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Abstract. We study a ramification theory for a division algebraD of the following type: The center
of D is a complete discrete valuation fieldK with the imperfect residue fieldF of certain type, and
the residue algebra ofD is commutative and purely inseparable overF . Using Swan conductors of
the corresponding element of Br(K), we define Herbrand’s -function ofD=K, and it describes the
action of the reduced norm map on the filtration ofD�. We also gives a relation among the Swan
conductors and the ‘ramification number’ ofD, which is defined by the commutator group ofD�.
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1. Introduction

In this paper we develop a ramification theory of division algebras over a complete
discrete valuation fieldK, which is analogous to the classical ramification theory of
finite extensions ofK. The classical ramification theory deals with a finite Galois
extensionL ofK, under the assumption that the residue fieldF ofK is perfect (see
[5] Chapter 4, 5). There exists a good definition of ‘Herbrand’s function ’, which
is decided by the state of wild ramification inL=K. The classical ramification
theory gives a description of the action of the norm map on the filtration of the unit
groups ofL andK, by using this Herbrand’s function.

Now we consider a finite dimensional central division algebraD overK, instead
ofL=K. If F is perfect, there is no ‘wild ramification’ in allD=K, so the ramifica-
tion theory becomes too simple in this case. Hence we now consider the case that
the characteristic ofF is p > 0 and[F : F p] = p. We assume that the residue alge-
bra ofD is commutative and purely inseparable overF . This is the most important
case; ifF is separably closed, anyD=K satisfies this property.

Our first main theorem is that there is a good definition of ‘Herbrand’s function
 ’ (which is decided by the state of wild ramification inD=K) and the following
holds (see Theorem 4.1).
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128 TAKAO YAMAZAKI

THEOREM A.For anyi = 0;1; : : : ; we have

Nrd(U (i)D ) � U iK ;

Nrd(U (i)+1
D ) � U i+1

K :

HereU iK (resp.U iD) is theith unit group ofK (resp.D).

Letw be the element of the Brauer group ofK corresponding toD. The Swan
conductor ofw is an analogue to Swan conductors of characters of Galois group of
K and it measures how the ramification inD=K is big. Letsj 2 Z>0 be the Swan
conductors ofpjw(j = 0;1; : : :). Herbrand’s function is completely decided
by the numberssj. The graph of Herbrand’s function is the hooked line, which
starts from the origin and has the slopepn�j in the intervalsj < x < sj�1. The
x-coordinates of hooked points aresj. We call (sj) the ramification numbers of
D=K.

In the classical case ofL=K, there is a relation between the ramification numbers
ofL=K and valuations of�(a)=a�1 with� 2 Gal(L=K)anda 2 L�. For example,
the least ramification number ofL=K is equal to

inffvL(�(a)=a � 1)j� 2 Gal(L=K); a 2 L�g:

HerevL denotes the normalized valuation onL. Our next theorem is to give a similar
relation between ramification numbers ofD=K and valuations of commutators.

THEOREM B.The least ramification number ofD=K is equal to

inffvD(aba
�1b�1

� 1)ja; b 2 D�
g:

HerevD denotes the normalized valuation onD.

We will also give a certain description for all ramification numbers by using
valuesvD(aba�1b�1 � 1). But this is more complicated than the case denoted
above. For details, see Theorem 5.1.

We will use the notations below:

The word ‘field’ means commutative fields, unless the contrary is explicitly
stated.

The map Res denotes the restriction map and Cor the corestriction map of Galois
cohomology.

For a complete discrete valuation fieldk or a finite dimensional division algebra
k over a complete discrete valuation field,

vk denotes the normalized valuation onk;

Ok = fx 2 kjvk(x) > 0g;
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REDUCED NORM MAP OF DIVISION ALGEBRAS 129

mk = fx 2 kjvk(x) > 0g;

Uk = fx 2 kjvk(x) = 0g;

U ik = ker(Uk ! (Ok=m
i)�) for i = 0;1;2; : : : :

For a complete discrete valuation fieldk, knr denotes the maximal unramified
extension ofk.

For any fieldk, ksep denotes the separable closure ofk, and Br(k) denotes the
Brauer group ofk.

For� 2 Br(k), D(�) denotes the division algebra overk corresponding to�.
For any field extensionk0=k and� 2 Br(k), �k0 denotes Resk0=k(�).
For any Abelian groupA and natural numberm,mA denotesfa 2 Ajma = 0g.

2. Basic properties of elements of Brauer group

LetK be a complete discrete valuation field andF its residue field. Suppose that
the characteristic ofF is p > 0 and[F : F p] = p. LetD be a division algebra with
centerK andC its residue division algebra. We consider the following condition:

C is commutative and purely inseparable overF: (�)

Letw be the class ofD in the Brauer group ofK.

PROPOSITION 2.1. (i)If (�) holds, then

[D : K]1=2 = [C : F ] = vD(�K):

(ii) The condition (*) is equivalent to the condition

the order ofw = the order ofwKnr : (�)0

Furthermore, if this condition holds, then the order ofw is equal to[D : K]1=2.
(iii) Suppose that(�) holds forD. Then(�) also holds forD(pjw)(j = 0;1; : : :)

and forD(wL) whereL is an algebraic extension ofK and satisfying either of the
three conditions below

(a) L � D;

(b) L is unramified overK;

(c) p 6 j [L : K] <1:

Proof.(i) Put [D : K] = r2, [C : F ] = f andvD(�K) = e. It is well-known that
ef = r2. Takey 2 C�Cp so thatC = F (y). Take its liftingx 2 D, then we have

f = [C : F ] 6 [K(x) : K] 6 r
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130 TAKAO YAMAZAKI

(the last inequality follows from the factK(x) is a commutative subfield ofD).
Next, we show that 1; �D; : : : ; �

e�1
D are linearly independent overK. To show

this, suppose that

a0 + a1�D + � � �+ ae�1�
e�1 = 0

with aj 2 K. Since all ofvD(aj�
j
D) = evK(aj) + j (j = 0;1; : : : ; e � 1) are

distinct, all ofaj must be zero. This implies

e 6 [K(�D) : K] 6 r:

From those two inequalities, we haver = e = f .
(ii) The assertions ‘(�)0 implies(�)0’ and ‘(�)0 implies the last assertion’ can be

shown easily by induction on the order ofw, using [1] Section 4 Lemma 5 for the
case that the order ofw is p.

Now, we prove that(�) implies(�)0. From (i), we have[D : K]1=2 = [C : F ] =
vD(�K). SinceC=F is purely inseparable, those common values are a powerpn of
p. It is well-known that the order ofw divides[D : K]1=2 = pn. So letpm(m 6 n)
be the order ofw. We provem = n by induction onm.

We first consider the casem = 1. Suppose thatw is split by some finite
unramified Galois extensionL=K. PutG = Gal(L=K). LetH be somep-Sylow
subgroup ofG andL0 its fixed subfield. We see that the order ofwL0 is alsop
(because Cor(wL0) = [L0 : K]w andp - [L0 : K]). Further, we can seeD(wL0) =
D 
 L0. To see this, putp2r = [D(wL) : K], then it is enough to showr = n.
SincewL0 is split by some extension ofL0 of degreepr, w is split by an extension
of K of degree[L0 : K]pr. So we havepnj[L0 : K]pr, and hencer = n. SinceH
is ap-group, there is a sequence of fields

L0 � L1 � � � � � Ls = L;

such that[Lj+1 : Lj ] = p(j = 0;1; : : : ; s� 1). Taker 2 f0;1; : : : ; s� 1g as

[D(wLr) : Lr] = p2n > [D(wLr+1) : Lr+1] = p2n0 :

Take any maximal subfieldM of D(wLr+1). ThenwLr is split by the extension
M=Lr whose degree ispn

0+1. So we haven0 + 1 = n, and then[M : Lr] =
[D(wLr) : Lr]1=2. This shows thatD(wLr) contains a field which is isomorphic
to M . But the extensionM=Lr contains the unramified extensionLr+1=Lr, this
contradicts(�) for D(wLr) (sinceD(wLr) = D 
 Lr, it is clear that(�) holds for
D(wLr)). This showswKnr 6= 0.

Whenm > 1, the inductive hypothesis says that[D(pw) : K] = p2(m�1). Take
a maximal commutative subfieldL of D(pw), then the order ofwL is p. From the
casem = 1,wL is split by some extension ofL of degreep, and it is an extension
of K of degreepm. This completes the proof.

comp4111.tex; 27/04/1998; 8:28; v.7; p.4

https://doi.org/10.1023/A:1016062718500 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016062718500


REDUCED NORM MAP OF DIVISION ALGEBRAS 131

(iii) The case (a) is clear from the fact thatD(wL) is isomorphic to the central-
izer ofL in D. The other parts are clear from (ii). 2

3. Herbrand’s function  

From now on we assumeD is a division algebra satisfying(�). LetC be its residue
field,w the element of Br(K) corresponding toD, andpn the order ofw.

Put sj = sw(pjw) 2 Z>0(j = 0;1; : : : ; n). Here, for any� 2 Br(K), sw(�)
denotes the Swan conductor of� which is defined in [2] (see below). We have

s0 > s1 > � � � > sn = 0:

Formally puts�1 = 1. Using those numbers, we define Herbrand’s function
 : Z>0 ! Z>0 for D as follows

 (0) = 0;

 (i) =  (sj) + pn�j(i� sj) if sj 6 i 6 sj�1:

We review on Swan conductors. For anym 2 Z, the cup product induces the
map

K�=K�m

m Br(K) = H1(K;Z=mZ(1))
H2(K;Z=mZ(1))

! H3(K;Z=mZ(2))

and taking the inductive limit onm, it induces

K�

 Br(K) ! H3(K;Q=Z(2)):

(In the case that the characteristic ofK is p, the definitions ofp-primary part of
Z=mZ(r) andQ=Z(r) are complicated. For details, see [2].) We write the image
of a
 � 2 K�


 Br(K) by this map asf�; ag.
For any finite extensionL=K, we have

Cor(f�L; ag) = f�;NL=K(a)g for any� 2 Br(K); a 2 L�;

Cor(f�; ag = fCor(�); ag for any� 2 Br(L); a 2 K�: (1)

Whenp Br(F ) 6= 0, Swan conductors can be defined as ([2] Proposition(6.5))

sw(�) = inffmjker(f�;?g) � Um+1
K g (2)

for any� 2 Br(K). Remark that this definition is correct only whenpBr(F ) 6= 0
and[F : F p] = p.
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Now, supposepBr(F ) = 0. In this case, we need more precise definition of Swan
conductors, but after the proof of the next lemma, we can reduce all problems to
the casepBr(F ) 6= 0.

Fix �K 2 K such thatvK(�K) = 1. Let Km be the fraction field of the
completion ofOK [T p

�m

](�K)(m = 0;1; : : :) andK1 the fraction field of the

completion of
S
1

m=0OK [T p
�m

](�K). Then their residue fields areFm = F (T p
�m

)
andF1 = [Fm.

LEMMA 3.1. (i) [F1 : F p
1
] = p andpBr(F1) 6= 0.

(ii) D 
K1 is a division algebra.
(iii) For any� 2 Br(K), we have

sw(�) = sw(�K1):

In particular, Herbrand’s functions forD andD 
K1 coincide.
(iv) vD = vD
K1jD. In particular, for anyi = 0;1; : : : ; we have

U iD = U iD
K1 \D;

U iK = U iK1 \K:

(v) The diagram

D - D 
K1

K

Nrd

?

- K1

?

Nrd

commutes.
Proof.(iv), (v) and the first assertion of (i) are clear. Now, we prove the later part

of (i). Let� 2 H1(F1;Q=Z) be the character of Gal(F
sep
1 =F1)which corresponds

to the extension defined by the equation�p � � = T . Takea 2 F � F p. Then
the element(�; a) of pBr(F1) is not zero, because(�; a) = 0 is equivalent to
a 2 NF1(�)=F1(F1(�)�) (see [5] Chapter 14 for the definition of(�; a)).

(iii) From [2] Proposition(6.3), we can easily see

sw(�K0) > sw(�K1):

Further, the same proposition says that, to show the opposite inequality it is enough
to show that

f�L1 ;1+ �N+1
K Sg = 0 impliesf�L0;1+ �N+1

K Sg = 0 for anyN;
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REDUCED NORM MAP OF DIVISION ALGEBRAS 133

whereLm is the fractional field of the henselization ofOKm [S](�K) and similarly
L1. Since

f�L1 ;1+ �N+1
K Sg = Res(f�L0;1+ �N+1

K Sg)

inH3(L1;Q=Z(2)), f�L1 ;1+�
N+1
K Sg = 0 is equivalent tof�Lm ;1+�

N+1
K Sg =

0 for somem. But [2] Lemma (6.2) says

sw(�) = sw(�Km) for all m = 0;1; : : : :

From this, iff�Lm ;1+ �N+1
K Sg = 0 holds for somem, then it also holds for all

m, especially form = 0. This completes the proof. When we have proved (ii), the
later part of (iii) is clear from this.

(ii) It is enough to show(pn�1w)K1 6= 0. But [2] Proposition (6.1) and (iii)
say sw(pn�1wK1) = sw(pn�1w) > 0. This shows(pn�1w)K1 6= 0. 2

In the rest of this section, we prove some properties of Swan conductors and
Herbrand’s functions. Ifa andb are two elements of some group, we write[a; b] =
aba�1b�1. Fora 2 OD, we write�a for the class ofa in C.

LEMMA 3.2. If n = 1, then we have

s0 = inffvD([a; b]� 1)ja; b 2 D�
g:

Proof. Let t be the right-hand side of above equation. First, we reduce to the
casepBr(F ) 6= 0. Using notations in Lemma 3.1, we haves0 = sw(wK1). So we
should show

t = inffvD
K1([a; b]� 1)ja; b 2 (D 
K1)�g:

Take� 2 OD such that�� 62 F , and�D 2 D� such thatvD(�D) = 1. Then we also
have�� 62 F1, andvD
K1(�D) = 1. Hence, the claim is clear from [1] Section 1
Lemma 1. Now we assumepBr(F ) 6= 0. In this case, [1] Section 1 says

t = inffmjNrd(D�) � Um+1
K g:

Further, [4] Theorem (12.2) says that

Nrd(D�) = ker(fw;?g):

From (2), this completes the proof. 2

LEMMA 3.3. If L=K is a finite extension such that the residue extension is purely
inseparable, then we have

Cor:H3(L;Q=Z(2)) ! H3(K;Q=Z(2))
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is isomorphic inp-primary part.
Proof.For anym, there exists an isomorphism

H3(K;Z=pmZ(2)) ! pmBr(F )

described in [3]. LetE be the residue field ofL. It is easy to see that the diagram

H3(K;Z=pmZ(2)) iso:
-

pmBr(F )

H3(L;Z=pmZ(2))

Cor

6

iso:
-

pmBr(E)

6

�=

commutes, here right arrow is induced by[E : F ]-th power map fromE to F . 2

LEMMA 3.4. LetL=K be a field extension such that[L : K] is prime top. Then,
(i) D 
 L is a division algebra.
(ii) Let e = vL(�K) and 0 be Herbrand’s function forD 
 L. Then, for any

i = 0;1; : : : ; we have

 0(ei) = e (i):

(iii) For anym = 0;1; : : : ; we have

U iD = U eiD
L \D;

U iK = U eiL \K:

(iv) The diagram

D - D 
 L

K

Nrd

?

- L
?

Nrd

commutes.

Proof. (i) It is enough to show that the order ofwL is pn. But this is clear from
the fact that the restriction map is injective in ‘prime to[L : K]-part’.

(ii) It is enough to show that sw(�L) = e sw(�) for any � 2 Br(K). From
Lemma 3.1, we can assumepBr(F ) 6= 0. Take the maximal unramified extension
L0 in L=K, then the extensionL=L0 is totally ramified (since[L : K] is prime to
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p). So it is enough to show the claim in the cases thatL=K is unramified or totally
ramified.

First, we consider the caseL=K is totally ramified so thate = [L : K] =
vL(�K). Takel;m 2 Z such thatpnl+em = 1. Take anya 2 U iK (i > sw(�L)=e).

SinceU iK � U
sw(�L)+1
L , we have

f�; ag = f(pnl + em)(�); ag

= fem�; ag

= mfCor(�L); ag

= mCor(f�L; ag) from (1)

= 0:

From (2), this meanse sw(�) 6 sw(�L). To show the opposite inequality, note that

NL=K(U ei+1
L ) � U i+1

K for anyi = 0;1; : : : :

This is proved by [5] Chapter 5. Take anya 2 U esw(�)+1
L . Then we have

Cor(f�L; ag) = f�;N(a)g = 0 from (1):

This proves the opposite inequality by using (2) and Lemma 3.3.
Next, we consider the caseL=K is unramified so thate = 1. In this case, we

have (see [5] Chapter 5)

NL=K(U iL) = U iK for anyi = 0;1; : : : :

Using this fact, the inequality sw(�L0) > sw(�) can be shown by a similar way as

above. We can takea 2 U
sw(�)
K such thatf�; ag 6= 0. There existb 2 U

sw(�)
L such

thatN(b) = a. Then we have

0 6= f�; ag = f�L; bg from (1):

From (2), this shows the opposite inequality and completes the proof.
(iii) and (iv) are trivial. 2

4. The action of reduced norm on the filtration

THEOREM 4.1.For anyi = 0;1; : : : ; we have

Nrd(U (i)D ) � U iK ;
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Nrd(U (i)+1
D ) � U i+1

K :

To prove this theorem, we use induction onn. Forn = 1, the proof is already
done in [1] Section 1 and Lemma 3.2.

Assumen > 1. From Lemma 3.1, we can assumepBr(F ) 6= 0. Our plan of the
proof is as follows. Take a Galois extensionL=K of degreep contained inD. Let
D0 be the centralizer ofL in D. Forx 2 D0, we have

NrdD=K(x) = NL=K(NrdD0=L(x)):

Hence, for suchx, the problem is divided into ‘NrdD0=L-part’ and ‘NL=K-part’.
First, we prove the following claim: We can assume that for anyx 2 UD there

exists a Galois extension ofK of degreep contained inD such thatx is an element
of the centralizer of it inD.

When the characteristic ofK is p and the extensionK(x)=K is purely insepa-
rable, we have Nrd(x) = xp

n
andx 2 U iD impliesxp

n
2 U iK . Whatever the values

of sw(pjw) are, we have (i) > i(i = 0;1; : : :). So there is no problem in this
case.

In the every other case, we can take a commutative subfieldL of D containing
K such that the extensionL=K is not trivial and separable, andx is an element
of the centralizer ofL in D. We can writeL = K(y) for somey 2 L. Take any
pro-p-Sylow subgroup of Gal(Ksep=K) and letK1 be its fixed subfield inKsep.
Since ap-group is solvable, we can take a field extensionK1(z)=K1 such that

K1 � K1(z) � K1(y) = K1L;

[K1(z) : K1] = p:

Write z = f(y)=g(y) wheref andg are polynomials whose coefficients are inK1.
LetK2 be the field generated byK, all coefficients off andg, and all coefficients
of the minimal equation ofz overK1. Then

p - [K2 : K] <1;

K2 � K2(z) � K2(y);

[K2(z) : K2] = p:

Using Lemma 3.4, we can assume the existence of separable (not necessary Galois)
extensionL=K of degreep.

Now assume that a separable extensionL=K of degreep is given. Take the
Galois closureL0 of L=K, and letK 0 be the fixed field of somep-Sylow subgroup
of Gal(L0=K). Since[L0 : K] 6 p!, we havep - [K 0 : K] and the extensionL0=K 0

is Galois. Hence we have showed the claim, by using Lemma 3.4.
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Now we take such a Galois extensionL=K of degreep contained inD. Let
D0 be the centralizer ofL in D. It is well-known that the class ofD0 in Br(L)
is equal towL. The extensionL=K is either a totally ramified extension or an
extension with a purely inseparable residue extension of degreep. We call the
first case ‘totally ramified’ and the latter case ‘having residue extension’. Put
s0j = sw(pn�1�jwL)(j = 0;1; : : : ; n � 1) and let 0 be the Herbrand’s function
for D0=L. Now we can use inductive hypothesis, hence we have

NrdD0=L(U
 0(i)
D0 ) � U iL;

NrdD0=L(U
 0(i)+1
D0 ) � U i+1

L :

In the case ‘totally ramified’, we can use [5] Chapter 5. Putt = vL(�
�
L=�L�1)

where� is a generator of Gal(L=K)and�L is an element ofL such thatvL(�L) = 1.
Using this, we define

�(i) = i if 0 6 i 6 t;

�(i) = t+ p(i� t) if t 6 i:

Then we have

NL=K(U
�(i)
L ) � U iK ;

NL=K(U
�(i)+1
L ) � U i+1

K :

On the other hand, we have

U iD0 = U iD \D
0;

U iK = U
pi
L \K:

So we must show

 >  0 � �:

This is an easy consequence of next lemma.

LEMMA 4.2. Use above assumptions and notations. Takem assm 6 t < sm�1.
Then we havem 6 n� 1 (i.e. it does never happen thatt < sn�1), and

sn�1 6 s0n�2 6 sn�2 6 s0n�3 6 : : :

: : : 6 sm 6 t < sm�1 = ��1(s0m�1)
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< sm�2 = ��1(s0m�2)

< � � � :

Proof. It is enough to show five inequalities below

sn�1 6 t; (3)

sj+1 6 s0j j = 0;1; : : : ; n� 1; (4)

s0j 6 �(sj) j = 0;1; : : : ; n� 1; (5)

t 6 s0m�1; (6)

�(sj) 6 s0j j = 0;1; : : : ;m� 1: (7)

These inequalities can be proved rather easily as follows. The key of the proof is
(1) and (2).

Proof of (3): Takea 2 U t+1
K . Then we can writea = NL=K(b) for some

b 2 U t+1
L ([5] Chapter 5). So

fpn�1w; ag = Cor(f(pn�1w)L; bg) = 0

and this implies (3).

Proof of(4): Takea 2 U
s0
j
+1

K . Thena 2 U
s0
j
+1

L . So

fpj+1w; ag = Cor(f(pjw)L; ag) = 0;

and this implies (4).

Proof of(5): Takea 2 U
�(sj)+1
L . Then NL=K(a) 2 U

sj+1
K . So

Cor(f(pjw)L; ag) = fpjw;N(a)g = 0

and this implies (5) by Lemma 3.3.
Proof of(6): Sincet < sm�1, we can takea 2 U t+1

K such thatfpm�1w; ag 6= 0.
We can also takeb 2 U t+1

L such thata = N(b). So

0 6= fpm�1w; ag = Cor(fpm�1wL; bg)

and this implies (6).
Proof of(7): Takea 2 U iK as�(i) > s0j. Sincet 6 s0j, we can writea = NL=K(b)

for someb 2 U
s0
j
+1

L . So

fpjw; ag = Cor(f(pjw)L; bg) = 0;
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and this implies (7). 2

Remark4.3.From this lemma, forL such thatt = sn�1, we have

 =  0 � �;

�(sj) = s0j for all j = 0;1; : : : ; n� 2:

Similar fact holds whenL=K has residue extension. See below.

In the case ‘having residue extension’, we can use [1] Section 1: Putt =
pvL(h

�=h � 1) where� is a generator of Gal(L=K) andh is an element ofOL
such that�h 62 F . Using this, we define

�(i) = i=p if 0 6 i 6 t

�(i) = t=p+ (i� t) if t 6 i:

Then we have

NL=K(U
�(i)
L ) � U iK ;

NL=K(U
�(i)+1
L ) � U i+1

K :

On the other hand, we have

U iD0 = U
pi
D \D0;

U iK = U iL \K:

So we must show

 > p 0 � �:

This is an easy consequence of next lemma.

LEMMA 4.4. Use above assumptions and notations. Takem assm 6 t < sm�1.
Then we havem 6 n� 1 and

sn�1 6 ps0n�2 6 sn�2 6 ps0n�3 6 � � �

� � � 6 sm 6 t < sm�1 = ��1(s0m�1)

< sm�2 = ��1(s0m�2)

< � � � :
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Proof. It is enough to show five inequalities below

sn�1 6 t;

sj+1 6 s0j < ps0j j = 0;1; : : : ; n� 1;

s0j 6 �(sj) j = 0;1; : : : ; n� 1;

t=p 6 s0m�1;

�(sj) 6 s0j j = 0;1; : : : ;m� 1:

The proof is very similar to ‘totally ramified case’, so we omit it. 2

5. The ramification numbers

For any subsetS of D�, we write

tD(S) = inffvD([a; b] � 1)ja; b 2 Sg:

We can prove the following fact by just the same way as [1] Section 1 Lemma 1.
If � 2 OD and�D 2 D� satisfy�� 2 C � Cp andvD(�D) = 1, then

tD(D
�) = vD([�; �D]� 1):

Recall that the numbers (sj) are called the ramification numbers ofD=K.

THEOREM 5.1.For j = 0;1; : : : ; n� 1, put

tj = supftD(D0�)jD0satisfies conditions belowg;

D0 is a division algebra;

K � D0
� D;

[D : center ofD0] = p2j+2;

[center ofD0 : K] = pn�j�1:

(In particular

tn�1 = tD(D
�):)

Then we have

 (sj) = tj for anyj = 0;1; : : : ; n� 1:
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First we prove two lemmas.

LEMMA 5.2. Fix any�D 2 D such thatvD(�D) = 1, and put�K = Nrd(�D). If
i < sn�1, then we have

Nrd(1+ �iDu) � 1+ �iKu
pn mod�i+1

K

for anyu 2 UD.
Proof. This can be showed easily by induction using three points below. The

casen = 1 is proved in [1] Section 1. Similar fact for NL=K : L! K is proved in
[5] Chapter 6 or [1] Section 1. For any totally ramified Galois extensionL=K of
degreep, we already proved in Lemma 4.2 that

sn�1 6 t;

sn�1 6 s0n�2;

or similar fact for a ‘having residue extension’ case, using notations as in the proof
of Theorem 4.1. 2

LEMMA 5.3. If K0=K is a finite field extension such thatp - [K0 : K]. Then
D 
K0 is a division algebra and

tD
K0((D 
K0)
�) = etD(D

�):

Heree = vK0(�K).
Proof.The first part of this lemma is already proved in Lemma 3.4. Take� 2 OD

such that�� 2 C � Cp, then we also have

�� 2 (OD
K0=mD
K0)� (OD
K0=mD
K0)
p:

Fix �D 2 D and�K0 2 K0 such thatvD(�D) = 1 andvK0(�K0) = 1. Takel;m 2

Z such thatpnl+ em = 1. Put�D
K0 = �lK0
�mD so thatvD
K0(�D
K0) = 1. Put

[�; �D] = 1+ �rDu with u 2 UD, then we have

[�; �D
K0] = [�; �lK0
�mD ]

= [�; �mD ]

= [�; �D](�D[�; �D]�
�1
D ) : : : (�m�1

D [�; �D]�
1�m
D )

� 1+ �rD(u+ �Du�
�1
D + � � �+ �m�1

D u�1�m
D ) mod�er+1

D
K0
:

Sinceu � �Du�
�1
D mod�D andp - m, we have

u+ �Du�
�1
D + � � � + �m�1

D u�1�m
D � mu 6� 0 mod�D:
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Hence we have

tD
K0((D 
K0)
�) = vD
K0([�; �D
K0]� 1) = er

= evD([�; �D]� 1) = etD(D
�)

and this completes the proof. 2

Now, let us begin the proof of Theorem 5.1. We again use induction onn. The case
n = 1 is already done in Lemma 3.2.

Suppose thatn > 1. First, we prove the casej = n�1. We havetn�1 = tD(D
�)

and (sn�1) = sn�1. Since Nrd([a; b]) = 1 for anya; b 2 D�, we can easily see
vD([a; b] � 1) > sn�1 using Lemma 5.2. Now, we must show the existence of
a; b 2 D such thatvD([a; b] � 1) = sn�1.

The first step is to prove the following claim: We can assume an existence
of a Galois extensionL=K of degreep contained inD which satisfies the next
condition: Let� be a generator of Gal(L=K). Then,

sn�1 = vL(�(�L)=�L � 1) for some�L 2 L such thatvL(�L) = 1
whenL=K is totally ramified;

sn�1 = pvL(�(h)=h � 1) for someh 2 OL such that�h 62 F
whenL=K has residue extension:

If L is a maximal commutative subfield ofD(pn�1w), then there is an inclusion
L ,! D (this can be proved by the same argument as in Section 2). Hence, it is
enough to show the claim in the casen = 1. In this case, we know that there exists
somex; y 2 D� such that

s0 = vD([x; y]� 1):

Take some maximal commutative subfieldL ofD which contains[x; y]. Again we
can assume the extensionL=K is Galois. If the extensionL=K is totally ramified,
put= vL(�(�L)=�L � 1), using the same notation as above. Then it is clear that

1 6= the class of[x; y] 2 ker(N: U s0
L =U

s0+1
L ! U

s0
K =U

s0+1
K ):

On the other hand, [5] Chapter 6 says that fori < t

N: U iL=U
i+1
L ! U iK=U

i+1
K

is injective. This impliess0 > t. We already knows0 6 t by Lemma 4.2. This
proves the claim in this case. The proof of the case that the extensionL=K has
residue extension goes similarly, and hence we omit it.

Now suppose that such an extensionL=K is given. We use the same notations
as in the proof of Theorem 4.1 forD0; s0j ;  

0; t and�. Since the caseL=K has
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residue extension can be proved by the similar way, we prove the caseL=K is
totally ramified. In this case, there exists�D0 2 D0 such thatvD(�D0) = 1.
Put�L = NrdD0=L(�D) and�K = NrdD=K(�D). From the definition, we have
sn�1 = t = vL(�(�L)=�L � 1). From general theories of central simple algebras,
there exists� 2 D� such that the restriction of the inner automorphism

x 7! �x��1

onD toL is equal to�. We have

sn�1 = t = vL(�(�L)=�L � 1)

= vL([�; �L]� 1)

= vL([�;NrdD0=L(�D)]� 1)

= vL(NrdD0=L([�; �D])� 1)

Sincesn�1 = t, Lemma 4.2 sayst < s0n�2. Applying Lemma 5.2 to[�; �D] on
D0=L, we have

vL(NrdD0=L([�; �D])� 1) = vD([�; �D ]� 1):

This completes the proof.
Next, we consider the casej < n� 1. First, we prove the existence ofD0 such

thattD(D�

0) = sj. We use the sameL as in the proof of the casej = n�1. Again,
we only deal with the caseL=K is totally ramified, because the proof of the case
L=K has residue extension goes similarly. In this case, we have =  0 � � and
tD(S) = tD0(S) for anyS � D0

�. Using the inductive hypothesis, there exists a
sub-division algebraD0 � D0 such that

[D0 : the center ofD0] = p2j+2;

[the center ofD0 : L] = pn�2�j;

 0(s0j) = tD0(D
�

0):

Then we have

tD(D
�

0) =  0(s0j) =  0(�(sj)) =  (sj):

This is what we wanted.
Next, take any sub division algebraD0 � D such that

[D0 : the center ofD0] = p2j+2 and [the center ofD0 : K] = pn�1�j;
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and we begin to prove (sj) > tD(D
�

0). Let L0 be the center ofD0. First, we
consider the caseL0=K is not purely inseparable. In this case, we can assume that
there existsL such thatK � L � L0 andL=K is a Galois extension of degreep
by using Lemma 3.4 and 5.3. LetD0 be the centralizer ofL in D so thatD0 � D0.
We will use the same notations as before. Using the inductive hypothesis, we have

tD0(D
�

0) 6  0(s0j):

Again, we only prove in the caseL=K is totally ramified. Lemma 4.2 says that we
can choosem 2 f0; : : : ; n� 1g so that

sn�1 6 s0n�2 6 sn�2 6 s0n�3 6 � � �

� � � 6 sm 6 t < sm�1 = ��1(s0m�1)

< sm�2 = ��1(s0m�2)

< � � � :

Hence we have

 (sj) >  0(�(sj)) >  0(s0j) > tD0(D
�

0) = tD(D
�

0):

This proves the inequality.
WhenL0=K is purely inseparable, we can prove the inequality more easily. Put

vL0(�K) = pe. Then we have

vL0(a) = pevK(a) for anya 2 K;

vD(a) = pn�j�1�evD0(a) for anya 2 D0:

Using this, we have

tD(D
�

0) = pn�j�1�etD0(D
�

0)

= pn�j�1�esw(wL0) by the inductive hypothesis

6 sw(pjw) see below

6  (sj) becausei 6  (i) for anyi:

Now, let us showpn�j�1�e sw(wL0) 6 sw(pjw). Take a 2 U iL0
with i >

pe+1+j�nsj. Noting that

NL0=K(a) = ap
n�j�1

2 U
ipn�j�1

L0
\K � U

ipn�j�1�e

K � U
sj+1
K ;
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we have

fwL0; ag = fw; ap
n�j�1

g = 0 from (1):

From (2), this proves the inequality. And hence, we have just proved Theorem 5.1.2
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