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Abstract

This article describes the limiting distribution of the extremes of observations that arrive
in clusters. We start by studying the tail behaviour of an individual cluster, and then
we apply the developed theory to determine the limiting distribution of max{Xj : j =
0, . . . , K(t)}, where K(t) is the number of independent and identically distributed obser-
vations (Xj) arriving up to the time t according to a general marked renewal cluster
process. The results are illustrated in the context of some commonly used Poisson cluster
models such as the marked Hawkes process.
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1. Introduction

In many real-life situations one encounters observations which tend to cluster when col-
lected over time. This behaviour is commonly seen in various applied fields, including, for
instance, non-life insurance, climatology, and hydrology (see e.g. [24], [30], [29]). This article
aims to describe the limiting distribution for the extremes of such observations over increasing
time intervals.

In Section 2 we study a simpler question concerning the tail behaviour of the maximum in
one random cluster of observations. More precisely, consider

H =
K∨

j=1

Xj,

where we assume that the sequence (Xj) of independent and identically distributed (i.i.d.) ran-
dom variables belongs to the maximum domain of attraction of some extreme value distribution
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368 B. BASRAK ET AL.

G, or MDA(G) for short, and K is a positive random integer, possibly dependent on the obser-
vations themselves. For an introduction to MDAs and extreme value theory in general we refer
to [26], [14], or [13]. In the case of non-random K, H belongs to the same MDA as X1 by stan-
dard extreme value theory. The case of K independent of the sequence (Xj) has been subject
of several studies, including [20] and [28]; see also [15], where the tail behaviour of the ran-
domly indexed sums is studied in a similar setting. The same problem in a multidimensional
setting has recently been considered in [18]. In the sequel, we allow, for instance, for K to be a
stopping time with respect to the sequence (Xj), and we show that H remains in the same MDA
as the observations as long as K has a finite mean. This is the content of our main theorem in
Section 2. For this result we provide an original and relatively simple proof based on [5].

In Section 3 we consider observations (Xj) which are i.i.d. but arrive in possibly overlap-
ping groups at times τ1, τ2, . . .. We show how one can determine the asymptotic distribution of
M(t) = sup{Xk : τk ≤ t} under certain mild conditions on the clustering among the observations.
Thanks to the results in Section 2, it turns out that the effects of clustering often remain rela-
tively small in the limit; cf. Corollary 3.1. Processes of the form M(t) = ∨K(t)

j=0 Xj, where K(t)
is a stochastic process possibly dependent on the observations Xj, have received considerable
attention over the years. For some of the earliest contributions see [8] and [2]. More recently,
[23] and [25] studied the convergence of the process (M(t)) towards an appropriate extremal
process. For the study of all upper order statistics up to time K(t), see [5], and for the more
general weak convergence of extremal processes with a random sample size, see [27].

Section 4 is dedicated to the application of our main results to some frequently used stochas-
tic models of clustering. In particular, we study variants of Neyman–Scott, Bartlett–Lewis, and
randomly marked Hawkes processes. For each of the three clustering mechanisms we find suf-
ficient conditions which imply that M(t) properly centred and normalized, roughly speaking,
stays in MDA(G).

Throughout, let S denote a general Polish space and B(S) a Borel σ -algebra on S. The space
of boundedly finite point measures on S is denoted by Mp(S). For this purpose S is endowed
with a family of so-called bounded sets; see [3]. We use the standard vague topology on the
space Mp(S) (see [26] or [21]). Recall that mn

v−→ m in Mp(S) simply means that
∫

fdmn −→∫
fdm for any bounded continuous function f : S→R whose support is bounded in the

space S.
The Lebesgue measure on [0, ∞) will be denoted by Leb, whereas the Poisson random

measure with mean measure η will be denoted by PRM(η). To simplify the notation, for a
generic member of an identically distributed sequence or an array, say (Xj), (Ai,j), throughout
we write X, A, etc. The set of natural numbers will be denoted by N= {1, 2, . . . }. The set of
non-negative integers we denote by Z+.

2. Random maxima

Let (Xj)j∈N be an i.i.d. sequence with distribution belonging to MDA(G) where G is one of
the three extreme value distributions, and let K denote a random non-negative integer. We are
interested in the tail behaviour of

H =
K∨

j=1

Xj.

In the sequel we allow for K to depend on the values of the sequence (Xj)j∈N together with some
additional sources of randomness. Assume that ((Wj, Xj))j∈N is a sequence of i.i.d. random
elements in S×R. For the filtration (Fn)n∈N = (σ {(Wj, Xj) : j ≤ n})n∈N we assume that K is
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a stopping time with respect to (Fn)n∈N. Already in this case, H can be a rather complicated
distribution, as one can see from the following.

Example 2.1.

(a) Assume (Wj)j∈N is independent of (Xj)j∈N and integer-valued. When K = W1, H has
been studied already in the references mentioned in the introduction.

(b) Assume ((Wj, Xj))j∈N is i.i.d. as before (note that some mutual dependence between
Wj and Xj is allowed) and P(X > W) > 0. Let K = inf{k ∈N : Xk > Wk}. Clearly K has
geometric distribution, and we will show that this implies that H is in the same MDA
as X.

(c) Assume (Wj)j∈N and (Xj)j∈N are two independent i.i.d. sequences. Let K = inf{k ∈N :
Xk > W1}. Clearly H = XK > W1. Therefore, H has a tail at least as heavy as W.

Recall (see Chapter 1 in [26] by Resnick) that the assumption that X belongs to MDA(G) is
equivalent to the existence of a sequence of positive real numbers (an)n∈N and a sequence of
real numbers (bn)n∈N such that for every x ∈E= {y ∈R : G(y) > 0}

n · P(X > an · x + bn) → − log G(x) as n → ∞, (2.1)

and it is further equivalent to

P

(∨n
i=1 Xi − bn

an
≤ x

)
→ G(x) as n → ∞.

We denote by μG the measure μG(x, ∞) = − log G(x), x ∈E. Consider point processes

Nn =
∑
i∈N

δ( i
n ,

Xi−bn
an

), n ∈N.

It is well known (again again [26]) that X ∈ MDA(G) is both necessary and sufficient for weak
convergence of Nn towards a limiting point process, N say, which is a PRM(Leb × μG) in
Mp([0, ∞) ×E), where both E and the concept of boundedness depend on G. For instance, in
the Gumbel MDA, E= (−∞, ∞), and sets are considered bounded in [0, ∞) ×E if contained
in some set of the type [0, T] × (a, ∞), a ∈R, T > 0; cf. [4].

Denote by m|A the restriction of a point measure m to a set A, i.e. m|A(B) = m(A ∩ B). Denote
by E

′ an arbitrary measurable subset of Rd. The following simple lemma (see Lemma 1 in [5])
plays an important role in a couple of our proofs.

Lemma 2.1. Assume that N, (Nt)t≥0 are point processes with values in Mp([0, ∞) ×E
′).

Assume further that Z, (Zt)t≥0 are R+-valued random variables. If P(N({Z} ×E
′) > 0) = 0

and (Nt, Zt)
d−→ (N, Z), in the product topology as t → ∞, then

Nt|[0,Zt]×E′
d−→ N|[0,Z]×E′ as t → ∞.

Suppose that the stopping time K is almost surely finite. Our analysis of H depends on the
following simple observation: since ((Wj, Xj))j∈N is an i.i.d. sequence, by the strong Markov
property, after the stopping time K1 = K, the sequence ((WK1+j, XK1+j))j∈N has the same dis-
tribution as the original sequence. Therefore it has its own stopping time K2, distributed as K1,
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such that ((WK1+K2+j, XK1+K2+j))j∈N again has the same distribution. Using the shift operator
ϑ , one can also write K2 = K ◦ ϑK1 (((Wj, Xj))j). Applying this argument iteratively, we can
break the original sequence into i.i.d. blocks

((WT(l−1)+1, XT(l−1)+1), (WT(l−1)+2, XT(l−1)+2), . . . , (WT(l), XT(l)))l∈N,

where T(0) = 0, T(n) = K1 + K2 + · · · + Kn.

Clearly,

Hl =
T(l)∨

j=T(l−1)+1

Xj, l ∈N,

are i.i.d. with the same distribution as the original compound maximum H. Assume that
((Wi,j, Xi,j))i,j∈N is an i.i.d. array of elements as above, and let (K′

i)i∈N be an i.i.d. sequence

of stopping times such that for each l ∈N, (K′
l , (Wl,j, Xl,j)j∈N)

d= (K, (Wj, Xj)j∈N). Then

H′
l =

K′
l∨

j=1

Xl,j

are also i.i.d. with the same distribution as H. Before stating the main theorem, we prove a
simple lemma.

Lemma 2.2. Assume that ξ =E[K] < ∞. Then

n∑
i=1

K′
i∑

j=1

δ Xi,j−b�nξ�
a�nξ�

d−→ PRM(μG) as n → ∞.

Proof. First note that
n∑

i=1

K′
i∑

j=1

δ Xi,j−b�nξ�
a�nξ�

d=
T(n)∑
i=1

δ Xi−b�nξ�
a�nξ�

.

To use Lemma 2.1, let Z = 1, (Zn)n∈N = (T(n)/(nξ ))n∈N be R+-valued random variables, N =
PRM(Leb × μG) as before, and define point processes (N′

n)n∈N, where

N′
n =

∑
i∈N

δ( i
nξ

,
Xi−b�nξ�

a�nξ�
),

with values in the space [0, ∞) ×E, where E depends on G as before. By the weak law of
large numbers and by Proposition 3.21 from [26], since X1 ∈ MDA(G), we have

Zn
P−→ Z = 1 and N′

n
d−→ N as n → ∞.

Hence, by the standard Slutsky argument (Theorem 3.9 in [9]),

(N′
n, Zn)

d−→ (N, Z) as n → ∞.

Note that P(N({Z} ×E) > 0) = 0, so by Lemma 2.1,

N′
n

∣∣∣
[0,Zn]×E

d−→ N
∣∣∣
[0,Z]×E

.
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We conclude that

N′
n

∣∣∣[
0,

T(n)
nξ

]
×E

([0, ∞) × ·) =
T(n)∑
i=1

δ Xi−b�nξ�
a�nξ�

(·) d−→ N
∣∣∣
[0,1]×E

([0, ∞) × ·) as n → ∞,

where the point process on the right is a PRM(μG); see Theorem 2 in [5] for details. �

Theorem 2.1. Assume that K is a stopping time with respect to the filtration (Fj)j∈N with a
finite mean. If X belongs to MDA(G), then the same holds for H = ∨K

j=1 Xj.

Proof. For (Hi) i.i.d. copies of H, using Lemma 2.2 and the notation therein,

P

(∨n
i=1 Hi − b�nξ�

a�nξ�
≤ x

)
= P

⎛
⎝ n∑

i=1

K′
i∑

j=1

δ Xi,j−b�nξ�
a�nξ�

(x, ∞) = 0

⎞
⎠

→ P(PRM(μG)(x, ∞) = 0) = G(x). �

Example 2.2. (Example 2.1 continued.) Provided E[W] < ∞, we recover known results for
Example 2.1(a). Since E[K] < ∞, in the case (b) H belongs to the same MDA as X. As we have
seen, the case (c) is more involved, but the theorem implies that if W1 has a heavier tail index
than X, then E[K] = ∞ and H ∈ MDA(G). On the other hand, for bounded or lighter-tailed W,
we can still have H ∈ MDA(G).

3. Limiting behaviour of the maximal claim size in the marked renewal cluster model

To describe the marked renewal cluster model, consider first an independently marked
renewal process N0. Let (Yk)k∈N be a sequence of i.i.d. non-negative inter-arrival times in
N0, and let (Ak)k∈N be i.i.d. marks independent of (Yk)k∈N with distribution Q on (S,B(S)).
Throughout we assume that

0 <E[Y] = 1

ν
< ∞.

If we denote by (	i)i∈N the sequence of partial sums of (Yk)k∈N, the process N0 on the space
[0, ∞) × S has the representation

N0 =
∑
i∈N

δ	i,Ai .

Processes of this type appear in non-life insurance mathematics, where marks are often
referred to as claims. They can represent the size of the claim, type of the claim, severity
of the accident, etc.

Assume that at each time 	i with mark Ai another point process in Mp([0, ∞) × S), denoted
by Gi, is generated. All Gi are mutually independent and intuitively represent clusters of points
superimposed on N0 after time 	i. Formally, there exists a probability kernel K from S to
Mp([0, ∞) × S) such that, conditionally on N0, the point processes Gi are independent, almost
surely finite, and with distribution equal to K(Ai, ·). Note that this permits dependence between
Gi and Ai.

In this setting, the process N0 is usually called the parent process, while the Gi are called
the descendant processes. We can write

Gi =
Ki∑

j=1

δTi,j,Ai,j ,
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where (Ti,j)j∈N is a sequence of non-negative random variables and Ki is a Z+-valued random
variable. If we count the original point arriving at time 	i, the actual cluster size is Ki + 1.

Throughout, we also assume that the cluster processes Gi are independently marked with
the same mark distribution Q independent of Ai, so that all the marks Ai,j are i.i.d. Note that Ki

may possibly depend on Ai. We assume throughout that

E[Ki] < ∞.

Finally, to describe the size and other characteristics of all the observations (claims)
together with their arrival times, we use a marked point process N as a random element in
Mp([0, ∞) × S) of the form

N =
∞∑

i=1

Ki∑
j=0

δ	i+Ti,j,Ai,j , (3.1)

where we set Ti,0 = 0 and Ai,0 = Ai. In this representation, the claims arriving at time 	i and
corresponding to the index j = 0 are called ancestral or immigrant claims, while the claims
arriving at times 	i + Ti,j, j ∈N, are referred to as progeny or offspring. Note that N is almost
surely boundedly finite, because 	i → ∞ as i → ∞, and Ki is almost surely finite for every i,
so one could also write

N =
∞∑

k=1

δτk,Ak , (3.2)

with τk ≤ τk+1 for all k ∈N and Ak being i.i.d. marks which are in general not independent
of the arrival times (τk). Observe that this representation ignores the information regarding the
clusters of the point process. Note also that eventual ties turn out to be irrelevant asymptotically.

In the special case, when the inter-arrival times are exponential with parameter ν, the
renewal counting process which generates the arrival times in the parent process is a homoge-
neous Poisson process. The associated marked renewal cluster model is then called a marked
Poisson cluster process (see [12]; cf. [6]).

Remark 3.1. In all our considerations we take into account the original immigrant claims
arriving at times 	i as well. One could of course ignore these claims and treat 	i as times
of incidents that trigger, with a possible delay, a cluster of subsequent payments, as in the
model of the so-called incurred but not reported (IBNR) claims; cf. [24].

The numerical observations, i.e. the sizes of the claims, are produced by the application of
a measurable function on the marks, say f : S→R+. The maximum of all claims due to the
arrival of an immigrant claim at time 	i equals

Hi =
Ki∨

j=0

Xi,j, (3.3)

where Xi,j = f (Ai,j) are i.i.d. random variables for all i and j. The random variable Hi has an
interpretation as the maximal claim size coming from the ith immigrant and its progeny. If we
denote f (Ak) by Xk, the maximal claim size in the period [0, t] can be represented as

M(t) = sup
{
Xk : τk ≤ t

}
.
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In order to bring the model into the context of Theorem 2.1, observe that one can let Wk = Ak,
for k ∈N. Introduce the first-passage-time process (τ (t))t≥0 defined by

τ (t) = inf{n : 	n > t} , t ≥ 0.

This means that τ (t) is the renewal counting process generated by the sequence (Yn)n∈N.
According to the strong law for counting processes (Theorem 5.1 in [16, Chapter 2]), for every
c ≥ 0,

τ (tc)

νt
as−→ c as t → ∞.

Denote by

Mτ (t) =
τ (t)∨
i=1

Hi

the maximal claim size coming from the maximal claim sizes in the first τ (t) clusters. Now we
can write

Mτ (t) = M(t)
∨

Hτ (t)

∨
εt, t ≥ 0, (3.4)

where the last error term represents the leftover effect at time t, i.e. the maximum of all claims
arriving after t which correspond to the progeny of immigrants arriving before time t; more
precisely,

εt = max{Xi,j : 0 ≤ 	i ≤ t, t < 	i + Ti,j}, t ≥ 0.

Denote the number of members in the set above by

Jt = #{(i, j) : 0 ≤ 	i ≤ t, t < 	i + Ti,j}. (3.5)

We study the limiting behaviour of the maximal claim size M(t) up to time t and aim to
find sufficient conditions under which M(t) converges in distribution to a non-trivial limit after
appropriate centring and normalization.

Recall that H belongs to MDA(G) if there exist constants cn > 0, dn ∈R such that for each
x ∈E= {y ∈R : G(y) > 0},

n · P(H > cnx + dn) → − log G(x) as n → ∞. (3.6)

An application of Lemma 2.1 yields the following result.

Proposition 3.1. Assume that H belongs to MDA(G), so that (3.6) holds, and that the error
term in (3.5) satisfies

Jt = oP(t).

Then
M(t) − d�νt�

c�νt�
d−→ G as t → ∞. (3.7)

Proof. Using the equation (3.4),

Mτ (t) − d�νt�
c�νt�

= M(t) − d�νt�
c�νt�

∨ Hτ (t) − d�νt�
c�νt�

∨ εt − d�νt�
c�νt�

.
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Since for x ∈E

0 ≤ P

(
Mτ (t) − d�νt�

c�νt�
> x

)
− P

(
M(t) − d�νt�

c�νt�
> x

)

≤ P

(
Hτ (t) − d�νt�

c�νt�
> x

)
+ P

(
εt − d�νt�

c�νt�
> x

)
,

it suffices to show that

Mτ (t) − d�νt�
c�νt�

d−→ G as t → ∞, (3.8)

lim
t→∞ P

(
Hτ (t) − d�νt�

c�νt�
> x

)
= 0, and lim

t→∞ P

(
εt − d�νt�

c�νt�
> x

)
= 0. (3.9)

Recall that Hi represents the maximum of all claims due to the arrival of an immigrant claim
at time 	i, and by (3.3) it equals

Hi =
Ki∨

j=0

Xi,j.

Note that (Hi) is an i.i.d. sequence, because the ancestral mark in every cluster comes from an
independently marked renewal point process. As in the proofs of Lemma 2.2 and Theorem 2.1,

P

(
Mτ (t) − d�νt�

c�νt�
≤ x

)
= P

⎛
⎝ τ (t)∑

i=1

δHi−d�νt�
c�νt�

(x, ∞) = 0

⎞
⎠

→ P(PRM(μG)(x, ∞) = 0) = G(x),

as t → ∞, which shows (3.8). To show (3.9), note that {τ (t) = k} ∈ σ (Y1, . . . Yk) and by

assumption {Hk ∈ A} is independent of σ (Y1, . . . Yk) for every k. Therefore, Hτ (t)
d= H1 ∈

MDA(G), so the first part of (3.9) easily follows from (3.6). For the second part of (3.9),
observe that the leftover effect εt admits the representation

εt
d=

Jt∨
i=1

Xi,

for (Xi)i∈N i.i.d. copies of X = f (A). Hence,

εt − d�νt�
c�νt�

d=
∨Jt

i=1 Xi − d�νt�
c�νt�

.

Since Jt = oP(t), for every fixed δ > 0 and t large enough, P(Jt > δt) < δ. For measurable A =
{Jt > δt} we have

P

(∨Jt
i=1 Xi − d�νt�

c�νt�
> x

)
≤ P(A) + P

({∨Jt
i=1 Xi − d�νt�

c�νt�
> x

}
∩ AC

)

< δ + P

(∨�δt�
i=1 Xi − d�νt�

c�νt�
> x

)
,

which converges to 0 as δ → 0. �
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As we have seen above, it is relatively easy to determine the asymptotic behaviour of the
maximal claim size M(t) as long as one can determine the tail properties of the random vari-
ables Hi and the number of points in the leftover effect at time t, Jt in (3.5). An application of
Theorem 2.1 immediately yields the following corollary.

Corollary 3.1. Let Jt = oP(t), and let (Xi,j) satisfy (2.1) and the assumptions from the proof of
Theorem 2.1. Then (3.7) holds with (cn) and (dn) defined by

(cn) = (a�(E[K]+1)·n�), (dn) = (b�(E[K]+1)·n�). (3.10)

As we shall see in the following section, showing that Jt = oP(t) holds remains a rather
technical task. However, this can be done for several frequently used cluster models.

4. Maximal claim size for three special models

In this section we present three special models belonging to the general marked renewal
cluster model introduced in Section 3. We try to find sufficient conditions for these models in
order to apply Proposition 3.1.

Remark 4.1. In any of the three examples below, the point process N can be made stationary if
we start the construction in (3.1) on the state space R× S with a renewal process

∑
i δ	i on the

whole real line. For the resulting stationary cluster process we use the notation N∗. Still, from
the applied perspective, it seems more interesting to study the nonstationary version, where
both the parent process N0 and the cluster process itself have arrivals only from some point
onwards, e.g. in the interval [0, ∞).

4.1. Mixed binomial cluster model

Assume that the renewal counting process which generates the arrival times in the parent
process (	i)i∈N is a homogeneous Poisson process with mean measure (νLeb) on the state
space [0, ∞) for ν > 0, and that the individual clusters have the form

Gi =
Ki∑

j=1

δVi,j,Ai,j .

Assume that (Ki, (Vi,j)j∈N, (Ai,j)j∈Z+)i∈N constitutes an i.i.d. sequence with the following
properties for fixed i ∈N:

• (Ai,j)j∈Z+ are i.i.d.;

• (Vi,j)j∈N are conditionally i.i.d. given Ai,0;

• (Ai,j)j∈N are independent of (Vi,j)j∈N;

• Ki is a stopping time with respect to the filtration generated by the (Ai,j)j∈Z+ , i.e. for
every k ∈Z+, {Ki = k} ∈ σ (Ai,0, . . . Ai,k).

Notice that we do allow possible dependence between Ki and (Ai,j)j∈Z+ . Also, we do not
exclude the possibility of dependence between (Vi,j)j∈N and the ancestral mark Ai,0 (and con-
sequently Ki). Recall that K is an integer-valued random variable representing the size of a
cluster, such that E[K] < ∞. Observe that we use the notation Vi,j instead of Ti,j to emphasize
the relatively simple structure of clusters in this model, in contrast with the other two models
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in this section. Such a process N is a marked version of the so-called Neyman–Scott process;
e.g. see [12, Example 6.3(a)].

Corollary 4.1. Assume that f (A) = X belongs to MDA(G), so that (2.1) holds. Then (3.7) holds
for (cn) and (dn) defined in (3.10).

Proof. Using Theorem 2.1 we conclude that the maximum H of all claims in a cluster
belongs to the MDA of the same distribution as X. Apply Proposition 3.1 after observing that
Jt = oP(t). Using Markov’s inequality, it is enough to check that E[Jt] = o(t),

E[Jt] =E[#{(i, j) : 0 ≤ 	i ≤ t, t < 	i + Vi,j}]

=E

⎡
⎣ ∑

0≤	i≤t

Ki∑
j=1

It≤	i+Vi,j

⎤
⎦ .

Using Lemma 7.2.12 in [24] and calculations similar to those in the proofs of Corollaries 5.1
and 5.3 in [6], we have

E

⎡
⎣ ∑

0≤	i≤t

Ki∑
j=1

It<	i+Vi,j

⎤
⎦ =

∫ t

0
E

⎡
⎣ Ki∑

j=1

IVi,j>t−s

⎤
⎦ νds =

∫ t

0
E

⎡
⎣ Ki∑

j=1

IVi,j>x

⎤
⎦ νdx.

Now note that as x → ∞, by the dominated convergence theorem,

E

⎡
⎣ Ki∑

j=1

IVi,j>x

⎤
⎦ → 0.

An application of a Cesàro argument now yields that E[Jt]/t → 0. �

4.2. Renewal cluster model

Assume next that the clusters Gi have the following distribution:

Gi =
Ki∑

j=1

δTi,j,Ai,j ,

where (Ti,j) represents the sequence such that

Ti,j = Vi,1 + · · · + Vi,j, 1 ≤ j ≤ Ki.

We keep all the other assumptions from the model in the previous subsection.
A general unmarked model of a similar type, called the Bartlett–Lewis model, is analysed

in [12]; see Example 6.3(b). See also [15] for an application of a similar point process to
modelling of teletraffic data. By adapting the arguments from Corollary 4.1 we can easily
obtain the next corollary.

Corollary 4.2. Assume that f (A) = X belongs to MDA(G), so that (2.1) holds. Then (3.7) holds
for (cn) and (dn) defined in (3.10).
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4.3. Marked Hawkes processes

Another example in our analysis is the so-called (linear) marked Hawkes process. These
processes are typically introduced through their stochastic intensity (see, for example, [22] or
[12]). More precisely, a point process N = ∑

k δτk,Ak represents a Hawkes process of this type
if the random marks (Ak) are i.i.d. with distribution Q on the space S, while the arrivals (τk)
have stochastic intensity of the form

λ(t) = ν +
∑
τi<t

h(t − τi, Ai),

where ν > 0 is a constant and h : [0, ∞) × S→R+ is assumed to be integrable in the sense that∫ ∞
0 E[h(s, A)]ds < ∞. On the other hand, Hawkes processes of this type have a neat Poisson

cluster representation due to [19]. For this model, the clusters Gi are recursive aggregations of
Cox processes, i.e. Poisson processes with random mean measure μ̃Ai × Q where μ̃Ai has the
form

μ̃Ai (B) =
∫

B
h(s, Ai)ds,

for some fertility (or self-exciting) function h; cf. Example 6.4(c) of [12]. It is useful to
introduce a time shift operator θt, by defining

θtm =
∑

j

δtj+t,aj ,

for an arbitrary point measure m = ∑
j δtj,aj ∈ Mp([0, ∞) × S) and t ≥ 0. Now, for the parent

process N0 = ∑
i∈N δ	i,Ai , which is a Poisson point process with mean measure ν × Q on the

space [0, ∞) × S, the cluster process corresponding to a point (	i, Ai) satisfies the following
recursive relation:

Gi =
LAi∑
l=1

(
δτ 1

l ,A1
l
+ θτ 1

l
G1

l

)
, (4.1)

where, given Ai,

Ñi =
LAi∑
l=1

δτ 1
l ,A1

l

is a Poisson process with mean measure μ̃Ai × Q, and the sequence (G1
l )l is i.i.d., distributed

as Gi and independent of Ñi.
Thus, at any ancestral point (	i, Ai), a cluster of points appears as a whole cascade of points

to the right in time generated recursively according to (4.1). Note that LAi has Poisson distri-
bution conditionally on Ai, with mean κAi = ∫ ∞

0 h(s, Ai)ds. It corresponds to the number of
first-generation progeny (A1

l ) in the cascade. Note also that the point processes forming the
second generation are again Poisson conditionally on the corresponding first-generation mark
A1

l . The cascade Gi corresponds to the process formed by the successive generations, drawn
recursively as Poisson processes given the former generation. The marked Hawkes process is
obtained by attaching to the ancestors (	i, Ai) of the marked Poisson process N0 = ∑

i∈N δ	i,Ai

a cluster of points, denoted by Ci, which contains the point (0, Ai) and a whole cascade Gi
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of points to the right in time generated recursively according to (4.1) given Ai. Under the
assumption

κ =E

[∫
h(s, A)ds

]
< 1, (4.2)

the total number of points in a cluster is generated by a subcritical branching process.
Therefore, the clusters are finite almost surely. Denote their size by Ki+1. It is known (see
Example 6.3(c) in [12]) that under (4.2) the clusters always satisfy

E[Ki]+1 = 1

1 − κ
. (4.3)

Note that the clusters Ci, i.e. point processes which represent a cluster together with the mark
Ai, are independent by construction. They can be represented as

Ci =
Ki∑

j=0

δ	i+Ti,j,Ai,j ,

with Ai,j being i.i.d., Ai,0 = Ai, Ti,0 = 0, and Ti,j, j ∈N, representing arrival times of progeny
claims in the cluster Ci. Observe that in the case when marks do not influence conditional
density, i.e. when h(s, a) = h(s), the random variable Ki+1 has a so-called Borel distribution
with parameter κ; see [17]. Notice also that in general, marks and arrival times of the final
Hawkes process N are not independent of each other; rather, in the terminology of [12], the
marks in the process N are only unpredictable.

As before, the maximal claim size in one cluster is of the form

H
d=

K∨
j=0

Xj.

Note that K and (Xj) are not independent. In this case, thanks to the representation of Hawkes
processes as the recursive aggregation of Cox processes (4.1), the maximal claim size can also
be written as

H
d= X ∨

LA∨
j=1

Hj.

Recall from (4.2) that κ =E[κA] < 1. The Hj on the right-hand side are independent of κA

and i.i.d. with the same distribution as H. Conditionally on A, the waiting times are i.i.d. with
common density

h(t, A)

κA
, t ≥ 0; (4.4)

see [22] or [6]. In order to apply Proposition 3.1, first we show that H is in MDA(G), using
the well-known connection between branching processes and random walks; see for instance
[1], [7], or the quite recent [11]. This is the subject of the next lemma.

Lemma 4.1. Let X belong to MDA(G) in the marked Hawkes model. Then H also belongs to
the same MDA(G).

Proof. By the recursive relation (4.1), each cluster can be associated with a subcritical
branching process (Bienaymé–Galton–Watson tree) where the total number of points in a
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cascade (cluster) corresponds to the total number of vertices in such a tree. It has the same
distribution as the first hitting time of level 0,

ζ = inf{k : Sk = 0} ,

by a random walk (Sn) defined as

S0 = 1, Sn = Sn−1 + Ln − 1,

with i.i.d. Ln
d= L. Notice that (Sn) has negative drift, which leads to the conclusion that ζ is

a proper random variable. Moreover, since E[L] < 1, an application of Theorem 3 from [16]
gives E[ζ ] < ∞ and implies that we can use (4.3) since ζ = K + 1.

If we write, for arbitrary k ∈N,

{ζ = k} = {S0 > 0, S1 > 0, . . . , Sk−1 > 0, Sk = 0}

=
{

1 > 0, L1 > 0, . . . ,

k−1∑
i=1

Li − (k − 2) > 0,

k∑
i=1

Li − (k − 1) = 0

}

∈ σ(L, A0, A1, . . . , Ak) ,

we see that ζ is a stopping time with respect to (F ′
j )j∈Z+ , where F ′

j = σ (L, A0, A1, . . . , Aj),
and where L has conditionally Poisson distribution with random parameter κA and is
independent of the sequence (Aj)j∈Z+ . By Theorem 2.1 we conclude that H is also in
MDA(G). �

Remark 4.2. The equation (4.3) implies that the sequences (cn) and (dn) in the following
corollary have the representations

(cn) =
(

a� 1
1−κ

n�
)

, (dn) =
(

b� 1
1−κ

n�
)

.

Corollary 4.3. Assume that X belongs to MDA(G), so that (2.1) holds, and

E
[
μ̃A(t, ∞)

] → 0 as t → ∞.

Then (3.7) holds for (cn) and (dn) defined in (3.10).

Proof. Recall from (3.2) that one can write

N =
∞∑

i=1

Ki∑
j=0

δ	i+Ti,j,Ai,j =
∞∑

k=1

δτk,Ak ,

without loss of generality assuming that 0 ≤ τ1 ≤ τ2 ≤ . . .. At each time τj, a claim arrives
generated by one of the previous claims, or an entirely new (immigrant) claim appears. In the
former case, if τj is the direct offspring of a claim at time τi, we will write τi → τj. The progeny
τj then potentially creates further claims. Notice that τi → τj is equivalent to τj = τi + Vi,k,
k ≤ Li = LAi , where Vi,k are waiting times which, according to the discussion above (4.4), are
i.i.d. with common density h(t, Ai)/κAi , t ≥ 0, and independent of Li conditionally on the mark
Ai of the claim at τi. Moreover, conditionally on Ai, the number of direct progeny of the claim
at τi, denoted by Li, has Poisson distribution with parameter μ̃Ai . We denote by Kτj the total
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number of points generated by the arrival at τj. Clearly, the Kτj are identically distributed as
K and even mutually independent if we consider only points which are not offspring of one
another.

It is enough to check E[Jt]/t = o(1) and see that

E[Jt] =E

[ ∑
	i≤t

∑
j

I	i+Ti,j>t

]
=E

[∑
τi≤t

∑
τj>t

(Kτj + 1) Iτi→τj

]

=E

[∑
τi≤t

E

[ Li∑
k=1

(Kτi+Vi,k + 1)Iτi+Vi,k>t | (τi, Ai)i≥0;τi ≤ t
]]

= 1

1 − κ
E

[∫ t

0

∫
S

μ̃a((t − s, ∞))N(ds, da)

]
,

where μ̃a((u, ∞)) = ∫ ∞
u h(s, a)ds. Observe that from the projection theorem (see Theorem 3

in [10, Chapter 8]), the last expression equals

1

1 − κ
E

[∫ t

0

∫
S

μ̃a((t − s, ∞))Q(da)λ(s)ds

]
.

Recall from Remark 4.1 that N has a stationary version, N∗, such that the expression E
[
λ∗(s)

]
is a constant equal to ν/(1 − κ). Using Fubini’s theorem, one can further bound the last
expectation from above by

E

[∫ t

0

∫
S

μ̃a((t − s, ∞))Q(da)λ∗(s)ds

]
=

∫ t

0

∫
S

μ̃a((t − s, ∞))Q(da)E[λ∗(s)]ds

= ν

1 − κ

∫ t

0

∫
S

μ̃a((t − s, ∞))Q(da)ds.

Now we have

EJt ≤ ν

(1 − κ)2

∫ t

0

∫
S

μ̃a((t − s, ∞))Q(da)ds = ν

(1 − κ)2

∫ t

0

∫ ∞

s
E[h(u, A)]duds.

Dividing the last expression by t and applying L’Hôpital’s rule proves the theorem for the
nonstationary or pure Hawkes process. �
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