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Abstract
Contemporary diets in Western countries are largely acid-inducing and deficient in potassium alkali salts, resulting in low-grade metabolic acidosis. The
chronic consumption of acidogenic diets abundant in animal-based foods (meats, dairy, cheese and eggs) poses a substantial challenge to the human
body’s buffering capacities and chronic retention of acid wherein the progressive loss of bicarbonate stores can cause cellular and tissue damage. An ele-
vated dietary acid load (DAL) has been associated with systemic inflammation and other adverse metabolic conditions. In this narrative review, we examine
DAL quantification methods and index observational and clinical evidence on the role of plant-based diets, chiefly vegetarian and vegan, in reducing DAL.
Quantitation of protein and amino acid composition and of intake of alkalising organic potassium salts and magnesium show that plant-based diets are
most effective at reducing DAL. Results from clinical studies and recommendations in the form of expert committee opinions suggest that for a number of
common illnesses, wherein metabolic acidosis is a contributing factor, the regular inclusion of plant-based foods offers measurable benefits for disease
prevention and management. Based on available evidence, dietary shifts toward plant-based nutrition effectively reduces dietary-induced, low-grade meta-
bolic acidosis.

Key words: Dietary acid load: Net endogenous acid production: Plant-based diet: Potential renal acid load: Vegan diet: Vegetarian diet

Introduction

Contemporary diets in Western countries are largely acid-
inducing and deficient in potassium alkali salts(1,2). This results
in a chronic condition known as low-grade metabolic acidosis,
subsequent to an increased dietary acid load (DAL) that leads
to small net increases in acid (H+) and a reduction in base
(HCOO3

−). While diet-induced low-grade metabolic acidosis
results in only a slight decrease in blood pH, investigations
that followed the initial seminal findings of Kurtz et al. have
shown that its impact on metabolism can contribute to the

worsening of a variety of disorders(3). DiNicolantonio and
O’Keefe have classified low-grade metabolic acidosis as a dri-
ver of chronic disease(4).
In general, foods of animal origin contain precursors that

increase DAL (main precursors of acid include proteins rich
in sulphur-containing amino acids, lysine, and arginine),
whereas the vast majority of plant-based foods are precursors
of base (potassium alkali salts and magnesium). Thus, low-
grade metabolic acidosis is frequently found in individuals
adhering to contemporary omnivorous Western diets(4).
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Although there are no clinically apparent or noticeable harms,
the chronic retention of acid and the progressive loss of
bicarbonate stores can cause cellular and tissue damage.
The long-term intake of supraphysiological loads of acid in
contemporary net acid-producing diets has been associated
with systemic inflammation and other adverse metabolic
conditions(2,5,6).
The human body is naturally equipped with multiple

systems to buffer and titrate acid in order to prevent the
inexorable accumulation of acid(7). However, the body’s
capacities are limited and may be insufficient under certain cir-
cumstances (e.g. in age-related decline in renal functional)(2).
Contemporary Western diets typically produce a total acid

load of about 60–100 mEq/d(8,9). However, even in healthy
adults, the kidneys can only excrete 40–70 mEq of acid per
day before acid is retained in the body(4). When acid produc-
tion exceeds its excretion, compensatory mechanisms (such as
muscle and connective tissue breakdown to eliminate protons
along with ammonium(4)) are elicited to minimise systemic
acidosis. This chronic acid-related stress is increasingly under-
stood as a continuum, which has chronic metabolic acidosis at
its most extreme end, and acidifying diets at its least extreme,
yet also detrimental, end(10). Chronic acid-stress has been asso-
ciated with numerous health repercussions (Fig. 1)(5,6,11).
Dietary modifications are an effective means to reduce the

burden of alimentary acid load(12). A frequent consumption of
acid-inducing foods (processed meats, cheese and certain acid-
ifying grains) combined with a low intake of base-inducing
foods (fruits, legumes and vegetables) increases DAL(13–15).
Plant-based diets (PBDs) that are naturally low in (or exclude)
animal products have been shown to reliably reduce DAL(14).
Results from clinical studies and recommendations in the

form of expert committee opinions suggest that for a number
of common illnesses – wherein metabolic acidosis is a contrib-
uting factor – the regular inclusion of plant-based foods offers
measurable benefits for disease prevention and management(16).
This review examines the contribution of plant-based diet-

ary patterns, chiefly vegetarian and vegan diets, which drastic-
ally reduce or exclude animal products, to DAL and
summarises growing evidence that dietary shifts toward plant-
based nutrition are effective at diminishing dietary-induced
low-grade metabolic acidosis.

DAL assessment and quantification

Epidemiological studies and clinical trials regularly rely on esti-
mates of DAL to investigate potential relationships to human
health and disease(17). The majority of studies on DAL used at
least two common formulas to estimate acid load from diet:
the potential renal acid load (PRAL) score by Remer and
Manz(18) and the net endogenous acid production (NEAP)
score by Frassetto et al.(19).
The PRAL score may be calculated as follows(18):

PRAL (mEq/d) = (0.49× total protein (g/day))
+ (0.037× phosphorus (mg/day))
− (0.021× potassium (mg/day))

− (0.026×magnesium (mg/day))
− (0.013× calcium (mg/day))

The PRAL score (hereafter called PRALR) includes intestinal
absorption rates for the following micronutrients: potassium,
phosphate, magnesium, calcium and also considers protein

Fig. 1. Potential adverse effects of a high DAL: an overview. Based on(5,6,11). DAL, dietary acid load.
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intake. Previous studies in healthy individuals validated a strong
correlation between the PRAL score and urinary pH(18).
NEAP (hereafter called NEAPF) may be estimated based

on the formula by Frasetto et al.(19), which considers daily
total protein intake and potassium intake.

NEAPF = (mEq/d)

= (54.4× protein (g/d)/potassium (mEq/d))

− 10.2

Alternatively, there is an additional formula to estimate
NEAP proposed by Remer et al. (hereafter termed
NEAPR)

(20).

NEAPR(mEq/d) = PRALR(mEq/d)+OAest (mEq/d)

Remer et al. estimated NEAP from average intestinal
absorption rates of ingested protein and additional minerals
(PRALR score) as well as anthropometry-based estimates for
organic acid excretion (OAest). Hereby, OAest (mEq/d) was
calculated as follows:

Individual body surface area × 41/1.73

The individual body surface area may be calculated with the
formula of Du Bois and Du Bois:

Body surface area (m2)

= (0.007184× height (cm)0.725 × weight (kg)0.425)

NEAP is the net combination of non-carbonic (i.e. fixed) acids
from acids ingested in the diet and produced from endogenous
metabolic processes, minus the acids that are neutralised or buf-
fered by non-carbonic dietary and endogenously generated base
supplies(21,22). Thus, NEAP considers PRAL (e.g. the sum of
bases and acids released from diet-derived compounds of cations
and anions) in addition to the total non-carbonic organic acids.
The aforementioned NEAP scores (NEAPF, NEAPR) have
both been validated against net acid excretion (NAE) with satis-
fying results, reliably estimating NAE).
The three aforementioned scores (NEAPF, NEAPR and

PRALR) are the most commonly used scores in the majority of
studies. Notably, each score has its own advantages and draw-
backs(23). In clinical practice, all scores performed differently(21).
Calculation of all three scores is thus recommended, preferably
supplemented with estimations of urinary DAL indices (PRAL
and NEAP) values, as recently summarised by Parmenter et al.(22).
Western diets typically produce a total DAL ranging from

approximately 50 to 75 mEq/d(8,9). In other parts of the
world, DAL is substantially lower. One is rural Ghana,
where Goldberg et al. reported NAE values of 29⋅2 ± 12⋅2
mEq/d(24). When glancing solely at PRAL values, there are
notable differences between common dietary patterns(10).
Wesson reported calculated PRAL sums of selected diets
and demonstrated that the average dietary intake in the
United States results in PRAL sums of approximately
27 mEq/d. Other diets, such as the DASH diet (Dietary

Approaches to Stop Hypertension) resulted in substantially
lower PRAL sums (about 11 mEq/d). PBDs are characterised
by even lower PRAL sums(12). The potential DAL-lowering
mechanism of PBDs is discussed in detail hereafter.

Dietary components affecting DAL

The ratio of plant v. animal-based food intake determines
DAL(25). When protein containing foods are metabolised,
most release acid in the form of hydrogen ions. In contrast,
potassium-rich plant foods (mainly fruits and vegetables) pro-
duce alkali(25,26).

Protein content and amino acid composition of diet

Unlike carbohydrates or lipids, which do not generate unmeta-
bolisable acidity during their complete oxidation, proteins con-
tain various amino acids whose catabolism is liable to affect
the acid–base equilibrium(1). When protein containing foods
are metabolised, most release acid in the form of protons(25).
The amount, however, depends on the amino acid compos-
ition. Some amino acids are neutral, some are acidic and
some are alkaline(25,27).
Lysine, arginine and histidine are acidifying because their

metabolisation in the liver generates hydrochloric acid (plus
glucose and urea)(1,25):

Arginine+ � H+ + Cl− + C6H12O6 + CH4N2O

Lysine and arginine intake are substantially higher on a meat-
based diet as compared to plant-based (vegan) diet(28,29). While
this might be beneficial with regard to DAL, it has also been
argued that an insufficient lysine intake could also have
adverse effects on human health. Yet, if a diet has at least a
modest amount of variability (which is usually the case in eco-
nomically developed countries), there are no issues regarding
sufficient intakes of lysine(30).
Another group that belongs to the acidifying amino acids is

sulphur-containing amino acids (methionine, homocysteine
and cysteine)(31). Catabolism of these amino acids leads to sul-
phuric acid generation – a non-metabolizable anion which is a
major constituent of DAL(25,27).

Cysteine � 2H+ + S02−4 + C6H12O6 + CH4N2O

The obtained sulphate anions constitute unmetabolizable
acidity(1) and are a major contributor to DAL(32).
Plant-based proteins tend to be much lower in methionine
than animal proteins(33,34). As summarised by McCarty, the
methionine fraction in representative plant proteins ranges
from 0⋅85 % in lentils to 2⋅26 % in brown rice, whereas that
of animal proteins falls into a much higher range (from
approximately 2⋅35 to 3⋅11 %)(33). Eggs are often high in
methionine(35), whereas the fraction of methionine in legume
protein and nut protein is especially low(36). Table 1 sum-
marises the methionine content of selected common foods
per kcal (based on(33)). For additional information on amino
acid composition in selected foods across foods groups, we
refer the interested reader to the work of Gardner et al.(37).
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In this context, mentioning of the amino acid glycine is also
warranted. Glycine can act as a functional Methionine antagon-
ist(33), since it can fulfil the role of a methyl group acceptor in a
biochemical reaction catalysed by glycine n-methlytransferase –
a key enzyme in methyl group metabolism(38). Plant proteins
are higher in glycine than most animal proteins(39) and it is
not surprising that vegans had the highest plasma concentration
of this amino acid in the Epic Oxford cohort study(28).

Glutamate and glutamine content of diet. Glutamine
(C5H10N2O3) and glutamate (C5H9NO4) are important for
the neutralisation of acid via α-Ketoglutaric acid (C5H6O5).
Glutamate is a non-essential neutralising anionic amino acid
whose metabolism consumes hydrogen ions to become
neutral(25,27,40):

C5H10N2O3 � C5H9NO4 � C5H6O
2−
5 + 2NH+

4

C5H6O
2−
5 + 2H+ � Glucose

Diet is the major source of glutamine and glutamate(41), and
unprocessed plant proteins are usually richer than animal pro-
teins in glutamate(27). In cross-sectional studies, meat eaters

thus had a lower glutamine intake than vegetarians and
vegans(28). Another prominent example with comparable find-
ings is the INTERMAP study, demonstrating that individuals
on a high plant protein/low animal protein diet consumed
greater amounts of glutamic acid as compared with their
high animal protein/low plant protein counterparts(42). A res-
ervation must be made that this section refers to unprocessed
plant foods and not to processed vegan foods enriched with
artificial flavours containing monosodium glutamate.

Phosphorus content of diet. Phosphorus and preservative
phosphates (phosphoric acid, polyphosphates, etc.) are other
important contributors to DAL(14). Phosphate salts are
frequently added to bacon, sausages and other processed
meats for their antibacterial properties and to condition the
colour and flavour of products(43,44). In addition to that,
phosphate additives are frequently found in cheese
manufacture and milk products(45,46).
Notably, their acidity does not depend on the phosphate

anion itself(25). Instead, it depends on the cation to which
the phosphate anion is attached and the pH of the food.
Phosphoric acid (H3PO4), commonly found in many sodas

Table 1. Content of the amino acid methionine in commonly consumed foods of plant and animal origin

Orange colouring: animal-based foods, green colouring: plant-based foods.

Source data adapted from(33).
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and cola drinks, is acidic as H+ is released upon metabolisa-
tion(25).

H3PO4 � H+ +H2PO
−
4

Moreover, some of the widely used preservative phosphates
and additives are acidic and some are alkaline(25). A frequently
encountered acidic phosphate-based additive is calcium pyro-
phosphate (CaH2P2O7)

(25), which is frequently found in
quick breads and sweet bakery products(47). Trisodium phos-
phate (Na3PO4), on the other hand, is alkaline and consumes
2 H+ ions upon metabolisation.
The extra burden from phosphorus coming from processed

products alone might reach up to 737 mg/d(48). Glancing at
the PRALR formula shows that phosphorus has the highest
weighting factor of all micronutrients (0⋅037)(18). An extra
intake of 250 mg of phosphorus per day will increase PRAL
by more than 9 mEq/d.
It is important to understand the extra ‘DAL burden’ sub-

sequent to a high phosphorus intake. Milk and dairy products
account for more than 24 % of phosphorus intake in human
diets(49), and phosphorus intake might increase substantially
when other foods abundant in phosphate (e.g. soft drinks
and canned fish) are consumed(50–52). Table 2 shows the phos-
phorus content of selected foods(53). In this context, a reserva-
tion must be made, that the intestinal absorption of
phosphorus from additives used in food manufacturing is sub-
stantially higher compared with phosphorus derived from
unprocessed animal-based foods. Relativisation is thus neces-
sary when evaluating different phosphorus sources.
Plant foods (vegetables, legumes and seeds), on the other

hand, contain phosphorus in the form of phytate, which has
a significantly lower bioavailability and neglectable acidising
effects(14,54,55). Instead, most plant-based foods have alkalising
effects due to their high availability of potassium salts of
organic anions(27).

Potassium/organic anion content of diet. As a general rule,
almost all fruits and vegetables display negative PRAL
values, and the amount of potassium present in those foods
reflects their alkalising ability(25,56,57). Organic anions may be
considered as virtual precursors of KHCO3 and can be
metabolised to bicarbonate(1,58).
Prominent examples include citric acid, malate and potas-

sium citrate (C6H5K3O7)
(25). Organic salts such as potassium

citrate contain base ions but no hydrogen ions. They are
thus capable of binding hydrogen ions during their metabolism
to carbon dioxide and water.

C6H5K3O7 � C6H5O
3−
7 + 3K+

C6H5O
3−
7 + 3H+ + 4.5O2 � 6CO2 + 4H2O

The consumption of hydrogen ions upon metabolisation has
alkalising effects(11,27). Except for ripened and processed
grains, most plant foods contain substantial quantities of
organic anions, whereas they are scarce in animal-based

foods(1). Daily food supply of organic anions strongly depends
on dietary patterns and ranges from 1 g/d (in low plant con-
sumers) to 3–4 g/d in a diversified omnivorous diet.
Vegetarians and vegan usually consume more than 5 g/d of
organic anions(1). Potassium content of selected foods is pre-
sented in Table 3, based on current data from the dietary
guidelines for Americans and the US Department of
Agriculture(59,60).
Another important source of organic anions is their produc-

tion in the colon, mainly short-chain fatty acids (SCFA, includ-
ing butyrate, acetate and propionate)(1). SCFA are the
end-products of microbial fermentation in the distal part of
the digestive tract, using specific substrates such as fibre and
carbohydrates. SCFA production is closely dependent on
nutritional factors and faecal levels of those metabolites correl-
ate positively with the consumption of vegetables, fruits and
legumes(61). Significant increases in SCFA production have
been observed when omnivores consume a diet rich in fruits
and vegetables(62), and it is now widely accepted that a plant-
based vegan diet may increase SCFA production by modula-
tion of the gut microbiota(63,64).

Magnesium content of diet. Magnesium is a key
micronutrient in the PRAL-formula by Remer and Manz,
with a relatively high weighting factor of 0⋅026(18). PBDs are
much more abundant in magnesium than omnivorous
diets(65,66), and thus have a higher PRAL-lowering capacity.
A Danish study revealed that vegan men consume – on
average – more than 230 mg of magnesium more than the
general population(67), potentially translating into a
PRAL-lowering capacity of more than 8 mEq/d. Magnesium
content of selected foods is presented in Table 3, based on
current data from the US Department of Agriculture(59).

Contribution of increased DAL to chronic illnesses

A number of studies have identified elevated DAL as a factor
contributing to various chronic illnesses, such as type 2 dia-
betes, hyperlipidaemia, cardiometabolic disorders, renal dis-
ease, cancer and even pathologies where the metabolic
component is less clear, such as mental and musculoskeletal
disorders. The underlying pathomechanisms are complex
and the subject of ongoing research.
Central to most chronic lifestyle-related diseases, a high

DAL enhances cortisol production(68), which, in turn, may
promote insulin resistance(69). Apart from increasing gluco-
corticoid secretion, a high DAL also reduces catabolic degrad-
ation of potentially bioactive glucocorticoids(68). Both
mechanisms ensure a steady glucocorticoid supply, which is
apparently necessary to increase catabolism of skeletal muscle
protein (ensuring an augmented renal glutamine supply) and
the subsequent increase in renal ammoniagenesis as discussed
below.
Latent metabolic acidosis subsequent to an acidifying diet

may also stimulate ammoniagenesis, which allows for a simul-
taneous elimination of hydrogen ions and anions(27).
Ammoniagenesis, however, comes at its price, and has been
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associated with renal tubulointerstitial injury and subsequent
impaired kidney function(58,70). Additional adverse mechan-
isms include decreased uric acid excretion (potentially resulting
in hyperuricaemia)(71,72), increased renal excretion of calcium
and magnesium(73), higher insulin-like growth factor (IGF)
levels(74) and decreased circulating adiponectin levels through
acidosis-induced inhibition of adiponectin gene transcription
in adipocytes(74,75).
We summarise main findings on the contribution of DAL

to these diverse groups of disorders with the fundamental
understanding that the causes and mechanisms of such com-
plex illnesses are of multifactorial nature, implying that it is
very likely that more than one of the aforementioned mechan-
isms is involved.

Type 2 diabetes. A high DAL has been associated with
insulin resistance and an increased risk for type 2 diabetes
(T2DM) in various large epidemiological cohort studies,
including the Teheran Lipid and Glucose Study(76), the
Nurses’ Health Study I and II and the Health Professionals’
Follow-up Study(77). Such associations have been found in
both children/adolescents(78) and adults(79). A high DAL is

not only associated with higher fasting blood glucose
levels(80) but also with impaired insulin sensitivity(14,81).
Notably, a high DAL may also adversely affect other clinical
outcomes in individuals with T2DM. One example is a 2020
study, that demonstrated associations between higher DAL
scores and impaired sleep quality and mental health
disorders in said individuals(82).
On the other hand, a more alkaline diet has been shown to

exert protective effects(13). The particular mechanisms under-
lying the association between metabolic acidosis and insulin
resistance are yet to be elucidated. Apart from DAL-induced
increased hepatic gluconeogenesis and disrupted binding of
insulin to the insulin receptor, inhibition of insulin signalling
pathways may play a crucial role(13). These factors may play
an important role when glancing at other adverse clinical out-
comes related to a high DAL, including hyperlipidaemia and
the increased risk for cardiometabolic disorders.

Hyperlipidaemia and cardiometabolic disorders. In 2008,
Murakami et al. reported the findings of a Japanese
cross-sectional study comprising 1136 female Japanese
students aged 18–22 years(83). The authors reported positive

Table 2. Phosphorus and protein content of commonly consumed foods of plant and animal origin

Phosphorous and protein content are expressed per 100 g of uncooked food, as typically provided in nutritional content labelling.

Orange colouring: animal-based foods, green colouring: plant-based foods.

Source data adapted from(53).
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associations of a high DAL with higher systolic and diastolic
blood pressure as well as with total and LDL-cholesterol.
Associations with hypertriglyceridaemia have been reported in
a cross-sectional study including 357 Iranian elderly men(84).
Increasing cortisol production caused by mild metabolic
acidosis could be the underlying mechanism(85), but additional
research is warranted in this poorly understood field(83). Other
research suggesting potential associations between a high
DAL and obesity(86–88), and hypertension(89,90) – where
elevated cortisol levels also play an important role – support
this hypothesis. Notably, a high DAL may not only increase
the risk for cardiovascular disease(91–93) but may also affect
other organs, such as the liver (in the form of non-alcoholic
fatty liver disease(94,95)) and the kidneys.

Renal disorders. Numerous clinical and epidemiological
studies associated elevated DAL scores with incident chronic
kidney disease(96,97) and end-stage renal failure risk(58). A high
DAL may contribute to a faster decline in glomerular
filtration rate (GFR)(98,99), whereas dietary alkali treatment of
metabolic disease in chronic kidney disease preserves GFR
and reduce kidney angiotensin-II-activity(100). Renal

hyperfiltration subsequent to a high DAL(101) plays a crucial
role in the pathogenesis of glomerular disorders and its
attenuation is considered a novel therapeutic target in diabetes
and obesity-induced kidney disorders(102). This again
demonstrates that the effects of a high DAL are not confined
to a single organ but may involve the body as a whole.
Studies on the contribution of DAL to kidney disease have

gained recognition. Fruit and vegetable treatment of chronic
kidney disease-related metabolic acidosis is as effective as
oral NaHCO3 when it comes to GFR preservation but reduce
cardiovascular risk better than sodium bicarbonate
alone(103,104). A committee of experts representing the work-
group of the Kidney Disease Outcomes Quality Initiative
(KDOQI) from the National Kidney Foundation, USA, has
recently published recommendations for the dietary manage-
ment of DAL. These are as follows:

‘Statements on Acid Load: Dietary Management of Net Acid
Production (NEAP)
In adults with CKD 1–4, we suggest reducing net acid produc-
tion (NEAP) through increased dietary intake of fruits and
vegetables (2C) in order to reduce the rate of decline of
residual kidney function.’(105)

Table 3. Potassium and magnesium content of selected foods per standard portion

Orange colouring: animal-based foods, green colouring: plant-based foods.

Source data adapted from(59,60).
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Musculoskeletal health and body composition. An elevated
acid-load burden from dietary intakes has been associated
with poor musculoskeletal health(106,107) and impaired bone
health(108). Data from a Japanese study also suggest
associations of increased DAL with frailty (particularly
weakness and slowness) in older women(109). Faure et al.
reported an inverse association between PRAL and the
percentage of total lean body mass among senior women in
a Swiss-based population, suggesting potentially beneficial
effects of a more alkaline diet in said women(110). Their
cross-sectional study essentially confirmed the findings by
Welch et al., who reported a positive association of a more
alkaline PRAL with fat-free mass (%) among women
between 18 and 79 years, independent of physical activity
and smoking(111). Notably, much additional research is
warranted in this field as a recent study associated higher
acid diet measures with higher muscle strength – contrary to
the common acid hypothesis(112).

Mental health. With regard to mental health, positive
associations were found for depression and anxiety(113–115)

as well as with emotional problems and hyperactivity in
children(116). Systemic inflammation subsequent to a high
DAL could play an important aetiological role here, yet the
reservation must be made that the involved pathological
mechanisms are subject to a controversial debate.

Cancer. Elevated DAL scores have been linked to low-grade
inflammation (as indicated by elevated lipid accumulation
product levels)(84). It is now widely accepted that low-grade
metabolic acidosis may induce peroxidation of biological
structures(1). An altered acid–base equilibrium may also
modulate molecular activity including adrenal glucocorticoid,
IGF-1 and adipocyte cytokine signalling, which contribute to
dysregulated cellular metabolism and may play a role in
cancer development(74).
DAL-induced low-grade mild metabolic acidosis promote

tissue damage and inflammation(11,13,117,118), which may initi-
ate genomic instability on normal cells through the activation
of cytokines, which may stimulate tumour invasion and metas-
tases(119,120). Positive associations between a high DAL and
various cancers have been reported, including breast can-
cer(121,122), prostate cancer(123), lung cancer(124), colorectal can-
cer(125), pancreatic cancer(126), gastric cancer(127), oesophageal
cancer(128) as well as head and neck cancers(129). Two
meta-analyses confirmed these associations: Keramati et al.
and Bahrami et al. independently found higher odds for cancer
in individuals with elevated DAL scores(130,131).

PBDs to reduce DAL

Dietary components affecting acid load have been discussed in
detail in the previous section. PBDs, including vegetarian and
vegan diets, are abundant in potassium salts of organic
anions(1,27), while they are at the same time low in phosphorus
and preservative phosphates(14,132). Although diversified PBDs
contain sufficient amounts of protein, their overall content is

usually lower than in omnivorous diets(30). In addition to that,
their content of sulphur-containing amino acids is also substan-
tially lower as compared with meat-based diets(33,34).

The combination of these factors qualifies plant-based nutri-
tion as an ideal tool to reduce DAL(132). This section summarises
supporting evidence for this glancing at both observational
(Table 4) and clinical intervention studies (Table 5).

Observational studies. We identified four observational
studies investigating DAL scores in plant-based
individuals(12,23,133,134). Three studies investigated
lacto-ovo-vegetarians(12,133,134) and two studies also
investigated vegans(23,134). The study characteristics may be
obtained in a chronological order from Table 4. All studies
found negative PRAL values in individuals consuming a
plant-based diet, indicating alkalising properties. The lowest
PRALR-values were found in a study by Ströhle et al.
investigating DAL scores in German vegans (Table 4)(23).
Notably, the authors used a modified PRALR formula and
omitted calcium in their calculations.
A Belgian study by Deriemaeker et al. also found negative

PRALR scores in vegetarians (−10⋅9 ± 19⋅7 mEq/d)(133),
however, their diets were less alkalising as compared with
the vegans in Ströhle et al.(23). Storz et al. performed a second-
ary data analysis using data from the National Health and
Nutrition Examination Surveys(12). The authors investigated
DAL scores in self-identified vegetarians who admitted to
occasionally consumed animal products(135). Although median
PRALR scores were much higher than in the aforementioned
studies, they were still negative (−0⋅44 (−12⋅19 to 11⋅01)
mEq/d), also indicating slight alkalising properties.
Generally speaking, vegan diets were associated with lower

DAL scores than lacto-ovo-vegetarian diets in all retrieved stud-
ies (Table 4). One conceivable explanation is that
lacto-ovo-vegetarian diets, which build around eggs, cheese
and other dairy products, are usually richer in phosphorus
and preservative phosphate (phosphoric acid, polyphosphates)
than vegan diets(132,136). Preservative phosphates are charac-
terised by higher gastrointestinal absorption rates and therefore
increase the acid load burden from diet(137). We purport that
this is one potential factor why vegan diets contribute lower
DAL scores than vegetarian diets. An additional difference
between these diets is the amino acid composition from protein
sources. Protein sources in vegetarian diets include dairy pro-
ducts and/or eggs, which have a greater abundance of sulphur-
containing amino acids compared with plant-based protein.
Several large epidemiological investigations suggested that

total protein intake is lower in vegan diets as compared with
lacto-ovo-vegetarian diets(138). Vegan diets are not deficient in
protein but contain significantly higher amounts of plant-based
protein(139). One example is the French NutriNet-Santé Study,
where vegans consumed on average 12⋅7 g more plant protein
per day than vegetarians (46⋅5 g/d v. 33⋅8 g/d)(139). This trans-
lates into a substantially higher intake of vegetables, fruits and
legumes, which generally have alkalising effects(132). The higher
the fruits and vegetable intake, the higher the supply of organic
anions(1) and thus the higher the alkalising effect of the diet.

8

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.93


A reservation must be made, that the protein intake difference
between vegans and vegetarians reported in other studies(140)

was not as pronounced, possibly due to geographical and socio-
economic factors known to influence nutrition.

Clinical intervention studies. We also identified several clinical
intervention studies that investigated the effects of various
PBDs on DAL management(14,32,132) (Table 5). However, in
light of the low number of studies in this field, and with
regard to the high heterogeneity in diet composition and
study designs, we refrained from performing a meta-analysis.
Cosgrove and Johnston examined the impact of adherence

to a vegan diet on acid–base balance in health adults(32).
In a randomised-controlled trial, they compared three different
diets: a vegan diet for 2 d over 1 week (VEG2), a vegan diet
for 3 d over 1 week (VEG3), and a vegan diet for 7 consecu-
tive days (VEG7). With regard to the PRAL-lowering effect,
the VEG7 diet performed best. After seven consecutive
days on a strict vegan diet, mean PRAL values fell substantially
from 23⋅7 ± 17⋅7 to −6⋅0 ± 12⋅8 mEq/d. Again, a strict vegan
diet yielded alkalising effects. The effect of the other two diet-
ary interventions (VEG2 and VEG3) was less pronounced.
Our group performed a secondary data analysis of a

randomised-controlled trial where 45 omnivorous individuals
were randomly assigned to either a vegan diet (n 23) or a
meat-rich diet (n 22) for 4 weeks(132). After 3 weeks, PRALR

scores fell from −5⋅26 ± 4⋅45 to −23⋅57 (23⋅87) mEq/d in
vegans. Comparable values were observed in week 4. Notably,
the control group comprised individuals on a meat-rich diet,
which demonstrated a significant increase in their DAL scores.
PRALR scores rose from 3⋅26 ± 17⋅91 to 18⋅78 (21⋅04) mEq/d
in individuals on a meat-rich diet. The isocaloric nature of the
vegan diet (participants were instructed to avoid weight loss
due to a decreased energy intake) deserves special consideration
in this context and might have led to underestimations of the
PRAL-lowering effect of vegan diets.
Another important study in the field has been conducted by

Kahleova et al. in 2021(14). The authors performed a post-hoc
analysis of a low-fat vegan dietary intervention that restricted
processed foods and reduced fat intake to approximately 10 %
of total energy. This diet included grains, legumes, vegetables
and fruits and was characterised by a targeted macronutrient dis-
tribution of approximately 75 % of energy from carbohydrates,
15 % protein and 10 % fat. After 4 months, median PRALR
scores and NEAPF scores dropped significantly in the vegan
group (−24⋅3 (−28 to −20⋅5) mEq/d and −25⋅1 (−29⋅1 to
−21⋅1) mEq/d, respectively), whereas both scores remained
almost identical in the control group (Table 4).
A vegan diet significantly reduced DAL scores in all three

studies, however, results from these studies also suggest that
dietary adherence is a crucial factor. The simple implementa-
tion of one or two ‘vegan days’ per week may be insufficient
to achieve an alkalising diet.

Table 4. Observational studies investigating DAL scores in plant-based cohorts

Study (year) Location Participants Results Comments

Deriemaeker

et al.(133)
Belgium n 60 participants, thereof n 30 vegetarians and n 30

non-vegetarians matched for age, sex and BMI

• PRALR: −10⋅9 ± 19⋅7 in

vegetarians and 13⋅8 ± 17⋅1 in

non-vegetarians

• NEAPR: 31⋅4 ± 21⋅4 in

vegetarians and 56⋅4 ± 21⋅2 in

non-vegetarians

• NEAPF was not determined

as part of the study

Ströhle et al.(23) Germany n 154 participants, thereof n 56 moderate vegans

and n 98 strict vegans. All participants were

non-obese, non-smoking adults aged 19–50

years

• PRALR: −39⋅0 ± 29⋅0 in strict

vegans and −46⋅5 ± 29⋅6 in

moderate vegans

• NEAPF: 16⋅3 ± 6⋅73 in strict

vegans and −12⋅6 ± 7⋅46 in

moderate vegans

• NEAPR: 2⋅41 ± 29⋅3 in strict

vegans and −6⋅19 ± 30⋅01 in

moderate vegans

• Secondary data analysis from

the German Vegan Study

• Calcium was not included in

the algorithm

Knurick

et al.(134)
United

States of

America

n 82 participants, thereof n 27 meat eaters, n 27

lacto-ovo-vegetarians and n 28 vegans. All

participants were non-obese, non-smoking

adults aged 19–50 years with at least 1 year of

dietary adherence

• PRALR: −15⋅2 ± 40⋅5 in

vegans, −1⋅5 ± 23⋅9 in

vegetarians and 19⋅6 ± 24⋅3 in

omnivores

• NEAPF and NEAPR were not

determined as part of the

study

Storz et al.(12) United

States of

America

n 191 self-perceived lacto-ovo-vegetarians aged

18 years or older

• PRALR: −0⋅44 (−12⋅19 to

11⋅01)

• NEAPF: 39⋅60 (31⋅48 to 52⋅07)
• NEAPR: 41⋅30 (28⋅63 to 52⋅49)

• Secondary data analysis

using data from the National

Health and Nutrition

Examination Surveys

DAL, dietary acid load; NEAP, net endogenous acid production; PRAL, potential renal acid load.
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Discussion

There is mounting evidence that PBDs (vegetarian or vegan)
may be an effective means to reduce DAL. Observational
and clinical studies suggest that both can have alkalising
effects, although a vegan diet seems most effective. One

limitation is that the total amount of studies in this particular
field is still limited and that a direct large-scale randomised-
controlled study comparing both diets head-to-head is not
yet available. Additional research is thus necessary to identify
and quantify the factors that appear to make the vegan diet
more favourable towards DAL reduction.

Table 5. Dietary intervention studies investigating DAL scores in plant-based study populations

Study (year) Location Participants Results Comments

Cosgrove and

Johnston(32)
United

States of

America

n 23 participants, thereof n 7 individuals on a

vegan diet for 2 d over 1 week (VEG2), n 8

individuals on a vegan diet for 3 d over 1

week (VEG3) and n 8 individuals on a

vegan diet for 7 consecutive days (VEG7)

• PRALR fell from 18⋅1 ±

10⋅07 to 5⋅3 ± 11⋅4 in

the combined VEG2/

VEG3 group

• PRALR fell from 23⋅7 ±

16⋅7 to −6⋅0 ± 12⋅8 in

the VEG7 group

• Randomised-controlled trial

• NEAPF and NEAPR were not determined as

part of the study

• Analysis combined (VEG2 and VEG3)

Müller

et al.(132)
Germany n 45 omnivorous individuals randomly

assigned to a vegan diet (n 23) or a

meat-rich diet (n 22) for 4 weeks

• PRALR fell from −5⋅26
± 4⋅45 to −23⋅57
(23⋅87) in vegans after

3 weeks

• NEAPF fell from fell

from 39⋅11(16⋅45) to
24⋅39 ± 7⋅1 in vegans

• NEAPR fell from 37⋅45
± 15⋅73 to 12⋅85 ±

19⋅71 in vegans

• Post-hoc analysis of a

randomised-controlled trial

• All DAL scores increased significantly on a

meat-rich diet

Kahleova

et al.(14)
United

States of

America

n 244 participants were randomly assigned

to an intervention (vegan) (n 122) or

control group (n 122) for 16 weeks

• PRALR fell from 3⋅6
(0⋅4–6⋅8) to −20⋅7
(−23⋅3 to −18⋅1) in the

vegan group

• NEAPF fell from 50⋅8
(47⋅1–54⋅5) to 25⋅7
(24⋅0–27⋅4) in the

vegan group

• Secondary data analysis of a randomised

clinical trial

• The authors investigated the effects of an

ad libitum low-fat vegan diet restricting total

fat intake to 10 % of calories

• No significant changes in the control group

DAL, dietary acid load; NEAP, net endogenous acid production; PRAL, potential renal acid load.

Table 6. Selected PRAL values of typical products consumed by vegetarians v. non-vegetarians (in mEq/100 g): an overview

PRAL, potential renal acid load.

Orange colouring: animal-based foods, green colouring: plant-based foods.

PRAL values modified from(133).
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The heterogeneity in studies (and dietary interventions) did
not allow us to perform a meta-analysis. Although it is desir-
able to quantify the PRAL-lowering effects of PBDs, our find-
ings strongly suggest that a vegan diet is associated with an
alkaline dietary character, whereas vegetarian diets have rather
neutral total PRAL values.
Another point of concern is the lack of a defined reference

range for PRAL values and the fact that studies comprised
heterogeneous study populations across the world.
Depending on sex, age and total energy intake, different refer-
ence values may be outlined. Although most studies found
lower PRAL values in older adults (potentially due to their
lower protein and total energy intake(12), this is not univocally
the case)(141). We purport that age is an underestimated factor
and suggest that future studies should carefully adjust for that.
This might be of particular importance with regard to a poten-
tially progressive loss of bicarbonate in older age(142).
Since neither PRAL nor NEAP scores consider protein ori-

gin per sé (e.g. animal v. plant-based protein, and the corre-
sponding bioavailability of cations and anions contributing to
DAL), it would be interesting to examine whether this factor
should be incorporated to delineate diet-specific reference
ranges of PRAL and NEAP scores to assess and compare
DAL more accurately among individuals adhering to different
dietary patterns.
In addition to that, future studies should also investigate

whether there are potential adverse effects of an overly alkalising
diet. According to Xu et al.(143), excess diet alkalinity and acidity
both showed weak associations with higher mortality in Swedish
adults. Comparable findings have been reported in an Iranian
study by Hejazi et al.(144). Although alkaline diets have been
associated with numerous health benefits, we believe that
more research is warranted in this area. Quantifying nutrient
intake in alkaline diets in comparison with established dietary
guidelines would be desirable. A quantification of the effect
of colon-produced organic anions and their weighted contribu-
tion to DAL would also open a new area of research that has
received insufficient attention in the past.
Finally, it is noteworthy that with the ongoing international

promotion of plant-based nutrition and the strong growth of
food manufacturing of plant-based products, there is a greater
consumption of (non-dairy) plant-based cheese alternatives and
meat substitutes is also increasing(145). Numerous plant-based
cheese alternatives based on nuts, oils, grains, soy and other
plant products have been developed – yet their effect on DAL
is basically unexplored. The traditional PRAL tables usually
date back to over to decades(20), and do not index these new pro-
ducts. A first attempt in this context has been made by
Deriemaeker et al. who quantified the PRAL values of typical
products consumed by vegetarians (in mEq/100 g)(133)

(Table 6). Additional research in this area is warranted to better
understand the impact of those ‘relatively new’ foods on DAL.

Conclusion

Multiple observational and clinical studies suggest that vegetar-
ian and vegan diets are an effective means to reduce DAL. The
vegan diet in particular appears to have alkalising effects and

might be more effective than a vegetarian diet to lower
PRAL-scores. The lower content of phosphorus, total protein
and sulphur-containing amino acids and the abundance of
potassium salts from organic anions makes this dietary pattern
particularly effective. Additional trials are warranted to under-
stand the impact of the various plant-based dietary patterns on
DAL. In this context, it is also of paramount importance to
better understand the impact of plant-based cheese and
meat alternatives, which are based on nuts, oils, grains, soy
and other plant products.

Acknowledgements

In memory of Stefan Skaper.
The present study received no specific grant from any fund-

ing agency, commercial or not-for-profit sectors.
M. A. S., A. L. R. and L. H. have made substantial contri-

butions to conception and design, or acquisition of data, or
analysis and interpretation of data. M. A. S. conceptualised
the review. M. A. S. visualised the article. M. A. S. drafted
the first version of the manuscript. M. A. S., L. H. and
A. L. R. revised it critically for important intellectual
content. M. A. S., L. H. and A. L. R. gave final approval of
the version to be published. The corresponding author agrees
to be accountable for all aspects of the work in ensuring that
questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.
The author declares no conflict of interest.
The specific dataset associated with this study will be made

available by the corresponding author upon reasonable request.
This is a review article without human participants.

References

1. Demigné C, Sabboh H, Puel C, et al. (2004) Organic anions and
potassium salts in nutrition and metabolism. Nutr Res Rev 17,
249–258.

2. Frassetto L, Morris RC, Sellmeyer DE, et al. (2001) Diet, evolution
and aging – the pathophysiologic effects of the post-agricultural
inversion of the potassium-to-sodium and base-to-chloride ratios
in the human diet. Eur J Nutr 40, 200–213.

3. Kurtz I, Maher T, Hulter HN, et al. (1983) Effect of diet on
plasma acid-base composition in normal humans. Kidney Int 24,
670–680.

4. DiNicolantonio JJ & O’Keefe J (2021) Low-grade metabolic acid-
osis as a driver of chronic disease: a 21st century public health cri-
sis. Open Heart 8, e001730.

5. Carnauba RA, Baptistella AB, Paschoal V, et al. (2017)
Diet-induced low-grade metabolic acidosis and clinical outcomes:
a review. Nutrients 9, E538.

6. Ostrowska J, Janiszewska J & Szostak-Węgierek D (2020) Dietary
acid load and cardiometabolic risk factors – a narrative review.
Nutrients 12, E3419.

7. Frassetto L, Banerjee T, Powe N, et al. (2018) Acid balance, diet-
ary acid load, and bone effects—a controversial subject. Nutrients
10, 517.

8. Lemann J (1999) Relationship between urinary calcium and net
acid excretion as determined by dietary protein and potassium: a
review. Nephron 81, 18–25.

9. Gannon RHT, Millward DJ, Brown JE, et al. (2008) Estimates of
daily net endogenous acid production in the elderly UK popula-
tion: analysis of the National Diet and Nutrition Survey

11

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.93


(NDNS) of British adults aged 65 years and over. Br J Nutr 100,
615–623.

10. Wesson DE (2021) The continuum of acid stress. Clin J Am Soc
Nephrol 16, 1292–1299.

11. Osuna-Padilla IA, Leal-Escobar G, Garza-García CA, et al. (2019)
Dietary acid load: mechanisms and evidence of its health repercus-
sions. Nefrologia (Engl Ed) 39, 343–354.

12. Storz MA & Ronco AL (2022) Reduced dietary acid load in U.S.
vegetarian adults: results from the National Health and Nutrition
Examination Survey. Food Sci Nutr 10, 2091–2100.

13. Williams RS, Kozan P & Samocha-Bonet D (2016) The role of
dietary acid load and mild metabolic acidosis in insulin resistance
in humans. Biochimie 124, 171–177.

14. Kahleova H, McCann J, Alwarith J, et al. (2021) A plant-based diet
in overweight adults in a 16-week randomized clinical trial: the role
of dietary acid load. Clin Nutr ESPEN 44, 150–158.

15. Storz MA, Ronco AL & Lombardo M (2022) Dietary acid
load in gluten-free diets: results from a cross-sectional study.
Nutrients 14, 3067.

16. Adair KE & Bowden RG (2020) Ameliorating chronic kidney
disease using a whole food plant-based diet. Nutrients 12, 1007.

17. Zwart SR, Rice BL, Dlouhy H, et al. (2018) Dietary acid load and
bone turnover during long-duration spaceflight and bed rest. Am J
Clin Nutr 107, 834–844.

18. Remer T & Manz F (1994) Estimation of the renal net acid excre-
tion by adults consuming diets containing variable amounts of
protein. Am J Clin Nutr 59, 1356–1361.

19. Frassetto LA, Todd KM, Morris RC, et al. (1998) Estimation of
net endogenous noncarbonic acid production in humans from
diet potassium and protein contents. Am J Clin Nutr 68, 576–583.

20. Remer T & Manz F (1995) Potential renal acid load of foods and
its influence on urine pH. J Am Diet Assoc 95, 791–797.

21. Parmenter BH, Slater GJ & Frassetto LA (2017) Accuracy and pre-
cision of estimation equations to predict net endogenous acid excre-
tion using the Australian food database. Nutr Diet 74, 308–312.

22. Parmenter BH, Dymock M, Banerjee T, et al. (2020) Performance
of predictive equations and biochemical measures quantifying net
endogenous acid production and the potential renal acid load.
Kidney Int Rep 5, 1738–1745.

23. Ströhle A, Waldmann A, Koschizke J, et al. (2011) Diet-dependent
net endogenous acid load of vegan diets in relation to food groups
and bone health-related nutrients: results from the German vegan
study. Ann Nutr Metab 59, 117–126.

24. Goldberg GR, Dalzell SE, Jarjou LMA, et al. (2017) Dietary
potential renal acid load and net acid excretion in rural and
urban pre-menopausal Gambian women. Proc Nutr Soc 76.

25. Passey C (2017) Reducing the dietary acid load: how a more alka-
line diet benefits patients with chronic kidney disease. J Ren Nutr
27, 151–160.

26. Storz MA, Müller A & Ronco AL (2022) Nutrient intake and diet-
ary acid load of special diets in the NHANES: a descriptive ana-
lysis (2009–2018). Int J Environ Res Public Health 19, 5748.

27. Adeva MM & Souto G (2011) Diet-induced metabolic acidosis.
Clin Nutr 30, 416–421.

28. Schmidt JA, Rinaldi S, Scalbert A, et al. (2016) Plasma concentra-
tions and intakes of amino acids in male meat-eaters, fish-eaters,
vegetarians and vegans: a cross-sectional analysis in the
EPIC-Oxford cohort. Eur J Clin Nutr 70, 306–312.

29. Dietrich S, Trefflich I, Ueland PM, et al. (2022) Amino acid intake
and plasma concentrations and their interplay with gut microbiota
in vegans and omnivores in Germany. Eur J Nutr 61, 2103–2114.

30. Mariotti F & Gardner CD (2019) Dietary protein and amino acids
in vegetarian diets—a review. Nutrients 11, 2661.

31. Olsen T, Øvrebø B, Turner C, et al. (2018) Combining dietary sul-
fur amino acid restriction with polyunsaturated fatty acid intake in
humans: a randomized controlled pilot trial. Nutrients 10, 1822.

32. Cosgrove K & Johnston CS (2017) Examining the impact of
adherence to a vegan diet on acid-base balance in healthy adults.
Plant Foods Hum Nutr 72, 308–313.

33. McCarty MF, Barroso-Aranda J & Contreras F (2009) The low-
methionine content of vegan diets may make methionine restriction
feasible as a life extension strategy. Med Hypotheses 72, 125–128.

34. Dong Z, Gao X, Chinchilli VM, et al. (2020) Association of sulfur
amino acid consumption with cardiometabolic risk factors: cross-
sectional findings from NHANES III. EClinicalMedicine 19.

35. Attia YA, Al-Harthi MA, Korish MA, et al. (2020) Protein and
amino acid content in four brands of commercial table eggs in
retail markets in relation to human requirements. Animals (Basel)
10, 406.

36. Ahrens S, Venkatachalam M, Mistry AM, et al. (2005) Almond
(Prunus dulcis L.) protein quality. Plant Foods Hum Nutr 60, 123–128.

37. Gardner CD, Hartle JC, Garrett RD, et al. (2019) Maximizing the
intersection of human health and the health of the environment
with regard to the amount and type of protein produced and con-
sumed in the United States. Nutr Rev 77, 197–215.

38. Luka Z, Pakhomova S, Loukachevitch LV, et al. (2012) Differences
in folate–protein interactions result in differing inhibition of native
rat liver and recombinant glycine N-methyltransferase by 5-methyl-
tetrahydrofolate. Biochim Biophys Acta 1824, 286–291.

39. Krajcovicova-Kudlackova M, Babinska K & Valachovicova M
(2005) Health benefits and risks of plant proteins. Bratisl Lek
Listy 106, 231–234.

40. Xiao D, Zeng L, Yao K, et al. (2016) The glutamine-alpha-ketoglu-
tarate (AKG) metabolism and its nutritional implications. Amino
Acids 48, 2067–2080.

41. Ma W, Heianza Y, Huang T, et al. (2018) Dietary glutamine, glu-
tamate and mortality: two large prospective studies in US men and
women. Int J Epidemiol 47, 311–320.

42. Elliott P, Stamler J, Dyer AR, et al. (2006) Association between
protein intake and blood pressure: the INTERMAP study. Arch
Intern Med 166, 79–87.

43. Delgado-Pando G, Ekonomou SI, Stratakos AC, et al. (2021)
Clean label alternatives in meat products. Foods 10, 1615.

44. European Food Safety Authority. Re-evaluation of the safety of
phosphates (E 338–341, E 343, E 450–452). https://www.efsa.
europa.eu/en/efsajournal/pub/5674 (accessed June 2022).

45. Lucey JA & Fox PF (1993) Importance of calcium and phosphate
in cheese manufacture: a review. J Dairy Sci 76, 1714–1724.

46. Seth K & Bajwa U (2015) Effect of acidulants on the recovery of
milk constituents and quality of Mozzarella processed cheese. J
Food Sci Technol 52, 1561–1569.

47. Calvo MS, Moshfegh AJ & Tucker KL (2014) Assessing the
health impact of phosphorus in the food supply: issues and con-
siderations. Adv Nutr 5, 104–113.

48. León JB, Sullivan CM & Sehgal AR (2013) The prevalence of
phosphorus-containing food additives in top-selling foods in gro-
cery stores. J Ren Nutr 23, 265–270.e2.

49. Górska-Warsewicz H, Rejman K, Laskowski W, et al. (2019) Milk
and dairy products and their nutritional contribution to the aver-
age Polish diet. Nutrients 11, 1771.

50. Ritz E, Hahn K, Ketteler M, et al. (2012) Phosphate additives in
food—a health risk. Dtsch Arztebl Int 109, 49–55.

51. Guerrero-Romero F, Rodríguez-Moran M & Reyes E (1999)
Consumption of soft drinks with phosphoric acid as a risk factor
for the development of hypocalcemia in postmenopausal women.
J Clin Epidemiol 52, 1007–1010.

52. Barzel US & Massey LK (1998) Excess dietary protein can
adversely affect bone. J Nutr 128, 1051–1053.

53. Barril-Cuadrado G, Puchulu MB & Sánchez-Tomero JA (2013)
Table showing dietary phosphorus/protein ratio for the Spanish
population. Usefulness in chronic kidney disease. Nefrologia 33,
362–371.

54. Ravindran V, Ravindran G & Sivalogan S (1994) Total and phy-
tate phosphorus contents of various foods and feedstuffs of
plant origin. Food Chem 50, 133–136.

55. Lott JNA, Ockenden I, Raboy V, et al. (2000) Phytic acid and
phosphorus in crop seeds and fruits: a global estimate. Seed Sci
Res 10, 11–33.

12

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.efsa.europa.eu/en/efsajournal/pub/5674
https://www.efsa.europa.eu/en/efsajournal/pub/5674
https://www.efsa.europa.eu/en/efsajournal/pub/5674
https://doi.org/10.1017/jns.2022.93


56. Remer T (2000) Influence of diet on acid-base balance. Semin Dial
13, 221–226.

57. Remer T (2001) Influence of nutrition on acid-base balance –
metabolic aspects. Eur J Nutr 40, 214–220.

58. Van den Berg E, Hospers FAP, Navis G, et al. (2011) Dietary acid
load and rapid progression to end-stage renal disease of diabetic
nephropathy in westernized south Asian people. J Nephrol 24,
11–17.

59. Dietary Guidelines for Americans. Food sources of potassium.
https://www.dietaryguidelines.gov/food-sources-potassium
(accessed June 2022).

60. FoodData Central. https://fdc.nal.usda.gov/index.html (accessed
September 2022).

61. Tomova A, Bukovsky I, Rembert E, et al. (2019) The effects of
vegetarian and vegan diets on gut microbiota. Frontiers in Nutrition
6, 1–10.

62. De Filippis F, Pellegrini N, Vannini L, et al. (2016) High-level
adherence to a Mediterranean diet beneficially impacts the gut
microbiota and associated metabolome. Gut 65, 1812–1821.

63. Sakkas H, Bozidis P, Touzios C, et al. (2020) Nutritional status
and the influence of the vegan diet on the gut microbiota and
human health. Medicina (Kaunas) 56, 88.

64. Losno EA, Sieferle K, Perez-Cueto FJA, et al. (2021) Vegan diet
and the gut microbiota composition in healthy adults. Nutrients
13, 2402.

65. Koebnick C, Leitzmann R, García AL, et al. (2005) Long-term
effect of a plant-based diet on magnesium status during preg-
nancy. Eur J Clin Nutr 59, 219–225.

66. Craig WJ (2009) Health effects of vegan diets. Am J Clin Nutr 89,
1627S–1633S.

67. Kristensen NB, Madsen ML, Hansen TH, et al. (2015) Intake of
macro- and micronutrients in Danish vegans. Nutr J 14, 115.

68. Esche J, Shi L, Sánchez-Guijo A, et al. (2016) Higher diet-
dependent renal acid load associates with higher glucocorticoid
secretion and potentially bioactive free glucocorticoids in healthy
children. Kidney Int 90, 325–333.

69. Souto G, Donapetry C, Calviño J, et al. (2011) Metabolic
acidosis-induced insulin resistance and cardiovascular risk. Metab
Syndr Relat Disord 9, 247–253.

70. Krupp D, Esche J, Mensink GBM, et al. (2018) Dietary acid load
and potassium intake associate with blood pressure and hyperten-
sion prevalence in a representative sample of the German adult
population. Nutrients 10, 103.

71. Shin D & Lee KW (2021) Dietary acid load is positively associated
with the incidence of hyperuricemia in middle-aged and older
Korean adults: findings from the Korean Genome and epidemi-
ology study. Int J Environ Res Public Health 18, 10260.

72. Esche J, Krupp D, Mensink GBM, et al. (2018) Dietary potential
renal acid load is positively associated with serum uric acid and
odds of hyperuricemia in the German adult population. J Nutr
148, 49–55.

73. Sahın N & Gunsen U (2022) Dietary acid load and cardiovascular
diseases. Crit Rev Food Sci Nutr, 1–6.

74. Robey IF (2012) Examining the relationship between diet-induced
acidosis and cancer. Nutr Metab (Lond) 9, 72.

75. Disthabanchong S, Niticharoenpong K, Radinahamed P, et al.
(2011) Metabolic acidosis lowers circulating adiponectin through
inhibition of adiponectin gene transcription. Nephrol Dial
Transplant 26, 592–598.

76. Moghadam SK, Bahadoran Z, Mirmiran P, et al. (2016)
Association between dietary acid load and insulin resistance:
Tehran lipid and glucose study. Prev Nutr Food Sci 21, 104–109.

77. Kiefte-de Jong JC, Li Y, Chen M, et al. (2017) Diet-dependent acid
load and type 2 diabetes: pooled results from three prospective
cohort studies. Diabetologia 60, 270–279.

78. Caferoglu Z, Erdal B, Hatipoglu N, et al. (2021) The effects of diet
quality and dietary acid load on insulin resistance in overweight
children and adolescents. Endocrinol Diabetes Nutr 69, 426–432.

79. Akter S, Kurotani K, Kashino I, et al. (2016) High dietary acid load
score is associated with increased risk of type 2 diabetes in Japanese
men: the Japan Public Health Center-based Prospective Study.
J Nutr 146, 1076–1083.

80. Lim SY, Chan YM, Ramachandran V, et al. (2021) Dietary acid
load and its interaction with IGF1 (rs35767 and rs7136446) and
IL6 (rs1800796) polymorphisms on metabolic traits among post-
menopausal women. Nutrients 13, 2161.

81. Gæde J, Nielsen T, Madsen ML, et al. (2018) Population-based
studies of relationships between dietary acidity load, insulin resist-
ance and incident diabetes in Danes. Nutr J 17, 91.

82. Daneshzad E, Keshavarz S-A, Qorbani M, et al. (2020)
Association of dietary acid load and plant-based diet index with
sleep, stress, anxiety and depression in diabetic women. Br J
Nutr 123, 901–912.

83. Murakami K, Sasaki S, Takahashi Y, et al. (2008) Association
between dietary acid-base load and cardiometabolic risk factors
in young Japanese women. Br J Nutr 100, 642–651.

84. Jafari A, Ghanbari M, Shahinfar H, et al. (2021) The association
between dietary acid load with cardiometabolic risk factors and
inflammatory markers amongst elderly men: a cross-sectional
study. Int J Clin Pract 75, e14109.

85. Maurer M, Riesen W, Muser J, et al. (2003) Neutralization of west-
ern diet inhibits bone resorption independently of K intake and
reduces cortisol secretion in humans. Am J Physiol Renal Physiol
284, F32–F40.

86. Arisawa K, Katsuura-Kamano S, Uemura H, et al. (2020)
Association of dietary acid load with the prevalence of metabolic
syndrome among participants in baseline survey of the Japan
Multi-Institutional Collaborative Cohort Study. Nutrients 12, 1605.

87. Fatahi S, Qorbani M, Surkan PJ, et al. (2021) Associations between
dietary acid load and obesity among Iranian women. J Cardiovasc
Thorac Res 13, 285–297.

88. Iwase H, Tanaka M, Kobayashi Y, et al. (2015) Lower vegetable
protein intake and higher dietary acid load associated with lower
carbohydrate intake are risk factors for metabolic syndrome in
patients with type 2 diabetes: post-hoc analysis of a cross-sectional
study. J Diabetes Invest 6, 465–472.

89. Daneshzad E, Haghighatdoost F & Azadbakht L (2019) Dietary
acid load and cardiometabolic risk factors: a systematic review
and meta-analysis of observational studies. Public Health Nutr 22,
2823–2834.

90. Zhang L, Curhan GC & Forman JP (2009) Diet-dependent net
acid load and risk of incident hypertension in United States
women. Hypertension 54, 751–755.

91. Han E, Kim G, Hong N, et al. (2016) Association between dietary
acid load and the risk of cardiovascular disease: nationwide sur-
veys (KNHANES 2008–2011). Cardiovasc Diabetol 15, 122.

92. Mazidi M, Mikhailidis DP & Banach M (2018) Higher dietary acid
load is associated with higher likelihood of peripheral arterial dis-
ease among American adults. J Diabetes Complications 32, 565–569.

93. Sanz JM, Sergi D, Colombari S, et al. (2022) Dietary acid load but
not Mediterranean diet adherence score is associated with meta-
bolic and cardiovascular health state: a population observational
study from northern Italy. Front Nutr 9, 1–11.

94. Emamat H, Farhadnejad H, Poustchi H, et al. (2022) The associ-
ation between dietary acid load and odds of non-alcoholic fatty
liver disease: a case-control study. Nutr Health, 2601060221088383.

95. Alferink LJM, Kiefte-de Jong JC, Erler NS, et al. (2019)
Diet-dependent acid load—the missing link between an animal
protein-rich diet and nonalcoholic fatty liver disease? J Clin
Endocrinol Metab 104, 6325–6337.

96. Mirmiran P, Yuzbashian E, Bahadoran Z, et al. (2016) Dietary
acid-base load and risk of chronic kidney disease in adults:
Tehran lipid and glucose study. Iran J Kidney Dis 10, 119–125.

97. Rebholz CM, Coresh J, Grams ME, et al. (2015) Dietary acid load
and incident chronic kidney disease: results from the ARIC study.
Am J Nephrol 42, 427–435.

13

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.dietaryguidelines.gov/food-sources-potassium
https://www.dietaryguidelines.gov/food-sources-potassium
https://fdc.nal.usda.gov/index.html
https://fdc.nal.usda.gov/index.html
https://doi.org/10.1017/jns.2022.93


98. Scialla JJ, Appel LJ, Astor BC, et al. (2012) Net endogenous acid
production is associated with a faster decline in GFR in African
Americans. Kidney Int 82, 106–112.

99. Banerjee T, Crews DC, Wesson DE, et al. (2014) Dietary acid load
and chronic kidney disease among adults in the United States.
BMC Nephrol 15, 137.

100. Goraya N, Simoni J, Jo C-H, et al. (2014) Treatment of metabolic
acidosis in patients with stage 3 chronic kidney disease with fruits
and vegetables or oral bicarbonate reduces urine angiotensinogen
and preserves glomerular filtration rate. Kidney Int 86, 1031–1038.

101. So R, Song S, Lee JE, et al. (2016) The association between renal
hyperfiltration and the sources of habitual protein intake and diet-
ary acid load in a general population with preserved renal function:
the KoGES study. PLoS ONE 11, e0166495.

102. Chagnac A, Zingerman B, Rozen-Zvi B, et al. (2019)
Consequences of glomerular hyperfiltration: the role of physical
forces in the pathogenesis of chronic kidney disease in diabetes
and obesity. Nephron 143, 38–42.

103. Goraya N, Munoz-Maldonado Y, Simoni J, et al. (2019) Fruit and
vegetable treatment of chronic kidney disease-related metabolic
acidosis reduces cardiovascular risk better than sodium bicarbon-
ate. Am J Nephrol 49, 438–448.

104. Goraya N, Simoni J, Jo C-H, et al. (2013) A comparison of treating
metabolic acidosis in CKD stage 4 hypertensive kidney disease
with fruits and vegetables or sodium bicarbonate. Clin J Am Soc
Nephrol 8, 371–381.

105. Ikizler TA, Burrowes JD, Byham-Gray LD, et al. (2020) KDOQI
clinical practice guideline for nutrition in CKD: 2020 update. Am J
Kidney Dis 76, S1–S107.

106. Chan R, Leung J & Woo J (2015) Association between estimated
net endogenous acid production and subsequent decline in muscle
mass over four years in ambulatory older Chinese people in Hong
Kong: a prospective cohort study. J Gerontol A Biol Sci Med Sci 70,
905–911.

107. Hayhoe RPG, Abdelhamid A, Luben RN, et al. (2020) Dietary
acid-base load and its association with risk of osteoporotic frac-
tures and low estimated skeletal muscle mass. Eur J Clin Nutr
74, 33–42.

108. Alexy U, Remer T, Manz F, et al. (2005) Long-term protein intake
and dietary potential renal acid load are associated with bone mod-
eling and remodeling at the proximal radius in healthy children.
Am J Clin Nutr 82, 1107–1114.

109. Kataya Y, Murakami K, Kobayashi S, et al. (2018) Higher dietary
acid load is associated with a higher prevalence of frailty, particu-
larly slowness/weakness and low physical activity, in elderly
Japanese women. Eur J Nutr 57, 1639–1650.

110. Faure AM, Fischer K, Dawson-Hughes B, et al. (2017)
Gender-specific association between dietary acid load and total
lean body mass and its dependency on protein intake in seniors.
Osteoporos Int 28, 3451–3462.

111. Welch AA, MacGregor AJ, Skinner J, et al. (2013) A higher alka-
line dietary load is associated with greater indexes of skeletal mus-
cle mass in women. Osteoporos Int 24, 1899–1908.

112. Mohammadpour S, Ghorbaninejad P, Shahavandi M, et al. (2022)
Interaction of dietary acid load and general and central obesity
with muscle strength and skeletal muscle mass. Clin Nutr
ESPEN 48, 361–369.

113. Milajerdi A, Hassanzadeh Keshteli A, Haghighatdoost F, et al.
(2020) Dietary acid load in relation to depression and anxiety in
adults. J Hum Nutr Diet 33, 48–55.

114. Mozaffari H, Siassi F, Guilani B, et al. (2020) Association of diet-
ary acid-base load and psychological disorders among Iranian
women: a cross-sectional study. Complement Ther Med 53, 102503.

115. Tessou KD, Lemus H, Hsu F-C, et al. (2021) Independent and
joint impacts of acid-producing diets and depression on physical
health among breast cancer survivors. Nutrients 13, 2422.

116. Bühlmeier J, Harris C, Koletzko S, et al. (2018) Dietary acid load
and mental health outcomes in children and adolescents: results
from the GINIplus and LISA birth cohort studies.Nutrients 10, 582.

117. Wu T, Seaver P, Lemus H, et al. (2019) Associations between diet-
ary acid load and biomarkers of inflammation and hyperglycemia
in breast cancer survivors. Nutrients 11, E1913.

118. Storz MA & Ronco AL (2022) Quantifying dietary acid load in U.
S. cancer survivors: an exploratory study using NHANES data.
BMC Nutr 8, 43.

119. Moellering RE, Black KC, Krishnamurty C, et al. (2008) Acid
treatment of melanoma cells selects for invasive phenotypes.
Clin Exp Metastasis 25, 411–425.

120. Gillies RJ, Pilot C, Marunaka Y, et al. (2019) Targeting acidity in
cancer and diabetes. Biochim Biophys Acta Rev Cancer 1871, 273–280.

121. Park Y-MM, Steck SE, Fung TT, et al. (2019) Higher diet-
dependent acid load is associated with risk of breast cancer: find-
ings from the sister study. Int J Cancer 144, 1834–1843.

122. Ronco AL, Martinez-Lopez W, Mendoza BA, et al. (2021)
Epidemiologic evidence for association between a high dietary
acid load and the breast cancer risk. Sci Med J 3, 166–176.

123. Ronco AL, Storz MA, Martínez-López W, et al. (2021) High diet-
ary acid load is associated with prostate cancer risk: an epidemio-
logical study. World Cancer Res J 8, e2119.

124. Ronco AL, Martínez-López W, Calderón JM, et al. (2021) Dietary
acid load and lung cancer risk: a case-control study in men. Cancer
Treat Res Commun 28, 100382.

125. Jafari Nasab S, Rafiee P, Bahrami A, et al. (2021) Diet-dependent
acid load and the risk of colorectal cancer and adenoma: a case-
control study. Public Health Nutr 24, 4474–4481.

126. Shi L-W, Wu Y-L, Hu J-J, et al. (2021) Dietary acid load and the
risk of pancreatic cancer: a prospective cohort study. Cancer
Epidemiol Biomark Prev 30, 1009–1019.

127. Ronco AL, Martínez-López W, Calderón JM, et al. (2022) Dietary
acid load and risk of gastric cancer: a case-control study. World
Cancer Res J 9, e2403.

128. Ronco AL, Martínez-López W, Calderón JM, et al. Dietary acid
load and esophageal cancer risk: a case-control study. Thoracic
Cancer, 1–8. doi: 10.1111/1759-7714.14612.

129. Ronco AL, Martínez-López W, Calderón JM, et al. Dietary acid load
and risk of head and neck and oral cavity cancers: an epidemiologic
study. Oral Science International, 1–10. doi:10.1002/osi2.1150.

130. Keramati M, Kheirouri S, Musazadeh V, et al. (2022) Association
of high dietary acid load with the risk of cancer: a systematic
review and meta-analysis of observational studies. Front Nutr 9,
816797.

131. Bahrami A, Khalesi S, Ghafouri-Taleghani F, et al. (2022) Dietary
acid load and the risk of cancer: a systematic review and dose-
response meta-analysis of observational studies. Eur J Cancer
Prev 31, 577–584.

132. Müller A, Zimmermann-Klemd AM, Lederer A-K, et al. (2021)
A vegan diet is associated with a significant reduction in dietary
acid load: post hoc analysis of a randomized controlled trial in
healthy individuals. Int J Environ Res Public Health 18, 9998.

133. Deriemaeker P, Aerenhouts D, Hebbelinck M, et al. (2010)
Nutrient based estimation of acid-base balance in vegetarians
and non-vegetarians. Plant Foods Hum Nutr 65, 77–82.

134. Knurick JR, Johnston CS, Wherry SJ, et al. (2015) Comparison of
correlates of bone mineral density in individuals adhering to
lacto-ovo, vegan, or omnivore diets: a cross-sectional investigation.
Nutrients 7, 3416–3426.

135. Juan W, Yamini S & Britten P (2015) Food intake patterns of self-
identified vegetarians among the U.S. population, 2007–2010.
Procedia Food Sci 4, 86–93.

136. D’Alessandro C, Piccoli GB & Cupisti A (2015) The ‘phosphorus
pyramid’: a visual tool for dietary phosphate management in dia-
lysis and CKD patients. BMC Nephrol 16, 9.

137. Scialla JJ & Anderson CAM (2013) Dietary acid load: a novel
nutritional target in chronic kidney disease? Adv Chronic Kidney
Dis 20, 141–149.

138. Sobiecki JG, Appleby PN, Bradbury KE, et al. (2016) High com-
pliance with dietary recommendations in a cohort of meat eaters,
fish eaters, vegetarians, and vegans: results from the European

14

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.93


Prospective Investigation into Cancer and Nutrition-Oxford
study. Nutr Res 36, 464–477.

139. Allès B, Baudry J, Méjean C, et al. (2017) Comparison of sociode-
mographic and nutritional characteristics between self-reported
vegetarians, vegans, and meat-eaters from the NutriNet-Santé
study. Nutrients 9, E1023.

140. Orlich MJ & Fraser GE (2014) Vegetarian diets in the Adventist
Health Study 2: a review of initial published findings. Am J Clin
Nutr 100, 353S–358S.

141. Alam I, Alam I, Paracha PI, et al. (2012) Higher estimates of daily
dietary net endogenous acid production (NEAP) in the elderly as
compared to the young in a healthy, free-living elderly population
of Pakistan. Clin Interv Aging 7, 565.

142. Al-Kindi SG, Sarode A, Zullo M, et al. (2020) Serum bicarbonate
concentration and cause-specific mortality: the National Health
and Nutrition Examination Survey 1999–2010. Mayo Clin Proc
95, 113–123.

143. Xu H, Åkesson A, Orsini N, et al. (2016) Modest U-shaped asso-
ciation between dietary acid load and risk of all-cause and cardio-
vascular mortality in adults. J Nutr 146, 1580–1585.

144. Hejazi E, Emamat H, Sharafkhah M, et al. (2021) Dietary acid load
and mortality from all causes, CVD and cancer: results from the
Golestan Cohort Study. Br J Nutr, 1–7.

145. Craig WJ, Mangels AR & Brothers CJ (2022) Nutritional
profiles of non-dairy plant-based cheese alternatives. Nutrients
14, 1247.

15

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.9
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.93

	Observational and clinical evidence that plant-based nutrition reduces dietary acid load
	Introduction
	DAL assessment and quantification
	Dietary components affecting DAL
	Protein content and amino acid composition of diet
	Glutamate and glutamine content of diet
	Phosphorus content of diet
	Potassium/organic anion content of diet
	Magnesium content of diet

	Contribution of increased DAL to chronic illnesses
	Type 2 diabetes
	Hyperlipidaemia and cardiometabolic disorders
	Renal disorders
	Musculoskeletal health and body composition
	Mental health
	Cancer

	PBDs to reduce DAL
	Observational studies
	Clinical intervention studies


	Discussion
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


