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Abstract. We study a ramification theory for a division algeliveof the following type: The center
of D is a complete discrete valuation field with the imperfect residue fieldl’ of certain type, and
the residue algebra dp is commutative and purely inseparable o¥erUsing Swan conductors of
the corresponding element of @), we define Herbrand’$-function of D/ K, and it describes the
action of the reduced norm map on the filtrationIof. We also gives a relation among the Swan
conductors and the ‘ramification number’ Bf which is defined by the commutator groupiof .
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1. Introduction

In this paper we develop a ramification theory of division algebras over a complete
discrete valuation fiel&, which is analogous to the classical ramification theory of
finite extensions of{. The classical ramification theory deals with a finite Galois
extension. of K, under the assumption that the residue fi€ldf K is perfect (see
[5] Chapter 4, 5). There exists a good definition of ‘Herbrand’s funafigrvhich
is decided by the state of wild ramification iy K. The classical ramification
theory gives a description of the action of the norm map on the filtration of the unit
groups ofL and K, by using this Herbrand’s function.

Now we consider afinite dimensional central division algdbaverK , instead
of L/K. If Fis perfect, there is no ‘wild ramification’ in alD / K, so the ramifica-
tion theory becomes too simple in this case. Hence we now consider the case that
the characteristic of" isp > 0 and[F': F?] = p. We assume that the residue alge-
bra of D is commutative and purely inseparable o¥eiThis is the most important
case; ifF’ is separably closed, ary/ K satisfies this property.

Our first main theorem is that there is a good definition of ‘Herbrand’s function
¢’ (which is decided by the state of wild ramification I»/ K') and the following
holds (see Theorem 4.1).
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THEOREM A.For any: =0, 1,..., we have
Nrd(Up ") c UL,
Nrd(ULOFY) ¢ Uit

HereU? (resp.U%) is theith unit group ofK (resp.D).

Let w be the element of the Brauer group&fcorresponding td. The Swan
conductor ofw is an analogue to Swan conductors of characters of Galois group of
K and it measures how the ramification/iry K is big. Lets; € Z-o be the Swan
conductors ofp’w(j = 0,1,...). Herbrand’s function) is completely decided
by the numbers;. The graph of Herbrand’s function is the hooked line, which
starts from the origin and has the sloge 7 in the intervals; < z < s;_1. The
z-coordinates of hooked points asg We call)(s;) the ramification numbers of
D/K.

Inthe classical case @f/ K, there is a relation between the ramification numbers
of L/ K and valuations of (a) /a—1 witho € Gal(L/K)anda € L*. Forexample,
the least ramification number &f/ K is equal to

inf{v,(c(a)/a — 1)|o € Gal(L/K),a € L*}.

Herev, denotes the normalized valuation brOur nexttheorem is to give a similar
relation between ramification numbersf K and valuations of commutators.

THEOREM B.The least ramification number éf/ K is equal to
inf{vp(aba=1b~1 — 1)|a,b € D*}.

Herevp denotes the normalized valuation én

We will also give a certain description for all ramification numbers by using
valueswvp (aba=1b~1 — 1). But this is more complicated than the case denoted
above. For details, see Theorem 5.1.

We will use the notations below:

The word ‘field” means commutative fields, unless the contrary is explicitly
stated.

The map Res denotes the restriction map and Cor the corestriction map of Galois
cohomology.

For a complete discrete valuation fidlar a finite dimensional division algebra
k over a complete discrete valuation field,

v}, denotes the normalized valuation bn

Ok = {z € klvg(z) > O},
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my = {z € klug(z) > O},
Uk = {z € klvg(z) = 0},
Ui = ker(U, — (Oy/m)*) fori=0,1,2,....

For a complete discrete valuation figldk,,, denotes the maximal unramified
extension of:.

For any fieldk, k5€P denotes the separable closureipfind Bfk) denotes the
Brauer group of.

Foré € Br(k), D(#) denotes the division algebra ovecorresponding té.

For any field extensioh’/k andf € Br(k), 6, denotes Rgs;,(6).

For any Abelian group! and natural number, ,,, A denoteqa € Ajma = 0}.

2. Basic properties of elements of Brauer group

Let K be a complete discrete valuation field aRdts residue field. Suppose that
the characteristic of isp > 0 and[F': FP] = p. Let D be a division algebra with
centerK andC its residue division algebra. We consider the following condition:

C'is commutative and purely inseparable ofer (%)

Letw be the class ab in the Brauer group ok .

PROPOSITION 2.1. (i)f (x) holds, then
[D: K]Y2 =[C: F] = vp(nk).
(i) The condition (*) is equivalent to the condition
the order ofw = the order ofwg, . (x)

Furthermore, if this condition holds, then the orderofs equal to[D: K]l/z.

(iii) Suppose that¢) holds forD. Then(x) also holds forD (p/w)(j = 0,1,...)
and for D(wr,) whereL is an algebraic extension df and satisfying either of the
three conditions below

(a) L C D,
(b) Lis unramified over,
() p f]L: K] < 0.

Proof.(i) Put[D: K] = r?, [C: F] = f andvp(rx) = e. Itis well-known that
ef =r? Takey € C — CP so thatC = F(y). Take its liftingz € D, then we have

=0 F)<[K(x): K] <7
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(the last inequality follows from the faét (z) is a commutative subfield dp).
Next, we show that Jrp, ... ,w%‘l are linearly independent ovéf. To show
this, suppose that

ao+a17rD+---+ae,17re*1:O

with a; € K. Since all OfUD(a;]"lTjD) = evg(aj)+Jj (G =0,1,...,e—1) are
distinct, all ofa; must be zero. This implies

e<[K(mp): K] <.

From those two inequalities, we hawe= e = f.

(i) The assertions(x)’ implies(x)" and ‘()" implies the last assertion’ can be
shown easily by induction on the order®f using [1] Section 4 Lemma 5 for the
case that the order af is p.

Now, we prove that«) implies (x)’. From (i), we havéD: K|Y/2 = [C: F] =
vp(mg). SinceC/ F is purely inseparable, those common values are a pofivef
p. Itis well-known that the order ab divides[D: K]Y/2 = p™. So letp™(m < n)
be the order ofv. We provern = n by induction onm.

We first consider the cases = 1. Suppose thaty is split by some finite
unramified Galois extensioh/K. PutG = Gal(L/K). Let H be somey-Sylow
subgroup ofG' and Ly its fixed subfield. We see that the orderwof is alsop
(because Cdtvr,,) = [Lo: K|w andp { [Lo: K]). Further, we can seB(w,) =
D ® Lo. To see this, pup? = [D(wz) : K], then it is enough to show = n.
Sincewy,, is split by some extension dfp of degree”, w is split by an extension
of K of degredLo: K|p". So we have"|[Lq: K]p", and hence = n. SinceH
is ap-group, there is a sequence of fields

LocliC---CLs=1L,

suchthatL;;1: Lj]=p(j =0,1,...,5s —1). Taker € {0,1,...,s — 1} as

!

[D(wg,): L] = p* > [D(wr,,): Lra] = 92"

Take any maximal subfield! of D(wy, ,,). Thenwyg, is split by the extension
M/ L, whose degree i$" t1. So we haver’ + 1 = n, and then[M : L,] =
[D(wy, ) : L,]2. This shows thaD(wy, ) contains a field which is isomorphic
to M. But the extensiod//L, contains the unramified extensién/L,, this
contradictyx) for D(wy,.) (sinceD(wy,) = D ® L,, itis clear that(x) holds for
D(wp,)). This showsvg, . # 0.

Whenm > 1, the inductive hypothesis says th&(pw) : K] = p™~1, Take
a maximal commutative subfield of D(pw), then the order ofv, is p. From the
casem = 1, wy, is split by some extension df of degreep, and it is an extension
of K of degreep™. This completes the proof.
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(ii) The case (a) is clear from the fact th@{(w;,) is isomorphic to the central-
izer of L in D. The other parts are clear from (ii). O

3. Herbrand’s function

From now on we assuni@ is a division algebra satisfying). LetC' be its residue
field, w the element of BIK') corresponding td, andp™ the order ofw.

Puts; = sw(p’w) € Zso(j = 0,1,...,n). Here, for anyy € Br(K), sw(9)
denotes the Swan conductorebivhich is defined in [2] (see below). We have

sg>81> -+ >58,=0.

Formally puts_; = oo. Using those numbers, we define Herbrand’s function
Y. Zso — Zso for D as follows

$(0) =0,
Y(i) = P(s;) +p" (i —s5) i 55 <i < st

We review on Swan conductors. For amyec Z, the cup product induces the
map

K*/K*™™ ®,, Br(K) = HY(K,Z/mZ(1)) ® H*(K,Z/mZ(1))
— H3(K,Z/mZ(2))
and taking the inductive limit om, it induces
K*® Br(K) - H3(K,Q/Z(2)).

(In the case that the characteristicifis p, the definitions op-primary part of
Z/mZ(r) andQ/Z(r) are complicated. For details, see [2].) We write the image
of a ® € K*® Br(K) by this map ag6,a}.

For any finite extensiofi/ K, we have

Cor({0r,a}) = {0, Nk (a)} foranyd € Br(K),a € L,

Cor({8,a} = {Cor(#),a} foranyf € Br(L),a € K*. 1)
When,, Br(F') # 0, Swan conductors can be defined as ([2] Proposition(6.5))

sw(@) = inf{m|ker({0,?}) > Uy} )

for anyé € Br(K). Remark that this definition is correct only whglBr(F') # 0
and[F': FP] =p.
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Now, supposgBr(F') = 0. Inthis case, we need more precise definition of Swan
conductors, but after the proof of the next lemma, we can reduce all problems to
the casgBr(F) # 0.

Fix 7 € K such thatvg(rg) = 1. Let K,,, be the fraction field of the

completion of Og[T? "](z,)(m = 0,1,...) and K, the fraction field of the

completion ofUps_o O [T? "](x)- Then their residue fields afe, = F(T? ™)
andF,, = UF,,.

LEMMA 3.1. (i) [Fo: FE] = p and,Br(Fy) # 0.
(i) D ® K is a division algebra.
(ii) For any# € Br(K), we have

swW(f) = sW(lx_, ).

In particular, Herbrand’s functions foD and D ® K, coincide.
(iv) vpb = vpe k., |p. In particular, for any: = 0,1, ..., we have

Up =Upgk. ND,
Uj =Uk_NK.
(v) The diagram
D

D ® Ky

N
Nrd rd

K

Koo

commutes.
Proof.(iv), (v) and the first assertion of (i) are clear. Now, we prove the later part
of (i). Letx € H(Fx,Q/Z) be the character of Gali'ss "/ F, ) Which corresponds
to the extension defined by the equatigh— o = T'. Takea € F' — FP. Then
the elemeniy,a) of ,Br(F) is not zero, becausg,a) = 0 is equivalent to
a € Np_(a)/F. (Fo(@)*) (see [5] Chapter 14 for the definition 0f, a)).
(iii) From [2] Proposition(6.3), we can easily see

SW(0rc,) > SW(Ox.., )-

Further, the same proposition says that, to show the opposite inequality it is enough
to show that

{0, 1+ 7R 1S} =0 implies{f1,,1+7x+1S} =0 foranyN,
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whereL,, is the fractional field of the henselization Of,, [S](r,) and similarly
L. Since

{01, 1+ 7N IS} = Ret{f1,, 1+ 7 1S})

in H3(Loo,Q/Z(2)), {01, 1+7} 1S} = Oisequivalenttdfy, , 1+7x 1S} =
0 for somem. But [2] Lemma (6.2) says

sw#) = sw(fg,, ) forallm =0,1,....

From this, if{6y,,,1+ =X 7S} = 0 holds for somen, then it also holds for all
m, especially forn = 0. This completes the proof. When we have proved (i), the
later part of (iii) is clear from this.

(i) It is enough to show(p"1w)x_ # 0. But [2] Proposition (6.1) and (i)
say sWp" lwg. ) = sw(p” tw) > 0. This showsp" 1w)x_ #O. O

In the rest of this section, we prove some properties of Swan conductors and
Herbrand’s functions. I andb are two elements of some group, we wfiigb] =
aba—1b~1. Fora € Op, we writeg for the class ofi in C.

LEMMA 3.2. If n = 1, then we have
so = inf{vp([a,b] — 1)|a,b € D*}.

Proof. Let ¢ be the right-hand side of above equation. First, we reduce to the
case,Br(F) # 0. Using notations in Lemma 3.1, we hasge= sW(wg.,, ). SO we
should show

t = inf{vpex. ([a,b] — D]a,b € (D ® Ku)*}.

Takea € Op suchthatv ¢ F, andrp € D* such thavp(wp) = 1. Then we also
havea ¢ F,, andvpg k. (mp) = 1. Hence, the claim is clear from [1] Section 1
Lemma 1. Now we assum@r(F') # 0. In this case, [1] Section 1 says

t = inf{m|Nrd(D*) D U1}
Further, [4] Theorem (12.2) says that
Nrd(D*) = ker({w, ?}).
From (2), this completes the proof. O

LEMMA 3.3. If L/ K is a finite extension such that the residue extension is purely
inseparable, then we have

Cor: H3(L,Q/Z(2)) — H3(K,Q/Z(2))
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is isomorphic inp-primary part.
Proof. For anym, there exists an isomorphism

H3(K,Z/p™Z(2)) — pmBr(F)
described in [3]. Le® be the residue field of. It is easy to see that the diagram

HY(K,Z/p"Z(2)) 22 ,mBr(F)

IR

Cor

H3(L,Z/p"Z(2)) — ,mBr(E)

iso. P

commutes, here right arrow is induced[#: F']-th power map fronE to F. O

LEMMA 3.4. Let L/ K be afield extension such thdt: K] is prime top. Then,
() D ® L is a division algebra.
(i) Lete = vr(mx) andt)’ be Herbrand’s function foD ® L. Then, for any
1=0,1,...,we have
' (i) = epp(i).
(i) Foranym = 0,1,..., we have
Uph=UferND,
Ui, =Uf NK.

(iv) The diagram

D D®L
Nrd Nrd
K L
commutes.

Proof. (i) It is enough to show that the order af;, is p™. But this is clear from
the fact that the restriction map is injective in ‘prime{fo. K]-part’.

(i) It is enough to show that sif;,) = esw(f) for any# € Br(K). From
Lemma 3.1, we can assurpBr(F) # 0. Take the maximal unramified extension
L"in L/K, then the extensiofi/L’ is totally ramified (sincéL : K] is prime to
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p)- So itis enough to show the claim in the cases fhak is unramified or totally
ramified.

First, we consider the cade/K is totally ramified so that = [L: K] =
vy (mk ). Takel,m € Z such thap™ +em = 1. Take anys € U (i > sw(dy,)/e).

sincet’i, ¢ U2 we have
{0,a} = {(p"1 +em)(0),a}
= {emb,a}
= m{Cor(0r),a}
= mCor({0r,a}) from (1)
= 0.

From (2), this meanssw(#) < sw(f;,). To show the opposite inequality, note that

Ny (U c Ut foranyi =0,1,....

This is proved by [5] Chapter 5. Take amye UESW(Q)“. Then we have
Cor({fr,a}) ={0,N(a)} =0 from(1).
This proves the opposite inequality by using (2) and Lemma 3.3.
Next, we consider the cade/ K is unramified so that = 1. In this case, we
have (see [5] Chapter 5)
N x(U}) =Uj foranyi=0,1,....

Using this fact, the inequality $#7) > sw(f) can be shown by a similar way as

above. We can take e Uf(w(a) such thaf{#,a} # 0. There exisb UEW(Q) such
that N (b) = a. Then we have

0+#{60,a} ={0r,b} from(1).
From (2), this shows the opposite inequality and completes the proof.

(i) and (iv) are trivial. O

4. The action of reduced norm on the filtration

THEOREM 4.1 For any: = 0,1,..., we have

Nrd(@4 ™) c Ui,

comp4lll.tex; 27/04/1998; 8:28; v.7; p.9

https://doi.org/10.1023/A:1016062718500 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016062718500

136 TAKAO YAMAZAKI
Nrd(U5OHY) ¢ Uit

To prove this theorem, we use inductionwonForn = 1, the proof is already
donein [1] Section 1 and Lemma 3.2.

Assumen > 1. From Lemma 3.1, we can assupi¥(F) # 0. Our plan of the
proof is as follows. Take a Galois extensibpK of degreep contained inD. Let
D’ be the centralizer of. in D. Forz € D', we have

Nrdp, i (z) = Nr;x (Nrdpr/,(2)).

Hence, for such, the problem is divided into ‘Nrgr ;. -part’ and ‘N, /x-part’.

First, we prove the following claim: We can assume that foramy Up there
exists a Galois extension &f of degreev contained inD such that: is an element
of the centralizer of it inD.

When the characteristic df is p and the extensioK (z)/K is purely insepa-
rable, we have Nrgr) = zP" andz € U%, impliesz?" € U.. Whatever the values
of sw(p/w) are, we havep(i) > i(i = 0,1,...). So there is no problem in this
case.

In the every other case, we can take a commutative sulffieldD containing
K such that the extensioh/ K is not trivial and separable, andis an element
of the centralizer of. in D. We can writeL. = K (y) for somey € L. Take any
pro-p-Sylow subgroup of G&K*®P/K') and letK be its fixed subfield irksP.
Since gp-group is solvable, we can take a field extensioriz) / K1 such that

K]_ C K]_(z) C K]_(y) = K]_L,
[Kl(z): Kl] =Dp.

Write z = f(y)/g(y) wheref andg are polynomials whose coefficients argin.
Let K, be the field generated Wy, all coefficients off andg, and all coefficients
of the minimal equation of over K. Then

p1[Kz2: K] < oo,
Kz C Kz(z) C Kz(y),
[Kz(z)Z Kz] =p.

Using Lemma 3.4, we can assume the existence of separable (not necessary Galois)
extension./ K of degreep.

Now assume that a separable extensigiikl of degreep is given. Take the
Galois closurd.’ of L/ K, and letK’ be the fixed field of somg-Sylow subgroup
of Gal(L'/K). Since[L': K] < p!, we havep { [K': K| and the extensioh'/ K’
is Galois. Hence we have showed the claim, by using Lemma 3.4.
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Now we take such a Galois extensidi K of degreep contained inD. Let
D' be the centralizer of. in D. It is well-known that the class ab’ in Br(L)
is equal towr,. The extension./K is either a totally ramified extension or an
extension with a purely inseparable residue extension of degreée call the
first case ‘totally ramified’ and the latter case ‘having residue extension’. Put
sh = sw(p" Y Jwr)(j = 0,1,...,n — 1) and lety)’ be the Herbrand’s function
for D' /L. Now we can use inductive hypothesis, hence we have

Nrdp (U7) UL,
Nrdp (U5 O c Uit
In the case ‘totally ramified’, we can use [5] Chapter 5. Pgtvy, (7§ /77, — 1)

whereo is a generator of GaL/ K) andr, is an element of. such thav, (7r,) = 1.
Using this, we define

Then we have
Ny (UFY) € U,
Ny (U7 € Ui
On the other hand, we have
Uh, =U5N D',
Uk =UVNK
So we must show
P> op.
This is an easy consequence of next lemma.

LEMMA 4.2. Use above assumptions and notations. Takas s,, <t < spy,_1.
Then we haven < n — 1 (i.e. it does never happen thak s,,_1), and

!/ !
Sp—1 g Sn—z < Sp—2 < Sn—3 g ..

S S E<Sp-1= pil(sin—l)
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< Sm-2= 971(5;7172)

Proof. It is enough to show five inequalities below

Sp—1 < 1, (3)
sj+1<s;- i=01....n—1, 4)
s;<plsj) 7=01,...,n—1, (5)
t < Spu_1s (6)
p(sj)gs;- 7=0,1,...,m—1. (7)

These inequalities can be proved rather easily as follows. The key of the proof is
(1) and (2).

Proof of (3): Takea € U?l. Then we can writew = Ny, /x(b) for some
b € UL ([5] Chapter 5). So

{p" tw,a} = Cor({(p" 'w)r,b}) =0

and this implies (3).
s"+1 s"+1
Proof of(4): Takea € U . Thena € U;” . So

{P"*'w,a} = Cor({(p’w)r,a}) = 0,

and this implies (4).
Proof of(5): Takea € U™, Then N,k (a) € U S0

Cor({(¢’w),a}) = {p’w,N(a)} = 0

and this implies (5) by Lemma 3.3.
Proof of(6): Sincet < s,, 1, we can take: € UL such thafp™ 1w, a} # 0.
We can also take € UL such thas = N(b). So

0# {p™ tw,a} = Corf{p™ twp,b})

and this implies (6). _
Proofof(7): Takea € Uj asp(i) > s;. Sincet < s}, we canwriter = N,/ (b)

/.+1
for someb € UZJ . So

{p'w,a} = Cor({(p/w)r,b}) = O,
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and this implies (7). O
Remarlkd.3.From this lemma, for. such that = s,,_1, we have

b =1"op,

p(s;) = s;- forall ;j =0,1,...,n — 2.

Similar fact holds whei, / K has residue extension. See below.

In the case ‘having residue extension’, we can use [1] Section 1¢ Rut
pvr(h?/h — 1) whereo is a generator of GalL/K) andh is an element oD,
such that ¢ F'. Using this, we define

p(i) =i/p if 0
pi) =t/p+(i—t) ift
Then we have
NL/K(ULp(i)) C Uk,
Ny (070 € Ui
On the other hand, we have
Ub =UYND,
Ui, =Ui NK.
So we must show
P = py' o p.
This is an easy consequence of next lemma.

LEMMA 4.4. Use above assumptions and notations. Takass,, <t < s;_1.
Then we haven < n —1and

! !
Sp—1 g DPSp_2 g Spn—2 < PSp—_3 g Tt
—1/.7
S StE<Sp1=p (Smfl)

<Sm-2=p (s 2)

< v
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Proof. It is enough to show five inequalities below
Sp-1 < 1,

s]-+1<s;-<ps;- ij=01....,n—1,

sg-gp(s]-) i=01,...,n—1,
t/p < Slm—lv
p(s]-)gs;- j=01...,m—1
The proof is very similar to ‘totally ramified case’, so we omit it. O

5. The ramification numbers

For any subse$ of D*, we write
tp(S) = inf{vp([a,b] — 1)|a,b € S}.

We can prove the following fact by just the same way as [1] Section 1 Lemma 1.
If « € Op andrp € D* satisfya € C' — CP andvp(mp) = 1, then

tp(D*) = vp([a,mp] — 1).
Recall that the numbeus(s;) are called the ramification numbersBf K.
THEOREM5.1Forj =0,1,...,n — 1, put
t; = sup{tp(D"")| D’'satisfies conditions belgw
D'is a division algebra
KcD' cD,
[D: center ofD'] = p%+2,
[center ofD': K] =p™ 71,
(In particular
th_1 =tp(D*).)
Then we have

YP(s;) =t; foranyj=0,1,...,n—1
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First we prove two lemmas.

LEMMA 5.2. Fix anyrp € D such that(wp) = 1, and putrx = Nrd(7p). If
1 < sp—1, then we have

Nrd(1+ nu) = 1+ nbu?” modrid?t

foranyu € Up.

Proof. This can be showed easily by induction using three points below. The
casen = 1lis proved in [1] Section 1. Similar fact forfNx : L — K is proved in
[5] Chapter 6 or [1] Section 1. For any totally ramified Galois extendigi of
degreep, we already proved in Lemma 4.2 that

Sp—1 < t,
!
Sn—l < Snfzﬂ

or similar fact for a ‘having residue extension’ case, using notations as in the proof
of Theorem 4.1. O

LEMMA 5.3. If Ko/K is a finite field extension such thatt [Ko : K]. Then
D ® Ky is a division algebra and

tpoKo((D ® Ko)*) = etp(D”).

Heree = vk, (7k).
Proof. The first part of this lemma s already proved in Lemma 3.4. takeO
such thatx € C — CP, then we also have

@ € (Opgk,/mper,) — (Opsk,/mpeK,) -

Fix mp € D andrg, € Kosuchthavp(rp) = 1 andvg,(nx,) = 1. Takel,m €
Z such tha[o"l +em = 1. PUt7TD®KO = Wlf(oﬂg SO thatl)D®Ko(7TD®Ko) = 1. Put
[a, 7p] = 14 wlu with u € Up, then we have
[CM, 7TD®K0] = [CM, 7rlKo7r7l7)l]
= [o, D]

= [a,mp](wpla, mplp) .. (wp Ha, wplrp, ™)

m—1 1-m

= 1+ 7% (u+ mpunpt + - - 4+ 70 tunl ™) mOdﬂggIl(o.

Sinceu = mpury,* modrp andp f m, we have

u+ 7rDu7r51 4+ 4 Wg_]'UW%)_m =mu %0 modrp.
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Hence we have
tpek((D ® Ko)*) = vpak, ([ Tpar,] —1) = er
= evp([a, mp] — 1) = etp(D”)

and this completes the proof. O

Now, let us begin the proof of Theorem 5.1. We again use induction @he case
n = 1is already done in Lemma 3.2.

Supposethat > 1. First, we prove the cage= n—1.We havé,, 1 = tp(D*)
and(s,—1) = sp—1. Since Nrd[a, b]) = 1 for anya,b € D*, we can easily see
vp([a,b] — 1) > s,-1 using Lemma 5.2. Now, we must show the existence of
a,b € D suchthavp([a,b] — 1) = sp_1.

The first step is to prove the following claim: We can assume an existence
of a Galois extensioil.,/ K of degreep contained inD which satisfies the next
condition: Leto be a generator of Gal/K). Then,

Sp—1 =wvr(o(ry)/n, —1)  for somerny, € L such thawvy (n) =1
whenL/K is totally ramified

sp_1=pur(o(h)/h —1) for someh € O, suchthat, ¢ F
whenL/K has residue extension

If L is a maximal commutative subfield @ (p"w), then there is an inclusion

L — D (this can be proved by the same argument as in Section 2). Hence, it is
enough to show the claim in the case- 1. In this case, we know that there exists
somez,y € D* such that

so=vp([z,y] - 1).

Take some maximal commutative subfiélaf D which containgz, y]. Again we
can assume the extensidiK is Galois. If the extensiofi/ K is totally ramified,
put= vz (o(mrr) /7, — 1), using the same notation as above. Then it is clear that

1 # the class ofz, y] € ker(N: U /U™ — U2 /U5,
On the other hand, [5] Chapter 6 says thatifer ¢
N: UL /Ut - Ul Uit

is injective. This impliessg > t. We already knowsg < ¢t by Lemma 4.2. This
proves the claim in this case. The proof of the case that the extehgiBnhas
residue extension goes similarly, and hence we omit it.

Now suppose that such an extensiof is given. We use the same notations
as in the proof of Theorem 4.1 fdv’, s, 4, and p. Since the casé&/K has
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residue extension can be proved by the similar way, we prove thelcéaseis
totally ramified. In this case, there existsy € D’ such thatvp(mp) = 1.
Putry, = Nrdp//r(7p) andrrx = Nrdp g (7p). From the definition, we have
Sp—1 =t =wvr(o(nr) /7, — 1). From general theories of central simple algebras,
there existsx € D* such that the restriction of the inner automorphism

T — oza:oz_l

onD to L is equal tov. We have
Sp—1=1t = vp(o(ry)/7r — 1)

(
= v (o, 1] — 1)
= ?)L([O( Nrle/L(WD)] — 1)
(

= v (Nrdp ([, 7p]) — 1)

Sinces,,_1 = t, Lemma 4.2 say$ < s/,_,. Applying Lemma 5.2 tda, 7p| on
D'/L, we have

UL(NI’dD//L([CM, 7TD]) — 1) = UD([O(,WD] — 1).

This completes the proof.

Next, we consider the cage< n — 1. First, we prove the existence b such
thattp(Dg) = s;. We use the same as in the proof of the cage= n — 1. Again,
we only deal with the cask/K is totally ramified, because the proof of the case
L/K has residue extension goes similarly. In this case, we ttaxey)’ o p and
tp(S) = tp,(S) for any S C Dg*. Using the inductive hypothesis, there exists a
sub-division algebr@y c D’ such that

[Do: the center ofDg] = p¥ 12,
[the center ofDg: L] = p" 277,
¥ (s5) = tpy(Dg)-
Then we have
tp(Dg) = 4'(s5) = ¢ (p(s5)) = (s;).

This is what we wanted.
Next, take any sub division algebfz C D such that

[Do: the center ofDg] = p¥*2 and |[the center ofDy: K] = p" 177,
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and we begin to prove(s;) > tp(Dg). Let Lo be the center ofo. First, we
consider the casky/ K is not purely inseparable. In this case, we can assume that
there existd. such thatX’ ¢ L C Lo andL/K is a Galois extension of degrge

by using Lemma 3.4 and 5.3. L&X be the centralizer of, in D so thatDg C D’.

We will use the same notations as before. Using the inductive hypothesis, we have

tpr(D§) < /().

Again, we only prove in the cade/ K is totally ramified. Lemma 4.2 says that we
can choosen € {0,...,n — 1} so that

! !
Sn—1 g Sn—z < Spn—2 < Sn—3 g e
c< sm < 1 =p~Ys!
CSm Lt <Sp—1=p (Sm—l)

<smoz=p sk o)
s

Hence we have

h(s5) = ' (p(s5)) = ¢¥'(s5) > tp(Dg) = tp(Dp)-

This proves the inequality.
WhenLg/ K is purely inseparable, we can prove the inequality more easily. Put
vLe(TK) = p®. Then we have

vre(a) = puk(a) foranya € K,

vp(a) = p"~i1=eyp(a) foranya € Do.
Using this, we have

tp(Dg) = p"~ 171t py(Df)
= p"J~1esw(wy,) by the inductive hypothesis

< sw(p/w) see below
< P(sy) becauseé < (i) for anyi.

Now, let us showp”"~7=1~¢sw(wr,) < sWp/w). Takea € Uj with i >
petiti—ng; Noting that

n—j—1 imn—J—1 n—j—l—e Py |
Niyx(@) =" eUlP " nKcUl " cuyt
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we have

n—j—

{wrg,a} = {w,d’ 1} =0 from(1).

From (2), this proves the inequality. And hence, we have just proved Theorem 5.1.
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