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Abstract

In this paper we study a weak law of large numbers for the total internal length of the
Bolthausen–Sznitman coalescent, thereby obtaining the weak limit law of the centered and
rescaled total external length; this extends results obtained in Dhersin and Möhle (2013).
An application to population genetics dealing with the total number of mutations in the
genealogical tree is also given.

Keywords: Coalescent process; Bolthausen–Sznitman coalescent; external branch; block
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1. Introduction and main results

In population genetics, one way of explaining disparity in a sample is to observe how many
genes appear only once. A gene carried by a single individual is the result of two possible events:
either the gene comes from a mutation that appeared in an external branch of the genealogical
tree, or the gene is of the ancestral type and mutations occurred in the rest of the sample (see
Figure 1). We suppose that events of the second type occur much less frequently than events of
the first type (this is indeed the case when the size of the sample is large). The total number of
genes carried by a single individual is then closely related to the so-called total external length,
which is the sum of all external branch lengths of the tree.

The Bolthausen–Sznitman coalescent (see, for instance, [6]) is a well-known example of an
exchangeable coalescent with multiple collisions (see [19] and [20] for a proper definition of
this type of coalescent). It was first introduced in physics in order to study spin glasses, but it has
also been considered as a limiting genealogical model for evolving populations with selective
killing at each generation (see, for instance, [7, 8]). Recently, Berestycki et al. [5] noted that
this coalescent represents the genealogies of branching Brownian motion with absorption.

The Bolthausen–Sznitman coalescent (�t , t ≥ 0) is a continuous-time Markov chain with
values in the set of partitions of N, starting with an infinite number of blocks/individuals. In
order to give a formal description of this coalescent, it is sufficient to give its jump rates. Let
n ∈ N; then the restriction (�

(n)
t , t ≥ 0) of (�t , t ≥ 0) to [n] := {1, . . . , n} is a Markov chain

with values in Pn, the set of partitions of [n], with the following dynamics: whenever �
(n)
t is

a partition consisting of b blocks, any particular k of them merge into one block at rate

λb,k = (k − 2)! (b − k)!
(b − 1)! ,
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Figure 1: An example of a genealogical tree containing two mutations. Mutation 1 is in an internal branch
and is shared by four individuals. Mutation 2 is in an external branch and is carried by one individual.

Also, in this example an ancestral gene is carried by one individual.

so the next coalescence event occurs at total rate

λb =
b∑

k=2

(
b

k

)
λb,k = b − 1. (1)

Note that mergers of several blocks into a single block are possible, but multiple mergers do
not occur simultaneously. Moreover, this coalescent process is exchangeable, i.e. its law does
not change under the effect of a random permutation of the labels of its blocks.

One of our aims is to study the total external length of the Bolthausen–Sznitman coalescent.
More precisely, we determine the asymptotic behaviour as n → ∞ of the total external length
E(n) of the Bolthausen–Sznitman coalescent restricted to Pn, and relate E(n) to its total length
L(n) (the sum of lengths of all external and internal branches). A first orientation can be gained
from coalescents without proper frequencies, for which class Möhle [18] proved that, suitably
scaled, the asymptotic distributions of E(n) and L(n) are equal. Now while the Bolthausen–
Sznitman coalescent does not belong to this class, loosely speaking, it is located at the borderline.
Also, it is known for the Bolthausen–Sznitman coalescent [12] that

(log n)2

n
L(n) − log n − log log n

D−→ Z as n → ∞, (2)

where ‘
D−→’ denotes convergence in distribution and Z is a strictly stable random variable with

index 1, i.e. the characteristic exponent of Z satisfies

�(θ) := − log E[eiθZ] = 1
2π |θ | − iθ log |θ |, θ ∈ R. (3)

In their recent work, Dhersin and Möhle [10] showed that the ratio E(n)/L(n) converges to 1
in probability. Thus, one might guess that E(n) satisfies the same asymptotic relation with the
same scaling. A principal result of this paper is that this is almost true, but not entirely.

Consider (�
(n)
t , t ≥ 0). Denote by U

(n)
k the size of the kth jump, i.e. the number of blocks

that the Markov chain loses in the kth coalescence event. Denote by X
(n)
k the number of blocks

after k coalescence events. Observe that X(n)
0 = n and X

(n)
k = X

(n)
k−1 − U

(n)
k = n − ∑k

i=1 U
(n)
i .
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Since the merging blocks coalesce into one, there are U
(n)
k + 1 blocks involved in the kth

coalescence event and, for l < X
(n)
k−1,

P(U
(n)
k = l | X

(n)
k−1 = b) =

(
b

l + 1

)
λb,l+1

λb

= b

b − 1

1

l(l + 1)
.

Let τ (n) be the number of coalescence events, i.e. τ (n) = inf{k, X
(n)
k = 1}.According to Iksanov

and Möhle [15] (see also [13]), τ (n) has the asymptotic behaviour

(log n)2

n
τ (n) − log n − log log n

D−→ Z as n → ∞, (4)

where Z is as in (2).
The main result of this paper describes the behaviour of the total internal length I (n) as

n → ∞. To this end, introduce the random variable Y
(n)
k representing the number of internal

branches after k coalescence events. Thus, Y
(n)
k is the number of remaining blocks which have

already participated in a coalescence event. Note that at time 0 all branches are external, i.e.
Y

(n)
0 = 0. Let (ek, k ≥ 1) be a sequence of independent and identically distributed standard

exponential random variables, independent of X
(n)
k and Y

(n)
k ; so, from (1),

I (n) D=
τ (n)−1∑
k=1

Y
(n)
k

ek

X
(n)
k − 1

. (5)

Our main result is the following weak law of large numbers for I (n). Here ‘
P−→’ denotes

convergence in probability.

Theorem 1. The total internal length I (n) of the Bolthausen–Sznitman coalescent satisfies

(log n)2

n
I (n) P−→ 1 as n → ∞.

Now noting that L(n) = I (n) + E(n), and using (2) and our main result, we deduce the
asymptotic distribution of the total external length E(n).

Corollary 1. The total external length E(n) of the Bolthausen–Sznitman coalescent satisfies

(log n)2

n
E(n) − log n − log log n

D−→ Z − 1 as n → ∞,

where the strictly stable random variable Z is as in (2).

Observe that the Bolthausen–Sznitman coalescent can be seen as a special case (α = 1) of
the so-called Beta(2 − α, α)-coalescent (this class is defined for 0 < α < 2; see Section 3.1.4
of [2]). Möhle’s work [18] shows that, for 0 < α < 1, the variable E(n)/n converges in law to a
random variable defined in terms of a driftless subordinator that depends on α. For 1 < α < 2,
we refer the reader to [9] where it is proved that (E(n) − cn2−α)/n1/α+1−α converges weakly
to a stable random variable with index α, c being a constant that also depends on α (see also
[3, 4, 11]). In Kingman’s case (α → 2) a logarithmic correction appears and the limit law is
normal (see [16]).

The remainder of the paper is structured as follows. In Section 2 we prove our main results
using a coupling method which was introduced in [15] and which provides more information
on the chain X(n) = (X

(n)
k , k ≥ 0). Finally, Section 4 is devoted to the asymptotic behaviour
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of the number of mutations appearing in external and internal branches of the Bolthausen–
Sznitman coalescent. For analogous results concerning the allele frequency spectrum of a
Bolthausen–Sznitman coalescent, we refer the reader to [1].

2. A coupling

In this section we use the coupling method introduced by Iksanov and Möhle [15] in order
to study the number of jumps τ (n).

Let (Vi)i≥1 be a sequence of independent and identically distributed random variables with
distribution

P(V1 = k) = 1

k(k + 1)
, k ≥ 1. (6)

Note that P(V1 ≥ k) = 1/k. Let Sn = V1 + · · · + Vn. It is well known, see, for instance, [14],
that

Sn − n log n

n

D−→ Z as n → ∞, (7)

where Z is the stable random variable appearing in (2). This convergence in distribution is
directly extended to a convergence of processes. From Theorem 15.12 of [17], there is a Lévy
process L = (L(t), 0 ≤ t ≤ 1), unique in distribution, such that L(1)

D= Z. Note that, due to
the logarithmic term in (7), the stable random variable Z is not strictly stable, which is reflected
in the behaviour of L. This process is not scaled in the ordinary fashion, but

Lt
D= tL1 − t log t,

as follows from (3).

Lemma 1. The sequence of processes (Ln(t), 0 ≤ t ≤ 1), n = 1, 2, . . . , defined by

Ln(t) = S�nt� − �nt� log n

n
,

converges as n → ∞ to L in the Skorokhod space D[0, 1].
Proof. Using (7), apply Theorem 16.14 of [17] to the random walks (Sn

k )k≥0=(Ln(k/n))k≥0,

n = 1, 2, . . . , with mn = n.

We introduce further notation. For a stochastic process (Zn, n ≥ 0) and a function c(n) > 0,

write Zn = Op(c(n)) as n → ∞ if Zn/c(n) is stochastically bounded as n → ∞, i.e. if
limx→∞ lim supn→∞ P(|Zn| > xc(n)) = 0. We also write Zn = op(c(n)) as n → ∞ if
Zn/c(n) → 0 in probability.

From Lemma 1 we deduce that

sup
1≤k≤n

|Sk − k log n| = Op(n). (8)

Now recursively define (ρ(k))k≥0, a sequence of stopping times such that ρ(0) = 0 and

ρ(k + 1) = inf

{
i > ρ(k), Vi +

k∑
j=1

Vρ(j) < n

}
,

with the convention inf{∅} = ∞. Thus, the sequence (ρ(k))k≥1 is the collection of indices of
the random variables Vi such that their sum does not exceed n − 1. It was proved in [15] that
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τ (n) and sup{k, ρ(k) < ∞} are equal in law, and that the terms of the block-counting Markov
chain of the Bolthausen–Sznitman coalescent can be represented as X

(n)
0 = n and

X
(n)
k

D= n −
k∑

i=1

Vρ(i).

Next, define
σ (n) = inf{k, ρ(k) > k},

the first time that the random walk meets or exceeds n, and

θ(n)
γ = τ (n) − n

(log n)1+γ
, γ ∈ (0, ∞], (9)

with the convention θ
(n)∞ = τ (n). Our first result allows us to consider the random walk instead

of the process of disappearing blocks until time θ
(n)
γ .

Proposition 1. Let 0 < γ < γ ′ ≤ ∞. Then, as n → ∞,

P(θ(n)
γ < σ (n)) → 1 and

(log n)γ

n
X

(n)

θ
(n)
γ

P−→ 1, (10)

and

sup
1≤k≤θ

(n)
γ

∣∣∣∣ X
(n)
k

θ
(n)

γ ′ − k
− log n

∣∣∣∣ = op(log n) for sufficiently large n. (11)

To prove this proposition, we first prove a similar result for the family of stopping times

η(n)
c,γ = inf

{
k, X

(n)
k <

cn

(log n)γ

}
,

where c is a positive constant, and then note that, for 0 < ε < 1,

P(η
(n)
1−ε,γ ≤ θ(n)

γ ≤ η
(n)
1+ε,γ ) → 1 as n → ∞.

The proof of Proposition 1 then relies on the following lemma.

Lemma 2. Let 0 < γ < ∞. Then, as n → ∞,

P(η(n)
c,γ < σ (n)) → 1 and

(log n)γ

cn
X

(n)

η
(n)
c,γ

P−→ 1,

and

sup
1≤k≤η

(n)
c,γ

∣∣∣∣ X
(n)
k

τ (n) − k
− log n

∣∣∣∣ = op(log n) for sufficiently large n.

Proof. Our proof proceeds in two steps: first we prove the relations (at (13), (15), and (17)
below) for γ < 1, and then extend them to X(n) started not from 0 but from η

(n)
c,γ for some

γ < 1, say γ = 1
2 . Iterating this argument leads to a proof for γ ≤ 1

2p, with induction on p.
Step 1. Let γ < 1. Observe from (6) that, for any 0 < ε < 1,

P

(
Vk <

n

(log n)1−ε
for all k ≤ 2n

log n

)
≥

(
1 − (log n)1−ε

n

)2n/ log n

→ 1 as n → ∞.
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Now, since P(τ (n) ≤ 2n/log n) → 1 as n → ∞ (this follows from (4)), we obtain

sup
1≤k≤τ (n)

Vk = Op

(
n

(log n)1−ε

)
. (12)

For simplicity, write η(n) in place of η
(n)
c,γ . Then, from our definitions, it follows that

P(σ (n) ≤ η(n)) = P(Vk ≥ X
(n)
k−1 for some k ≤ η(n))

≤ P

(
Vk ≥ cn

(log n)γ
for some k ≤ τ (n)

)

= P

(
sup

1≤k≤τ (n)

Vk ≥ cn

(log n)γ

)
,

so, by taking ε ∈ (0, 1 − γ ) in (12), it follows that

P(σ (n) ≤ η(n)) → 0 as n → ∞. (13)

On the event {σ (n) > η(n)}, it is clear that

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

X
(n)
k−1

− 1

∣∣∣∣ = sup
1≤k≤η(n)

Vk

X
(n)
k−1

≤ (log n)γ

cn
sup

1≤k≤τ (n)

Vk .

Hence, we conclude from (12) and (13) that

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

X
(n)
k−1

− 1

∣∣∣∣ = op(1). (14)

In particular, since X
(n)

η(n) ≤ cn/(log n)γ ≤ X
(n)

η(n)−1
,

(log n)γ

cn
X

(n)

η(n)

P−→ 1 as n → ∞. (15)

Next, note that

X
(n)
k − (τ (n) − k) log n = X

(n)
k − n + k log

(
2n

log n

)
+ (n − τ (n) log n) + k log

(
log n

2

)
,

while, from (4), it is clear that

(log n)2

n
τ (n) = log n + Op(log log n).

Then, on the event {η(n) < σ (n), η(n) < 2n/log n}, it follows from (8) that

sup
1≤k≤η(n)

|X(n)
k − (τ (n) − k) log n| ≤ sup

1≤k≤2n/ log n

∣∣∣∣Sk − k log

(
2n

log n

)∣∣∣∣ + Op

(
n log log n

log n

)

= Op

(
n log log n

log n

)
.

Finally, (15) and the strong Markov property for X̃
(n)
k = X

(n)

k+η(n) yield

τ (n) − η(n) = τ (X̃
(n)
0 ) =

X
(n)

η(n)

log X
(n)

η(n)

(1 + op(1)) = cn

(log n)1+γ
(1 + op(1)). (16)
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Then, putting all the pieces together, we obtain

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

τ (n) − k
− log n

∣∣∣∣ ≤ sup1≤k≤η(n) |X(n)
k − (τ (n) − k) log n|

τ (n) − η(n)

= Op((log n)γ log log n),

and, since γ < 1,

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

τ (n) − k
− log n

∣∣∣∣ = op(log n). (17)

Step 2. We now prove (13)–(17) for any γ > 0 by showing that the lemma holds for γ ≤ 1
2p

for any p ∈ N, using induction on p. Step 1 established this claim for p = 1.
Suppose that the asymptotics in (13)–(17) hold for γ ≤ 1

2p. For simplicity, write η̂(n) =
η

(n)
c,p/2. The idea is to use the strong Markov property at the stopping time η̂(n) and apply the

above results for γ < 1 to the Markov chain X̂
(n)
k = X

(n)

k+η̂(n) started at n̂ = X
(n)

η̂(n) (instead of
n = X

(n)
0 ). Define the family of stopping times

ζ (n) = inf

{
k, X

(n)
k <

n̂

(log n̂)2/3

}
.

Observe that ζ (n) = η̂(n) + η
(n̂)
1,2/3. Hence, using the strong Markov property at the stopping

time η̂(n) and the behaviour in (15), with γ = 2
3 , we obtain

(log X
(n)

η̂(n) )
2/3

X
(n)

η̂(n)

X
(n)

ζ (n)

P−→ 1 as n → ∞.

Then, from this asymptotic behaviour and the induction hypothesis taken in (15),

(log n)2/3+p/2

cn
X

(n)

ζ (n)

P−→ 1 as n → ∞.

From this relation, (15), and

(log n)γ

cn
X

(n)

η(n) < 1 ≤ (log n)γ

cn
X

(n)

η(n)−1
,

we obtain, for p/2 < γ ≤ (p + 1)/2,

P(η̂(n) < η(n) ≤ ζ (n)) → 1 as n → ∞. (18)

Now, on the event {σ (n) > η̂(n)}, using the strong Markov property at η̂(n) and (13) with the
initial state X

(n)

η̂(n) , we obtain

P(σ (n) ≤ ζ (n) | σ (n) > η̂(n)) → 0 as n → ∞.

The induction hypothesis gives P(σ (n) > η̂(n)) → 1 as n → ∞. Together, these two facts give

P(σ (n) > η(n)) → 1 as n → ∞ for γ ∈ (p/2, (p + 1)/2].
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From (14) and again the strong Markov property at η̂(n), we obtain

sup
η̂(n)≤k≤ζ (n)

∣∣∣∣ X
(n)
k

X
(n)
k−1

− 1

∣∣∣∣ = op(1).

From the above relation, (18), and the induction hypothesis, we have

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

X
(n)
k−1

− 1

∣∣∣∣ = op(1)

for γ ∈ (p/2, (p + 1)/2]. Again, the strong Markov property and the above behaviour imply
that, for all γ ∈ (p/2, (p + 1)/2],

τ (n) − η(n) = cn

(log n)1+γ
(1 + op(1)).

From (17) and the strong Markov property, we deduce that

sup
η̂(n)≤k≤ζ (n)

∣∣∣∣ X
(n)
k

τ (n) − k
− log X

(n)

η̂(n)

∣∣∣∣ = op

(
log X

(n)

η̂(n)

)
.

We know from the induction hypothesis that log X
(n)

η̂(n) ∼ log n for n → ∞. We now use the
induction hypothesis again and (18) to conclude that

sup
1≤k≤η(n)

∣∣∣∣ X
(n)
k

τ (n) − k
− log n

∣∣∣∣ = op(log n)

for all γ ∈ (p/2, (p + 1)/2]. Hence, the induction is complete and the asymptotic behaviour
in (13)–(17) holds for any γ > 0.

Proof of Proposition 1. First recall the definition of θ
(n)
γ in (9), and define η

(n)
− = η

(n)
1−ε,γ and

η
(n)
+ = η

(n)
1+ε,γ . From (16), it is clear that

P(η
(n)
+ ≤ θ(n)

γ ≤ η
(n)
− ) → 1 as n → ∞,

while (13) implies that
P(σ (n) > η

(n)
− ) → 1 as n → ∞.

Thus, the first asymptotic relation in (10) holds. Then noting also that

P(X
(n)

η
(n)
−

≤ X
(n)

θ
(n)
γ

≤ X
(n)

η
(n)
+

) → 1 as n → ∞,

the second asymptotic relation in (10) follows from (15). Equation (17) implies that

sup
1≤k≤θ

(n)
γ

∣∣∣∣ X
(n)
k

τ (n) − k
− log n

∣∣∣∣ = op(log n),

which gives (11) for γ ′ = ∞. Also,

sup
1≤k≤θ

(n)
γ

∣∣∣∣
θ

(n)

γ ′ − k

τ (n) − k
− 1

∣∣∣∣ = sup
1≤k≤θ

(n)
γ

∣∣∣∣
τ (n) − θ

(n)

γ ′

τ (n) − k

∣∣∣∣ ≤ τ (n) − θ
(n)

γ ′

τ (n) − θ
(n)
γ

= (log n)γ

(log n)γ
′ (1 + op(1)).

This gives (11) generally, and completes the proof.
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3. Proof of Theorem 1

First define

Ĩ (n) =
τ (n)−1∑
k=1

Y
(n)
k

X
(n)
k

; (19)

this is obtained from (5) on replacing the exponential random variable ek by its mean and
approximating the denominator. Similarly, define

Î (n) =
τ (n)−1∑
k=1

E[Y (n)
k | X(n)]
X

(n)
k

;

this comes from (19) on replacing the random variable Y
(n)
k by its conditional expectation.

This new formulation is of interest because much as in [9] we can determine Î (n) recursively
as follows. Let Z

(n)
k be the number of external branches after k jumps, k ≥ 1, and take the

conditional expectation of each Z
(n)
k with respect to X(n) and Z

(n)
k−1. Observe that Z

(n)
k−1 − Z

(n)
k

is the number of external branches which contribute to the kth coalescence event. Then,
conditional on X(n) and Z

(n)
0 , . . . , Z

(n)
k−1, this random variable is distributed as a hypergeometric

random variable with parameters X
(n)
k−1, Z

(n)
k−1 and 1 + U

(n)
k . Recall that U

(n)
k = X

(n)
k−1 − X

(n)
k

denotes the size of the kth jump of the block counting process. It is then clear that

E[Z(n)
k | X(n), Z

(n)
k−1] = Z

(n)
k−1 − (1 + U

(n)
k )

Z
(n)
k−1

X
(n)
k−1

= Z
(n)
k−1

X
(n)
k − 1

X
(n)
k−1

,

E[Z(n)
k | X(n)] = E[Z(n)

k−1 | X(n)]X
(n)
k − 1

X
(n)
k−1

,

and
E[Z(n)

k | X(n)]
X

(n)
k

=
k∏

i=1

(
1 − 1

X
(n)
i

)
.

Finally, since Y
(n)
k = X

(n)
k − Z

(n)
k , it follows that

Î (n) =
τ (n)−1∑
k=1

(
1 −

k∏
i=1

(
1 − 1

X
(n)
i

))
. (20)

This last expression helps us to understand the asymptotic behaviour of the total internal branch
via the following lemma for the asymptotic behaviour of Î (n).

Lemma 3. As n → ∞,
(log n)2

n
Î (n) −→ 1 in probability.

Proof. Let 0 < ε < 1, and take θ
(n)
γ as in (9); also, let θ

(n)
− = �θ(n)

1−ε� and θ
(n)
+ = �θ(n)

1+ε�.
Consider Î (n) as given in (20), but rewrite it as Î (n) = Î

(n)
1 + Î

(n)
2 , where

Î
(n)
1 =

θ
(n)
+ −1∑
k=1

(
1 −

k∏
i=1

(
1 − 1

X
(n)
i

))
and Î

(n)
2 =

τ (n)−1∑
k=θ

(n)
+

(
1 −

k∏
i=1

(
1 − 1

X
(n)
i

))
.
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Note that
Î

(n)
2 ≤ τ (n) − θ

(n)
+ ≤ n

(log n)2+ε
+ 1,

implying that
(log n)2

n
Î

(n)
2 → 0 almost surely as n → ∞.

Hence, it is enough to prove the lemma for Î
(n)
1 . To this end, start by noting that

k∑
i=1

1

X
(n)
i

−
k∑

j=2

j−1∑
i=1

1

X
(n)
i X

(n)
j

≤ 1 −
k∏

i=1

(
1 − 1

X
(n)
i

)
≤

k∑
i=1

1

X
(n)
i

(this can be viewed as two Bonferroni inequalities for independent events with entrance prob-
abilities 1/X

(n)
i ). On the one hand,

θ
(n)
+ −1∑
k=1

k∑
i=1

1

X
(n)
i

=
θ

(n)
+ −1∑
i=1

θ
(n)
+ − i

X
(n)
i

,

so
θ

(n)
− −1∑
i=1

θ
(n)
+ − i

X
(n)
i

≤
θ

(n)
+ −1∑
k=1

k∑
i=1

1

X
(n)
i

≤
θ

(n)
+ −1∑
i=1

τ (n) − i

X
(n)
i

.

Applying (11) to these two inequalities yields

1

log n
(θ

(n)
− − 1)(1 + op(1)) ≤

θ
(n)
+ −1∑
k=1

k∑
i=1

1

X
(n)
i

≤ 1

log n
(θ

(n)
+ − 1)(1 + op(1)).

From the two limit relations

θ
(n)
− log n

n

P−→ 1 and
θ

(n)
+ log n

n

P−→ 1 as n → ∞,

it follows that
θ

(n)
+ −1∑
k=1

k∑
i=1

1

X
(n)
i

= n

(log n)2 (1 + op(1)).

On the other hand, by inverting the sums we obtain

θ
(n)
+ −1∑
k=1

k∑
j=2

j−1∑
i=1

1

X
(n)
i X

(n)
j

=
θ

(n)
+ −1∑
j=2

θ
(n)
+ −1∑
k=j

j−1∑
i=1

1

X
(n)
i X

(n)
j

=
θ

(n)
+ −1∑
j=2

θ
(n)
+ − j

X
(n)
j

j−1∑
i=1

1

X
(n)
i

.

Using (11) again, we obtain

θ
(n)
+ −1∑
k=1

k∑
j=2

j−1∑
i=1

1

X
(n)
i X

(n)
j

≤
θ

(n)
+ −1∑
j=2

τ (n) − j

X
(n)
j

j−1∑
i=1

1

X
(n)
i

≤ 1 + op(1)

log n

θ
(n)
+ −1∑
j=1

j∑
i=1

1

X
(n)
i

,
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so, finally,
θ

(n)
+ −1∑
k=1

k∑
j=2

j−1∑
i=1

1

X
(n)
i X

(n)
j

≤ n

(log n)3 (1 + op(1)).

Putting all these pieces together gives

(log n)2

n
Î

(n)
1

P−→ 1 as n → ∞,

which proves the lemma.

In order to prove Theorem 1, it remains only to control our approximations. This is done
via the next two lemmas.

Lemma 4. As n → ∞, I (n) − Ĩ (n) = OP (
√

n).

Proof. Recall that X(n) denotes the Markov chain (X
(n)
k , k ≥ 0). A simple computation

gives

I (n) − Ĩ (n) =
τ (n)−1∑
k=1

Y
(n)
k

ek − 1

X
(n)
k

+
τ (n)−1∑
k=1

Y
(n)
k

ek

X
(n)
k (X

(n)
k − 1)

.

Conditional on X(n) and Y (n), the random variables Y
(n)
k (ek − 1)/X

(n)
k are independent with

zero mean. This implies, when coupled with the fact that Y
(n)
k ≤ X

(n)
k almost surely that

E

[( τ (n)−1∑
k=1

Y
(n)
k

ek − 1

X
(n)
k

)2 ∣∣∣∣ X(n), Y (n)

]
=

τ (n)−1∑
k=1

(
Y

(n)
k

X
(n)
k

)2

≤ τ (n) ≤ n.

Chebychev’s inequality now implies that

τ (n)−1∑
k=1

Y
(n)
k

ek − 1

X
(n)
k

= OP (
√

n).

Again using Y
(n)
k ≤ X

(n)
k almost surely, we obtain

E

[τ (n)−1∑
k=1

Y
(n)
k

ek

X
(n)
k (X

(n)
k − 1)

]
≤ E

[τ (n)−1∑
k=1

ek

X
(n)
k − 1

]
≤

n−1∑
k=2

1

k − 1
.

This fact and Markov’s inequality complete the proof of the lemma.

Lemma 5. As n → ∞, Ĩ (n) − Î (n) = OP (
√

n).

Proof. We proceed much as in [9]. Recall that Z
(n)
k is the number of external branches after

k coalescing events. Since Y
(n)
k = X

(n)
k − Z

(n)
k ,

Ĩ (n) − Î (n) = −
τ (n)−1∑
k=1

Z
(n)
k − E[Z(n)

k | X(n)]
X

(n)
k

.
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Recall also that, given X(n) and Z
(n)
k−1, Z

(n)
k − Z

(n)
k−1 has a conditional hypergeometric distribu-

tion. Therefore,

Z
(n)
k = Z

(n)
k−1 − (U

(n)
k + 1)

Z
(n)
k−1

X
(n)
k−1

− H
(n)
k = Z

(n)
k−1

X
(n)
k − 1

X
(n)
k−1

− H
(n)
k ,

where H
(n)
k denotes a random variable with conditional hypergeometric distribution with

parameters X
(n)
k−1, Z

(n)
k−1, and 1 + U

(n)
k as above, centered at its (conditional) expectation.

Setting
D

(n)
k = Z

(n)
k − E[Z(n)

k | X(n)],
it follows that

D
(n)
k = D

(n)
k−1

X
(n)
k − 1

X
(n)
k−1

− H
(n)
k .

Because D
(n)
0 = 0, iterating this linear recursion leads to

D
(n)
k

X
(n)
k

= −
k∑

j=1

H
(n)
j

X
(n)
j

k∏
i=j+1

(
1 − 1

X
(n)
i

)
,

so Ĩ (n) − Î (n) equals

τ (n)−1∑
k=1

k∑
j=1

H
(n)
j

X
(n)
j

k∏
i=j+1

(
1 − 1

X
(n)
i

)
=

τ (n)−1∑
j=1

H
(n)
j

X
(n)
j

τ (n)−1∑
k=j

k∏
i=j+1

(
1 − 1

X
(n)
i

)
.

Now, given X(n) and Z
(n)
0 , . . . , Z

(n)
k−1, H

(n)
k has a centered hypergeometric distribution with

zero mean and finite variance, and H
(n)
j is a function of X(n), Z

(n)
0 , . . . , Z

(n)
k−1 for j < k.

Consequently, the H
(n)
k are uncorrelated. Also, from the formula for the variance of a hyper-

geometric distribution,

E[(H (n)
j )2 | X(n), Z

(n)
j−1] ≤ (U

(n)
j + 1)

Z
(n)
j−1

X
(n)
j−1

.

Then, since Z
(n)
j−1 ≤ X

(n)
j−1 almost surely, E[(H (n)

j )2 | X(n)] ≤ U
(n)
j + 1. Gathering all these

facts now gives

E[(Î (n) − Ĩ (n))2 | X(n)] ≤
τ (n)−1∑
j=1

U
(n)
j + 1

(X
(n)
j )2

(τ (n)−1∑
k=j

k∏
i=j+1

(
1 − 1

X
(n)
i

))2

.

The product can be estimated by 1, so

E[(Î (n) − Ĩ (n))2 | X(n)] ≤
τ (n)−1∑
j=1

U
(n)
j + 1

(X
(n)
j )2

(τ (n) − j)2 ≤
τ (n)−1∑
j=1

(U
(n)
j + 1) ≤ n + τn ≤ 2n,

where the second inequality follows from the fact that τ (n) − j ≤ X
(n)
j . Applying Chebychev’s

inequality now completes the proof of both the lemma and Theorem 1.
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4. Application to population genetics

Suppose that mutations occur along genealogical trees according to a Poisson process with
parameter μ > 0. Write M(n) for the total number of mutations in the Bolthausen–Sznitman
n-coalescent. The Poisson representation implies that, conditional on L(n), M(n) is distributed
as a Poisson random variable with parameter μL(n). Each mutation is called either external or
internal according to the type of branch where it appears; denote their numbers by M

(n)
E and

M
(n)
I , respectively, so M(n) = M

(n)
E + M

(n)
I .

Proposition 2. As n → ∞,

(log n)2

n
M

(n)
I → μ in probability

and
(log n)2

n
M

(n)
E − μ log n − μ log log n → μ(Z − 1) in distribution.

Proof. Let N = (Nt , t ≥ 0) be a Poisson process with parameter μ. Note first that M
(n)
I

has the same distribution as NI(n) . This implies that

E[M(n)
I ] = E[E[M(n)

I | I (n)]] = μE[I (n)].
Theorem 1 implies that I (n) → ∞ almost surely, so it follows that NI(n)/I (n) → μ in proba-
bility, and

M
(n)
I

E[M(n)
I ]

D= NI(n)

μI (n)

I (n)

E[I (n)]
P−→ 1 as n → ∞,

again by appeal to Theorem 1. Therefore, the first part of the proposition follows from
E[M(n)

I ] = μE[I (n)] ∼ μn/(log n)2 for n → ∞.
To prove the second part, we only need to observe that M(n) = M

(n)
I + M

(n)
E satisfies (see

Corollary 6.2 of [12])

(log n)2

n
M(n) − μ log n − μ log log n → μZ in distribution, as n → ∞.
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