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Examples of exponential bases on union
of intervals
Oleg Asipchuk and Vladyslav Drezels

Abstract. In this paper, we construct explicit exponential bases of unions of segments of total measure
one. Our construction applies to finite or infinite unions of segments, with some conditions on the
gaps between them. We also construct exponential bases on finite or infinite unions of cubes in Rd

and prove a stability result for unions of segments that generalize Kadec’s 1
4 -theorem.

1 Introduction

The main purpose of this paper is to construct explicit exponential bases on finite or
infinite unions of intervals of the real line. We assume that our intervals have total
measure one, until otherwise specified.

We recall that an exponential basis on a domain D ⊂ Rd is an unconditional
Schäuder basis for L2(D) in the form of {e2πi λn ⋅x}n∈Zd with λn ∈ Rd . An important
example of exponential basis is the Fourier basis E = {e2πinx}n∈Z for L2(0, 1).

Non-orthonormal exponential bases on intervals of the real line are well studied
and well understood in the context of nonharmonic Fourier series (see [13, 14, 18, 20]
just to cite a few). Proving the existence of an exponential basis is in general a difficult
problem, and constructing explicit bases can be even more difficult.

In [14], the author proved the existence of bases on finite unions of intervals under
some conditions on the lengths of the intervals. It is proved in [11] that exponential
bases on any finite union of intervals exist, but the construction of such bases is
not explicit. It is not clear whether exponential bases on arbitrary infinite unions of
intervals exist or not.

In [4], the author proves necessary and sufficient conditions for which sets in
the form of {e2πi(n+δ j)x}n∈Z, j≤N are exponential bases on unions of N intervals of
a unit length separated by integer gaps and gave an explicit expression for the frame
constants of these bases. Such a result can be used to construct explicit exponential
bases on intervals with rational endpoints. However, the conditions involve evaluating
the eigenvalues of N × N matrices, which can be a difficult task. Some of the results
in [4] appear also in other papers, for example, in [10].
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In [12], it is proved that if D is the union of two disjoint intervals of total length 1,
then D has an orthonormal basis of exponentials if and only if it tilesR by translations.
Recall that a measurable set D tiles Rd by translation if we can fill the space with
translated copies of D without overlaps. Results for unions of three intervals that tile
the real line are in [3].

In many applications, such as aircraft instrument communications, air traffic
control simulation, or telemetry [7], one can consider the possibility of obtaining
sampling expansion which involved sample values of a function and its derivatives.
That translated into finding bases of the form of {xk e2πix λn}n∈Z, with k ∈ N ∪ {0}.
See [21].

It is worth mentioning the recent [19], where the authors partition the interval
[0, 1] into intervals I1, . . ., In and the set Z into Λ1, . . ., Λn such that the complex
exponential functions with frequencies in Λk form a Riesz basis for L2(Ik).

The existence of orthonormal bases on a domain ofRd is a difficult problem related
to the tiling properties of the domain. It has been recently proved in [15] that convex
sets tile Rd by translations if and only if they have an exponential basis. In [6], it is
proved that the set E = {e2πin⋅x}n∈Zd is an exponential basis on a domain D ⊂ Rd of
measure 1 if and only if D tiles Rd . Furthermore, E is orthonormal for L2(D).

The aforementioned results in [6] are related to Theorem 1 in [9], where it is
proved that if a set {e2πix λ}λ∈Λ is an orthonormal basis on a domain D ⊂ R, then
Λ is periodic, i.e., Λ = T + Λ for some T ∈ N.

1.1 Our results

Before we introduce our results, we need some more notations. By m ∈ N ∪ {∞}, we
mean that m is either a natural number or it is infinity. We let I = [0, 1). Given 0 =
a0 < a1 < ⋯ < am−1 < ⋯ < 1 be a sequence for m ∈ N ∪ {∞}, we let I j = [a j , a j+1), so
that I = ⋃ I j .

Given 0 = b0 < b1 < ⋯ < bm−1 < ⋯, we let

J = ⋃
j

J j , with J j = [a j + b j , a j+1 + b j).(1.1)

We can also write

J = ⋃
j
[c j − γ j , c j + γ j) with c j =

a j−1 + a j

2
+ b j , γ j =

a j − a j−1

2
.(1.2)

Note that∑ j γ j = 1. So, on graph, we have

0 a1

J0

a1 + b1 a2 + b1

J1

...
am−1 + bm−1 am + bm−1

Jm−1

J ∶ ...

0

I0

a1 a2

I1

...

am−1 am

Im−1

I ∶ ...
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Let {x} be the decimal part of a real number x , let ⌊x⌋ (the floor function) be the
largest integer, that is, ≤ x, and let ⌈x⌉ (the ceiling function) be the smallest integer, that
is, ≥ x. If E ⊂ R, we define the distance function for x ∈ R and E ⊂ R as dist(E , x) ∶=
miny∈E{∣y − x∣} or dist(E , F) ∶=miny∈E ,x∈F{∣y − x∣}.

Next, we introduce the sequence δ∗n . Let β > 0 be fixed; for every n ∈ Z, we let

δ∗n =
⎧⎪⎪⎨⎪⎪⎩

⌊βn⌋+1
β − n, if {βn} ≥ 1

2 ,
⌊βn⌋

β − n, if {βn} < 1
2 .

(1.3)

We can see at once that

δ∗n =
ξn

β
min{{βn}, 1 − {βn}} = ξn

β
dist (Z, βn),

where

ξn =
⎧⎪⎪⎨⎪⎪⎩

1, if {βn} ≥ 1
2 ,

−1, if {βn} < 1
2 .

Let

B∗ = {e2πix(n+δ∗n )}n∈Z ,(1.4)

where the δ∗n are defined as in (1.3). Our main results are the following.

Theorem 1.1 Let J be as in (1.1). If there exists β ≥ 1 such that bk
β ∈ Z for all k, then the

set B∗ defined in (1.4) is an exponential basis for L2(J).

Theorem 1.2 Let J and β be as in Theorem 1.1. Let m ∈ N, and let Λ = {n + δ∗n} , where
δ∗ is as in (1.3). If bk

β ∈ Z for all k = 1, . . . , m − 1, then the setE( 1
ΔZ/Λ) is an exponential

basis for L2([0, Δ]/J), where

Δ = ⌈ 1 + bm−1

β
⌉ β.

We will prove in Lemma 3.1 thatB∗ is also a basis in L2(0, 1); our proof of Theorem
1.1 shows that B∗ has the same frame constants in L2(J) and L2(0, 1).

In our Theorem 1.1, the gaps bk are integer multiples of β and so the set J is
unbounded when m = ∞. To the best of our knowledge, there are very few examples
of exponential bases on unbounded sets in the literature. The existence of exponential
frames on unbounded sets of finite measure has been recently proved in [16].

We also observe that in Theorem 1.2, we cannot consider m = ∞ because J
is unbounded, and in the proof, we need to consider a finite interval [0, Δ] that
contains J.

Our paper is organized as follows: in Section 2, we recall some preliminaries and we
prove some important lemmas. In Section 3, we prove our main results. In Section 4,
we prove the result for unions of cubes in Rd and a stability result.
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2 Preliminaries

We have used the excellent textbooks [8, 24] for the definitions and some of the results
presented in this section.

Let H be a separable Hilbert space with inner product ⟨ , ⟩ and norm ∣∣ ∣∣ =√
⟨ , ⟩. We will mostly work with L2(D), where D ⊂ Rd . So, the norm will be ∣∣ f ∣∣22 =

∫D ∣ f (x)∣2dx . We denote the characteristic function on D by χD .
A sequence of vectorsV = {v j} j∈Z in H is a Riesz basis if there exist constants A, B >

0 such that, for any w ∈ H and for all finite sequences {a j} j∈J ⊂ C, the following
inequalities hold:

A∑
j∈J
∣a j ∣2 ≤∥∑

j∈J
a jv j∥

2
≤ B∑

j∈J
∣a j ∣2 ,(2.1)

A∣∣w∣∣2 ≤
∞
∑
j=1
∣⟨w , v j⟩∣2 ≤ B∣∣w∣∣2 .(2.2)

The constants A and B are called frame constants of the basis. The left inequality in
(2.1) implies that V is linearly independent, and the left inequality in (2.2) implies that
V is complete. If the condition (2.1) holds, we call V a Riesz sequence. We call V a
frame if the condition (2.2) holds. If the condition (2.2) holds and A = B, then we call
V a tight frame. If A = B = 1, then we have a Parseval frame. The following lemma is
well known, but for the reader’s convenience, we will prove it.

Lemma 2.1 If a sequence of vectorsV = {v j} j∈Z is a frame with upper constant B, then
the right inequality in (2.1) holds, i.e., for all finite sequences {a j} j∈J ⊂ C,

∥∑
j∈J

a jv j∥
2
≤ B∑

j∈J
∣a j ∣2 .

Proof V is a frame, so for all finite sequences {a j} j∈J ⊂ C, there is f ∈ H such that
f = ∑ j∈J a jv j . So,

∣∣ f ∣∣2 = ⟨∑
j∈J

a jv j , f ⟩ = ∑
j∈J

a j⟨v j , f ⟩

≤
√
∑
j∈J
∣a j ∣2

√
∑
j∈J
∣⟨v j , f ⟩∣2 ≤

√
∑
j∈J
∣a j ∣2

√
B∣∣ f ∣∣.

Therefore,

∥∑
j∈J

a jv j∥ ≤
√
∑
j∈J
∣a j ∣2

√
B.

∎

One more lemma that makes a connection between frames and bases is the
following.

Lemma 2.2 If E(Λ) is basis for L2(D) and D′ ⊂ D, then E(Λ) is a frame for L2(D′)
with at least the same frame constants. In particular, if E(Λ) is an orthogonal basis for
L2(D), then it is a tight frame for L2(D′).

https://doi.org/10.4153/S0008439523000371 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000371


1300 O. Asipchuk and V. Drezels

Proof Let E(Λ) is a basis for L2(D), then for all w ∈ L2(D),

A∣∣w∣∣2 ≤
∞
∑
j=1
∣⟨w , v j⟩∣2 ≤ B∣∣w∣∣2 .

Also, for any f ∈ L2(D′), there is w ∈ L2(D) such that f = w χD′ . So, the frame
inequalities hold for any f ∈ L2(D′). Therefore, E(Λ) is a frame for L2(D′) with at
least the same frame constants. ∎

An important characterization of Riesz bases is that they are bounded and uncon-
ditional Schäuder bases. See, e.g., [8].

Let v⃗ ∈ Rd and ρ > 0; we denote by dρ D = {ρx ∶ x ∈ D} and by tv⃗ D = {x + v⃗ ∶ x ∈
D} the dilation and translation of D. Sometimes, we will write v⃗ + D instead of tv⃗ D
when there is no risk of confusion.

The following lemma can easily be proved with a change of variables in (2.1) and
(2.2).

Lemma 2.3 Let v⃗ ∈ Rd and ρ > 0. The set V = {e2πi⟨x ,λn⟩}n∈Z is a Riesz basis for
L2(D) with constants A and B if and only if the set {e2πi⟨x , 1

ρ λn⟩}n∈Z is a Riesz basis
for L2(tv⃗(dρ D)) with constants Aρd and Bρd .

2.1 Paley–Wiener and Kadec stability theorem

Bases in Banach spaces are stable, in the sense that small perturbations of a basis still
produce bases.

One of the fundamental stability criteria, and historically the first, is due to Paley
and Wiener in [17].

Theorem 2.4 (Paley–Wiener theorem) Let {xn}n∈N and {yn}n∈N be sequences in a
Banach space X. Let λ be a real number (0 < λ < 1) such that

∥∑
n

an(xn − yn)∥ ≤ λ ∥∑
n

an xn∥

holds for any arbitrary finite set of scalars {an} ⊂ C. Then, if {xn} is a basis, so is {yn}.
Moreover, if {xn} has Riesz constants A and B, then

(1 − λ)A∑∣an ∣2 ≤ ∥∑ an yn∥ 2 ≤ (1 + λ)B∑∣an ∣2 .

We will use the following important observation: if B = {xn}n∈N is a bounded and
unconditional basis in a Banach space (X , ∣∣ ∣∣), and ∣∣ ∣∣∗ is a norm equivalent to ∣∣ ∣∣,
then B is also a bounded and unconditional basis in (X , ∣∣ ∣∣∗). Note that two norms
∣∣ ∣∣∗ and ∣∣ ∣∣ are equivalent if there are two constants c and C such that for all elements
of the space, c∣∣x∣∣∗ ≤ ∣∣x∣∣ ≤ C∣∣x∣∣∗ .

Let a set { fn}n∈N be a Riesz basis for L2(D) with norm ∣∣ ∣∣2 if ∣∣ ∣∣∗ is equivalent
to ∣∣ ∣∣2, then { fn}n∈N is a bounded and unconditional basis of (L2(D), ∣∣ ∣∣∗). So, if a
sequence {gn}n∈N ⊂ L2(D) satisfies the conditions of the Paley–Wiener theorem with
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respect to the norm ∣∣ ∣∣∗, i.e.,

∥∑
n

cn( fn − gn)∥
∗
≤ λ ∥∑

n
cn fn∥

∗

with 0 < λ < 1, then {gn}n∈N is a bounded and unconditional basis of (L2(D), ∣∣ ∣∣∗)
and hence also of (L2(D), ∣∣ ∣∣). Thus, {gn}n∈N is a Riesz basis in (L2(D), ∣∣ ∣∣). This
observation proves the following lemma, which will be useful later on.

Lemma 2.5 Let m ∈ N and D = ∪m
j=1D j ⊂ Rd where D j ∩ Dk = ∅. Let {gn}n∈ N be

a Riesz basis for L2(D). Let {hn}n∈Z ⊂ L2(D) be such that for every finite sequence
{an} ∈ C,

sup
j≤m
∥∑

n
an(gn − hn)∥

L2(D j)
≤ α sup

j
∥∑

n
an gn∥

L2(D j)
.

Then, the set {hn}n∈Z is a Riesz basis for L2(D).

The celebrated Kadec stability theorem (also called Kadec’s 1
4 -theorem) gives an

optimal measure of how the standard orthonormal basis E = {e2πinx}n∈Z on the unit
interval [0, 1] can be perturbed to still obtain an exponential basis.

Theorem 2.6 Let Λ = {λn}n∈Z be a sequence in R for which

∣λn − n∣ ≤ L < 1
4

whenever n ∈ Z. Then, E(Λ) = {e2πi λn x}λ∈Λ is an exponential basis for L2(0, 1) with
frame constants A = cos(πL) − sin(πL) and B = 2 − cos(πL) + sin(πL). The constant
1
4 cannot be replaced by any larger constant.

The theorem is proved using the Paley–Wiener theorem and a clever Fourier series
expansion of the function 1 − e2πiδx . The quantity

D(L) = 1 − cos(πL) + sin(πL)(2.3)

plays an important part in the proof of the theorem, as well as in other generalizations.
So, we can rewrite the frame constants of E(Λ) as

A = 1 − D(L) = cos(πL) − sin(πL),
B = 1 + D(L) = 2 − cos(πL) + sin(πL).

Kadec’s theorem has been generalized to prove the stability of general exponential
frames. See Theorem 1 in [2].

An important generalization of Kadec’s theorem is due to Avdonin [1].

Theorem 2.7 (Special version of Avdonin’s theorem) Let λn = n + δn and suppose
{λn}n∈Z is separated, i.e., inf n≠k ∣λn − λk ∣ > 0. If there exist a positive integer N and a
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positive real number ε < 1
4 such that

,,,,,,,,,,,

(m+1)N

∑
n=mN+1

δn

,,,,,,,,,,,
≤ εN(2.4)

for all integers m, then the system {e2πix λn}n∈Z is a Riesz basis for L2([0, 1]).

This special version of Avdonin’s theorem can be found in [20]. The condition (2.4)
is hard to prove in the case when the sequence is not periodic. But, in our case, the
following lemma will help.

Lemma 2.8 When g is Riemann integrable in [0, 1], and periodic of period 1, and β
is irrational, then

lim
N→∞

1
N

N
∑
n=1

g(nβ) = ∫
1

0
g(x)dx .

This lemma is Corollary 2.3 on page 110 in [22].

2.2 Bases on disconnected domains

Let E(Λ) be an exponential basis on a domain D ⊂ Rd . If D is partitioned into disjoint
sets D1 , . . . , Dm , . . ., which are then translated with translations τ1 , . . . τm , . . . in such
a way that the translated pieces do not intersect, then in general E(Λ) is not a basis on
the “broken domain” D̃ = D1 + τ1 ∪⋯∪ Dm + τm ∪⋯. The following lemma shows
how a basis E(Λ) for L2(D) can be transformed into a basis for L2(D̃).

Lemma 2.9 Let D ⊂ Rd be measurable, with ∣D∣ < ∞; let for m ∈ N ∪ {∞}, we have
D = ⋃m

j=0 D j , with ∣D j ∣ > 0 for all j and k Dk ∩ D j = ∅when k ≠ j. Let τ j be translations
such that τ j(D j) ∩ τk(Dk) = ∅when k ≠ j. Let D̃ = ⋃m

j=1 τ j(D j). IfB = {ψn(x)}n∈N ⊂
L2(D) is a Riesz basis for L2(D), then

B̃ =
⎧⎪⎪⎨⎪⎪⎩

m
∑
j=1

χτ j(D j)ψn(τ−1
j x)
⎫⎪⎪⎬⎪⎪⎭n∈N

is a Riesz basis for L2(D̃) with the same frame constants.

Proof With some abuse of notation, we will let τ j(x) = x + τ j and τ j(D j) = D′j .
Thus, D̃ = ⋃m

j=1 D′j .
Define the operator T ∶ L2(D) → L2(D̃) by T−1( f )(x) = ∑m

k=1 f (x − τk)χDk . This
is a linear transformation. We can also check that T is invertible, and its inverse is
the operator T−1 ∶ L2(D̃) → L2(D) defined as T−1( f )(x) = ∑m

k=1 f (x + τk)χD′k . Let
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us show that T (and also T−1) are isometry. Indeed, for every f ∈ L2(D),

∥T( f )∥2
L2(D̃) =

m
∑
k=1
∥T( f )∥2

L2(D′k)
=

m
∑
k=1
∫

τk+Dk
∣ f (x − τk)∣2dx

=
m
∑
k=1
∫

Dk
∣ f (x)∣2dx = ∣∣ f ∣∣2L2(D),

where the third equality comes from a change of variables in the integrals. An
invertible isometry maps bases into bases, and the frame constants are the same. Since
B̃ = T(B), we have proved that B̃ is a basis for L2(D̃). ∎

Remark 2.10 Let {λn}n∈Z ⊂ Rd , {bk}m−1
k=0 ⊂ Rd , with m ∈ N ∪ {∞}, and D and D̃,

as in Lemma 2.9. Also, let wn = ∑m−1
k=0 e2πibk λn χD̃k

. The set {e2πix λn}n∈Z is a Riesz
basis for L2(D̃) if and only if the set {wn e2πix λn}n∈Z is a Riesz basis for L2(D).
Moreover, those two bases have the same Riesz constants. We can also see that the
set {wn e2πix λn}n∈Z is a Riesz basis for L2(D) if and only if the set {e2πix λn}n∈Z is a
Riesz basis for L2(D̃). Moreover, those two bases have the same Riesz constants.

If we replace D by J , when

J = ⋃ J j , with J j = [a j + b j , a j+1 + b j),
with J j = [a j + b j , a j+1 + b j), as in (1.1), then we obtain a special case of Lemma 2.9.

Lemma 2.11 For m finite or infinite, the sequence {gn}n∈Z , where

gn =
m
∑
k=0

e2πix λn e2πibk λn χJk ,

is a Riesz basis for L2(J) if and only if B = {e2πix λn}n∈Z is a Riesz basis for L2(I).
Moreover, two bases B and {gn} have the same Riesz constants. Conversely, the set
{∼gn}n∈Z , where

∼gn =
m
∑
k=0

e2πix λn e−2πibk λn χIk ,

is a Riesz basis for L2(I) if and only if B is a Riesz basis for L2(J). Moreover, two bases
B and {g̃n} have the same Riesz constants.

A version of Lemma 2.11 is also in [5].

3 Proofs of the main results

In this section, we will prove our main results. But first, we remind the reader that
B∗ = {e2πix(n+δ∗n )}n∈Z , where

δ∗n =
⎧⎪⎪⎨⎪⎪⎩

⌊βn⌋+1
β − n, if {βn} ≥ 1

2 ,
⌊βn⌋

β − n, if {βn} < 1
2 ,

for some β > 0 (see (1.4) and (4.5)).
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3.1 A useful lemma

Lemma 3.1 Let β ≥ 1. Then B∗ is an exponential basis for L2([0, 1]).

Proof First, we let β > 2. Then

sup
β∈Z
∣δ∗n ∣ = sup

β∈Z
∣dist (Z, βn)

β
∣ ≤ 1

2β
< 1

4
.

So, by Theorem 2.6, {e2πix(n+δ∗n )}
n∈Z

is an exponential basis for L2([0, 1]).
Next, let 1 ≤ β ≤ 2 and β ∈ Q. First, trivial case with β = 1 or β = 2. In this case,

δ∗n = 0 for all n. So, B∗ = {e2πix n}n∈Z, the standard basis for L2([0, 1]). Now, let 1 <
β < 2 and β ∈ Q, so there are two integers p and q such that β = p

q . We are going to use
Theorem 2.7, so we need to check if {λn}n∈Z = {n + δ∗n}n∈Z is separated and if there
exist a positive integer N and a positive real number ε < 1

4 such that

,,,,,,,,,,,

(m+1)N

∑
n=mN+1

δ∗n
,,,,,,,,,,,
≤ εN

for all integers m (see (2.4)). For all n ∈ Z, we compare λn and λn+1

λn = n +
⎧⎪⎪⎨⎪⎪⎩

⌊βn⌋+1
β − n, if {βn} ≥ 1

2
⌊βn⌋

β − n, if {βn} < 1
2
≤ n + 1

2b
,

λn+1 = n + 1 +
⎧⎪⎪⎨⎪⎪⎩

⌊β(n+1)⌋+1
β − n − 1, if {β(n + 1)} ≥ 1

2
⌊β(n+1)⌋

β − n − 1, if {β(n + 1)} < 1
2
≥ n + 1 − 1

2β
> λn .

So, the sequence {λn}n∈Z is increasing. Moreover,

sup
n∈Z
∣λn+1 − λn ∣ ≥ n + 1 − 1

2β
− (n + 1

2β
) = 1 − 1

β
> 0.

Therefore, {λn}n∈Z is separated.
Next, we observe that for all n ∈ Z,

δ∗n+q =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊ p
q (n+q)⌋+1

p
q

− n − q = ⌊
p
q n⌋+p+1

p
q

− n − q, if { p
q (n − q)} ≥ 1

2 ,
⌊ p

q (n+q)⌋
p
q

− n − q = ⌊
p
q n⌋+p

p
q
− n − q, if { p

q (n − q)} < 1
2 ,

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊ p
q n⌋+1

p
q
− n, if { p

q n} ≥ 1
2 ,

⌊ p
q n⌋

p
q
− n, if { p

q n} < 1
2 .
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So, δ∗n = δ∗n+q and we also observe that δ∗q = 0. Thus, in order to apply (2.4), it is
enough to consider ∣∑q−1

n=1 δ∗n ∣ . Now, for all n = 1, . . . , ⌊ q
2 ⌋,

δ∗q−n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊ p
q (q−n)⌋+1

p
q

− q + n = ⌊−
p
q n⌋+p+1

p
q

− q + n, if { p
q (q − n)} ≥ 1

2 ,
⌊ p

q (q−n)⌋
p
q

− q + n = ⌊−
p
q n⌋+p

p
q

− q + n, if { p
q (q − n)} < 1

2 ,

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ⌊
p
q n⌋+1

p
q
+ n, if { p

q n} ≥ 1
2 ,

− ⌊
p
q n⌋

p
q
+ n, if { p

q n} < 1
2 .

It means that δ∗n + δ∗q−n = 0. Moreover, if q is even, then δ∗q
2
+ δ∗q

2
= 0, and then δ∗q

2
= 0.

Thus,
,,,,,,,,,,,

q−1

∑
n=1

δ∗n
,,,,,,,,,,,
= 0.

If q is odd, then

∣
q

∑
n=1

δ∗n ∣ = ∣δ∗q+1
2
∣ =
,,,,,,,,,,,,,,,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊ p
2 ⌋+1

p
q
− q

2 if { p
2 } ≥

1
2

⌊ p
2 ⌋
p
q
− q

2 if { p
2 } <

1
2

,,,,,,,,,,,,,,,
=
⎧⎪⎪⎨⎪⎪⎩

0, if p is even
1

2b , if p is odd
< 1

4
< q

4
,

because q > 1. Therefore, using Theorem 2.7, we conclude that {e2πx(n+δ∗n )}
n∈Z

is an
exponential basis for L2([0, 1]).

Next, we consider the case when 1 < β < 2 is irrational. We can rewrite our
sequence in the form

δ∗n =
g(nβ)

β
,

where

g(x) =
⎧⎪⎪⎨⎪⎪⎩

1 − {x}, if {x} ≥ 1
2 ,

−{x}, if {x} < 1
2 .

g is Riemann integrable in [0, 1], and periodic of period 1. Moreover,

∫
1

0
g(x)dx = 0.

So, by Lemma 2.8,

lim
N→∞

1
N

N
∑
n=1

g(nβ) = 0.

Moreover, by simple translation, we can get that for all m ∈ Z,

lim
N→∞

1
N

(m+1)N

∑
n=mN+1

g(nβ)
β

= 0.
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It means that for any ε < 1
4 , there is an N0 such that for all m ∈ Z and for all N > N0,

,,,,,,,,,,,

1
N

(m+1)N

∑
n=mN+1

g(nβ)
β

,,,,,,,,,,,
=
,,,,,,,,,,,

1
N

(m+1)N

∑
n=mN+1

δ∗n
,,,,,,,,,,,
< ε.

Therefore, using Theorem 2.7, we conclude that {e2πx(n+δ∗n )}
n∈Z

is an exponential
basis for L2([0, 1]). ∎

Remark 3.2 Since we proved that δ∗n is periodic when 1 ≤ β ≤ 2 and β ∈ Q, we could
also have used Corollary 3.1 from [4] to conclude that B∗ is an exponential basis for
L2([0, 1]).

Remark 3.3 If β > 2, then Theorem 2.6 shows that the frame constants of the basis
are A = cos(πL) − sin(πL) and B = 2 − cos(πL) + sin(πL), where L = supn∈Z ∣δn ∣.

3.2 Proof of Theorem 1.1

Proof Let m be infinite or finite. By Lemma 3.1,B∗ is an exponential basis for L2(I)
with the Riesz constants A and B. We can obtain a Riesz basis {gn}n∈Z for L2(J) using
Lemma 2.11, where gn = ∑m−1

k=0 e2πi(x−bk)(n+δ∗n )χJk . Next, we use the Paley–Wiener
theorem to show thatB∗ is a basis for L2(J). So, we need to show that there is 0 ≤ α < 1
such that for all sequence {an} with the property∑∣an ∣2 = 1,

∣∣∑ an(gn − e2πix(n+δ∗n ))∣∣2L2(J) ≤ α∣∣∑ an gn ∣∣2L2(J) .(3.1)

Using a simple substitution and the Riesz constants of the basis B∗ we, can estimate
the right-hand side of the inequality (3.1)

0 < A ≤ ∣∣∑ an e2πix(n+δ∗n )∣∣2L2(I) = ∣∣∑ an gn ∣∣2L2(J) .

For the left-hand side, using the definition of gn and Minkowski’s inequality,

∣∣∑ an(gn − e2πix(n+δ∗n ))∣∣2L2(J) ≤
m−1
∑
k=1
∣∣∑ an(e2πi(x−bk)(n+δ∗n ) − e2πix(n+δ∗n ))∣∣2L2(Jk)

=
m−1
∑
k=1
∣∣∑ an(e−2πibk(n+δ∗n ) − 1)e2πix(n+δ∗n )∣∣2L2(Jk) .

Next, we recall that

δ∗n =
⎧⎪⎪⎨⎪⎪⎩

⌊βn⌋+1
β − n, if {βn} ≥ 1

2 ,
⌊βn⌋

β − n, if {βn} < 1
2 .

It means that for each n ∈ Z, we can find Mn ∈ Z such that δ∗n = Mn
β − n. Thus, for all

k = 1, . . . , m − 1,

e−2πibk(n+δ∗n ) − 1 = e−2πi Mn bk
β − 1 = 0,
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because bk
β ∈ Z for k = 1, . . . , m − 1. So,

∣∣∑ an(gn − e2πix(n+δ∗n ))∣∣2L2(J) = 0,

and the inequality (3.1) holds. Therefore, B∗ is an exponential basis for L2(J) with
Riesz constants A and B. ∎

3.3 Proof of Theorem 1.2

In [19], the reader can find the following result.

Theorem 3.4 Let Δ > 0 and S ⊂ [0, Δ]. Suppose that for some Λ ⊂ 1
ΔZ, E(Λ) is a

Riesz basis for L2(S). Then E( 1
ΔZ/Λ) is a Riesz basis for L2([0, Δ]/S).

Proof of Theorem 1.2 Let β and bk be real numbers as in Theorem 1.2. First, we
introduce the interval [0, Δ], where Δ = ⌈ 1+bm−1

β ⌉β and ⌈x⌉ is a ceiling function. The
set J defined as (1.1) will be a subset of [0, Δ]. Let Λ = {n + δ∗n}n∈Z = {λn}n∈Z , where

λn =
⎧⎪⎪⎨⎪⎪⎩

⌊βn⌋+1
β , if {βn} ≥ 1

2 ,
⌊βn⌋

β , if {βn} < 1
2 .

In view of the definition of β, we have that Λ ⊂ 1
ΔZ. By Theorem 1.1, E(Λ) is a Riesz

basis for L2(J). So, by Theorem 3.4, E( 1
ΔZ/Λ) is a Riesz basis for L2([0, Δ]/J). ∎

4 Extensions and generalizations

4.1 A stability theorem

Theorem 4.1 (Stability theorem for m-segments). Let m ∈ N/{1} and b j ∈ N for all
j = 1, . . . , m − 1 and L ∶= supn ∣δn ∣ < 1

4 . Then the system {e2πi(n+δn)x} is a Riesz basis
for L2(J) if for all j = 1, . . . , m − 1 and n ∈ Z,

max
j=1, . . . ,m−1

{Bγ j sup
n
∣ sin(π dist(Z, δnb j))∣} <

A
2
√

m
,(4.1)

where
A = A(L) = cos(πL) − sin(πL),

Bγ j = Bγ j(L) = 2 − cos (πγ jL) + sin (πγ jL).
(4.2)

Proof By the 1
4 -Kadec theorem, if L ∶= supn ∣δn ∣ < 1

4 , then e2πix(n+δn) is the
Riesz basis for L2(I) with constants A = cos (πL) − sin (πL) and B = 2 − cos (πL) +
sin (πL). Then, using Lemma 2.11, we can obtain a Riesz basis {gn}n∈Z for L2(J),
where

gn =
m
∑
k=0

e2πix λn e2πibk λn χJk .
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Next, we are going to use Theorem 2.4 with the norm

∣∣ ⋅ ∣∣2L2,∞(J) = sup
k=0,. . . ,m−1

∣∣ ⋅ ∣∣2L2(Jk) .

We can estimate the right-hand side of the inequality using substitution and the Riesz
sequence definition as

∣∣∑ an gn ∣∣L2,∞(J) ≥
1√
m
∣∣∑ an gn ∣∣L2(J)

= 1√
m
∣∣∑ an e i(n+δn)x ∣∣L2(I) .

By the elementary inequality∑{∣a1∣, ..., ∣am ∣} ≥ 1√
(m)

√
∑n ∣an ∣2, we have

1√
m
∣∣∑ an e i(n+δn)x ∣∣L2(I) ≥

A√
m

√
∑∣an ∣2 =

A√
m

.

For the left-hand side, we have

∣∣∑ an (gn − e2πi(n+δn)x) ∣∣L2,∞(J) ≤ max
j=1, . . . ,m

∣∣∑ an e2πi(n+δn)x (e−2πi(n+δn)b j − 1) ∣∣L2,∞(J j)

≤ max
j=1, . . . ,m

⎧⎪⎪⎨⎪⎪⎩
Bγ j

√
∑∣an (e−2πi(n+δn)b j − 1)∣ 2

⎫⎪⎪⎬⎪⎪⎭
≤ 2 max

j=1, . . . ,m
{B j sup

n
∣ sin (π(n + δn)b j)∣}

= 2 max
j=1, . . . ,m

{Bγ j sup
n
∣ sin (πδnb j)∣},

where Bγ j = 2 − cos (πγ jL) + sin (πγ jL) for j = 1, ..., m − 1. So, we need

max
j=1, . . . ,m−1

{Bγ j sup
n
∣ sin (πδnb j)∣} <

A
2
√

m
or

max
j=1, . . . ,m−1

{Bγ j sup
n
∣ sin (min{{δnb j}, 1 − {δnb j}}π)∣} < A

2
√

m
.

∎

Remark 4.2 If m = 1, we only have one interval, so Kadec’s theorem holds.

Remark 4.3 Observe that A(L) defined as (4.2) is a concave down function of
L on the interval [0, 1

4) and Bγ j(L) defined as (4.2) is a concave up function
of L on the interval [0, 1

4γ j
) for j = 1, ..., m − 1. Also, we can use the fact that

sin(πdist(δnb j ,Z)) ≤ πdist(δnb j ,Z). So, the condition

max
j=1, . . . ,m−1

{(1 + 4Lγ j)dist(Z, δnb j)} ≤
(1 − 4L)
2
√

mπ
,

for j = 1, ..., m − 1, guarantees that (4.1) holds.
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4.2 d-dimensions

We use the arguments developed in previous sections to find bases on “split cubes.”
Let Q = [0, 1)d , and let 0 = a0,k < a1,k < ⋯ < amk−1,k < ⋯ < 1, where mk ∈ N ∪ {∞},
for all k = 1, ..., d . Also, we let I j,k = [a j,k , a j+1,k) and

R j⃗ = R j1 , j2 , . . . , jd = I j1 ,1 × I j2 ,2 ×⋯× I jk ,k ,

so

Q = ⋃
j1 , j2 , . . . , jd

R j1 , j2 , . . . , jd .

Given that for all k = 1, ..., d , we have 0 = b0,k < b1,k < ⋯ < bmk−1,k , and we let β⃗ j⃗ =
(b j1 ,1 , b j2 ,2 , ..., b jd ,d). Now, we can define a “split cube” as

Q̃ = ⋃
j⃗
(τ β⃗ j⃗

+ R j⃗) .(4.3)

Let βk > 0 be fixed for k = 1, ..., d; for every nk ∈ Z, we let

δ∗nk
=
⎧⎪⎪⎨⎪⎪⎩

⌊βk nk⌋+1
βk

− nk , if {βk nk} ≥ 1
2 ,

⌊βk nk⌋
βk

− nk , if {βk nk} < 1
2 .

(4.4)

We let δ⃗∗n = (δ∗n1
, ..., δ∗nd

). Let

B∗k = {e2πixk(nk+δ∗nk
)}nk∈Z ,

B∗ = {e2πix ⋅(n+δ⃗∗n )}n∈Zd with x ∈ Rd .
(4.5)

Lemma 2.1 in [23] can be generalized in the following way.

Lemma 4.4 Let each the set U j = {e2πix λ j(n)}n∈Z be a basis on a domain D j ⊂ R,
with constants A j and B j , then the set {e2πi(λ1(n1)x1+⋯+λd(nd)xd}n1 , . . . ,nd∈Z is a basis on
L2(D1 ×⋯× Dd), with the constants A = A1 ⋅ ... ⋅ Ad and B = B1 ⋅ ... ⋅ Bd .

Proof We consider only the case d = 2. If d > 2, the proof is similar. Let U j =
{e2πix(λ j(n)}n∈Z be a basis on a domain D j ⊂ R, with constants A j and B j , j = 1, 2.
Also, to simplify formulas, we use the following notations:

v j,n j = e2πix λ j(n j) and ṽn1 ,n2 = v1,n1 ⋅ v2,n2 .

For any f ∈ L2(D1 × D2), we have

∑
n1 ,n2∈Z

∣⟨ f , ṽn1 ,n2⟩L2(D1×D2)∣2 = ∑
n2

∑
n1

∣∫
D1
(∫

D2
f (x1 , x2)v2,n2 dx2) v1,n1 dx1∣ 2

≤ B1 ∫
D1
∑
n2

∣∫
D2

f (x1 , x2)v2,n2 dx2∣ 2dx1

≤ B1B2 ∥ f ∥2
L2(D1×D2) .

https://doi.org/10.4153/S0008439523000371 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000371


1310 O. Asipchuk and V. Drezels

A similar argument shows that

∑
n1 ,n2∈Z

∣⟨ f , ṽn1 ,n2⟩L2(D1×D2)∣2 ≥ A1A2 ∥ f ∥2
L2(D1×D2) .

Thus, {e2πi(λ1(n1)x1+λ2(n2)x2}n1 ,n2∈Z is a frame for L2(D1 × D2). Next, for any finite
sequence of complex numbers cn1 ,n2 , we have

∥∑
n1

∑
n2

cn1 ,n2 ṽn1 ,n2∥
2
= ∫

D2
∫

D1
∣∑

n1

(∑
n2

cn1 ,n2 v2,n2) v1,n1 ∣ 2dx1dx2

≤ B1∑
n1
∫

D2
∣∑

n2

cn1 ,n2 v2,n2 ∣ 2dx2

≤ B1B2∑
n1

∑
n2

∣cn1 ,n2 ∣ 2 .

A similar argument shows that

∥∑
n1

∑
n2

cn1 ,n2 ṽn1 ,n2∥
2
≥ A1A2∑

n1

∑
n2

∣cn1 ,n2 ∣ 2 .

Therefore, {e2πi(λ1(n1)x1+λ2(n2)x2}n1 ,n2∈Z is a basis for L2(D1 × D2). Moreover, A = A1 ⋅
A2 and B = B1 ⋅ B2 are the Riesz constants. ∎

Now, we can use Lemma 4.4 to generalize some results from Section 3 in d-
dimensions.

Lemma 4.5 For all k = 1, ..., d , let βk ≥ 1. Then B∗ is an exponential basis for
L2([0, 1]d), where B∗ is defined as in (4.5).

Proof From Lemma 3.1, we have thatB∗k , defined as in (4.5), is a basis for L2([0, 1]).
Therefore, by Lemma 4.5, B∗ is an exponential basis for L2([0, 1]d). ∎

Theorem 4.6 Let m⃗ = (m1 , ..., md), when mk ∈ N ∪ {∞}. For all k = 1, ..., d , let βk ≥
1. If for all k = 1, ..., d b j,k

βk
∈ Z for all j, then the set B∗ defined in (4.5) is an exponential

basis for L2(Q̃), where B∗ is defined as in (4.5). Moreover, B∗ has the same frame
constants for L2(Q̃) and L2(Q).

Proof From Theorem 1.1, we have thatB∗k , defined as in (4.5), is a basis for L2(Dk),
where Dk is a projection of Q̃ on kth coordinate. Therefore, by Lemma 4.5, B∗ is an
exponential basis for L2(Q̃). ∎

5 Remarks and open problems

Theorem 1.1 provides explicit exponential bases for split intervals under conditions on
bk . In Remark 3.3, we have observed that we can obtain the frame constants for the
basis when b ≥ 2. The problem of finding explicit exponential bases for general split
intervals, and explicit frame constants for these bases, is still waiting for a solution.
The same situation occurs with exponential bases on split cubes in Rd .
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We have provided explicit exponential bases on certain infinite unions of intervals
of total finite measure. We would like to generalize our results and prove the existence
of exponential bases on arbitrary infinite unions of intervals or rectangles.

Our Theorem 4.1 reduces to Kadec’s theorem when the interval is not split, but
in the other cases, we obtain stability bounds that depend on the gaps between the
intervals. We believe that this result can be improved, and we hope to do so in another
paper.
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