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Minimal submanifolds of a Euclidean space are contained in a much larger class of
submanifolds, namely in the class of submanifolds of finite type. Submanifolds of finite
type were introduced about a decade ago by B. Y. Chen in [2]; the first results on this
subject have been collected in the books [2], [3].

Let M" be an n-dimensional, connected submanifold of the Euclidean space E™.
Denote by A the Laplacian operator on M”, with respect to the Riemannian metric g on
M" | induced from the Euclidean metric of the ambient space E™. M" is said to be of finite
type if each component of the position vector field X of M" in E™, can be written as a
finite sum of eigenfunctions of the Laplacian operator, that is, if

k
X=c+ X, 1)
i=1
where c is a constant vector, and X, . . . , X, are nonconstant maps satisfying AX; = 1,X;,
for i=1,...,k The decomposition (1) is called the spectral decomposition of X. If in
particular all eigenvalues {4,,..., A} are mutually different, then M" is said to be of
k-type. A manifold is said to be of infinite type if it is not of finite type. Let M" be a finite
type submanifold whose spectral decomposition is given by (1); if we define a polynomial
P by

P(T)= Q (T - A) (2)

then P(A) (X —¢)=0.

The class of finite type submanifolds is very large: minimal submanifolds and minimal
submanifolds of a hypersphere are of 1-type, compact homogeneous submanifolds,
equivariently immersed, are of finite type. Although there are many results on finite type
curves and finite type spherical submanifolds, very little is known about the most
elementary submanifolds of Euclidean space, namely surfaces in Euclidean 3-space. In
particular, no surfaces of finite type in E* are known, other than minimal surfaces, the
circular cylinders, and the sphere. In his list [6] of open problems and conjectures
concerning submanifolds of finite type, B. Y. Chen mentions the following geometric
problem.

ProsLem. Classify all finite type surfaces in E°.

Concerning this problem, we know that minimal surfaces and spheres are finite type
(in fact 1-type) surfaces in E°. In [4], B. Y. Chen solved the problem for an important
class of surfaces, namely tubes. He proved that a tube in E” is of finite type if and only if
it is a right circular cylinder S' x R. Consequently, every closed tube in E’ is of infinite
type; in particular a circular torus is of infinite type. These cylinders are actually 2-type;
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moreover B. Y. Chen proved [5] that the cylinders S' xR are the only null 2-type
surfaces in E°. Further, in [11], O. J. Garray has shown that a cone in E> is of finite type
if and only if it is a plane. More generally, in [8], the problem was solved for the class of
ruled surfaces in E>. As a generalization of a classical result of Meusnier and Catalan, it
was shown that the only ruled surfaces of finite type in E* are the ruled minimal surfaces
(i.e. the planes and the right helicoids) and the cylinders S' X R. Further, in [7], it was
shown that the only quadrics of finite type in E* are the circular cylinder S' X R and the
sphere $7; in particular an ellipsoid of finite type in E° is a sphere.

Concerning the noncompact finite type surfaces in E>, the preceding results suggest
that there are no other noncompact finite type surfaces in E* than the noncompact
minimal surfaces and the right circular cylinders. This was already noticed in [8], however
the authors hesitated to formulate this as a conjecture.

In 1822, Dupin [9] defined a cyclide to be a surface M in E> which is the envelope of
the family of spheres tangent to three fixed spheres. This was shown to be equivalent to
requiring that both sheets of the focal set degenerate into curves. The cyclides are
equivalently characterized by requiring that the lines of curvatures in both families be arcs
of circles or straight lines. Thus, one can obtain three obvious examples: a torus of
revolution, a circular cylinder and a circular cone. In turns out that all cyclides can be
obtained from these three by inversion in a sphere in E>. Finally, the classical cyclides
were characterized as the only taut surfaces in E?, aside from spheres and planes. For
more detailed information on the cyclides, we may refer to [1] and [10]. Here and in the
sequel, the term cyclide of Dupin will be used in the narrow sense, i.e. exclusive of the
special limiting cases of a sphere, a cylinder, a cone, and a torus.

The noncompact cyclides offer a possibility to break away from a right circular
cylinder (2-type) and a circular cone («-type), keeping in common with these surfaces the
property that all lines of curvature remain arcs of circles or straight lines. Moreover, the
set of noncompact cyclides includes surfaces with singularities (parabolic horn cyclides).

The noncompact cyclides of Dupin are surfaces of the third order and can be
parametrized as follows:

Vu
Tuev ®
Uv
T @
V2 2_ 2 —U2 2_ .2
= (2u*—a®) Qv a)’ 5)
da(U+V)
where
Wi+ a*-d?
U=————
4a ’ ©)
02+ a*+ d?
V=——
4a ’ @)

a and d are parameters. The parameter d corresponds to parallel surfaces. The parameter
a corresponds to the semi latus rectum of the focal parabolas.
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The main purpose of this paper is to contribute to the solution of the above problem
by showing the following

THEOREM. All noncompact cyclides of Dupin are of infinite Chen-type.

Proof. From the parametrization (3)-(5), we can calculate the components of the
induced metric g;, of the inverse metric g7, and g = det[g;]:

vz 0 (U+V)? 0

l=| YT gn-| ¥ ®)
8il = v |0 BT . WEvR|
(U+Vv)y U?
Uv?
STV ®
Hence, the Laplacian A of M can be expressed as follows:
1 6 (U3 1 8/vVa
=g (V) i (52

Vgou\Vaou/  Vgov\Uadv (19)

For later use, we calculate Ax and A%, where x is the first component of the position
vectorfield of M in E*:

uU-V
T AT (a1
1 u
%= =S (a(5U°V = SUV2 - 9UV* + V*
A% a2U3V3(U+V)(a( sU UV3+ VY
+a*(UP — UV + UV2 — V3) + dX(4UPV + 4UV?)). (12)

We notice that all terms of Ax, and A’x are proportional to the expressions of the form
u(UPV4)/(U + V). Therefore we calculate A(u(UPV?)/(U + V)).

LEMMA.

UV 1w
A( )=— F(U, V), 1
“orv) S ausv V) (13)

with
F(U,V)==a(p(2p — DUP'VI2+ (4p*+ 2p = 3)UPVI '+ 2p + 1)(p + UP'V4

+q(2g +D)UPVI™' + (47 — 2 = 3)UP~'V9 + (g — 1)(2g — D)UP2V Y
2
S (= P+ @UVIT (P20~ 1) + (247~ 29 ~ D)UY
d2
+(p2+ (g = 1)UV = S (p - 102 - VPV
+(@p* - 2p —1) = (24> =2 — 1)UV + (p* = (g = 1)UV, (14)

This follows from (3)-(5) and (10) after a, somewhat long, but straightforward calculation.
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CoROLLARY. For all k e N, A*x entirely consists of terms proportional to expressions
of the form u(UPV4)/(U + V).

We notice that F(U, V) is homogeneous of degree p + g in U, V, and the parameters
a, and d (only the parameters which appear explicitly have to be taken into account).

CoROLLARY. For all k € N, A*x has the following structure
1 u
T
where G, (U, V) is homogeneous of degree —1 in U, V , and the parameters a, and d.

Afx G (U, V), (15)

Since each action of A produces terms of which the degree in the parameters a, and d
is at most 2 higher, the highest possible degree in the parameters for terms in G,(U, V) is
equal to 2(k — 1), the corresponding degree in U and V of such terms equals 1 — 2k.

ReMark. From (11)-(12) and (13)-(14), we notice that G,(U, V) can be written as
P.(U, V)
YTy
where P,(U, V) is a polynomial in U and V, homogeneous of degree 4k —3in U, V, and

the parameters a, and d.

G.(U, V)= (16)

From now on we suppose that M is of k-type. Hence there exist numbers ¢,,. .., ¢
such that

AIX + e A X + A X +. .+ AX =0. 17)

This should hold in particular for the first component x of the position vector X. Using

(15)-(16), we obtain
1 1 u

ﬁu2k+lvlk+l U+V

[Pear(U, V) +c,@*UPV?P(U, V) +. . . + c,a®* U*V*P,(U, V)] =0.

(18)
From the independence of the functions {u”} and {v?}, follows immediately the
independence of the set {U”V9}. Hence, for (18) to be satisfied, all coefficients of
different combinations of powers U’V in the polynomial

Pei(U, V) +¢,a*UV3P(U, V) +. .. + c,a®*U*V*P(U, V) (19)

should vanish. We focus on those terms of degree 2k + 1 in U and V. Such terms can only
occur in P, (U, V) since, for 1€{0,...,k}, U*VIP,,_(U,V) is homogeneous of
degree 4k +1 in U, V, and the parameters a, and d, but the highest possible degree in
the parameters for terms in U*V?P,.,_(U, V) is equal to 2(k ~ I). Amongst the terms of
degree 2k +1 in U and V, we single out the one in U***'V* with the highest possible
degree in U, and the one in U’V**! with the highest possible degree in V. By means of
(13)-(14) we can calculate the coefficients of these terms recursively, and as they should
vanish, we get the following set of equations
,(a*—d? a2+d2) (az—d2 2az+dz>_
a( 3 +9 5 > +(2k—-1) =0,
a2<9a2—d2 a*+d? a*—d? a2+d2)

5 +— )...((2k—1)2 St

(20)
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We immediately see that a =0 solves this set of equations. We show that X, does not
admit other solutions. The proof goes by induction. The statement clearly holds for
k =1. We suppose that the statement is true for kK — 1. Suppose also that X, would have a
solution a, with ay # 0. Then a, cannot be a solution of £,_,. This means that at least one
of the expressions

ai. .. ((aj— d?) + (2k — 3)*(aj + d?)), (21)
ai. .. ((2k —3)*(aj — d°) + (a3 + d*)) (22)
is not zero; so we can divide by this factor in =,. This shows that a} — d” has to be
proportional to a3+ d°. Now, there follows easily that a3 — d* and a} + d* are both zero,
and hence a,=0; this is a contradiction. We conclude that X, only admits the solution

a =0. But a =0 corresponds to a complete degeneracy of the focal parabolas, and there
does not correspond a cyclide to this situation. This proves our theorem.
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