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The generation of water waves by wind is a fundamental and much-studied problem of
scientific and operational concern. One mechanism that has obtained a wide degree of
acceptance and use is the Miles air shear flow instability theory in which water waves
grow due to energy transfer from the air at a critical level where the wave phase speed
matches the wind speed. In this paper we revisit and extend this theory by examining
how the predicted wave growth rate depends on the water depth and the wind shear
parameters. At the same time we include frictional effects due to water bottom stress
and at the water surface, and add an additional driving term due to wave stress in the
air near the sea surface, using a turbulent parametrisation. The theory is developed using
a frictional modification of the usual potential flow theory for water waves, the modified
Euler equations, coupled to linearised air-flow equations. To assist our analysis we develop
a long-wave approximation for the key Miles growth parameter, which explicitly shows
how this depends on the water depth and the wind shear parameters. Since our focus is
on the development of wave groups, we present a forced nonlinear Schrödinger equation
in which the forcing term describes wave growth or decay. For very shallow water the
modified Euler equations are reduced to their shallow-water counterpart, which are briefly
discussed using Riemann invariants.

Key words: wind–wave interactions

1. Introduction

The generation and evolution of water waves due to wind action at an air–water interface
is a fundamental and much-studied problem of both scientific and operational concern.
Oceanic wind waves affect the weather and climate through transfer processes across
the ocean–atmosphere interface, generate large forces on marine structures, ships and
submersibles and lead to extreme events such as rogue waves and storm surges. But despite
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much theoretical research over many years, combined with more recent in situ observations
and numerical simulations using powerful computers, the theoretical mechanism for wind
wave formation and evolution is still not well understood. This was very evident at the
IUTAM Symposium on Wind Waves held in London in September 2017 (Grimshaw, Hunt
& Johnson 2018), where a wide range of contrasting opinions were presented with a very
lively discussion. In particular there are only tentative theories about how wind affects the
dynamics of wave groups, where the issue is how, in the presence of wind, water waves
form into characteristic wave groups, and what their essential properties are, depending on
the local atmospheric and oceanic conditions.

Over time, several mechanisms have been invoked to describe the generation and
evolution of water waves by wind. One that is very well known is a classical shear flow
instability mechanism introduced by John Miles in 1957 (Miles 1957), developed further
by him and many others, and has been adapted for routine use in wave forecasting models
(Miles 1959, 1993; Janssen 2004; Cavaleri et al. 2007; Grimshaw et al. 2018). The theory
is based on linear sinusoidal waves with a real-valued wavenumber and a complex-valued
frequency so that waves may have a temporal growth rate. There is a significant transfer of
energy from the wind to the waves at the critical level in the air near the interface where
the wave phase speed matches the wind speed. Independently, also in 1957, Owen Phillips
developed a theory for water wave generation due to the flow of a turbulent wind over the
sea surface (Phillips 1957). This mechanism is based on a resonance between a fluctuating
pressure field in the air boundary layer and water waves due to a match between the water
wave wavelength and the length scale of the pressure fluctuations. This leads to a linear
growth in the water wave amplitude, contrasting with the exponential growth of the Miles
theory. It is now widely believed that the Phillips mechanism applies in the initial stages
of wave growth and that the Miles mechanism describes the later stage of wave evolution
(Miles 1957; Phillips 1957, 1981). Another quite different mechanism is a steady-state
theory, developed by Jeffreys (1925) for separated flow over large-amplitude waves, and
later adapted for non-separated flow over low-amplitude waves (Belcher & Hunt 1998).
Asymmetry in the free-surface profile is induced by an eddy viscosity closure scheme,
which in the air flow allows for an energy flux to the waves.

No single or combined theory has been found completely satisfactory, and most fail to
take account of wave transience and the tendency of waves to develop into wave groups;
see Zakharov et al. (2015), Zakharov, Resio & Pushkarev (2017) and Zakharov (2018)
amongst many similar criticisms. That is the issue we have been looking at (see Grimshaw
2018, 2019a,b; Maleewong & Grimshaw 2022a,b). Like Miles (1957), our analysis is based
on linear shear flow instability theory, but incorporates from the outset that the waves will
have a wave group structure with both temporal and spatial dependence. The key feature
is that the wave group moves with a real-valued group velocity even for unstable waves
when the wave frequency and the wavenumber are both complex-valued. In the absence
of wind forcing it is well known that the nonlinear Schrödinger (NLS) equation describes
wave groups in the weakly nonlinear asymptotic limit where wave groups are initiated by
modulation instability and then represented by the soliton and breather solutions of the
NLS model (see e.g. Grimshaw 2007; Osborne 2010). Recently it has been proposed that
the effect of wind forcing can be captured by the addition of a linear growth term leading to
a forced NLS (fNLS) equation (see Leblanc 2007; Touboul et al. 2008; Kharif et al. 2010;
Onorato & Proment 2012; Montalvo et al. 2013b; Brunetti et al. 2014; Slunyaev, Sergeeva
& Pelinovsky 2015; Grimshaw 2018, 2019a,b; Maleewong & Grimshaw 2022a,b).

In contrast, most of the literature on wind-generated water waves has focused on the
development and analysis of the statistical spectrum using the well-known Hasselman
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equation which describes the evolution of the water wave spectrum represented by
the wave action under the influence of nonlinearity due to a field of resonant quartet
interactions, a wind forcing source term and wave dissipation, mainly due to wave breaking
(see e.g. Janssen (2004); Grimshaw et al. (2018)). While there are many associated
analytical and numerical studies of the fully nonlinear Euler equations for water waves,
there are comparatively few studies of a fully nonlinear two-fluid air–water system. Much
of these have focused on modelling turbulence in the air flow; see for instance the articles
by Sajjadi, Drullion & Hunt (2018), Sullivan et al. (2018), Wang, Yan & Ma (2018) and Hao
et al. (2018) in the 2017 IUTAM proceedings (Grimshaw et al. 2018). One reason for this
is because an inviscid fully nonlinear two-fluid system such as air over water is subject to
short-scale Kelvin–Helmholtz instability. While this is a real physical effect, it is not the
explanation for the growth of wind waves, which is due to wind shear and critical-level
instability in the near-surface air flow. This difficulty can be avoided by replacing the
two-fluid system with a fully nonlinear inviscid Euler system for the water, driven by a
pressure term at the free surface which directly links the free-surface pressure with the
free-surface slope. This modified Euler system is based on the pioneering work of Miles
(1957) and was later developed by Kharif et al. (2010) amongst others.

Our interest is in the growth of wave groups, which in the presence of wind forcing can
be described by a fNLS equation, which is a weakly nonlinear asymptotic reduction of
the modified Euler system (Maleewong & Grimshaw 2022a,b). In this fNLS model, the
key new feature imposed on the well-known NLS equation is a linear growth term which
causes exponential growth of the wave amplitude at a rate described by a key parameter,
�s−1, where asymptoticallyΔ is much smaller than a typical wind wave period. Parameter
Δ depends on the wave parameters, the fluid depth and the wind shear profile parameters
and crucially on a non-dimensional parameter, β, introduced by Miles (1957), who showed
that in a linear air-flow analysis the surface air pressure contains a term ρaβηxW2

r , where ρa
is the air density, ηx is the wave slope and Wr is a reference scaling velocity. It is this term
which generates the critical-level instability. We note that this theory is unidirectional in
the horizontal. A two-dimensional counterpart was introduced by Benney & Roskes (1969)
and a wind-forced version analysed by Grimshaw (2019b) and Maleewong & Grimshaw
(2023).

In this paper we examine in § 3 in detail how β and, hence, Δ depend on the wave
parameters, the water depth and the parameters defining the wind shear profile. For this
purpose we use a long-wave approximation described in § 3.1. Miles (1957) and many
others used a logarithmic wind shear profile (see § 3.2), but here we extend that to examine
two other similar wind shear profiles, in § 3.3 for an algebraic wind shear profile and in
§ 3.4 for an exponential wind shear profile. As well as the critical-level instability we
examine frictional and wave stress effects at the air–water interface, and at the bottom
of the water column. This leads to the sum Δ = Δ1 +Δ2 +Δ3, where Δ1 is a linear
combination of wave growth due to critical-level instability and wave decay due to a
laminar frictional boundary layer at the water surface, Δ2 is a wave growth term due
to a parametrisation of turbulent wave stress in the air flow near the water surface and
Δ3 is a wave decay term due either to a laminar frictional boundary layer at the water
bottom or to a parametrisation of turbulent stress at the water bottom. To implement
our analysis we develop a long-wave approximation for the key Miles growth parameter
β, which explicitly shows how this depends on the water depth and the wind shear
parameters. Our analysis is based on the weak frictional modification of potential flow
introduced by Dutykh & Dias (2007) and Dias, Dyachenko & Zakharov (2008) (see also
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Longuet-Higgins 1992; Dutykh 2009; Kharif et al. 2010) and described here in §§ 2 and
2.1. In § 2.2 we describe wave stresses at the air–water interface and at the bottom, and in
§ 2.3 we describe the critical-level instability theory of Miles (1957) for wind forcing. In
§ 3 we present the linearised air-flow equations, and develop the aforementioned long-wave
approximation for the parameter β. In § 4 we briefly describe the fNLS equation, and
present there in analytical and graphical form a description of the dependence of Δ on
water depth, the wave parameters and some key parameters of the wind shear profile,
using the logarithmic profile as the main example. In § 5 we present the fully nonlinear
modified Euler system in a shallow-water limit, following Dutykh & Dias (2007). In § 5.2
we solve the linearised shallow-water equations for an initial condition of a linear periodic
wave with a slowly varying envelope amplitude, and then in § 5.3 we extend this to the fully
nonlinear shallow-water system using Riemann invariants. As this inevitably leads to wave
steepening, higher-order dispersion is reintroduced in a forced Korteweg–de Vries model,
which is the subject of ongoing research. We conclude with a summary and discussion in
§ 6.

2. Formulation

2.1. Nonlinear equations for water waves
The water waves are modelled using incompressible two-dimensional flow in the domain
−h < y < η, where y = −h is a rigid fixed bottom and y = η(x, t) is the free surface. We
adapt the weak modification of potential flow used by Longuet-Higgins (1992), Dutykh &
Dias (2007) and Dias et al. (2008) to account for thin laminar frictional boundary layers at
the free surface and at the water bottom, and modified by Kharif et al. (2010) to account for
wave growth due to the Miles mechanism of critical-level instability. To these effects we
add a parametrisation of wave stress due to turbulent air flow near the air–water interface,
and a parametrisation of turbulent bottom stress, an alternative to laminar friction at the
bottom. The equations are expressed in terms of a velocity potential φ(x, y, t), where the
fluid velocity (u, v) = (φx, φy)+ (ψy,−ψx) and the terms in ψ are there to take account
of weak frictional effects:

φxx + φyy = 0, −h < y < η. (2.1)

In the absence of surface tension the kinematic and dynamic equations at the free surface
are

ηt + φxηx − φy = 2κηxx −
∫ t

0

(
τa

ρw

)
x

dt, on y = η, (2.2)

φt + 1
2

[(φx)
2 + (φy)

2] + gη = −Pa

ρw
+ 2κφxx, on y = η, (2.3)

where ρw is the constant water density, κ is the constant kinematic water viscosity, Pa(x, t)
is the surface air pressure and τa is the air tangential stress at the free surface. From Dutykh
& Dias (2007) the bottom boundary condition is

φy =
( κ
π

)1/2
∫ t

0

φxx(x, y = −h, t − σ)

σ 1/2 dσ, on y = −h. (2.4)

Since friction is assumed to be small it is sufficient to assume ψ satisfies a linear
Navier–Stokes equation:

ψt = κ(ψxx + ψyy). (2.5)
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Wind-induced wave groups in water of finite depth

The bottom boundary condition (2.4) arises from the requirement that u = 0, v = 0 at
y = −h and that using a thin boundary layer analysis at y = −h,

ψ =
( κ
π

)1/2
∫ t

0

φx(x, y = −h, t − σ)

σ 1/2 dσ, on y = −h. (2.6)

In the following we consider a small-amplitude periodic wave given by

η ≈ A exp (ikx − iωt)+ c.c. + · · · , (2.7)

where ω and k are the frequency and wavenumber of the carrier wave, which at leading
order, in the absence of friction and forcing, are both real-valued and satisfy the linear
dispersion relation

ω2 = gk tanh (kh). (2.8)

The envelope amplitude A(x, t) is a slowly varying function of x, t and the omitted terms
[· · · ] in (2.7) are nonlinear and weak dispersive corrections.

The equation set (2.1)–(2.6) and the small-amplitude periodic wave approximation ((2.7)
and (2.8)) are expressed in non-dimensional form using time and length scales ST , SL to
remove the physical parameters g, h. We choose ST = Ω−1, SL = K−1 whereΩ and K are
a characteristic frequency and wavenumber of the carrier wave of a wave group and are
subject to the constraint

Ω2 = gK. (2.9)

This is the free-surface dispersion relation (2.8) when the depth is infinite, chosen
so that the scales Ω,K do not depend on the depth h. The dimensional depth h is
replaced by the non-dimensional depth H = Kh. In the following we choose Ω as the
frequency of a typical carrier wave, with K then determined by (2.9). In practice we
usually select a frequency for a 5 s wave so thatΩ = 1.257 s−1,K = 0.161 m−1,ΩK−1 =
gΩ−1 = 7.81 m s−1. In detail, if the subscript d denotes the dimensional variable, and
n denotes the non-dimensional variable, then xn = Kxd, yn = Kyd, tn = Ωtd. Similarly
the dimensional frequency and wavenumber ωd, kd have non-dimensional frequency and
wavenumber counterparts, ωn = ωd/Ω, kn = kd/K, while the parameter Q = kdh = knH
is dimensionless. Our motivation for the choice ST = Ω−1, SL = K−1 is to ensure that
ωn, kn are of the order of unity. There is no obligation or requirement to choose ωn = 1
although that is natural and mostly what we do. The subscripts d, n are subsequently
omitted; where needed, dimensional variables are distinguished by having units associated
with them.

The non-dimensional equations replacing (2.1)–(2.6) are

φxx + φyy = 0, −H < y < η, H = Kh, (2.10)

ηt + φxηx − φy = 2νηxx −
∫ t

0

(
τa

ρw

)
x

dt, on y = η, (2.11)

φt + 1
2

[(φx)
2 + (φy)

2] + η = −Pa

ρw
+ 2νφxx, on y = η, (2.12)

985 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.237


M. Maleewong and R. Grimshaw

φy =
( ν
π

)1/2
∫ t

0

φxx(x, y = −H, t − σ)

σ 1/2 dσ, on y = −H, (2.13)

ψt = ν(ψxx + ψyy), ν = K2

Ω
κ, (2.14)

ψ =
( ν
π

)1/2
∫ t

0

φx(x, y = −H, t − σ)

σ 1/2 dσ, on y = −H. (2.15)

The linear dispersion relation (2.8) becomes, in the absence of friction and forcing,

ω2 = k tanh Q, Q = kH. (2.16)

The deep-water limit H → ∞ is where tanh Q ≈ 1, and requires Q > 2.5 when the error
is less then 1.5 %. In contrast, the shallow-water limit H → 0 is where tanh Q ≈ Q, and
requires Q < 0.4 when the error is less then 2 %. For a given fixed ω, the wavenumber k
depends on the non-dimensional depth H through (2.16) and

kH = − k2 sech2(Q)

[tanh (Q)+ Q sech2(Q)]
, QH = k tanh (Q)

[tanh (Q)+ Q sech2(Q)]
. (2.17a,b)

Thus for a fixed frequency ω, k increases as H decreases, while the phase velocity c = ω/k
decreases. Since Q decreases monotonically as H decreases, the domain 0 < H < ∞ can
be replaced by the domain 0 < Q < ∞, or even by 0 < T = tanh Q < 1, useful as Q, T
are dimensionless.

The envelope amplitude A(x, t) at leading order, in the absence of forcing and friction,
propagates with the group velocity cg:

cg = ωk = c
2

(
1 + Q(1 − tanh2 (Q))

tanh (Q)

)
, c = ω

k
. (2.18)

Wave energy is defined by

E =
〈

1
2

(∫ η

−H
[φ2

x + φ2
y ] dy + η2

)〉
, (2.19)

where 〈· · · 〉 denotes a phase average for waves periodic in a phase θ = kx − ωt given by
(2.7). Note that E is the inviscid part of the wave energy and to leading order E = 2|A|2,
and depends on (x, y, t) through the dependence on |A|2. Then, using (2.10)–(2.13),

Et =
〈∫ η

−H
[φxφxt + φyφyt] dy +

[
η + 1

2
[φ2

x + φ2
y ]

]
ηt(y = η)

〉

=
〈∫ η

−H

[
φxφxt + φyφyt

]
dy +

[
−φt − Pa

ρw
+ 2νφxx

]
ηt(y = η)

〉

=
〈 [
φyφt

]
(y = η)− [φyφt](y = −H)− [φtφxηx] (y = η)

+
[
−φt − Pa

ρw
+ 2νφxx

]
ηt(y = η)

〉

=
〈
−[φyφt](y = −H)+

[
−ηt

Pa

ρw
+ 4νηtφxx + φt

∫ t

0

(
τa

ρw

)
x

dt
]
(y = η)

〉
. (2.20)
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Wind-induced wave groups in water of finite depth

This can be used to define a growth rate Δ:

Δ = Et

2E . (2.21)

Parameter Δ is non-zero due to (1) the wind forcing term from Pa, (2) the water friction
and air wave stress terms at the free surface y = η and (3) the bottom stress term at
y = −H. Correspondingly we write

Δ = Δ1 +Δ2 +Δ3. (2.22)

More details on the definitions and properties of each Δi, i = 1, 2, 3, are given in the
following sections. The derivations using (2.20) follow in §§ 2.2 and 2.3; see (2.39) for
Δ1, (2.40) and (2.45) for Δ2 and (2.32) and (2.35) for Δ3, expressed in non-dimensional
variables. The outcomes are summarised in (4.5) in § 4 expressed there in dimensional
variables.

2.2. Wave stress
In this subsection we examine the stress boundary conditions at the free surface and at
the bottom and their impact on the wave field. The continuity of normal stress at the free
surface yields at leading order

p = Pa − 2ρwνφxx, on y = η, (2.23)

where p is the water pressure. In this modified potential flow development, the expression
(2.23) yields the boundary condition (2.12). The tangential stress is defined by the tensor
component τ where

τ

ρw
= ν(uy + vx) = ν(2φxy + ψyy − ψxx)

or also
τ

ρw
= ν(2vx + ψyy + ψxx) = 2νvx + ψt.

⎫⎪⎬
⎪⎭ (2.24)

The shear stress at the free surface is denoted by τs and satisfies the boundary condition

τs = τa, on y = η, (2.25)

where τa is the shear stress in the air. The boundary condition (2.25) implies that

ψ = −2νηx +
∫ t

0

τa

ρw
dt, on y = η. (2.26)

The free-surface boundary layer in the air is usually assumed to be turbulent due to the
wind action, with the parametrisations

τa = ρacd|Wa|Wa, (2.27)

where ρa is the air density, Wa is a measure of the wind speed near the surface and cd
is a dimensionless drag coefficient which increases as |Wa| increases (see e.g. Tang et al.
(1996) amongst many papers from the storm surge literature).

It is useful to note here that conservation of mass is expressed by

ηt +
(∫ η

−H
φx dy

)
x
= 2νηxx −

∫ t

0

(
τa

ρw

)
x

dt +
∫ t

0

(
τb

ρw

)
x

dt, (2.28)

where τb is the bottom stress (see (2.29) and (2.30) in the next paragraph).
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The bottom shear stress is denoted by τb. From (2.24), since at the bottom y = −H,
u = 0, v = 0, we get that

τb

ρw
= ψt(y = −H) =

( ν
π

)1/2
∫ t

0

φxt(x, y = −H, t − σ)

σ 1/2 dσ, (2.29)

on using the expression (2.15) for ψ at y = −H. Again, since at the bottom y = −H,
u = 0, v = 0, where the latter implies that φy = ψx. Thus, using (2.29), the bottom
boundary condition (2.13) can be written as

φy =
∫ t

0

(
τb

ρw

)
x

dt, on y = −H. (2.30)

For a plane small-amplitude periodic wave given by (2.7) the bottom boundary condition
(2.13) becomes, assuming ω > 0 without loss of generality,

φy =
( ν

πω

)1/2
[

ik2A
ω cosh (kH)

exp (ikx − iωt)I(t)+ c.c.
]
, on y = −H,

I(t) =
∫ ωt

0

exp (iΘ)
Θ1/2 dΘ →

(π

2

)1/2
(1 + i) as ωt → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.31)

Bottom friction leads to loss of wave energy; for small-amplitude slowly varying
periodic waves expressed by (2.7) this is given by (2.19) and (2.20) with E = 2|A|2. Using
the expression (2.31) in (2.20) and keeping only the term for the bottom stress, we define
the corresponding Δ3[s] by

Et = 〈−φyφt(y = −H)
〉
, where

φy(y = −H) =
( ν

πω

)1/2
[

ik2A
ω cosh (kH)

exp (ikx − iωt)I(t)+ c.c.
]
,

φt(y = −H) = −
[

A
cosh (kH)

exp (ikx − iωt)+ c.c.
]
,

Δ3[s] = Et

2E = −
( ν

πω

)1/2 k2

2ω
1

cosh2 (kH)
J(t),

J(t) = Im I(t) =
∫ ωt

0
Θ−1/2 sin (Θ) dΘ →

(π

2

)1/2
, as ωt → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.32)

In order to take account of bottom turbulence (2.29) is replaced by (see e.g. Hasselmann
& Collins 1968)

τb[t] = ρwCD|φx|φx, on y = −H, (2.33)

where CD is a dimensionless drag coefficient (often CD = 0.0015 is constant). In this case,
the bottom boundary condition is (2.30) with τb now given by τb[t]. Here, we note again
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Wind-induced wave groups in water of finite depth

that at the bottom y = −H, v = 0, φy = ψx and so

Et(y = −H) = 〈−[φyφt]〉 = 〈−[ψxφt]〉 = 〈−[ψtφx]〉 , where ψt = τb

ρw
. (2.34)

To proceed, the expression in (2.32) is replaced by an expression for Δ3[t]:

2EΔ3[t] = Et = −
〈[
φx
τb[t]

ρw

]
(y = −H)

〉
= −〈[φxCD|φx|φx] (y = −H)〉 ,

φx(y = −H) =
[ ωA

sinh (H)
exp (ikx − iωt)+ c.c.

]
,

Δ3[t] = − 16CDωk|A|
3 cosh kH sinh2 (kH)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.35)

which gives a connection between ν and CD.

2.3. Wind forcing
In general an analogous set of equations is required for the air flow, with coupling to the
water flow at the common free surface. Rather than deal with a complicated two-fluid
system, we follow the pioneering approach of Miles (1957) and seek an expression for
Pa(x, t) directly in terms of η(x, t), as this would then close the water wave modified
potential flow equations (2.10)–(2.13). For small-amplitude waves, it is sufficient to use
the linearised air-flow equations for the flow about a basic horizontal wind shear profile
W(y) > 0 which vanishes at the air–water interface, W(0) = 0. Miles (1957) showed that
if η is given by the small-amplitude periodic wave (2.7) then

Pa

ρa
= (αkη + βηx)W2

r = (α + iβ)kW2
r A exp (ikx − iωt)+ c.c., (2.36)

where α, β are dimensionless parameters determined from the air-flow solution (see § 3),
ρa is the air density and Wr is an appropriate reference velocity measuring the wind speed
near the surface. Following Miles (1957) and many subsequent works, one choice is that
Wr = u∗κ−1 m s−1, where u∗ m s−1 is the friction velocity for wind over water and κ

is the von Kármán constant. The friction velocity u∗ is determined empirically, and has
typical values ranging from about 0.05 m s−1 in light winds to about 1.0 m s−1 in strong
winds. We will choose u∗ = 0.36 m s−1 so that the reference velocity Wr = 0.9 m s−1.
Estimates for the parameters α, β were given by Miles (1957) and in many subsequent
papers by him and others, and depend on the wind shear profile. Using a logarithmic wind
shear profile (see § 3.2), Miles (1957) initially estimated that β ≈ 10 at its maximum value
when c ∼ 4Wr, but based on more accurate numerical calculations this was later revised
to β ≈ 3 (Miles 1959). We re-examine this again in § 3.

As in Miles (1957), Janssen (2004), Kharif et al. (2010) and many other works, it is
useful to expand the dispersion relation (2.16) to take account of the weak frictional and
forcing effects. The outcome is

D(ω, k)η ≡ {ω2 − k tanh (kH)}η = k tanh (kH)
(

Pa

ρw

)
+ 4νk2ηt +

(
τa

ρw

)
x
− sech(kH)

(
τb

ρw

)
x
.

(2.37)

The wave stress τa at the free surface is given by the turbulent expression (2.27), and at
the bottom the wave stress τb is given by the laminar expression (2.29) or by the turbulent

985 A2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.237


M. Maleewong and R. Grimshaw

expression (2.33). Here we note that the term proportional to β in (2.36) for Pa implies
by itself that the frequency must be complex-valued, ω = ωr + iωi where ωi > 0 implies
instability. Since ρa/ρw 
 1, it follows that ωi/ωr 
 1 and at leading order ωr, k satisfy
the dispersion relation (2.16). Considering just Pa, substituting from (2.36) and expanding
D for small ωi leads to

ωi

ωr
= ρa

ρw

1
2
βkW2

r . (2.38)

Similar expressions generating ωi /= 0 can be found from τa, τb and are described later.
In (2.38) only the contribution from Pa which is in phase with the free-surface slope is
needed (see Kharif et al. 2010), showing that β > 0 for instability. Here we have assumed
for simplicity that k is real-valued, and that k, ωr, cr = ωr/k > 0. But we note that for wave
groups the group velocity cg = ωk must be real-valued, implying that the wavenumber k
should also be complex-valued with ωi ≈ cgki (see Grimshaw 2018, 2019b). However,
for simplicity and in accordance with the usual convention we assume here that k is
real-valued, with both ωr, k > 0. If we omit the term in α in (2.36) then the system
(2.10)–(2.13) is closed with the pressure condition Pa = ρaW2

r βηx independently of the
periodic wave assumption (2.7). The growth rate Δ1 arises from this modified pressure
term (2.36). Using (2.20)–(2.22), or more directly from (2.38) it is expressed here in
non-dimensional variables:

Δ1 = ρa

2ρw
βωrkW2

r , (2.39)

which agrees with that in Maleewong & Grimshaw (2022a,b). Note that the critical layer
instability mechanism of Miles (1957) requires that cr = ωr/k > 0 and soΔ1 > 0 in (2.39)
as required.

Here we add to that the friction terms with coefficient ν and wind stress driving term due
to τa; see (2.25) and (2.27). For the first part, it is sufficient to use the linearised equations
and replace 2νηxx, 2νφxx in (2.11) and (2.12) with −2k2νη, −2k2νφ, respectively. In effect
−iω is replaced with −iω + 2k2ν and so At in (4.2) (see § 4) is replaced with At + 2k2νA.
This also follows from the expanded dispersion relation (2.37) where the last term on the
right-hand side is −4νiωk2η. Then expanding the left-hand side as in (2.38) shows that
ωi ≈ −2νωk2 as before. The contribution Δ2[s] to the growth rate Δ2 is found from this
expression, or from (2.20), and expressed here in non-dimensional coordinates:

Δ2[s] = −2k2ν. (2.40)

This agrees with the expression in Leblanc (2007) and Kharif et al. (2010). The second
part generates a contributionΔ2[t], where again using (2.20) and that τa is given by (2.27):

2EΔ2[t] =
〈[
φt

∫ t

0

(
τa

ρw

)
x

dt
]
(y = η)

〉

=
〈[
φt

∫ t

0

ρa

ρw
(cd|Wa|Wa)x dt

]
(y = η)

〉

=
〈[
φx
ρa

ρw
cd|Wa|Wa

]
(y = η)

〉
. (2.41)

To estimate the near-surface wind Wa we put Wa ≈ ua, the horizontal air-flow velocity
at the free surface found from the linearised air flow equations (see (3.1) in § 3.1). As in
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Wind-induced wave groups in water of finite depth

Miles (1957), we use these to show that ρacua = Pa, where Pa is given by (2.36), so that

ua = αW2
r

c
(αkη + βηx). (2.42)

At the free surface cφx = η to leading order, see (2.12), and so from the expression (2.41)
we see that the maximum contribution toΔ2[t] will come from the terms in ua proportional
to η. Hence as an estimate we set

ua = Uakη, where Ua = αW2
r

c
. (2.43)

As α, like β, is not known at present, but both are O(1) dimensionless parameters, we
maximise this contribution by choosing α = αM the maximum positive value found in our
long-wave approximation described in § 3.1. Thus finally (2.27) becomes

τa

ρa
= cdU2

ak2|η|η, (2.44)

and then (2.41) is given by

Δ2[t] = ρa

ρw
cdU2

a
16k2|A|

3c
, (2.45)

where cd is evaluated at a representative value cd = 0.0028 (see Tang et al. 1996). We
note here that Branger et al. (2022) showed from several laboratory experiments that cd
had a dependence on the depth for very shallow water, kh < 1.8. We attribute this to the
higher and steeper waves that form in shallow water and take account of this through the
dependence of Wa = ua on the wave amplitude that we have developed here in (2.43).
Note that Δ2 = Δ2[s] +Δ2[t] is composed of two contributions. The first Δ2[s] (2.40) is
due to frictional boundary layer in the water and is negative. The second Δ2[t] (2.45) is
due to wave stress in the air boundary layer at the free surface and is positive, increasing
with wave amplitude A. The sum Δ2 can be positive or negative.

3. Linearised air flow equations

3.1. Formulation and long-wave approximation
As in Miles (1957) and in many works by him and others, the air flow is described by
equations linearised about a wind shear profile W(y) which in the inviscid limit leads to
the well-known Rayleigh equation. Here we follow the approach used by Grimshaw (2018,
2019a). In standard notation for air of constant density ρa and for inviscid flow, using our
non-dimensional variables the equations are

ρa(DWu + vWy)+ px = 0, (3.1)

ρaDWv + ρa + py = 0, (3.2)

ux + vy = 0, (3.3)

where DW = ∂

∂t
+ W

∂

∂x
. (3.4)

To ensure that the wind generates wind waves in the positive x direction, we assume that
W(y) > 0, y > 0, with W(0) = 0, and further that the wind is monotonically increasing
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with height, Wy > 0. Further as y → ∞ we require that W → W0, a constant. Next we
introduce the vertical particle displacement ζ defined in this linearised formulation by

DWζ = v. (3.5)

The substitution of v by ζ and eliminating u, p yields a single equation for ζ :

(D2
Wζy)y + (D2

Wζ )xx = 0. (3.6)

This equation is supplemented with the boundary conditions that as y → ∞, ζ → 0 and
as y → 0, ζ → η and p → Pa.

Since our concern is with wave groups, we seek an asymptotic solution of (3.6) in the
form, analogous to (2.7) for η,

ζ = A(x, t)ϕ(y) exp (ikx − iωt)+ c.c. (3.7)

Here A(x, t) is a slowly varying wave packet amplitude of a carrier wave with frequency
ω = kc, wavenumber k and phase velocity c. Substitution of (3.7) into (3.6) yields at
leading order the modal equation for the modal function ϕ(y):

((W − c)2ϕy)y − k2(W − c)2ϕ = 0. (3.8)

Expressed in terms of v from (3.5) this is the well-known Rayleigh equation for a shear
flow. The modal function ϕ is normalised by ϕ(y = 0) = 1 so that ζ(y = 0) = η. Then the
required relation between the surface pressure Pa and the surface displacement η is given
by

Pa = ρac2ϕy(0)A(x, t) exp (ikx − iωt)+ c.c.,

η = A(x, t) exp (ikx − iωt)+ c.c.

}
(3.9)

Within this linear approximation elimination of A(x, t) exp (ikx − iωt) yields the desired
relation (2.36) in terms of ϕy(0):

(α + iβ)kW2
r = c2ϕy(0) = −

∫ ∞

0
k2(W − c)2ϕ dy. (3.10)

Here the alternative integral expression, obtained by integration of (3.8), is related to that
used by Miles (1957) but will not be used here. The parameters α, β can now be obtained in
terms of the available physical parameters. Importantly the frequency ω and wavenumber
k in the modal (3.8) must be complex-valued with albeit small imaginary parts ωi, ki
while keeping the group velocity ωk real-valued (see Grimshaw 2018, 2019b). But here
for simplicity we take the conventional view that k is real-valued.

The modal equation only rarely has analytic solutions for the considered realistic wind
shear profiles W(y). We assume that W(y) is smooth, vanishes at y = 0,W(0) = 0 and
is monotonically increasing with height y in a domain 0 ≤ y ≤ y0 where Wy > 0, and in
addition we assume that for y ≥ y0,W = W(y0) = W0 is a constant. In particular there are
no exact analytic solutions for the commonly used logarithmic wind shear profile of § 3.2
(see Miles 1957; Janssen 2004). Thus the modal equation requires a detailed asymptotic
analysis to yield explicit expressions for α, β. To achieve this, it is customary to take the
limit ρa/ρw → 0, ρa and ρw being the air and water densities, when ci = Im c → 0. Then
various approximations have been used which generally require evaluation of the modal
function near a critical level yc where W(yc) = cr = Re c and there is a singularity in the
modal equation (3.8). Indeed a critical-level singularity causes wind wave generation, first
shown by Miles (1957) in his pioneering seminal paper.
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Before proceeding with our asymptotic analysis, it is useful to note the invariant

N ≡
∫ ∞

0
(W − c)2[ϕ2

y + k2ϕ2] dy + c2ϕy(0) = 0. (3.11)

This is an expanded dispersion relation, equivalent to (2.37) when only the forcing term
due to Pa is included. Next, in y ≥ y0 where W = W0 is a constant,

ϕ(y) = D0 exp (−k(y − y0)), y ≥ y0, (3.12)

where D0 is the constant amplitude at y = y0, and we assume that k is real-valued and
positive. It then follows that

N ≡
∫ y0

0
(W − c)2[ϕ2

y + k2ϕ2] dy + D2
0k(W0 − c)2 + c2ϕy(0) = 0. (3.13)

As mentioned above, the modal equation (3.8) usually does not have analytic solutions
and hence approximations are needed to find explicit expressions for α, β. For the
logarithmic profile of § 3.2, Miles (1957) used the simple approximation that ϕ(y) ∝
exp (−ky) expressed here in our formulation and notation. This is exact for y → ∞ but
does not capture the critical-level structure. Miles (1957) addressed this failing by using the
integral expression in (3.10) to find an expression for β, which suggested a maximum value
of β ≈ 10. Later this was reduced by Miles (1959) to a maximum value of β ≈ 3 based
mainly on a numerical solution. In the literature there are several other approximations that
have been used, many based on moving the lower air-flow boundary from y = 0 to y = y∗,
the roughness length scale, and then analysing the near-surface turbulent air flow. A series
of papers (Montalvo et al. 2013a,b; Latifi et al. 2017; Branger et al. 2022) used a two-term
critical-level Bessel function approximation to represent the modal function, sometimes
combined with the lower boundary modification. These and other approximations give
similar O(1) estimates for β.

Here we use a long-wave approximation similar to those used by Janssen (2004) and
Grimshaw (2018, 2019a). We assume that in the domain 0 < y < y0 the term (W − c)2k2ϕ
in (3.8) is neglected, formally valid when |ky| 
 1, and in particular, |kyc| 
 1. Then an
approximate asymptotic solution is

ϕ ≈ 1 + D
∫ y

0

dy
(W(y)− c)2

, 0 < y < y0, (3.14)

where the constant D is determined by matching with the exact solution (3.12) in
y ≥ y0. Across y = y0 both ϕ, ϕy are continuous, since ζ, pa must be continuous. This also
follows from integration of the modal equation (3.8) over a small interval about y = y0.
The approximation (3.14) is expressed in non-dimensional variables; when put back into
dimensional variables the constant Dn in (3.14) is replaced by Dd = gDn. We note here that
the constant D0 in (3.12) is dimensionless. Substitution of (3.14) into (3.13) and neglecting
the corresponding term proportional to k2 in (3.13) yields

N ≡ D2
∫ y0

0

dy
(W − c)2

+ D2

k(W0 − c)2
+ D = 0. (3.15)

Here we have used the continuity of ϕy across y = y0 so that kD0(W0 − c)2 = −D and
noted that c2ϕy(0) = D. The invariant (3.15) can be used to give an expression for D. This
approximation (3.14) captures the two leading terms at the critical level, is formally valid
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for all 0 ≤ y ≤ y0 and matches to the exact solution in y > y0. As such, we believe it is an
improvement over similar approximations in the literature.

Since in the domain of interest Wy > 0 we can change the integration variable in (3.14)
from y to W to yield∫ y

0

dy
(W(y)− c)2

= M(W) =
∫ W

0

S(W) dW
(W − c)2

, S(W) = 1
Wy
, 0 < W < W0, (3.16)

where Wy is expressed as a function of W. Then an integration by parts yields

M(W) = −
[ S
(W − c)

]W

0
− I(W),

I(W) =
∫ W

0

K dW
(W − c)

, K = −SW = Wyy

W3
y
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.17)

Note that the term I(W) in (3.17) depends on the curvature expression K. The invariant
approximation (3.15) becomes

N ≡ D2
(
M(W0)+ 1

k(W0 − c)2

)
+ D = 0. (3.18)

As noted above, (3.18) yields an expression for D:

D
(
M(W0)+ 1

k(W0 − c)2

)
= −1. (3.19)

In the limit ci → 0 the integral term I has a singularity at W = cr, y = yc and is
evaluated by assuming that ci > 0, and then taking the limit ci → 0+. This yields the
Frobenius expansion when W0 > W > Wc = cr:

I(W) = P
∫ W

0

K dW
(W − cr)

+ iπKc, Kc = K(W = Wc = cr). (3.20)

The imaginary term is proportional to the curvature expression Kc and in the real term
P

∫
denotes the principal value integral. It is evaluated by putting the curvature expression

K = Kc + (K − Kc) so that

I(W) =
∫ W

0

(K − Kc)

(W − cr)
dW + Kc ln

[
(W − cr)

cr

]
+ iπKc. (3.21)

In y > y0 where W = W0 is a constant, ϕ(y) is given by (3.12). Across y = y0 both ϕ
and ϕy are continuous and then from (3.16)

D0 = 1 + D
([

− S
(W − c)

]W0

0
− I(W0)

)
,

−kD0 = D
(W0 − c)2

.

⎫⎪⎪⎬
⎪⎪⎭ (3.22)

Elimination of D0 yields the expression for D:

D
([ S
(W − c)

]W0

0
− 1

k(W0 − c)2
+ I(W0)

)
= 1, (3.23)

where I(W0) is given by (3.21). This agrees with the expression (3.19) from the invariant
N . In the limit ci → 0+, I(W0) is evaluated from (3.21) and the only imaginary part is the

985 A2-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.237


Wind-induced wave groups in water of finite depth

second term proportional to the curvature expression Kc. Thus,

D = 1
E + iπKc

,

E =
[ S
(W − cr)

]W0

0
− 1

k(W0 − cr)2
+

∫ W0

0

(K − Kc)

(W − cr)
dW + Kc ln

[
(W0 − cr)

cr

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.24)

where E is real-valued. In order to obtain an explicit expression for the integral term in
(3.24) we use a simple approximation based on a one-term Taylor series expansion:∫ W0

0

(K − Kc)

(W − Wc)
dW ≈ KWcW0, KWc = KW(W = Wc), KW = ∂K(W)

∂W
= Ky

Wy
.

(3.25)

For the typical wind shear profiles that we consider, this is an underestimate, although it
is exact for certain algebraic profiles for which KW is a constant (see § 3.3). Thus the final
expression for E that we will use is

E =
[ S(W0)

(W0 − cr)
+ S(0)

cr

]
− 1

k(W0 − cr)2

+ KWcW0 + Kc ln
[
(W0 − cr)

cr

]
. (3.26)

Before proceeding we note that (3.26) is expressed in non-dimensional variables. In
dimensional variables Ed = Eng−1, where the same expression as (3.26) holds for Ed.

Since c2ϕy(0) = D from (3.14), substitution into (3.9) and using (3.24) yields
expressions for α, β:

(α + iβ)kW2
r = D, αkW2

r = E
E2 + (πKc)2

, βkW2
r = − πKc

E2 + (πKc)2
. (3.27)

Then since β > 0 for instability we require that Kc < 0, that is, from (3.17), Wyy(W =
Wc = cr) < 0, as is now very well known from the work of Miles (1957). This is
the essential condition for a critical-level instability. Note that with Wyy < 0, Wy > 0
decreases as y increases. The expression (3.27) shows that α, β for a fixed wave frequency
ω depend on cr = ωk−1 and the parameters of the wind shear profile, these latter occurring
only in E. One important parameter of the wind shear profile is the choice of the limiting
velocity W0. It is constrained so that W0 > Wc for all depths to ensure that there is always
a critical level. As we discuss further below and in §§ 3.2–3.4 for specific wind shear
profiles, W0 is chosen to yield the maximum value of β. For the wave parameters we
select a frequency ω for a 5 s wave when ω = 1.26 s−1; then the wavenumber k comes
from the linear dispersion relation (2.16) where k depends on the depth H, (2.17a,b).
We recall that then the scaling parameters are Ω = 1.257 s−1,K = 0.161 m−1,ΩK−1 =
gΩ−1 = 7.81 m s−1. The critical level y = yc is where W(yc) = Wc = cr. In deep water
for a 5 s wave, cr = 7.81 m s−1 and decreases as H decreases. Then we require that
W0 > 7.81 m s−1. In practice we impose a lower bound W0 ≥ W0L = W(2yc), where
here yc is the critical level in the deep-water limit, H → ∞. For an upper bound we
impose W0 ≤ W0U = W(200yc), where W0U < W∞ = W(y → ∞). These can be relaxed
if needed provided that always cr < W0 < W∞.
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Since the wind shear profile W(y) does not depend on the wave parameters ω, k, or on
the depth parameters H,Q, the dependence of E (3.26) on these parameters and especially
on H,Q is entirely through its dependence on the phase velocity cr including the terms
Kc,KWc. Since cr = ωk−1 where ω is fixed, cr decreases monotonically as H,Q decrease
since k increases monotonically; see (2.17a,b). Based on the explicit results for the specific
wind shear profiles, logarithmic, algebraic and exponential, that we consider in §§ 3.2–3.4,
we expect E to initially increase as H decreases from infinity and to eventually reach a
maximum value when H is quite small. For very small H with a fixed ω, k ∝ H−1/2, cr ∝
H1/2. The behaviour of E as H → 0 is controlled by two singularities: the first is the term
S(0)/cr which by itself causes E to increase to positive infinity; the second is the term
−Kc ln cr which by itself causes E to decrease to negative infinity. Although the second
singularity is weaker than the first, we find that initially it dominates as cr decreases, but at
a certain very small value of cr (Wr for the logarithmic profile) there is a turning point in
E after which E increases to positive infinity as H−1/2. Correspondingly in this final limit
α, β → 0 as H,H3/2, respectively. But we emphasise that these asymptotic limits occur in
practice only for unrealistic small depths.

For fixed wave parameters and depth parameters H,Q, the dependence of α, β on the
shear profile parameters, such as W0, is entirely through E (3.26). In particular through the
choice of W0, where the extreme values of α, β as W0 varies are found from (3.27):

∂β

∂W0
kW2

r = 2πKcEEW0

(E2 + (πKc)2)3
,

∂α

∂W0
kW2

r = ((πKc)
2 − E2)EW0

(E2 + (πKc)2)3
, (3.28)

where

EW0 = ∂E
∂W0

= − S(W0)

(W0 − cr)2
− K(W0)

(W0 − cr)
+ 2

k(W0 − cr)3
+ KWc + Kc

1
(W0 − cr)

.

(3.29)

One set of extreme values is determined by those W0 such that EW0 = 0 and then α, β
have simultaneous extreme values. But for typical wind shear profiles and in our parameter
range for W0, EW0 /= 0 (see §§ 3.2–3.4 for logarithmic, algebraic and exponential profiles).
Otherwise the extreme values of α, β are determined by particular values of E. Parameter
β has a single maximum at E = 0 (where α = 0):

[max]β = βM = − 1
(πKc)(kW2

r )
, (3.30)

and α has maximum, minimum values at E = ∓(πKc) where

[max,min]α = αM,m = ∓ 1
2(πKc)(kW2

r )
= ±βM

2
. (3.31)

Parameter βM is independent of W0 as it occurs at a specific value of W0 = WβM . But it
does depend on the depth H, and as H decreases with ω fixed, k increases, see (2.17a,b),
and so cr = ωk−1 decreases:

∂βM

∂cr
= KWc

(πK2
c)(kW2

r )
− 1
(πKc)(ωW2

r )
= KWccr − Kc

(πK2
c)(ωW2

r )
. (3.32)

This is negative for cr > cM = Kc/KWc and becomes positive for cr < cM . For the typical
wind shear profiles, logarithmic, algebraic and exponential that we consider in §§ 3.2–3.4,
cM < cr(H → ∞) and so βM at first increases as H, cr decrease until cr = cM and then
decreases to 0 as H → 0, where βM ∝ H1/2. Also for these wind shear profiles WβM
decreases as H decreases.
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Wind-induced wave groups in water of finite depth

3.2. Logarithmic wind shear profile
The most commonly used wind shear profile is the logarithmic wind shear profile, used by
Miles (1957, 1959), as for turbulent flow near the interface it is supported by theory and
experiment. It is given here by

W(y) = Wr ln
[
1 + y

ys

]
, 1 + y

ys
= exp (W/Wr),

Wy = Wr

(ys + y)
, S = ys

Wr
exp (W/Wr), K = − ys

W2
r

exp (W/Wr), KW = K/Wr.

⎫⎪⎪⎬
⎪⎪⎭
(3.33)

Miles (1957) and many others put W(y) = Wr ln (y/ys) rather than (3.33), requiring the
lower boundary to be moved from y = 0 to y = y∗ to avoid the singularity at y = 0, and
then needing analysis of the region 0 < y < y∗ with matching to y > ys (see the recent
work by Abid et al. (2022) for instance). The form (3.33), also used by Janssen (2004),
avoids this technical difficulty and has W(0) = 0 as required. The two expressions differ
by less than 1 % for y/ys > 40. The expression (3.26) for E becomes

E = ys

Wr

[
exp (W0/Wr)

(W0 − cr)
+ 1

cr

]
− 1

k(W0 − cr)2
+ KWcW0 + Kc ln

[
(W0 − cr)

cr

]
,

where Kc = − ys

W2
r

exp (cr/Wr), KWc = −ys exp (cr/Wr)

W3
r

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.34)

There are two important parameters: the length scale ys and the limiting velocity W0. A
common choice for ys is y∗, the roughness length scale, usually determined empirically but
can be estimated as y∗ = c∗u2∗g−1 m, where the Charnok parameter c∗ = 0.015. Here we
set u∗ = 0.36 m s−1 , and then ys = 0.0002 m. As this may be too small for our purposes,
we also considered another case with an increased value ys = 0.001 m, based on the ad
hoc criterion that ys is approximately one-tenth of the wave height, where here we consider
small-amplitude waves. The results overall were similar, but with a smaller value for β by
a factor of around 5, to be expected as then Kc,E increase by around the ratio of the
respective ys values. In the following we put ys = 0.0002 m.

We use the parameters of a 5 s wave, that is,Ω = 1.257 s−1, K = 0.161 m−1, ΩK−1 =
7.811 m s−1, so that in deep water we set ω = 1.257 s−1 (1); k = 0.161 m−1 (1); cr =
7.811 m s−1 (1), where the non-dimensional values are (·). With these parameters, the
lower bound W0L = 8.43 m s−1 (1.08). The plots of α, β as a function of W0 are shown
in figure 1 for the deep-water limit H → ∞. In agreement with the preceding discussion
around equations (3.30) and (3.31) there is a pronounced maximum value of β = βM =
1.690 at W0 = WβM = 11.25 m s−1 (1.44) where E = 0, and for α there is a maximum of
0.845 at W0 = WαM = 11.56 m s−1 (1.48) and a minimum of −0.845 at W0 = Wαm =
10.81 m s−1 (1.40) where E = ∓(πKc) = ±4.554 m−1 s2, respectively. Hence we set
W0 = W0B = 11.25 m s−1 (1.44) for all depths H which satisfies the constraint cr <
W0L < W0 < W0U < w∞. In summary we consider a 5 s wave, with ω fixed and k(H)
found from the linear dispersion relation (2.16) with ys = 0.0002 m (0.000032) and
W0 = W0B = 11.25 m s−1 (1.44).

The outcomes for E, α, β as functions of H are shown in figures 2 and 3 for several W0

around the benchmark value W0 = W0B = 11.25 m s−1. As expected from the preceding
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Figure 1. Plots of α, β for the logarithmic wind shear profile (3.33), with ys = 0.0002 m, for a 5 s wave in
deep water. (a) Plot of β versus W0; maximum of β = 1.690 at W0 = 11.252 m s−1. (b) Plot of α versus W0;
maximum of α = 0.845 for W0 = 11.563 m s−1 and minimum of α = −0.845 for W0 = 10.805 m s−1.
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E

Figure 2. Plot of E as a function of H as W0 is varied around W0B = 11.25 m s−1 for the logarithmic wind
shear profile (3.33), with ys = 0.0002 m, for a 5 s wave.
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Figure 3. Plots of α, β as functions of H for the logarithmic wind shear profile (3.33) with ys = 0.0002 m,
for a 5 s wave, as W0 is varied around W0B = 11.25 m s−1: (a) β versus H; (b) α versus H.
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Wind-induced wave groups in water of finite depth

discussion, in all cases E is constant in the deep-water limit H → ∞, zero for the
benchmark W0B, positive for W0 > W0B and negative for W0 < W0B. Then as Q,H, cr
decrease E increases to a positive maximum and then decreases. The final stage when
E again increases occurs for a very small H, too small to show on these plots. For this
logarithmic wind shear profile this last turning point is less than cM = Kc/KWc = Wr =
0.9 m s−1 which in turn is less than the smallest cr = 1.39 m s−1 shown in figure 2.
This smallest value shown is for Q = 0.18 when the depth h = 0.2 m, H = 0.032; this is
physically unrealistic for the nearly frictionless model we are using. Both α and β approach
constant values in the deep-water limit H → ∞. For W0 = W0B = 11.25 m s−1 when
E = 0 in the deep-water limit, β reaches a maximum βM = 1.745 at H = 2.769, while α
has a maximum αM = 1.176 at H = 1.738 and a minimum αm = −0.027 at H = 5.650 as
predicted; see (3.30) and (3.31). For W0 > W0B, E > 0, β decreases as the depth decreases,
while α at first increases with a barely discernible maximum before decreasing. Both
α, β → 0 as H → 0. When W0 < W0B, E < 0, in the deep-water limit β tends to a positive
value less than for W0 = W0B, while α tends to a negative value. Interestingly, however,
there are now marked increases in magnitude to a maximum for both α, β, more marked
the further W0 is decreased.

We will use β = 1.745 hereafter as it is O(1) and consistent with the many estimates
in the literature. Miles (1959) found a maximum for β of around 3 from a numerical
solution, but that was for a smaller value of cr. Using the same cr as here, the value of β in
Miles (1959) is reduced by about one-third, lending confidence to our approximation for
β. Nevertheless, there is a substantial spread in the literature for β depending on the wind
shear profile, the wave parameters and the approximation method.

3.3. Algebraic wind shear profile
Next we consider the algebraic profile, chosen here because it can eliminate the necessity
for the approximation (3.25) of the integral term in (3.24). These are a family of profiles:

W(y) = Wr

[(
1 + y

ys

)1/n

− 1
]
, 1 + y

ys
=

[
(W + Wr)

Wr

]n

,

Wy = Wr

nys

(
1 + y

ys

)−1+1/n

, S = nys

Wr

[
(W + Wr)

Wr

]n−1

,

K = −n(n − 1)ys

W2
r

[
(W + Wr)

Wr

]n−2

, KW = −n(n − 1)(n − 2)ys

W3
r

[
(W + Wr)

Wr

]n−3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.35)

Here the index n = 2, 3, . . . is an integer, and again ys is a suitable length scale. The
expression (3.26) for E becomes

E = S(W0)

(W0 − cr)
+ S(0)

cr
− 1

k(W0 − cr)2
+ KWcW0 + Kc ln

[
(W0 − cr)

cr

]
. (3.36)
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Figure 4. Plots of α, β for the algebraic wind shear profile (3.35) when n = 2, with ys = 1 m, for a 5 s wave
in deep water. (a) Plot of β versus W0; maximum of β = 0.99 at W0 = 39.17 m s−1. (b) Plot of α versus W0;
maximum/minimum of α = ±0.49 for W0 = 12.97, 567.57 m s−1 (not shown here as out of range).

The main cases of interest here are n = 2, 3, 7:

n = 2 : S = 2ys(W + Wr)

W2
r

, K = −2ys

W2
r
, KW = 0,

n = 3 : S = 3ys(W + Wr)
2

W3
r

, K = −6ys(W + Wr)

W3
r

, KW = −6ys

W3
r
,

n = 7 : S = 7ys(W + Wr)
6

W7
r

, K = −42ys(W + Wr)
5

W7
r

, KW = −210ys(W + Wr)
4

W7
r

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.37)

In the first two cases, n = 2, 3, KW is a constant, and so the integral approximation (3.25)
is exact. The case n = 7 has been used as a representation for very-near-surface turbulent
wind (see e.g. Counihan 1975; Hsu, Meindl & Gilhousen 1994), though not nearly as
commonly as the logarithmic wind shear profile. We again set Wr = 0.9 m s−1 but the
value of ys is more difficult to determine here. From (3.30) βM = −1/(πKc)(kW2

r ) is
proportional to y−1

s and if ys is too small, β is too large. To achieve some consistency
with the logarithmic profile of § 3.2 here we choose ys so that in the deep-water limit
βM has a comparable value to that for the logarithmic profile. Hence from (3.33) a factor
proportional to exp (cr/Wr) is needed to adjust ys and so here we set ys = 1 m. Plots of
α, β versus W0 are shown in figure 4 for n = 2, from which we choose the benchmark
value W0 = W0B = 39.17 m s−1. As expected in the deep-water limit β has a maximum
of βM = 0.99 at E = 0, and α has maximum and minimum values of ±βM/2 at E =
∓πKc = ±7.76, W0 = 12.97 m s−1, 567.57 m s−1; these values are not seen in figure 4
as the relationship between E and W0 is highly nonlinear, but are confirmed in a more
detailed plot with larger range of W0 (not shown here). The case n = 3 is not shown here,
but is similar with much smaller values for α, β, for instance βM = 0.034. The case n = 7
produced values for α, β much smaller even than the case n = 3, and so these are not
shown here.
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Wind-induced wave groups in water of finite depth

3.4. Exponential wind shear profile
Our third choice is an exponential profile, similar to, but simpler than, a hyperbolic tangent
profile. It was shown by Miles in the appendix to the paper by Morland & Saffman
(1993) that the modal equation (3.8) could be solved exactly in terms of a hypergeometric
function, leading to an exact analytic expression for β. But we will not use that here as it is
quite complicated to express, and our purpose is to evaluate the approximate expressions
(3.27). This profile was also examined by Young & Wolfe (2014), Bonfils et al. (2022)
and Abid & Kharif (2023), sometimes with an extension into the water to account for a
wind-driven surface drift layer:

W(y) = W∞(1 − exp (−y/ys)),
y
ys

= ln
[ W∞
(W∞ − W)

]
,

Wy = W∞
ys

exp (−y/ys), S = ys

(W∞ − W)
,

K = − ys

(W∞ − W)2
, KW = − 2ys

(W∞ − W)3
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.38)

The expression (3.26) for E becomes

E = ys

W∞

[
W∞

(W0 − cr)(W∞ − W0)
+ 1

cr

]
− 1

k(W0 − cr)2
+ KWcW0 + Kc ln

[
(W0 − cr)

cr

]
,

Kc = − ys

(W∞ − cr)2
, KWc = − 2ys

(W∞ − cr)3
.

⎫⎪⎪⎬
⎪⎪⎭

(3.39)

Here W(y) → W∞ as y → ∞ and it turns out that the choice of W∞ and ys is quite
sensitive. For instance if W∞ = 20 m s−1, ys = 10 m led to W0B = 13.15 m s−1, βM =
36.30, which seems too large by an order of magnitude. Decreasing ys or increasing
W∞ led to an even larger value. As a guide we note that Morland & Saffman (1993)
put W∞ = 20u∗ and showed that then the growth rate depended on the single parameter
� = 2ysg/W2∞. With our u∗ = 0.36 m s−1, this leads to W∞ = 7.2 m s−1, much smaller
than we have used for the two other profiles, but in the range used by Young & Wolfe
(2014). Then � = 0.1 yielded ys = 0.26 m, W0B = 3.35 m s−1, βM = 3.45 which is very
consistent with the calculation of Morland & Saffman (1993). However, decreasing� and
so decreasing ys, or increasing W∞ led to unsatisfactorily large values of βM , as can be
seen in Morland & Saffman (1993). We conclude that although this wind shear profile
looks promising because it is simple and the modal equation has an analytical solution, it
is unsuitable in practice as it is very sensitive to the profile parameters.

4. Forced NLS equation

In the absence of wind forcing, the full Euler equations can be reduced to a NLS equation
for the description of a weakly nonlinear wave packet (see Benney & Newell 1967;
Zakharov 1968; Hasimoto & Ono 1972; Grimshaw 2007). In the presence of wind forcing
the outcome is a fNLS equation (see e.g. Leblanc 2007; Touboul et al. 2008; Kharif et al.
2010; Montalvo et al. 2013b; Onorato & Proment 2012; Brunetti et al. 2014; Slunyaev et al.
2015; Grimshaw 2018, 2019a,b; Maleewong & Grimshaw 2022b, a). Here we give a brief
summary to indicate the forcing term, which contains the growth rateΔ = Δ1 +Δ2 +Δ3
as described in § 2. We then examine eachΔi as a function of depth H, the wave and shear
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profile parameters. We impose a weakly nonlinear asymptotic expansion, expressed here
in the scaled non-dimensional variables:

η = A(x, t) exp (ikx − iωt)+ · · · + c.c., (4.1)

with a corresponding expression for φ(x, y, t). Here c.c. is the complex conjugate and
· · · are higher-order terms in the asymptotic expansion. Term A(x, t) is a slowly varying
amplitude and the expansion is jointly with respect to the amplitude and this slow variation.
Note that the wave height is twice the crest (trough) height above the undisturbed level.

At leading order one gets the linear dispersion relation (2.16). At the next order one finds
that the amplitude A propagates with the group velocity cg (2.18). Second-order terms yield
the second harmonic and a mean flow term. At the third order a compatibility condition
yields the fNLS equation:

i(At + cgAx)+ λAxx + μ|A|2A = i�A. (4.2)

The coefficients μ and λ are given by (see e.g. Hasimoto & Ono 1972)

μ = − ωk2

4 tanh4 (Q)
(9 tanh4 (Q)− 10 tanh2 (Q)+ 9)

+ ω3

2 tanh3 (Q)(H − c2
g)
(2 tanh (Q)(3 − tanh2 (Q))+ 3Q(1 − tanh2 (Q))2), (4.3)

λ = ωkk

2
, Q = kH. (4.4)

Coefficient λ < 0 for all Q while μ < 0 (> 0) according as Q > Qc (Q < Qc), where
Qc = 1.363. In deep water (Q → ∞), μ → −2ωk2 and λ→ −ω/8k2. In the shallow-
water limit H → 0 discussed in § 5, λ→ 0 andμ → ∞ thus invalidating the fNLS model.
For a fixed but small frequency ω, k ∼ ωH−1/2, Q = kH ∼ ωH1/2 as H → 0, and then
λ ∼ −ωH2/2, μ ∼ 9/4ωH3.

In the absence of wind forcing, modulation instability occurs when μλ > 0, that is,
when μ < 0, Q > Qc, leading to the formation of solitons and breathers as models of
wave packet envelopes. In Maleewong & Grimshaw (2022a,b) we showed that inclusion
of wind forcing represented byΔ in (4.2) modulation instability again occurs but the wave
envelope grows exponentially at a rate 2Δ, twice the linear rate. This follows from the
energy law (2.21) which continues to hold for (4.2) with E represented by

∫ ∞
−∞ |A|2 dx.

The total growth rate Δ = Δ1 +Δ2 +Δ3. Term Δ1 (2.39) arises from the modified
pressure term (2.36) and is due to critical-level instability in the air flow. Term Δ2 =
Δ2[s] +Δ2[t] ((2.40) and (2.45)) arises from friction in the near-surface water boundary
layer and turbulent wind stress in the near-surface air flow, respectively. Term Δ3 arises
from the bottom friction term, either laminar (2.32) or turbulent (2.35). For convenience
each of these are repeated here, but using dimensional variables in units of s−1, instead
of non-dimensional variables. At the same time we also express the growth rate ωi for Δ1
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Figure 5. Plot of Δ1 (in units of s−1) versus H, for a logarithmic wind shear profile (3.33) for several W0
around W0B (in units of m s−1).

(2.38) in dimensional variables:

Δ1 = ρa

2ρw
βωr tanh Q

W2
r

c2
r
,

ωi

ωr
= ρa

ρw

1
2g
βkW2

r ,

Δ2[s] = −2k2κ, Δ2[t] = ρa

ρw
cdU2

a
16k2|A|

3cr
,

Δ3[s] = −
(
κ

2ωr

)1/2 gk2

2ωr

1

cosh2 Q
, Δ3[t] = − 16CDωrk|A|

3 cosh Q sinh2 Q
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Each of these is plotted as a function of depth H in figures 5–8 for the logarithmic
wind shear profile (3.33) of § 3.2. In these plots we first choose the scaling parameter
Ω = 2π/5 corresponding to a 5 s wave in deep water. Then K = Ω2/g = 0.161 m−1,
ΩK−1 = gΩ−1 = 7.81 m s−1. EachΔ depends on the wave parameters ω, k and the depth
parameter H, where the linear dispersion relation (2.16) reduces this to just two of these
three wave parameters. In practice, we fix ω = 1.257 s−1 corresponding to a 5 s carrier
wave, and then k is found from (2.16) as a function of H, where k increases as H decreases;
see (2.17a,b). In addition, each Δ depends on other physical parameters associated with
the water and air properties, and on several other parameters associated with the choice
of wind shear profile, importantly α, β,W0B, where for the logarithmic wind shear profile
(3.33) W0B = 11.25 m s−1. In particular we set the non-dimensional drag coefficients
CD, cd ∼ 10−3 and the water kinematic viscosity κ ∼ 10−6 m2 s−1. The surface wind ua
is specified by (2.43).

Figure 5 for Δ1 > 0 ((2.39) and (4.5)) shows a significant increase in magnitude as
H decreases, most marked for very shallow water where H = Kh 
 2, h 
 12.5 m. For
the most part this can be traced to the corresponding change in β shown in figure 3,
and described in § 3.2. For W0 = W0B = 11.25 m s−1, Δ1 approaches a constant value
in the deep-water limit H → ∞, and then as H decreases there is a very slight increase
with a barely discernible maximum before decreasing to zero as the depth H → 0. For
W0 > W0B, Δ1 is smaller and decreases as the depth decreases. When W0 < W0B, Δ1 is
again smaller in the deep-water limit, but as the depth decreases there is now a marked
increase in magnitude to a maximum, more marked the further W0 is decreased. For these
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Figure 6. Plots of (a) Δ2[s] and (b) Δ2[t] (in units of s−1) versus H for a logarithmic wind shear profile (3.33)
when W0B = 11.25 m s−1 and for several wave amplitudes A (in units of m).
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Figure 7. Plot of Δ2 = Δ2[s] +Δ2[t] (in units of s−1) versus H for a logarithmic wind shear profile (3.33)
when W0B = 11.25 m s−1 for several wave amplitudes A (in units of m).
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Figure 8. Plots of (a) Δ3[s] and (b) Δ3[t] (in units of s−1) versus H for a logarithmic wind shear profile (3.33)
when W0B = 11.25 m s−1 for several wave amplitudes A (in units of m).
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Wind-induced wave groups in water of finite depth

parameters Δ1 is quite small generating an e-folding time scale of order 105 s, about one
day. This is because we have evaluated it for a 5 s wave, and the factor exp (cr/Wr) in β,
see (3.34), varies exponentially with cr. Hence we tested this by re-evaluating for a 2.5 s
wave, when cr is reduced from 7.8 m s−1 in deep water to cr = 3.9 m s−1. The outcome is
that β is increased tenfold and Δ1 is reduced to order 10−3 s−1, with a dramatic decrease
in the e-folding time scale to order 103 s, less than one hour. This illustrates the extreme
sensitivity to the choice of parameters.

Figure 6 for Δ2[s] < 0,Δ2[t] > 0 ((2.40), (2.45) and (4.5)) and figure 7 for the sum
Δ2 = Δ2[s] +Δ2[t] show a substantial increase in magnitude as the depth decreases,
due to the decrease in cr as H → 0. This is most marked in very shallow water,
H 
 0.2 for Δ2[s] and H 
 0.02 for Δ2[t]; these shallow depths are too small to be of
much physical interest. In deep water as H → ∞, Δ2[s] → −4 × 10−8 s−1 and Δ2[t] →
[−0.9,−3,−5,−7] × 10−11 s−1 for |A| = [0.01, 0.03, 0.05, 0.07] m; Δ2[s] dominates
over Δ2[t] for this deep-water limit. Here Δ2[s] has an inverse time scale comparable
with Δ1 and they are often compared together in estimating a time scale for critical-level
instability (see Miles 1957; Kharif et al. 2010). For larger depths, H > 1, Δ1 in figure 5 is
of order 10−5 s−1 but as H decreases to the very shallow limit H 
 0.02, Δ2 in figure 7
of order 10−6 s−1 is dominant. Since the expression (2.45) for Δ2[t] has a dependence on
A, the consequent growth in A is algebraic and not exponential; the energy E = E(t = 0)
{1 − C0 t}−2 and becomes singular on a long time scale as the constant C0 ∝ |A|(t = 0).
As H approaches zero Δ2[s] and Δ2[t] are of the same order of magnitude, 10−6 s−1. For
larger depths, H > 1, Δ1 in figure 5 is of order 10−5 s−1 but as H decreases to the very
shallow limit H 
 0.02, Δ2[s] in figure 6 is of order 10−6 s−1 and becomes dominant.
Figure 7 for the sum Δ2 shows that this is negative in deep water but can become positive
for a large enough wave amplitude A as H decreases to a very small value.

For bottom friction, plots of laminar friction Δ3[s] < 0 and turbulent friction Δ3[t] < 0
((2.32), (2.35) and (4.5)) are shown in figures 8(a) and 8(b), respectively. Both are
negative; in the deep-water limit, Δ3[s] has the larger magnitude for all A while Δ3[t] of
order 10−1 s−1 has much the larger magnitude in the shallow-water limit. In the deep-water
limit, Δ3[s] → 0, Δ3[t] → 0 for all A as expected due to the exponential factors in their
respective formulae, (2.32) and (2.35). Both Δ3[s] and Δ3[t] are effectively zero of order
10−13 and 10−17 s−1 for H > 10.

A plot of the combined Δ (2.22), with the bottom stress given by the turbulent
expression, Δ3 = Δ3[t], is shown in figure 9 for the logarithmic wind shear profile (3.33)
and the benchmark parameters W0 = 11.25 m s−1, ys = 0.0002 m for a 5 s wave. There
is a critical depth H∗ ≈ 3.5 such that when H > H∗, Δ approaches a constant, the same
value as in the full deep-water limit. The corresponding depth h∗ ≈ 22 m. In this caseΔ is
not very sensitive to the amplitudes in the range A = 0.01–0.1. The value of Δ is positive
for H > H̃ indicating wave growth, where for these parameters H̃ ≈ 1.75 (h̃ ≈ 11.0 m),
increasing as the wave amplitude increases.

The plots (mostly not shown here) were repeated for the logarithmic wind shear
profile (3.33) for a 5 s wave, varying W0, ys . Overall the results are similar. For fixed
ys = 0.0002 m and W0 = 13 > W0B = 11.25 m s−1, Δ is reduced for all H. But when
W0 = 10 < W0B = 11.25 m s−1 and again for fixed ys = 0.0002 m, Δ decreases slightly
for H < H∗ but then exhibits anomalous behaviour as H → 0, with substantial growth to
a positive value and then eventual decay (see figure 10). On the other hand, as ys is varied
for a fixed W0 = W0B = 11.25 m s−1, we found that for a larger ys = 0.002 mΔ is reduced
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Figure 9. Plot of Δ (in units of s−1) versus H for a logarithmic wind shear profile (3.33) for the benchmark
values W0 = 11.25 m s−1, ys = 0.0002 m.
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Figure 10. Plot of Δ (in units of s−1) versus H for a logarithmic wind shear profile (3.33) for
W0 = 10 m s−1 < W0B, ys = 0.0002 m.

for all H, but for a smaller ys = 0.00002 m Δ increases and the anomalous behaviour at
very small H reappears. We also carried out similar but less detailed examination for Δ as
regards H for the algebraic wind shear profile (3.35) and the exponential wind shear profile
(3.38). The results, not shown here, were broadly similar, albeit with different values for
W0, ys.

5. Shallow water

5.1. Reduction to shallow-water equations
In this subsection we reduce the full system (2.10)–(2.13) to a modified form of the
well-known shallow-water equations, as in Dutykh & Dias (2007) and Dutykh (2009). In
the shallow-water asymptotic limit H → 0, we make the approximation that ∂/∂x 
 ∂/∂y.
Then at leading order φ ∼ Φ(x, t) becomes independent of y and Laplace’s equation (2.10)
yields

φ ∼ Φ(x, t)+ (y + H)φy(y = −H)− (y + H)2

2
Φxx + · · · . (5.1)
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Wind-induced wave groups in water of finite depth

Here φy(y = −H) is given by the boundary condition (2.30). As in Dutykh & Dias (2007)
and Dutykh (2009), it is assumed that the frictional and forcing effects are weak and in
particular this requires that the frictional boundary layers are thin and much smaller than
the depth H, that is, (ν/ω)1/2 
 H. As the depth decreases this requires a much weaker
frictional effect. This is in addition to the requirement that the frictional boundary layers
have small amplitude (ν/ω)1/2 
 |A|.

The free-surface boundary condition (2.12) yields the equation

Φt + 1
2
Φ2

x + η = −Pa

ρw
+ 2νΦxx. (5.2)

The pressure forcing term is given by (2.36) using the shallow-water limits of α, β. The
second equation in this shallow-waterlimit is conservation of mass (2.28) given here by

ηt + ((H + η)Φx)x = 2νηxx −
∫ t

0

(
τa

ρw

)
x

dt +
∫ t

0

(
τb

ρw

)
x

dt. (5.3)

Putting U = Φx as the leading-order horizontal velocity, these take the form (see Dutykh
& Dias 2007)

Ut + UUx + ηx = F1 = −Pax

ρw
+ 2νUxx, (5.4)

ηt + ((H + η)U)x = F2 = 2νηxx −
∫ t

0

(
τa

ρw

)
x

dt +
∫ t

0

(
τb

ρw

)
x

dt. (5.5)

The pressure term Pa is given by (2.36) using the shallow-water limits of α, β, and the
surface wave stress τa is given by the shallow-water limit of (2.44). Similarly the bottom
stress τb is given by the shallow-water limits of either the laminar expression (2.29) or the
turbulent expression (2.33):

τb[s]

ρw
=

( ν
π

)1/2
∫ t

0

Ut(x, t − σ)

σ 1/2 dσ,
τb[t]

ρw
= CD|U|U. (5.6)

In the absence of the frictional effects these are the conventional shallow-water
equations. This can be clearly seen if we replace U by U where

U = U +
∫ t

0

(
τa

Hρw

)
dt −

∫ t

0

(
τb

Hρw

)
dt − 2νηx

H
, (5.7)

which incorporates weak frictional and forcing effects. Then (5.4) and (5.5) become,
keeping just leading-order terms,

Ut + UUx + ηx = −Pax

ρw
+ 4νUxx + τa

Hρw
− τb

Hρw
, (5.8)

ηt + ((H + η)U)x = 0. (5.9)

In the variables U , η (5.4) and (5.5) are the conventional shallow-water equations with a
frictional modification in the momentum equation (5.8).
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5.2. Linearised shallow-water equations
Before proceeding with solutions of the system (5.4) and (5.5) it is useful to examine the
linearised system given by

Ut + ηx = −Pax

ρw
+ 2νUxx, (5.10)

ηt + HUx = 2νηxx +
∫ t

0

(
τb

ρw

)
x

dt. (5.11)

The turbulent term (2.44) for τa is omitted as it is nonlinear. Similarly for bottom stress we
use only the laminar expression (5.6) in these linearised equations.

Eliminating U from the system (5.10) and (5.11), substituting for Pa from (2.36) and for
τb from (5.6) yields

ηtt − Hηxx = −Hk2(αkη + βηx)W2
r + 4νηtxx −

( ν
π

)1/2
∫ t

0

ηxx(x, t − σ)

σ 1/2 dσ. (5.12)

In the absence of pressure forcing and friction (ν → 0) the system (5.10) and (5.11) is the
well-known d’Alembert wave equation and has solutions describing two non-dispersive
waves, moving with speeds ±H1/2 to the right and left, respectively. The dispersion
relation (2.16) correspondingly reduces to

ω2 = Hk2. (5.13)

This can easily be derived from the linearised equations (5.4) and (5.5) or by taking the
limit Q → 0 in the full dispersion relation (2.16); the latter requires that tanh Q ≈ Q, valid
to an error of 1 % when Q < 0.25. Retaining the pressure forcing and friction terms leads
to the expanded dispersion relation; see (2.37):

ω2 − Hk2 = Hk3(α + iβ)W2
r − 4iνωk2 − k2

( ν

ωπ

)1/2
∫ ωt

0

exp (iΘ)
Θ1/2 dΘ. (5.14)

The integral term is the same I(t) as in (2.31) and is evaluated as (π/2)1/2(1 + i) for the
limit ωt → ∞.

We seek solutions of the full system (5.4) and (5.5) and of the linearised system (5.12)
when the initial condition is that for a periodic wave (2.7). Solutions of the full system
(5.4) and (5.5) are described in § 5.3 using Riemann invariants. For this linearised equation
substitution of (2.7) into (5.12) for a slowly varying amplitude A yields at leading order

2iωAt + 2ikHAx = Hk3(α + iβ)W2
r A − 4iωk2νA − k2

( ν

2ω

)1/2
(1 + i)A, (5.15)

where from (2.16) ω = H1/2k is here real-valued. Alternatively (5.15) follows from (5.14)
by replacing ω, k with ω + i∂/∂t, k − i∂/∂x.

The general solution of (5.15) is

A = A0(χ) exp (ΔLt), χ = x − H1/2t,

ΔL = H1/2k2

2
(β − iα)W2

r − 2k2ν − k2

2ω

( ν

2ω

)1/2
(1 − i).

⎫⎪⎬
⎪⎭ (5.16)

The function A0(x) is determined by the initial conditions. Modulo the exponential growth
the wave moves with the group velocity which in shallow water is H1/2. As expected
ReΔL = Δ1 +Δ2[s] +Δ3[s] after evaluating each Δi, i = 1, 2, 3, in the shallow-water
limit; see (2.39), (2.40) and (2.32).
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5.3. Riemann invariants
The system (5.4) and (5.5) is considered with an initial condition which generates at
leading order a wave propagating in the positive x direction. In the linearised system of
§ 5.2 this is a small-amplitude periodic wave; see (2.7):

η = A0(x) exp (ikx)+ c.c., U = H−1/2A0(x) exp (ikx)+ c.c. (5.17)

The initial condition for U comes from the linearised equations (5.10) and (5.11) since to
leading order for an unforced, friction-free linear wave moving to the right, U = H−1/2η.
The slowly varying envelope A0(x) can be specified arbitrarily, as in the linear solution
(5.16), but we note that the choice A0(x) = M sech(γ x), where M is the amplitude of
the carrier wave and γ 
 k, corresponds to the case 3 initial condition of Maleewong &
Grimshaw (2022a,b) in simulations of the fNLS equation and modified Euler equations.

The shallow-water system (5.4) and (5.5) has Riemann invariants R±, where

R± = U ± 2D, D = (H + η)1/2 − H1/2,

and so U = 1
2
(R+ + R−), D = 1

4
(R+ − R−).

⎫⎬
⎭ (5.18)

Using these as new dependent variables, the system (5.4) and (5.5) becomes

∂R±
∂t

+ V±
∂R±
∂x

= F± = F1 ± (H + η)−1/2F2,

V± = ±H1/2 + U ± D = ±H1/2 + 3
4

R± + 1
4

R∓.

⎫⎪⎪⎬
⎪⎪⎭ (5.19)

In the frictional term F±, F1,2 are the right-hand sides of (5.4) and (5.5), respectively. For
a wave propagating in the positive x direction in the unforced friction-free case R− = 0 is
a constant and here we use that as a leading-order approximation with an error of order
F−. Then the Riemann invariant R+ ≈ 2U and the speed V+ = H1/2 + 3U/2 implying
eventual wave breaking. More precisely, in order to take account of the frictional and
forcing terms F± we change the dependent variables from x, t to χ, t, where χ = x −
H1/2t is the dominant phase variable in the linear solution (5.16). In these variables the
Riemann system (5.19) for a wave propagating in the positive x direction uncouples and
becomes

∂R+
∂t

+ 3
4

R+
∂R+
∂χ

= F+, −2H1/2 ∂R−
∂χ

= F−. (5.20)

The initial condition is (5.17) where we note that x = χ at t = 0. The friction terms are
given by (5.19) and (2.36), (2.44) and (5.6) are all evaluated in the shallow-water limit.
To leading order F± are functions of χ with a weak t dependence which enables an
approximate evaluation of the terms involving τa,b, where only the turbulent expressions
are shown here. For the bottom stress the laminar term was used in the linearised
shallow-water equations of § 5.2. Here we also omit the term in α in (2.36) so that the
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Figure 11. Plot of ΔN versus H for a logarithmic wind shear profile (3.33) when W0B = 11.25 m s−1 for

several wave amplitudes A (in units of m) when 0 < H < 1.

pressure condition is Pa = ρaW2
r βηx. The outcome is

F+ = ρa

ρw
βk2W2

r η − 4νk2U + H−1 ρa

ρw
cdU2

ak2|η|η − H−1CD|U|U. (5.21)

Since to leading order R+ = 2U = H−1/22η, the nonlinear terms |η|η, |U|U in F+ are
proportional to |R+|R+. Then (5.21) becomes

F+ = ΔNR+, ΔN = H1/2k2

2
βW2

r − 2k2ν + 1
2H3/2

ρa

ρw
cdU2

ak2|A| − 1
2H3/2 CD|A|.

(5.22)

The first two terms agree with those in the linearised expression Re(ΔL) in (5.16) and the
last two terms have been constructed from (2.45) and (2.35) using the approximation R+ =
2U = 2H−1/2η. A plot of ΔN versus H for the logarithmic wind shear profile and the
benchmark parameters for a 5 s wave and several amplitudes A is shown in figure 11. For
these parametersΔN is positive indicating wave growth for H > H̃ ≈ 1.5 increasing as the
wave amplitude increases. As the depth decreases further ΔN < 0 indicating wave decay.
This can be compared with figure 9 for Δ and while there is qualitative similarity, some
numerical differences appear because ΔN is based on the shallow-water approximation a
priori, most obvious as H → 0.

The Riemann invariant equation (5.20) with friction term (5.21) can be solved exactly
using characteristics, combined with the variable changes, R+ = R exp (ΔNt) and dT/dt =
(3/4) exp (ΔNt). The outcome is

R = constant when
dχ
dT

= R, T = 3
4

exp (ΔNt)− 1
ΔN

. (5.23)

The transformed time variable T increases as t increases, varying from 0 to
(∞, (3/4)|ΔN |−1) whenΔN ≷ 0; asΔN → 0, T → 3t/4. The characteristics are labelled
by the initial value χ0 so that χ − R0(χ0)T = χ0 where the initial condition is that
R(χ, T = 0) = R0(χ). This produces wave steepening which is enhanced or opposed
according as ΔN ≷ 0. Wave breaking may then occur and is defined here as intersecting
characteristics when there is an infinite slope in R, which first occurs when 1 + R0χ0T = 0.
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Figure 12. Evolution of the Riemann invariant solution (5.24) for a 5 s wave and the benchmark parameters
for a logarithmic wind shear profile: (a) H = 0.2, M = 0.02; (b), H = 0.5, M = 0.1.

With the initial condition (5.17) the explicit solution is

R = R0(χ − RT), R0(χ) = 4H−1/2A0(χ) cos (kχ), (5.24)

where the smooth slowly varying wave envelope A0(χ) = M sech(γ χ), γ 
 k. The
wave-breaking criterion 1 + R0χ0T = 0 is met when sin (kχ0) = 1 and 4H−1/2kM = 1/T .
Since k = ωH−1/2 in this shallow-water approximation the breaking time is T = H/ωM
and just H/M for a 5 s wave as then ω = 1. Wave breaking always occurs for ΔN > 0
but would be prevented for ΔN < 0 as here, if the initial wave amplitude is small enough,
3M/H < |ΔN |. A plot of (5.24) is shown in figure 12 for two depths, H = 0.2, 0.5, that
is, h = 1.25, 3.125 m, for a 5 s wave. The parameters in the initial condition A0(χ) are
M = 0.02, γ = 0.5 for depth H = 0.2 (figure 12a) and M = 0.1, γ = 0.5 for depth H =
0.5 (figure 12b). The amplitude M is chosen to ensure that the trough-to-crest height 2M is
much less than H in keeping with our small-amplitude assumption. The wavenumber k =
2.236, 1.414 corresponding to H = 0.2, 0.5. These values of k correspond to Q = kH =
0.447, 0.707, respectively, which puts them just outside the shallow-water regime, which
strictly requires that tanh Q ≈ Q valid to an error of 1 % when Q < 0.25. Nevertheless
we continue to use these values of H as even smaller values are physically unrealistic.
The decay rateΔN = −0.0075,−0.0015 for H = 0.2, 0.5, respectively. The predicted time
for wave breaking is T = 2.5, 1.25, respectively, corresponding to t = 3.38, 1.67. This is
much smaller than the decay rate as here 3M/H � |ΔN |. However, caution is needed here
as this wave breaking is an artefact of the shallow-water approximation, as higher-order
dispersive terms would inhibit the occurrence of an infinite slope. Indeed at the next
order the shallow-water equations are replaced by a modified Boussinesq system (see
Dutykh & Dias 2007; Dutykh 2009), which can in turn be further reduced to a modified
Korteweg–de Vries equation with solitary wave solutions which grow or decay depending
on the balance between forcing and friction. We are currently looking at this development.
Also we note that in a fully nonlinear setting periodic water waves are unstable either when
|A|/H > 0.4, or in deep water when the wave steepness |A| > 0.4, expressed here in our
non-dimensional units. Since M/H = 0.1, 0.2 these limits are avoided here.
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6. Summary and discussion

In this paper we have used the weak frictional and forcing modification of potential flow
developed by Dutykh & Dias (2007), Dutykh (2009) and Kharif et al. (2010), presented
here in § 2.1, to describe wind wave growth due to critical-layer instability, and the
modifications due to wave stresses, laminar and turbulent, at the air–water interface and
at the water bottom (see §§ 2.2 and 2.3). Our focus is on the evolution of wave groups
described by the fNLS equation, (4.2) in § 4, for the slowly varying amplitude A of a wave
packet with carrier frequency and wavenumber ω, k; see (4.1). Our aim is to determine
how the growth rate Δ in that equation depends on the wave parameters, the water depth,
the frictional coefficients and the parameters defining the wind shear profile. For this
purpose in § 3 we re-examine the linearised air-flow equations used in the pioneering
work of Miles (1957). In § 3.1 we introduce a long-wave approximation (3.14) to obtain an
explicit formula for the key parameter β introduced by Miles (1957) which determines the
growth rate due to critical-level instability (2.38). As well as re-examining the well-known
logarithmic wind shear profile in § 3.2, we also examine two other similar wind shear
profiles, algebraic and exponential, in §§ 3.3 and 3.4. The outcome for Δ is described
graphically in § 4. The main effects due to water depth occur at very small depths H = Kh,
the non-dimensional depth; here K is the scaling wavenumber, see (2.9), used to cast the
equations in non-dimensional variables and is also the wavenumber of the underlying
carrier wave in deep water, while h is the dimensional depth. In § 5 we briefly describe the
reduction of the full system in the shallow-water limit, leading to a frictional and forcing
modification of the well-known shallow-water equations.

The total growth rate Δ = Δ1 +Δ2 +Δ3 is composed of three parts, (2.22): (1) Δ1
is positive and is due to the critical-level instability term; (2) Δ2 = Δ2[s] +Δ2[t] where
the first term is negative and is due to laminar friction at the water surface and the
second term is positive and is due to turbulence in the air near the air–water interface;
and (3) either Δ3 = Δ3[s] or Δ3 = Δ3[t], both being negative and are respectively due
to either laminar or turbulent bottom friction. The dimensional expressions for each of
these are summarised in (4.5). The combination Δ can be positive expressing wave
growth, or negative expressing wave decay, depending inter alia on the water depth. In
the deep-water limit the bottom stress is zero, effectively, so for H > 10, h > 62.5 m and
then Δ = Δ1 +Δ2 depends only on the carrier wave and wind shear profile parameters.
Parameter Δ1 > 0 depends mainly on the value of the wind shear curvature Kc ((3.17)
and (3.20)) at the critical level, while Δ2 = Δ2[s] +Δ2[t] can be positive or negative
depending on the relative values of Δ2[s] < 0,Δ2[t] > 0, that is, on the water laminar
boundary friction at the water surface as regards the turbulence in the air near the air–water
interface. In practice, it is usually assumed that in deep water Δ > 0. Each Δi, i = 1, 2, 3,
increases in magnitude as H decreases, as seen in figures 5–8. However, although the
largest magnitudes occur for such small H that any physical significance can be discounted,
nevertheless the tendency to increase in magnitude as the depth decreases is potentially
important and we note that it is due in part to a decrease in the phase velocity cr = ω/k as
the depth decreases. Eventually, as the depth decreases to a very small value where bottom
stress is the dominant feature, Δ < 0.

The linearised air-flow equations used by Miles (1957) and many others are re-examined
in § 3 for three wind shear profiles W(y). First, in § 3.1 we present the main result of
this paper which is a long-wave approximation (3.14) designed to provide an explicit
analytic expression for the key parameter β introduced by Miles (1957) to determine the
growth rate due to critical-level instability, (2.38). In § 3.2 we examine the well-known
logarithmic wind shear profile used by Miles (1957) and many others, and then more
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briefly we examine an algebraic and an exponential profile in §§ 3.3 and 3.4. For each, the
key parameters are a reference velocity Wr, a length scale ys and an upper limiting velocity
W0, where W(y) increases monotonically from 0 to W0 as y increases. For the logarithmic
wind shear profile we set Wr = 0.9 m s−1 and ys = y∗ = 0.0002 m, a roughness length
scale, using empirical expressions as in the seminal paper by Miles (1957), although we
also varied ys around this value. For the algebraic and exponential wind shear profiles
we kept Wr = 0.9 m s−1 but of necessity choose different values for ys and W0. We
found that while the choice of wind shear profile and associated parameters led to similar
qualitative outcomes, there were considerable quantitative differences. In particular the
precise value of W0 was important, even though it was constrained so that there is a
critical level at all depths, and could not be too large. For the logarithmic wind shear
profile of § 3.2 we chose W0 = W0B = 11.25 m s−1 since this maximised the value of
β = 1.745 and hence also of Δ1 > 0 as described in § 3.2. In § 3.3 we followed a similar
strategy for an algebraic profile; when W(y) increases quadratically with y which leads
to W0 = W0B = 39.17 m s−1 and β = 0.99. Then in § 3.4 we examined an exponential
profile which yielded W0 = W0B = 3.35 m s−1 and β = 3.45 albeit for a carefully chosen
set of parameters.

This sensitivity to the choice of wind shear profile and to W0 in particular is a major
concern for the implementation of analytical theories such as this one into operational
wind wave models; see Janssen (2004) and Grimshaw et al. (2018) for instance, where the
Miles critical-level theory is adapted to produce a growth term in the Hasselman equation
for the evolution of the water wave spectrum represented by the wave action density.

In order to examine the shallow-water limit H → 0 in slightly more detail we considered
the shallow-water reduction of the full system in § 5.1, keeping the frictional and forcing
modifications as in Dutykh & Dias (2007) and Dutykh (2009). First in § 5.2 we solved
the linearised shallow-water equations for a wave packet which propagates with the linear
group velocity, H1/2 in the shallow-water limit, with an exponential growth at rate ΔL,
(5.16), the linearised shallow-water approximation of Δ. Then in § 5.3 we examined the
full nonlinear shallow-water system using Riemann invariants to describe a wave packet
moving in the positive x direction, again with an exponential growth rate, now ΔN ,
(5.22), the shallow water reduction of Δ. The main new feature to emerge is that wave
breaking indicated by an infinite slope will occur unless ΔN is sufficiently negative. The
breaking time is quite short, much less than the time scale |ΔN |−1, and is an artefact of
the shallow-water approximation. Retention of the next-order dispersive terms leads to a
modified Boussinesq system (Dutykh & Dias 2007; Dutykh 2009). In ongoing work we
take that step slightly further and are examining a modified Korteweg–de Vries equation
to describe wind waves in shallow water. We note that the theory based on the fNLS
equation is unidirectional in the horizontal. A two-dimensional counterpart was introduced
by Benney & Roskes (1969) and a wind-forced version analysed by Grimshaw (2019b).

Our two main aims in this work were to examine how the key parameters in the laminar
air-flow model of Miles (1957) vary with the wave parameters and the fluid depth, and
how sensitive is the predicted wave growth rate Δ to these parameters and to the choice
of wind shear profile. Our focus is on the emergence of wave groups modelled by the
fNLS equation. In assessing the growth rate, we used the weak frictional modification of
potential flow of Dutykh & Dias (2007) and Dutykh (2009) to include laminar frictional
effects in the water surface boundary layer, and at the water bottom, where we also
examined the alternative of a turbulent parametrisation of bottom stress. At the same
time we inserted a turbulent parametrisation of the near-surface wind wave stress as an

985 A2-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.237


M. Maleewong and R. Grimshaw

additional driving term to the Miles critical-level instability theory. Overall the growth
rate increases in magnitude as the depth decreases but a significant and anomalous increase
only occurs at very small depths, too small in the context of this model to be of practical
importance. However, there was considerable sensitivity to the parameters of the laminar
air-flow model, where we mainly examined the well-known logarithmic wind shear profile,
but found a similar outcome for two other wind shear profiles, algebraic and exponential.
We conclude that using a laminar air-flow model to predict a wave growth rate for the
Hasselman equation for the evolution of the water wave spectrum is potentially difficult.
As is well known, although the growth rate predicted by the Miles critical-level instability
theory is widely used in practice, it needs adjustment to an increased value to take account
of observations, and to put operational wind wave forecasting on a secure level. A related
and deeper issue is whether a laminar air-flow model can be used at all, when usually the
observed winds are turbulent. For many years the answer to this was to choose the laminar
wind shear profile to be an averaged flow, hence the standard choice of a logarithmic wind
shear profile. Even with the advent of more and more powerful computers, we suggest that
a solely computational approach to the air–water system such as that recently put forward
by Pizzo, Deike & Ayet (2021) and Wu, Popinet & Deike (2022) is still beyond practical
use. Hence the need for analytical models, such as that described here, even though its
parameters will need careful examination.
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