 < s < 1, we get

F (φ + sψ) − F (ψ)
s

=
1
s

Re
∑

n∈ZN

γn

∫ 1

0

d
dθ

|φn + θsψn|2σ+2 dθ

= (2σ + 2) Re
∑

n∈ZN

γn

∫ 1

0
|φn + θsψn|2σ(φn + sθψn)ψ̄n dθ. (2.20)

Since γn is in �ρ, it follows from (2.2) that

sup
n∈ZN

|γn| = M < ∞. (2.21)

On the other hand, we have the inequality∑
n∈ZN

|φn + θsψn|2σ+1|ψn|

�
∑

n∈ZN

(|φn| + |ψn|)2σ+1|ψn|

�
( ∑

n∈ZN

(|φn| + |ψn|)2σ+2
)(2σ+1)/(2σ+2)( ∑

n∈ZN

|ψn|2σ+2
)1/(2σ+2)

. (2.22)

Now, by using (2.21) and inserting (2.22) into (2.20), we see that Lemma 2.2 is applicable:
letting s → 0, we get the existence of the Gâteaux derivative (2.19) of the functional
F : �2σ+2 → R.
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Next we show that the functional

F ′ : �2σ+2 → �(2σ+2)/(2σ+1)

is continuous. For φ ∈ �2σ+2, we set (F1(φ))n∈ZN = |φn|2σφn.
Let us note that for any F ∈ C(C, C) that takes the form F (z) = g(|z|2)z, with g real

and sufficiently smooth, the following equality holds:

F (φ1) − F (φ2) =
∫ 1

0
{(φ1 − φ2)(g(r) + rg′(r)) + (φ̄1 − φ̄2)Φ2g′(r)} dθ, (2.23)

for any φ1, φ2 ∈ C, where Φ = θφ1 + (1 − θ)φ2, θ ∈ (0, 1) and r = |Φ|2 (see [12, p. 202]).
Applying (2.23) for the case of F1 (g(r) = rσ), one obtains that

F1(φ1) − F1(φ2) =
∫ 1

0
[(σ + 1)(φ1 − φ2)|Φ|2σ + σ(φ̄1 − φ̄2)Φ2|Φ|2σ−2] dθ,

which implies the inequality

|F1(φ1) − F1(φ2)| � (2σ + 1)(|φ1| + |φ2|)2σ|φ1 − φ2|. (2.24)

We consider a sequence φm ∈ �2σ+2 such that φm → φ in �2σ+2. Using (2.21), we get the
inequality

|〈F ′(φm) − F ′(φ), ψ〉| � c(M)‖F1(φm) − F1(φ)‖�q‖ψ‖�p , q =
2σ + 2
2σ + 1

, p = 2σ + 2.

(2.25)
We denote by (φm)n the nth coordinate of the sequence φm ∈ �2. By setting

Φn = (|(φm)n| + |φn|)2σ,

we get from (2.24) that, for some constant c > 0,
∑

n∈ZN

|F1((φm)n) − F1(φn)|q

� c
∑

n∈ZN

(Φn)q|(φm)n − φn|q

� c

( ∑
n∈ZN

|(φm)n − φn|2σ+2
)1/(2σ+1)( ∑

n∈ZN

(Φn)(σ+1)/σ

)2σ/(2σ+1)

→ 0,

as m → ∞. �

By using (2.16), we easily see that the rest of the terms of the functional E given by
(2.18) define C1(�2, R) functionals. Since Lemma 2.3 holds for any φ ∈ �2 (by (2.2)), we
finally obtain that the functional E is C1(�2, R). Moreover, by using the analysis of § 1
for the self-adjoint operator A : �2 → �2, it appears that any solution of (1.6) satisfies
the formula

(−Aφ, ψ)�2 + ω(φ, ψ)�2 = (γnF1(φ), ψ)�2 , for all ψ ∈ �2,
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and vice versa. Equivalently, due to the differentiability of the functional E, any solution
of (1.6) is a critical point of E. For convenience, we recall [7, Definition 4.1, p. 130]
(hereafter referred to as condition (PS)) and [7, Theorem 6.1, p. 140] or [25, Theorem 6.1,
p. 109] (the mountain-pass theorem of Ambrosseti and Rabinowitz [1]).

Definition 2.4. Let X be a Banach space and let E : X → R be C1. We say that E

satisfies condition (PS) if, for any sequence {φn} ∈ X such that |E(φn)| is bounded and
E′(φn) → 0 as n → ∞, there exists a convergent subsequence. If this condition is only
satisfied in the region where E � α > 0 (respectively, E � −α < 0) for all α > 0, we say
that E satisfies condition (PS+) (respectively, (PS−)).

Theorem 2.5. Let E : X → R be C1 and satisfy

(a) E(0) = 0,

(b) ∃ρ > 0, α > 0 : ‖φ‖X = ρ implies E(φ) � α,

(c) ∃φ1 ∈ X : ‖φ1‖X � ρ and E(φ1) < α.

Define
Γ = {γ ∈ C0([0, 1], X) : γ(0) = 0, γ(1) = φ1}.

Let Fγ = {γ(t) ∈ X : 0 � t � 1} and let L = {Fγ : γ ∈ Γ}. If E satisfies condition (PS),
then

β := inf
Fγ∈L

sup{E(v) : v ∈ Fγ} � α

is a critical point of the functional E.

For fixed ω > 0, we shall consider a norm in �2 defined by

‖φ‖2
�2ω

=
ν=N∑
ν=1

‖L+
ν φ‖2

�2 + ω‖φ‖2
�2 , φ ∈ �2. (2.26)

The norm (2.26) is an equivalent norm with the usual one of �2, since

ω‖φ‖2
�2 � ‖φ‖2

�2ω
� (2N + ω)‖φ‖2

�2 . (2.27)

We first check the behaviour of the functional E. Using (2.27), we observe that

|F (φ)| � M
∑

n∈ZN

|φn|2σ+2

� M‖φ‖2σ+2
�2

� M

ωσ+1 ‖φ‖2σ+2
�2ω

. (2.28)

Now setting M0 = M/ωσ+1 we observe that

E(φ) = 1
2‖φ‖2

�2ω
− 1

2σ + 2
F (φ)

� 1
2‖φ‖2

�2ω
− M0

2σ + 2
‖φ‖2σ+2

�2ω
. (2.29)
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We now select some φ ∈ �2 such that ‖φ‖�2ω
= R > 0. Then, if

0 < R <

(
σ + 1
M0

)1/2σ

=
(

(σ + 1)ωσ+1

M

)1/2σ

:= E∗
�2ω

(σ, ω, M), (2.30)

it follows from (2.29) that

E(φ) � α > 0, α = R2
(

1
2

− M0

2σ + 2
R2σ

)
.

We assume that γn > 0 for all n ∈ S+ ⊆ Z
N . Next we will consider some ψ ∈ �2 such

that ‖ψ‖�2ω
= 1 and

{ψn}n∈Z = {ψn}n∈S+ + {ψn}n∈(ZN \S+), where {ψn}n∈S+ > 0, {ψn}n∈(ZN \S+) = 0.

For some t > 0 we consider the element χ = tψ ∈ �2. We have that

E(χ) =
t2

2
− 1

2σ + 2
t2σ+2

∑
n∈S+

γn|ψn|2σ+2. (2.31)

Now letting t → +∞ we find that E(tψ) → −∞.
For fixed φ 
= 0 and choosing t sufficiently large, we may set φ1 = tφ to satisfy the

second condition of Theorem 2.5. To conclude with the existence of a non-trivial breather
solution, it remains to show that the functional E satisfies Lemma 2.4.

To this end, we consider a sequence φm of �2 such that |E(φm)| < M ′ for some M ′ > 0
and E′(φm) → 0 as m → ∞. By using (2.18) and Lemma 2.3, we observe that, for m

sufficiently large,

M ′ � E(φm) − 1
2σ + 2

〈E′(φm), φm〉 =
(

1
2

− 1
2σ + 2

)
‖φm‖2

�2ω
. (2.32)

Therefore, the sequence φm is bounded. Thus, we may extract a subsequence, still denoted
by φm, such that

φm ⇀ φ in �2, as m → ∞. (2.33)

For this subsequence it follows once again from (2.18) and Lemma 2.3 that

‖φm − φ‖2
�2ω

= 〈E′(φm) − E′(φ), φm − φ〉

+
∑

n∈ZN

γn[|(φm)n|2σ(φm)n − |φn|2σφn]((φm)n − φn). (2.34)

Another assumption on the sequence γn is that the sequence |γn| = (δn)n∈ZN satisfies the
assumptions of Lemma 2.1. We consider the associated Hilbert space �2δ . Now, by using
the inequality (2.24), we get the following estimate for the second term of the right-hand
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side of (2.34):
∑

n∈ZN

γn[|(φm)n|2σ(φm)n − |φn|2σφn]((φm)n − φn)

� c
∑

n∈ZN

Φn|γn‖(φm)n − φn|2

� c sup
n∈ZN

Φn

∑
n∈ZN

|γn‖(φm)n − φn|2 = c2‖φm − φ‖2
�2δ

, (2.35)

where c2 = c supn∈ZN Φn. Obviously, φm is bounded in �2δ and from Lemma 2.1 it follows
that

φm → φ in �2δ , as m → ∞. (2.36)

Combining (2.34), (2.35) and (2.36) we obtain that

‖φm − φ‖�2ω
→ 0, as m → ∞.

Hence φm has a (strongly) convergent subsequence. The assumptions of Theorem 2.5 are
satisfied, and we may summarize in the following theorem.

Theorem 2.6. Assume that the site-dependent anharmonic parameter γn > 0 in
some S+ ⊆ Z

N . Moreover, we assume that |γn| = δn ∈ �ρ, ρ = (q − 1)/(q − 2) for some
positive integer q > 2. Then, for any ω > 0, there exists a non-trivial breather solution
ψn(t) = φn exp(iωt) of the DNLS equation (1.3).

We remark here that the assumptions on the sequence of anharmonic parameters γn

are crucial for the derivation of the strong convergence of the subsequence φm. If γn is
constant for all n ∈ Z

N , then due to the fact that the space �2 lacks the Schur prop-
erty (in contrast with the space �1 which has the Schur property (i.e. weak convergence
coincides with strong convergence)), it is not possible to derive the strong convergence
of the subsequence from its weak convergence. Of course the strong convergence is valid
in the case of a finite lattice: in this case, the problem is formulated in finite-dimensional
spaces where weak convergence is equivalent to strong convergence [15]. For the case
of constant anharmonic parameters in infinite lattices, we refer the reader to [26] (con-
centration compactness arguments) and [22] (envelope technique). We also refer to the
recent work [23], on the existence of gap solitons in periodic DNLS equations, via a
variational approach.

Inequality (2.30) could have some physical interpretation with respect to the existence
of non-trivial breather solutions of frequency ω > 0 if one considers (2.30) as a possible
(local) upper bound for the �2ω norm. It is one of the conditions which determines the
necessary behaviour of the functional E, in order to have a non-trivial breather solution of
frequency ω. This relation could be seen as some kind of dispersion relation of frequency
versus energy for breather solutions. It contains information on the type of nonlinearity
and the sequence of anharmonic parameters through its dependence on the nonlinearity

https://doi.org/10.1017/S0013091504001415 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001415


126 N. I. Karachalios

exponent σ and M . Such types of relation seem to be reasonable, as the next result
concerning non-existence of non-trivial breather solutions shows.

For the sake of completeness, we recall [27, Theorem 18.E, p. 68] (the theorem of Lax
and Milgram). This theorem will be used to establish the existence of solutions for an
auxiliary infinite linear system of algebraic equations related to (1.6).

Theorem 2.7. Let X be a Hilbert space and let A : X → X be a linear continuous
operator. Suppose that there exists c∗ > 0 such that

Re(Au, u)X � c∗‖u‖2
X , for all u ∈ X. (2.37)

Then, for a given f ∈ X, the operator equation Au = f , u ∈ X, has a unique solution.

The non-existence result can be stated as follows.

Theorem 2.8. There exist no non-trivial breather solutions with an energy of less
than

Emin(ω, σ, M) :=
1
2

(
ω

M(2σ + 1)

)1/2σ

. (2.38)

Proof. For some ω > 0, we consider the operator Aω : �2 → �2, defined by

(Aωφ)n∈ZN = (Aφ)n∈ZN + ωφn. (2.39)

It is linear and continuous and satisfies assumption (2.37) of Theorem 2.7: using (2.16),
we find that

(Aωφ, φ)�2 =
N∑

ν=1

‖L+
ν φ‖2

�2 + ω‖φ‖2 � ω‖φ‖2
�2 , for all φ ∈ �2. (2.40)

For given z ∈ �2, we consider the linear operator equation

(Aωφ)n∈ZN = γn|zn|2σzn. (2.41)

For the map

(T (z))n∈ZN = γn|zn|2σzn, (2.42)

we observe that

‖T (z)‖2
�2 � M2

∑
n∈ZN

|zn|4σ+2 � M2‖z‖4σ+2
�2 .

Hence, the assumptions of Theorem 2.7 are satisfied, and (2.41) has a unique solution
φ ∈ �2. For some R > 0, we consider the closed ball of �2, BR := {z ∈ �2 : ‖z‖�2 � R},
and we define the map P : �2 → �2 by P(z) := φ, where φ is the unique solution of the
operator equation (2.41). Clearly, the map P is well defined.
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Let ζ, ξ ∈ BR such that φ = P(ζ), ψ = P(ξ). The difference χ := φ − ψ satisfies the
equation

(Aωχ)n∈ZN = (T (z))n∈ZN − (T (ξ))n∈ZN . (2.43)

The map T : �2 → �2 is locally Lipschitz, since we may use (2.24) once again, to get

‖T (ζ) − T (ξ)‖2
�2 � (2σ + 1)2M2

∑
n∈ZN

((|ζn| + |ξn|)2σ)2|ζn − ξn|2

� (2σ + 1)2M2
[

sup
n∈ZN

(|ζn| + |ξn|)2σ
]2 ∑

n∈ZN

|ζn − ξn|2

� M2
1 R4σ‖ζ − ξ‖2

�2 , (2.44)

with M1 = 22σM(2σ + 1). Now, taking the scalar product of (2.43) with χ in �2 and
using (2.44), we have

N∑
ν=1

‖L+
ν χ‖2

�2 + ω‖χ‖2
�2 � ‖T (ζ) − T (ξ)‖�2‖χ‖�2

� M1R
2σ‖ζ − ξ‖�2‖χ‖�2

� 1
2ω‖χ‖2

�2 +
1
2ω

M2
1 R4σ‖z − ξ‖2

�2 . (2.45)

From (2.45), we obtain the inequality

‖χ‖2
�2 = ‖P(z) − P(ξ)‖2

�2 � 1
ω2 M2

1 R4σ‖z − ξ‖2
�2 . (2.46)

Since P(0) = 0, from inequality (2.46), we derive that, for R < Emin, the map P : BR →
BR is a contraction. Therefore, P satisfies the assumptions of the Banach fixed-point
theorem and has a unique fixed point, the trivial one. Hence, for R < Emin the only
breather solution is the trivial one. �

If the energy of the excitation is less than Emin, the lattice may not support a standing
wave of frequency ω. This time, relation (2.38) could be seen as some kind of dispersion
relation of frequency versus energy for the non-existence of breather solutions of the
DNLS equation (1.3). Taking into account the dependence E∗

�2ω
and Emin on ω, σ, M , we

observe that the inequality Emin < E∗
�2ω

is satisfied if

(
1

22σ(σ + 1)(2σ + 1)

)1/σ

< ω. (2.47)

For example, in the case σ = 1 (cubic nonlinearity) we get the lower bound ω > 24−1 ∼
0.041 66 for the frequency of the breather solution, satisfying

‖φ‖�2ω
> Emin. (2.48)

Let us also remark that a similar non-existence result to Theorem 2.8 can be proved
in either of the following cases:
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(a) that of an infinite lattice with γ = const. [15], and

(b) that of a finite lattice (assuming Dirichlet boundary conditions).

Numerical simulations for testing (2.38) or (2.47)–(2.48) could be of interest. Fur-
ther developments could consider DNLS equations involving a site-dependent coupling
strength εn, or operators which are not necessarily discretizations of the Laplacian (for
examples of such operators see [28]).
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