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Abstract 

Sea ice deformation is concentrated at Linear Kinematic Features (LKFs) such as ridges and 

leads. Ridging and leads opening processes are highly related to sea ice fracture. Different 

rheology models have been successfully applied in various scenarios. However, most of the 

approaches adopted are based on continuum mechanics that do not explicitly model fracture 

processes. There are emerging needs for a more physically informed modelling methods that 

explicitly address fracture at the kilometre scale. In pursuing this objective, we explored in this 

paper the potential of applying a promising mesh free numerical method, peridynamics (PD), 

in modelling ice floe (~km) fractures. PD offers a physically and mathematically consistent 

theory through which spontaneous emergence and propagation of cracks can be achieved. The 

integral nature of the governing equations in PD remains valid even if a crack appears. We 

numerically investigated in this paper the tensile fracture (e.g., lead opening) of an elastic 

heterogenous ice floe. The modelling results were compared  with published numerical results 

obtained by another numerical method. The potentials and challenges of PD in this application 

are discussed and summarized.  
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1. Introduction  

Sea ice fracture is a significant and important natural phenomenon with broad-ranging 

implications for safety, navigation, climate research, ecology, infrastructure, resource 

extraction, search and rescue operations, and scientific exploration in polar and icy regions  

(Bamber and others, 2022, Ingels and others, 2021). The processes of ridging and opening of 

leads are closely linked to sea ice fracture. Sea ice fracture results in swift ocean-air thermal 

exchanges and the generation of new ice. More specifically, leads in the Arctic Ocean 

contribute to approximately 25-40% of the overall ice production in the region (Kwok, 2006). 

Enhancing our understanding and modelling capabilities of the fracture of sea ice at global 

level is of utmost importance. 

Various ice rheology models (Feltham, 2008), including those for simulating ice 

deformation at meso- and large-scales (mesoscale refers to 50–500 km and large scale beyond 

that), have been proposed. Most are based on the Viscous Plastic (VP) model by Hibler (1979) 

and the Elastic-Viscous-Plastic (EVP) model by Hunke and Dukowicz (1997). However, recent 

research suggests that while the VP model accurately captures global sea ice motion, it lacks 

finer-scale deformation properties crucial for operational modelling (Girard and others, 2009). 

This underscores the need for alternative models, such as the Elasto-Brittle (EB) model 

implemented by Girard et al. (2011), forming the foundation for the neXtSIM model. Yet, the 

EB model has limitations in long-term fracture process depiction. Dansereau et al. (2016) 

introduced the Maxwell-EB (MEB) model, which integrates the Mohr-Coulomb theory and 

shows promise in long-term simulations. Additionally, continuum mechanics approaches, like 

anisotropic ice rheology (Wilchinsky and Feltham, 2012), address sea ice fractures but often 

rely on ad-hoc assumptions to simplify modelling. 
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As reviewed above, most approaches used in sea ice deformation modelling rely on 

continuum mechanics, where ice fracture is not explicitly considered. Throughout history, 

fracture mechanics concepts have not been extensively utilized to address ice fracturing. This 

is largely due to the inherent complexity of fracture mechanics, especially when compared to 

the simplified nature of strength theory. Unlike fracture mechanics, strength theory lacks 

fracture-related scaling laws and tends to be conservative at large scales when using the same 

local-scale (0.1–10 m) material parameters (Lu, 2022). Another factor contributing to the lack 

of explicit consideration of ice fracture is the significant computational costs associated with 

the accurate modelling of this complex phenomenon. Nonetheless, we believe fracture plays a 

crucial role in influencing ice dynamics across various scales, particularly at local scales. 

However, our understanding of its effects remains limited at present. As the length scale of 

block being fractured exceeds tens of meters, the application of fracture mechanics analysis 

becomes imperative. This is because strength theory proves inadequate in characterizing 

physical processes that happen over a range of different sizes (spatial scale) and time durations 

(temporal scale) (Lu and others, 2022). Given the modelling gap and importance of ice fracture, 

this paper explores possibilities in explicitly simulating ice fractures at large scales. 

Various numerical methods have been developed to explicitly model sea ice fractures, 

primarily at local scales. These methods can be broadly categorized as mesh-based and particle-

based approaches. Mesh-based methods, such as conventional nonlinear finite element method 

involving element erosion (Liu and Amdahl, 2010, Lu and others, 2012) or nodes splitting 

(Herrnring and Ehlers, 2021), continuum damage model (Kolari, 2007, Kolari, 2017), extended 

Finite Element Method (XFEM) (Lu and others, 2018, Xu and others, 2020), cohesive element 

method (CEM) (Lu and others, 2014b, Feng and others, 2016) and cohesive surface model 

(Kuutti and others, 2013) harness the advantage of traditional FEM with fracture mechanic 

theories. However, they require additional criteria to characterize complex crack propagation 
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behaviours like turning, branching, and arresting; and eventual fragmentations. These methods 

often require complex crack tracking algorithms and topology representation. Particle-based  

methods, such as smooth particle hydrodynamics (SPH) (Marquis and others, 2022, Shen and 

others, 2000), discrete element method (DEM) (Damsgaard and others, 2018, Herman, 2016, 

Hopkins and Thorndike, 2006, van den Berg, 2019, van den Berg and others, 2018, Lu and 

others, 2012, Prasanna and others, 2022) and lattice method (van den Berg, 2016, Slepyan and 

others, 1999, Jirásek and Bažant, 1995), discretize equations of continuum media using a 

specific volume, taking advantage of their meshfree characteristics. This feature makes them 

particularly well-suited for simulating fracture scenarios characterized by significant  

deformations. Despite their inherent advantage of handling discontinuity/fracture, these 

methods are rather computationally demanding. This is largely due to the often-simplified 

particle-particle interaction formulations. Without sufficient number of particles (e.g., around 

a running crack tip), it becomes demanding to characterize the complicated force and 

displacement field around crack tips. Another innovative approach is the use of Phase Field 

Damage Models (PFMs), which employ Griffith's theory to study the elastic failure and 

simulate crack propagation through a potential energy minimization process (Wu and others, 

2020, Omatuku, 2019). PFMs was applied in studying the failure of a heterogeneous ice floe 

using an elastic constitutive model (Dinh and others, 2023) and ice shelves  using a viscoelastic 

constitutive model (Sondershaus and Müller, 2022). These studies demonstrate the potential of 

PFMs and their possible future applications in high-resolution ice fracture modelling. This 

method, however, has been shown to be very computationally expensive which overshadows 

its large-scale applications.   

The current paper aims to investigate floe-scale sea ice fracture using another novel 

computational method called peridynamics (PD). PD is a non-local approach that shows 

promise in modelling various materials, structures, and systems. It offers an alternative to 
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traditional continuum mechanics, which relies on local concepts such as stress and strain. PD 

has several advantages, including the ability to model discontinuities like cracks without the 

need for complex meshing techniques or crack tracking algorithms. It is effective in predicting 

large deformations and material failures, which can be challenging in traditional continuum 

mechanics. Recent developments in PD theory have been successfully applied to localized sea 

ice fracture Vazic (2020) and its interaction with structures (Zhang and others, 2022, Zhang 

and others, 2021(a), Zhang and others, 2023a, Zhang and others, 2023b).  

To the best of our knowledge, the present study demonstrates the first attempt to apply the 

PD theory in simulating large-scale ice fracture. Our objective is to explore the suitability and 

scalability of this particle-based method for high-resolution (~ m) ice fracture simulations at 

large scales,  

In this work, we focus on the tensile fracture of an ice floe. We begin by validating our PD 

model and studying key PD parameters, including particle spacing and horizon size, through a 

benchmark case (Section 3). The benchmark case entails a simplified tensile failure setup 

involving linear elastic and homogeneous ice material, where analytical solutions are available. 

To further explore the capabilities of PD and align our results with existing publications, we 

simulate tensile fractures of a heterogenous ice floe with uneven thicknesses (Section 4). 

Through comparisons and discussions, we expose the potential and challenges of the PD 

method in this application (Section 5). 

2. Description of the PD method 

2.1 Peridynamic model for elastic sea ice  

Peridynamics (PD) is a non-local formulation of continuum mechanics that is oriented 

toward deformations with discontinuities, especially fractures. Unlike spatial derivatives 

common in classic continuum mechanics (e.g., the concept of stress and strain), PD employs 

integral operators to represent these phenomena. The discretization of the domain in PD 
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involves particles that interact with their neighbouring particles within a specific distance 

known as the horizon ( 
xH  ). Figure 1 provides a visual representation of the fundamental 

principle of PD theory, where Particle i  at position x  [m] interacts with Particle j  at position 

x [m]. Under the influence of external forces, the particle i  experiences displacement u  [m] 

while the particle j  undergoes displacement u  [m]. Consequently, this deformation induces 

a force state term t , which has a unit of [N/m6] acting on the particle i  and another force state 

term t  [N/m6] acting on the particle j . In PD theory, the equation of motion for a material 

point is defined in Eq. (1) (Madenci and Oterkus, 2014). The previously introduced ‘force state’ 

terms t  and t , after a volume integration, yield a concept of force density [N/m3] on both 

sides of Eq. (1).   

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫ (𝐭(𝐮′ −𝐮, 𝐱′ − 𝐱, 𝑡) − 𝐭′(𝐮 − 𝐮′, 𝐱 − 𝐱′, 𝑡))𝑑𝑉′
𝐻𝑥

+ 𝐛(𝐱,𝑡),                 (1) 

In Eq. (1), ( ) x  [kg/m3] represents the density of the sea ice, 𝐮̈(𝐱, 𝑡) [m/s2] represents the 

acceleration of the discretized ice particle, and ( , )tb x  [N/m3] is a body force. In the present 

work, the fracture problem of two-dimensional ice floes is studied, and the Poisson's ratio of 

sea ice equals to 0.33. Consequently, we employ the bond-based PD equation rather than the 

general state-based PD for numerical simulation. The rationale behind this choice lies in the 

fact that the force density vectors t  and t  in the bond-based PD are equal in magnitude and 

parallel to the relative position vector. Under this assumption, the Poisson’s ratio (ν) is fixed at 

1/3 for 2D simulations, which suits our requirements for simulating sea ice. In contrast, in the 

general state-based PD, the force density vector is unconstrained, allowing for the free setting 

of Poisson’s ratio. However, state-based PD is computationally expensive. 

The expression of the force state t  [N/m6] for an elastic and isotropic ice material in Eq. 

(1) is: 
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2 sb
 −

= − =
 −

y y
t t

y y
.                                                  (2) 

In the above formula, b  represents a parameter of PD (presented in Eq. (4)),   [m] represents 

the size of the horizon ( xH ). y  [m] and y  [m] are the position vectors of particle i  and 

particle j  after deformation, respectively. Generally, the shape of the horizon is a circular 

shape in 2D (disk). Therefore, horizon size   refers to the radius of a disk, as shown in Figure 

1. s  is a unitless scalar, called the bond stretch, representing the deformation between two 

particles (see Eq. (3)). The relation between bond stretch and the ‘force state’ in Eq. (2) 

demonstrates the constitutive model of linear elastic ice material.  

s
 −

=


y - y x - x

x - x
.                                                    (3) 

b  [Pa/m5] is a scaler related to a bond constant c  [Pa/m4] which usually is expressed by ice 

properties (elastic modulus, E [Pa]), and horizon size δ [m]. The relations are: 

4

c
b


=   with  

3

9 1
 for 2D with 

3

E
c

h


 
= =  ,                            (4) 

where h [m] is the thickness of the ice floe. 

Figure 1. near here. 

2.2 Material failure model 

In PD theory, material failure simulation can be viewed at two levels (see Figure 2). The 

first level is the particle-particle interaction elimination through a binary damage function (i.e., 

0 or 1). For example, in the ‘crack initiation phase’ in Figure 2, for particle i = 1, its bonds 1-

11 and 1-12 are assigned a value of 0 and are thus eliminated. The failure at this level does not 

necessarily entail a complete failure for a material point (e.g., for particle i=1 in Figure 2, there 

are still 10 particles remaining connected to it). The second level failure reminiscent a domain 

damage concept, in which, a percentage of particle-particle interactions within the horizon of 

a material point are eliminated. This percentage (from 0 to 1) is termed as a damage variable 
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and is a continuous function represents the level of ‘damage’, with ‘1’ representing the 

complete break-off of a material point (e.g., see the total elimination of particle i = 1 in the last 

phase of Figure 2). Any other value in between 0-1 gives us the possibility to characterize the 

location of a macroscopic crack, e.g., with a damage variable of 0.5 (e.g., see the crack 

formation phase in Figure 2), it represents a crack cutting through the material point, whose 

50% particle-particle connections in the horizon have been eliminated.   

Figure 2. near here 

Mathematically, the above damaging processes are achieved through the introduction of 

two additional functions. At the first level failure, particle-particle interaction can be eliminated  

through the concept of bond rupture. Bond rupture can be determined using a variety of failure 

criteria. We choose to use the critical stretch criterion. It is a straightforward and widely used 

criterion to predict material failure; and is particularly derived for tensile failures. This criterion 

involves comparing the stretch s  (in Eq. (3)) between two material particles with a critical 

value, which is called the critical stretch ( Cs ).  

1,  ,  unbroken or visible bond 
( , )

0,  ,   broken or invisible bond  

C

C

s s
t

s s



− = 


x x .                                     (5) 

A binary failure function ( , )t −x x  is introduced in accordance with the critical stretch 

criterion in Eq. (5). This function is incorporated in Eq. (1) to characterize material failure in 

Eq. (6) as (Silling and Askari, 2005, Madenci and others, 2022) 

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫ (𝐭(𝐮′ −𝐮, 𝐱′ − 𝐱, 𝑡) − 𝐭′(𝐮 − 𝐮′, 𝐱 − 𝐱′, 𝑡))𝛺(𝑡, 𝐱′ − 𝐱)𝑑𝑉′
𝐻𝑥

+ 𝐛(𝐱,𝑡). (6) 

( , )t −x x  defines the magnitude of an irreversible failure, thereby changing the load 

distribution within the body and allowing crack initiation and propagation. With this criterion, 

crack propagation occurs spontaneously without requiring a predefined direction.  

https://doi.org/10.1017/aog.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.43


9 
 

In Eq. (5), the unitless critical stretch 
Cs   is derived from the critical energy release rate cG  

[N/m]. The 2D bond-based version of Cs  is expressed as  (Madenci and others, 2022)  

23

c
C

D

G
s

K




= ,                                                              (7) 

in which 2DK  [Pa] is bulk modulus in 2D.  

Failure function in Eq. (5) only defines the interaction elimination between two particles. 

In the second level, the determination of crack initiation and propagation involves the 

introduction of a PD damage variable (denoted as ( , )t x , see Figure 2), which integrates all 

the failure function in the horizon of particle of interest. Therefore, ( , )t x  is simply a weight 

ratio between the broken bonds and the total number of initial bonds connecting a material 

particle within the horizon. At crack initiation, a particle engages in interactions with all ice 

particles within its horizon, resulting in a local damage variable equalling to 0 (i.e., no damage 

or no crack initiation). On the other hand, the formation of a crack surface leads to the 

elimination of half of the interactions within the horizon, yielding a local damage variable 

equalling to 0.5. The damage variable is presented in Eq. (8). 

( , )
( , ) 1 x

x

H

H

t dV
t

dV




 −
= −







x x
x .                                                    (8) 

2.3 Discretization and solvers   

Our approach primarily relies on the open-source PD software Peridigm (Littlewood and 

others, 2023). We also utilize a finite element mesh generator to construct a hexahedral mesh 

of the ice domain, which is then saved as an external file for PD model construction purposes. 

As mentioned before, the 2D bond-based explicit PD solver is employed. This solver evaluates 

the force states (denoted as t  and t ) in Eq. (1) at each time step and applies them to each bond 
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in the discrete model. The time steps are determined based on the criterion in Bobaru and others 

(2016), that is 

2

4

2

18

( )

critical
D

p

p

t
K

V





 =


 −


x x

,                                                      (9) 

in which   is the density, p  iterates over all the neighbours of the given material point, 
pV  

is the volume associated with neighbours p . Then, we utilize Paraview for post-processing. 

3. Benchmark case: Splitting of an Edge Cracked Rectangular Plate (ECRP) 

In this section, a benchmark test of our numerical implementation is carried out on a 

simplified Mode I splitting failure of an ECRP. Extensive studies on this tensile fracture setup 

have been carried out both theoretically (Bhat, 1988, Bhat and others, 1991, Dempsey and Zhao, 

1993, Mulmule and Dempsey, 1997, Lu and others, 2015c) and experimentally (Adamson and 

Dempsey, 1998, Adamson and others, 1995, Dempsey and others, 1999b, Dempsey and others, 

1999a, Lu and others, 2015a). 

Among all the available theories, we build our validation case against the existing analytical 

solution of the Mode I splitting of an ECRP. We choose the simplest Linear Elastic Fracture 

Mechanics solutions (available from Lu and others (2015b)) as our benchmark case. The 

solution is general to any type of linear elastic material. However, while building our PD 

numerical model, we chose parameters following the experiments of Dempsey and others 

(1999a), See Table 1. Please note the Mode-I fracture energy is set to match that in Lu and 

others (2014a) for comparison purpose.  

3.1 Model setup 

Figure 3 illustrates the model setup, in which each mesh element represents a spatial 

volume occupied by PD particle. The solution of the governing equation (Eq. (6)) is obtained 

by performing a volume integral over all hexahedron volumes in the horizon. To compare with 

existing analytical solutions, the ECRP is modelled as homogeneous, isotropic and linear 
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elastic in the PD model. This ice plate is also assumed to fail brittlely, where LEFM can be 

applied. However, it should be noted that PD is not limited to these idealizations Zhang and 

others, 2021(b). 

Table 1. near here 

Figure 3. near here 

Following the approach in the study conducted by Vazic and others (2020), a constant 

particle body force is assumed as the loading condition in the current study and is applied to 

the three particles in the volume they occupy along the pre-crack, as shown in Figure. 3. The 

magnitude of this constant load is expected to be small (to minimize dynamic effects), yet large 

enough to propagate the central crack. In post processing, we extract the splitting force 
yF  for 

comparison with analytical solutions. Since we have performed a load-controlled simulation 

here, we took an unconventional but equivalent approach to extract the splitting force.  In detail, 

we integrate bond-bond forces along the remaining ligament of the central crack. This gives us 

the ‘fracture resistance’ in force term. In this way, we manage to extract the splitting force yF , 

which is in equilibrium of the ‘fracture resistance’. 

The particle spacing (dx) and the horizon size (δ) are critical factors influencing the 

computational process, establishing the optimal values for these parameters is crucial to obtain 

accurate results. Before directly presenting the results and comparison, a series of convergence 

studies (δ-convergence and dx-convergence) are performed in the following.   

3.2 Convergence analysis 

The δ-convergence and dx-convergence are first studied to determine the optimal 

parameters for the current PD simulations. We choose dx as 0.1 m, 0.15 m, 0.2 m, 0.3 m, 0.5 

m for the dx-convergence study. The horizon size is δ = mdx, where m denotes a multiplier 

factor. We chose (2.015,3.015,4.015)mdx dx = = for the δ-convergence study. Discretization 

and critical stretches calculated by Eq. (7) are shown in Table 2.  
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Table 2. near here 

Convergence study results are presented in Error! Reference source not found.a and 

Error! Reference source not found.b. In these figures, we presented the normalized splitting 

force (
1/2/ ( )y ICF hK L , in which IC cK EG=  represents fracture toughness of sea ice versus 

the normalized crack length (A/L). Simulation outputs from PD are generated in the time 

domain. Normalized splitting force versus normalized crack length in Error! Reference 

source not found. are constructed by synchronizing the simulated force and crack length 

history.  

Figure 4(a). near here 

Figure 5(b). near here 

Based on Error! Reference source not found.a, it can be observed that varying particle 

spacings has minimal impact on the splitting force value., All curves reach their maximum 

value when A/L is between 0.14 and 0.19. However, as the particle spacing increases, the 

oscillation amplitude of the splitting force also increases. Notably, when the particle distances 

are set at 0.1 m and 0.15 m, the vibration amplitude of the dimensionless splitting force is the 

smallest, and all curves converge at around these values. Consequently, a particle distance of  

0.15 m is chosen as the optimal setting for accuracy considerations.   

δ-convergence analysis plays a crucial role in determining the appropriate horizon size, 

which greatly affects the simulation results. As depicted in Error! Reference source not 

found.b, it is evident that the results are in close agreement when the multiplier factors m for 

the horizon size are set to 3.015 and 4.015. Notably, the multiplier factor of 3.015 is widely 

used in various other research fields (Madenci and Oterkus, 2014), further affirming its 

reliability.  

The convergence results are encouraging. Especially, it has revealed an optimal setting, i.e., 

m=3.015 and dx=0.15 m for our benchmark test (to be discussed in Section 5.1). 
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3.3 Simulation results of the splitting of ECRP 

Fixing the multiplier factor m=3.015 and dx=0.15 m, the simulated results of crack path for 

ice tensile failure are depicted in Figure 6. The central edge crack propagates straight ahead, as 

theoretically expected.  

Figure 6. near here 

Then, the normalized splitting force of PD simulation is compared with analytical solution 

found in Lu and others (2014a), numerical result obtained by Lu and others (2015c), and FEM 

result obtained by Bhat (1988), as shown in Figure 7.  

Figure 7. near here 

The normalized splitting force initially increases and then decreases as the normalized  

crack length increases, reaching a peak when the normalized crack length is between 0.14 and 

0.2. This trend is consistent with the results from the compression of an edge-cracked 

rectangular plate conducted by Hallam and others (1989). Moreover, We compare the 

calculated results with those calculated by other methods for the same case. The results 

depicted in Figure 7 indicate that the calculated values for the ice plate's splitting force from 

the 2D Bond Based PD exhibit a reasonably satisfactory agreement with those methods. Further 

discussions will be presented in Section 5.2. Next, we will explore PD’s capability in a more 

realistic tensile fracture scenario, i.e., multiple fracturing of a heterogeneous ice floe.  

4. Numerical experiment on the fracture of a heterogeneous ice floe 

Currently, detailed experimental results to validate the fracture and crack propagation at 

the floe scale are scarce. Therefore, we performed a comparative study against a numerical 

experiment carried out by Dinh and others (2023). In our study, we employed the same sea ice 

model, boundary conditions, and physical parameters as Dinh and others (2023). The only 

divergence lies in the choice of modelling approach: they utilized the phase field model (PFM), 

whereas we employed our proposed PD model. 
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In their work, ice floes are simply modelled as a linear elastic body. What has been implied 

in their simplified linear elastic treatment is the assumption that many nonlinear features of sea 

ice, e.g., material weakening and creep behaviour, can be introduced by the presence of pre-

existing ‘cracks’/weak zones.  i.e., as long as these weak zones are explicitly modelled, a 

simplified material model (e.g., linear elastic) is good enough to characterize the overall 

nonlinear behaviour of the heterogeneous ice floe. These pre-existing ‘cracks’/weak zones are 

modelled through the introduction of ice thickness variations at different zones. Fracture of sea 

ice is modelled according to the Griffith theory, i.e., LEFM. All these features are in accordance 

with our current PD model development.  

4.1 Model setup  

Following the work of Dinh and others (2023), we built a same square ice floe (1 km in 

length and 1 m in thickness) in the PD discretization domain (see Error! Reference source 

not found.). All the input parameters for simulation are listed in Table 3. A prescribed  

boundary condition with a displacement of 5 mm is applied on the left edge of ice floe. The 

right edge is fixed (see Error! Reference source not found.a). Note that the boundary 

conditions are imposed by three layers of fictional boundary particles as required by PD theory. 

These layers consist of particles that occupy a volume of space and have the same parameters 

as other particles in the ice body. However, these particles are not within the actual geometry 

of the ice and are added additionally, as shown in Figure. 7(a). 

Varying ice thickness values are assigned to different zones matching those of literature 

(Dinh and others, 2023). Two ice floes are modelled in this study (see Error! Reference 

source not found.b and Error! Reference source not found.c). Corresponding ice thickness 

information is presented in Table 4. 

Table 3. near here 

Figure 8(a). near here 

https://doi.org/10.1017/aog.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.43


15 
 

Figure 9(b). near here 

Figure 10(c). near here 

Table 4. near here 

4.2 Simulation results on the fracture of a heterogeneous ice floe  

Error! Reference source not found. illustrates the displacement contour and damage 

variable contour (i.e.,   value in Eq. (8)) computed using the PD method, as well as the 

displacement and damage result obtained by Dinh and others (2023) through PFM modelling.  

Figure 11(a-1). near here 

Figure 12(a-2). near here 

Figure 13(a-3). near here 

Figure 14(b-1). near here 

Figure 15(b-2). near here 

Figure 16(b-3). near here 

As Error! Reference source not found. demonstrates, our simulated crack paths agree 

well with the results from PFM: 1) both ice floes were fractured into two pieces. 2) The cracks 

predominantly initiate from weak zones (i.e., thin ice) and propagate in parallel to the boundary, 

aligning with any existing defects. The area of non-zero motion in Figure 8(b-1) appears 

because this area is almost completely separated from the rest of the ice plate. Only a small 

portion of the particles in this area interact with its horizon particles, which are located inside 

the more intact part of the ice body. Consequently, the velocity and displacement of particles 

in this area are subject to minimal constraints, leading to rapid changes in speed and 

displacement during numerical calculations. Please also note that positive displacement is to 

the right and negative displacement is to the left. As you can see, there is a white area without 

a damage value in Figure 8(b-1) and (b-2). This is because zero thickness is represented by an 

absence of material, which is why there is no damage value in this gap area. 
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Additionally, PD simulates crack branches (as shown in case 1, Error! Reference source 

not found.(b-2)). Even no additional complete fragmentations are formed, PD reflects the 

location of potential cracks about to occur through the damage variable (Eq. (7)), which can be 

observed in Error! Reference source not found.(b-2). In this scenario, a damage value equal 

to or greater than 0.5 is designated as indicative of a clear crack path. Conversely, when the 

damage falls below 0.5, it signifies a weakened area that may serve as a potential site for crack 

propagation. These demonstrate an advantage of PD in solving failure problems. 

5. Discussion  

In this paper, we evaluated the potential of a promising numerical method, the PD method, 

in simulating ice fracture at large scale. As a starting point, tensile fracture is the focus. In 

Section 3, we presented simulation results of a benchmark case (i.e., the splitting of an ECRP), 

and performed relevant parametric studies. In Section 4, we presented results on a comparative 

study on the fracture modelling of a heterogeneous ice floe. In this section, we discuss our 

results in the following aspects: 

5.1 PD versus classic fracture modelling/analysis 

Figure 7 presents comparisons of different methods in simulating the splitting of an ECRP. 

In general, PD agrees well with the other classic fracture modelling (i.e., FEM) and analytical 

solution approaches. This signifies PD theory’s capabilities and the correctness of our 

modelling in this benchmark test. This also offers some insights in comparing different 

approaches. Naturally, analytical solutions for a fracture problem, in which the presence of a 

pre-existing crack is needed, are primarily used in idealized scenarios. In this case, it is the 

idealized geometry (i.e., a rectangular geometry with a central edge crack) and material 

properties (i.e., a homogeneous, isotropic and linear elastic material). PD’s modelling 

capabilities, as well as other numerical approaches, are evidently beyond these idealizations 

yet offers reasonably accurate results. Classic numerical approaches (e.g., FEM used by Bhat 
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(1988) and Lu and others (2015c)) focuses on calculating the stress intensity factors (SIFs) at 

the crack tip with continuous model updating procedures. This means that FEM modelling and 

calculations must be repeated every time a new crack position is required, with each crack 

position resulting from an independent static problem solution. Consequently, FEM does not 

predict the spontaneous and dynamic expansion of cracks. Each data point in the FEM results 

shown in Figure 6 corresponds to an individual simulation. In contrast, PD, as its name 

indicates, is a dynamic analysis in the time domain. The PD results in Figure 7 were obtained 

in one single simulation run, thus alleviating us from supplying new information in deciding 

crack propagation and generating crack conforming new meshes.  

5.2 On the accuracy of PD in simulating ice fracture 

In our benchmark test and its related parametric studies, we see how PD simulations results 

behaves with varying particle spacings and horizon size (Error! Reference source not found.); 

and how the results compare with analytical solutions (Figure 6).  

First, we discuss the oscillatory nature of our PD simulations. Figure 2 illustrates that the 

breakup of bonds leads to the formation of cracks. Bond rupture is a discrete process. These 

bonds do not break simultaneously. Each bond’s rupture led to either weakening (easy to 

understand) or strengthening (potentially due to the generation of a favourable bond -bond 

interaction to resist fracture) of the cracked geometry. This leads to the oscillation in splitting 

force.  

Then, the difference between the analytical solution and PD simulation results are further 

examined. We analyse the differences arise primarily from the following two sources:  

• Difficulties in locating the crack tip 

Results presented in Error! Reference source not found. and Figure 6 require knowledge 

of crack length A, or the location of the crack tip. This is not straightforward in PD modelling.  

As introduced in Section 2.2, material failure (at the crack tip) is modelled by a continuous 

https://doi.org/10.1017/aog.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.43


18 
 

function ( ( , )t x ). It is therefore difficult to clearly pinpoint the location of a crack tip, leading 

to difficulties in defining the exact crack length A. To specify an exact location of the crack tip 

(also the crack length), we define the midpoint between the particles whose ( , ) 0.35t x  and 

the next particle whose ( , ) 0.35t x  as the crack tip. As shown in Figure 9, the crack length 

should be 
4 3

2

y y
A

+
= . This arbitrary choice may have contributed to the discrepancy between 

our PD and non-PD solutions. However, in practical applications at large scale, we do not 

consider this a major drawback. We expect such small deviation will not dramatically alter the 

fracture pattern at large scales (as is evident in the results in Section 4).  

Figure 17. near here 

• Displacement control versus load control  

In our benchmark test, we applied a constant load at the crack mouth of the ECRP. The 

splitting of an ECRP is largely a ‘softening’ process, i.e., the fracture resistance decreases as 

the crack extends. This is evident from Figure 6, where the normalized splitting force (or 

fracture resistance) decreases after A/L reaches 0.14. Given the constant loading at the crack 

mouth, it leads to crack instability (or magnified dynamic effects as crack propagates). On the 

other hand, analytical solutions were obtained at static equilibrium of each crack length. 

Normally, to achieve a stable crack growth, a displacement-controlled loading condition would 

be preferred. Nevertheless, despite the differences in loading condition, the results do not differ 

significantly. Our primary application of PD involves external loading, such as wind  and 

current acting as surface loads, and floe-floe contact serving as boundary forces. Therefore, we 

are satisfied with the current load-controlled benchmark test. 

5.3 On the inherent efficiency of PD in simulating ice fracture 
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For any numerical method, there is a trade-off between accuracy and efficiency. This trade-

off is largely reflected by the spatial (e.g., mesh size and particle spacing) and temporal (i.e., 

time step) resolution of discretization. Here we discuss the inherent efficiency of PD method.  

• Spatial resolution 

For PD simulations, there are two important numerical length scales. These are the particle 

spacing dx and the horizon size δ. These two numbers are correlated through a multiplying 

factor m.  δ-convergence and dx-convergence study results were presented in Error! 

Reference source not found.. This reveals an optimal combination of m=3.015 and dx=0.15 

m for our benchmark test. However, a particle spacing of 0.15 m would be quite 

computationally prohibitive for ~ km-scale of applications. In this regard, further sensitivity 

studies on PD particle spacing and horizon size are carried out in the fracture of heterogenous 

ice floe here with more reasonable particle spacing size (i.e., ~ m). The discretization 

information for the different particle spacing is reviewed in Table 5. 

Table 5. near here  

Figure 18(a). near here 

Figure 19(b). near here 

Figure 20(c). near here 

Based on the calculation results (see Figure 10), It is evident that different particle 

distributions and particle spacing in the reasonable range have negligible effects on the crack 

propagation path, although the cracks exhibit different degrees of fracture. This finding 

suggests the possibility of utilizing larger PD particle spacings for large scale ice floe fractures 

simulations.   

• Temporal resolution 

In the PD method, the prediction of crack propagation relies on explicit solvers to simulate 

the dynamic growth process and path of the cracks. The numerical stability required for this 
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process imposes strict constraints on the time step, which is considerably smaller than the 

maximum time step defined by the Courant-Friedrichs-Lewy (CFL) criterion used in the Finite 

Element Method (FEM) scheme. This characteristic presents a significant challenge when 

addressing larger time scales and high-resolution scenarios in sea ice fracture problems. We 

can potentially increase PD’s simulation efficiency by employing the implicit integral method 

for solving or adjust our mesh size making a reasonable trade-off between efficiency and 

accuracy in this application. Still, we believe these improvements are just superficial numerical 

improvements. Perhaps the more pressing task at present is to enhance the computational 

efficiency of PD to facilitate its application to large-scale sea ice damage problems, and 

potentially integrate it with existing ice rheology models.  

5.4 On PD’s application in large scale ice fracture simulations 

Section 4 shows the PD’s capability in simulating the failure of a heterogeneous ice floe at 

large scale (1 km). The comparison was made against the PFM. At present, only qualitative 

comparison is made in Error! Reference source not found., which show resemblance 

between both simulation results. Our intention is not to compare these two methods as there 

exist many literatures on this issue (e.g., Diehl and others (2022)). Instead, we explore the 

potential of PD in simulating ice floe fracture at large scale in a same setting. Nevertheless, a 

visual comparison presented Error! Reference source not found.b demonstrates a unique 

advantage of PD in simulating progressive fragmentation process over the PFM. However, this 

comes with a cost. Both PD and PFM are computationally expensive.  

Computational cost is detrimental for these methods’ large-scale applications. One 

potential solution to apply PD to large-scale sea ice simulations efficiently is to couple PD with 

a mature and efficient existing model (such as Discrete Element Method, FEM). In this 

approach, PD solves the domain that includes the fracture, while the rest of the domain is solved 

by that mature and efficient existing model. We have experience supporting this idea; we have 
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implemented ice fracture simulation in a Discrete Element Method (DEM)-based simulation 

environment in a selective manner. Specifically, not all ice bodies are simulated for fracture; 

only those prone to fracture are evaluated (Lubbad and others, 2022). This approach has 

significantly increased simulation efficiency.  

6. Conclusions  

The fracture of large-scale sea ice has a great impact on the climate, environment, and 

Arctic engineering. The research on large-scale sea ice fracture is mostly based on continuum 

mechanics and lacks physically informed parameterization towards high resolution fracture 

models. To explore the potential method in modelling explicit sea ice fracture, the present study 

employed a fracture mechanics featured method, PD theory, to investigate sea ice fracture. As 

an initial step, we focus on the tensile fracture of a single ice floe. We performed two studies:  

 1) the splitting of an edge cracked rectangular ice plate (ECRP) and 2) the fracture of a 

heterogeneous ice floe.  

The following conclusions can be drawn from the experimental ice floe fracture simulation 

and the preceding discussions: 

1) PD can reasonably capture the initiation, propagation, branching and bridging of 

multiple cracks in a heterogeneous ice floe. 

2)  For the application of PD in simulation ice floe fracture at 1 km, PD’s simulation 

results seem to be minimally affected by particle spacing (up to ~ 6 m). This shows the 

potential of using PD to achieve high-resolution (~ m) yet large-scale (~ km) ice 

fracture simulations.  

3) On temporal scales, the explicit solver used in the current PD method required 

demandingly small simulation time steps (same but more specific conclusions can also 

be found in Littlewood and others (2023). This issue may be addressed through 
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established numerical methods, e.g., using an implicit solver. However, this ‘superficial’ 

numerical improvement may not be enough for long-term fracture simulations.   

4) Similar to other numerical methods (e.g., PFM), PD is computationally demanding. 

This is considered as one of the major challenges in its large-scale applications. To 

address this, we need to reconsider the way how we use PD in an ice dynamic model 

(e.g., DEM) to address large scale ice fractures.  

7. Future thinking 

We cannot assert with absolute certainty that the PD method is completely superior to other 

methods, such as PFM or FEM, in predicting large-scale sea ice fracture. Each method has its 

own advantages and disadvantages. Compared to other methods, PD has higher computational 

costs, and as the computational volume increases, the costs rise faster than with other methods.  

However, the PD method has unique advantages in predicting the initiation and propagation 

of cracks. Thanks to its self-embedded fracture mathematical model, it can predict the 

generation and spontaneous expansion of cracks, which significantly contributes to predicting 

the formation of new ice blocks after large-scale sea ice breakage. We also have the opportunity 

to further develop PD constitutive models and efficient numerical calculations suitable for 

large-scale sea ice, achieving accurate results step by step to reach the ultimate goal. 

Moreover, it can be found that the present study employed PD to simulate the tensile 

damage of sea ice, neglecting compression damage. However, compression damage is a 

significant aspect of sea ice failure. Therefore, it is a subject the authors intend to investigate 

in the future. Given that compression failure in sea ice typically involves shearing, a literature 

review suggests that the Mohr-Coulomb criterion could more accurately capture the failure 

behaviour of large-scale sea ice. Consequently, the authors will incorporate the Mohr-Coulomb 

model to explore the potential of studying large-scale compression damage by PD simulations. 

. 
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Figure 1. Discretization and  particle interactions in PD theory (Zhang and others, 2021). 
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Figure 2. Failure process and it’s mathematical expression in PD theory. 
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Figure 3. Model set up for the in-plane splitting of an ECRP. 
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Figure 4. Normalized splitting force versus normalized crack length for the splitting of an 
ECRP: (a) dx -convergence and (b) δ -convergence study with PD method. 

 

 

 

 
Figure 5. Crack path of the splitting of an ECRP: initial snapshot (left) and crack propagation 
snapshot (right). 
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Figure 6. Comparison of the 2D numerical PD scheme with the analytical solution and other 
numerical methods for the benchmark test: normalized splitting force versus dimensionless 

crack length. 
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Figure 7. Ice floe model for fracture simulation (Each ice floe has ten different weak zones 

(#1-10) with different thickness.): (a) illustration of boundary conditions of the heterogenous 
ice floe fracture; (b) the heterogenous ice floe for case 1; (c) the heterogenous ice floe  for 

case 2. 
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Figure 8. Comparison of the simulation results of the fracture of a heterogeneous ice floe by 
PD and PFM: (a-1) case 1, PD displacement result, unit [m]; (a-2) case 1, PD damage result, 

unit [-];  (a-3) case 1, PFM displacement and damage result obtained by Dinh and others 
(2023) (Black arrows represent the displacement field over the ice floe, while red line 

indicates crack); (b-1) case 2, PD displacement result; (b-2) case 2, PD damage result; (b-3) 
case 2, PFM displacement and damage result obtained by Dinh and others (2023) (Black 
arrows represent the displacement field over the ice floe, while red line indicates crack). 
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Figure 9. Diagram illustrating the definition of crack length. 
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Figure 10. Comparison of the crack propagation between different particle spacings: (a) 
particle spacing 4 m; (b) particle spacing 5 m; (c) particle spacing 6 m. 
 

 
List of tables 

 

Table 1. Model setup and calculation information for ECRP. 

Geometry of the ice plate L 30 [m]× 30 [m] 

Thickness of the ice plate h 1.8 [m] 

Elastic modulus E 5 [GPa] 

Poisson’s ratio υ 1/3 

Critical energy release rate cG  (Mode-I 

fracture energy) 

15 [N/m] 

Ice density ρ 920 [kg/m3] 

Horizon size δ convergence analysis in Section 3.2 
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Table 2. Information for discretization and the critical stretch in ice tensile failure. 

Particle spacing dx Multiple factor m Horizon size δ Critical stretch Cs   

0.1 m 3.015 0.3015 m 1.179×10-4 

0.15 m 2.015 0.30225 m 1.177×10-4 

0.15 m 3.015 0.45225 m 9.176×10-5 

0.15 m 4.015 0.60225 m 8.340×10-5 

0.2 m 3.015 0.603 m 8.335×10-5 

0.3 m 3.015 0.9045 m 6.805×10-5 

0.5 m 3.015 1.5075 m 5.271×10-5 

 

Table 3. Input parameters for numerical experiment of heterogenous ice floe fracture. 

Geometry of the ice floe L 1 [km]× 1 [km] 

Thickness of the ice plate h 1 [m] 

Elastic modulus E 9×109 [Pa] 

Poisson’s ratio υ 1/3 

Critical energy release rate cG  (Mode-I 

Fracture energy) 

10 [N/m] 

Ice density ρ 920 [kg/m3] 

Particle spacing 4 m, 5 m, 6 m 

Critical stretch (corresponding to different 

particle spacing) 
1.134×10-5, 1.014×10-5, 9.261×10-6 

multiplier m 3.015 

 

Table 4. Thickness distribution of the two ice floe models. 

https://doi.org/10.1017/aog.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.43


47 
 

Case 1 Case 2 

Zone #  

Thickness 

[m] 

Width 

[m] 
Zone # 

Thickness 

[m] 

Width 

[m] 

1 0.33  20  1 0.17 20  

2 0.37 20 2 0.95 20 

3 0.01 20 3 0.58 20 

4 0.74 20 4 0.53 20 

5 0.03 20 5 0.78 20 

6 0.54 20 6 0.22 20 

7 0.35 20 7 0.84 20 

8 0.05 20 8 0.43 20 

9 0.21 20 9 0 20 

10 0.02 20 10 0.49 20 

 

Table 5. Discretization information for the different particle spacing in fracture of a 

heterogeneous ice floe. 

Particle spacing dx Numbers of nodes Horizon size δ Critical stretch sC 

4 m 64,266 12.06 m 1.134×10-5 

5 m 40,976 15.075 m 1.014×10-5 

6 m 28,204 18.09 m 9.261×10-6 
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