
Nutrition Research Rev iew  (1993), 6 ,  185--208 185 

NUTRITIONAL IMPLICATIONS OF 
GASTROINTESTINAL A N D  LIVER 
METABOLISM I N  RUMINANTS 

C. J. SEAL' AND C. K. R E Y N O L D S 2 *  
' Department of Biological and Nutritional Sciences, Faculty of Agriculture and 
Biological Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 
7RU 
Ruminant Nutrition Laboratory, Livestock and Poultry Sciences Institute, USDA 

Agricultural Research Service, Beltsville MD 20705, USA 

C O N T E N T S  
I N T R O D U C T I O N  . . . 185 
EXPERIMENTAL T E C H N I Q U E S .  . . 186 

ISOLATED TISSUE PREPARATIONS . . 186 
WHOLE ANIMAL EXPERIMENTS . . 187 
MEASUREMENT OF BLOOD F L O W .  . . 187 
R U M I N A N T  S P L A N C H N I C  VASCULATURE . . . 188 

ENERGY . . . 191 
VOLATILE FATTY ACIDS . . . 193 
A M I N O  A C I D S  A N D  PEPTIDES . . 196 
A M M O N I A  A N D  U R E A  . . . 199 
G L U C O S E .  . 200 
S U M M A R Y  . . 202 
REFERENCES . . . 202 

INTRODUCTION 

The maintenance of an optimum nutrient balance in ruminant animals for growth, 
pregnancy and lactation is of key economic importance, requiring a wide range of adaptive 
responses to supply the necessary metabolites for different physiological states. The 
splanchnic bed, comprising the gastrointestinal tract and liver, plays a pivotal role in 
moderating the pattern of nutrients available for peripheral tissues. The intestinal tissues 
form an interface between the diet and the animal and have a direct influence on the flux 
of nutrients from the lumen into the bloodstream. The liver then forms the central 
metabolic junction, further moderating and distributing nutrients to peripheral tissues for 
maintenance or productive functions such as muscle deposition or milk synthesis. The 
pattern of nutrients appearing in the bloodstream does not necessarily reflect the quantity 
and form of those available for absorption from the gut lumen. Gastrointestinal tissues 
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make use of metabolites produced by extensive metabolism of nutrients within the mucosa 
during the process of absorption in addition to those available in the arterial supply. This 
is evident from the significant difference between apparent absorption or disappearance of 
nutrients from the gut lumen and appearance of metabolites in the bloodstream (Bergman 
& Wolff, 1971 ; Tagari & Bergman, 1978). 

c .  J .  S E A L  A N D  c.  K. R E Y N O L D S  

EXPERIMENTAL TECHNIQUES 

Techniques available for the investigation of nutrient absorption and possible interactions 
with other dietary components include many in vitro and in vho procedures which have 
contributed to our understanding of nutrient availability. These procedures are also used 
to study specific metabolic processes within tissue types and across tissue beds. 

I S O L A T E D  T I S S U E  P R E P A R A T I O N S  
The use of everted gut sacs made from intestinal segments was first developed by Wilson 
& Wiseman (1954) to investigate sugar transport (Crane & Wilson, 1958) and has since 
been applied to many other nutrients including amino acids (Phillips et al. 1976) and trace 
elements (Pearson et al. 1966; Seal & Heaton, 1983; Seal & Mathers, 1989). The relative 
insensitivity of the technique and the experimental difficulties associated with maintaining 
normal metabolic activity in the isolated tissue (Munck, 1972) have meant that this 
procedure has to a large extent been superseded by the use of isolated membrane vesicles 
developed from the initial methods of Kaback (1960). These methods have provided much 
of our present knowledge of amino acid uptake and transport, especially in the 
determination of specific rates of uptake and interactions and competition between 
different amino acids (Christensen, 1990). More recent approaches, which bridge the gap 
between artificial cells prepared from isolated membranes and intact cells in vivo, have 
centred on the use of tissue cultures of intestinal epithelial cell lines grown in monolayers 
(for review, see Hidalgo et al. 1989). In addition, isolated ruminal epithelial cells and 
papillae have been used to investigate developmental and diet induced changes in ruminal 
tissues (Harmon et af. 1991 a;  Baldwin & Jesse, 1992, 1993). Identification and localization 
of individual transport systems now involve the use of molecular biology techniques and 
have been applied to whole animal investigations. For example, the sodium-glucose 
cotransporter has been sequenced and characterized at the molecular level (Hediger et al. 
1987a, b) and polyclonal antibodies raised to a synthetic polypeptide corresponding to a 
section of the sequence have been used to investigate the development and dietary 
regulation of glucose transport systems in neonatal lambs (Shirazi-Beechey et af. 1991 a ,  h). 
Further development of these techniques will undoubtedly expand our knowledge of 
nutrient transporters. 

Much of our understanding of liver nutrient metabolism and biochemistry is founded on 
in vitro studies using liver slices (Krebs & Henseleit, 1932) and homogenates (Ratner, 
1947). As with intestinal cells, liver cells can be isolated, incubated and maintained as long 
as four days (Pogson et al. 1984), but prolonged monolayer culture has only recently been 
used to study metabolism of ruminant hepatocytes; their metabolic viability is often short- 
lived when maintained in culture (Faulkner & Pollock, 1990) and much of the in vitro work 
on ruminant hepatocyte metabolism has been limited to short-term incubations (Aiello et 
al. 1989). In vitro studies have provided and will continue to provide invaluable insights 
into specifics of liver biochemistry and metabolism. However, limitations of in vitro 
procedures must be considered when applying data obtained in vivo. The heterogeneity of 
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cells obtained is considerable, both in terms of cell type and location relative to blood 
supply. In addition, the lack of blood flow for delivery of substrate and removal of waste, 
as well as the limited metabolite exchange between cells, affects the viability and sensitivity 
of incubated cells. Supraphysiological concentrations of substrates are often required to 
maintain cell viability and elicit a metabolic response, and metabolic responses to substrate 
additions in vitro can differ markedly from responses observed in vivo (Reynolds et al. 
1992~).  

W H O L E  A N I M A L  E X P E R I M E N T S  
Approaches for the study of liver metabolism in vivo include hepatectomy or portacaval 
shunts to remove the contributions of liver metabolism (Shoemaker, 1964). In addition, the 
isolated perfused liver has proved a useful approach for studying metabolism of the intact 
liver using strict control of substrate delivery. First used in 1875, the technique is effectively 
a ‘bridge between in vitro and in vivo studies’ (Shoemaker, 1964). By comparing responses 
to antegrade and retrograde infusion of substrates, the isolated perfused liver has recently 
been used to determine the degree to which zonal distribution of hepatocytes along the liver 
acinus affects the metabolism of specific compounds (Haussinger, 1983). 

In vivo techniques such as ligated intestinal loops and intestinal perfusion procedures 
have been extensively applied with rats to investigate intestinal uptake, but their 
application in large animals is costly and impractical. Early studies of rumen volatile fatty 
acid absorption and metabolism did, however, use anaesthetized sheep in this way 
(Pennington, 1952). Current understanding of the flow of nutrients along the gastro- 
intestinal tract of large animals has been achieved through the extensive use of 
permanent or semi-permanent intestinal cannulae (Brown et al. 1968), which together with 
the use of non-absorbable marker substances (Owens & Hanson, 1992) allow the processes 
of digestion to be studied in different regions of the intestine. This approach, however, is 
limited by the nature of the preparations to measuring the rate of disappearance of 
substances from the digesta, and takes no account of the fate of these nutrients once they 
leave the gut lumen. The situation is further complicated by recycling of nutrients and 
secretory products back into the lumen, together with intestinal cells sloughed during villus 
growth and development. 

The use of multicatheterization procedures has made the largest contribution to our 
knowledge of this area of ruminant gastrointestinal and liver metabolism. Originally 
developed for use in the study of liver metabolism in dogs (Shoemaker et al. 1959), the 
technique has been applied to sheep (Katz & Bergman, 1969~1, b) and cattle (Symonds & 
Baird, 1973; Huntington et al. 1989) to measure net absorption and metabolism of 
nutrients across the splanchnic bed. When used in combination with other techniques such 
as liver biopsy (Shoemaker, 1964), digestion trials and calorimetry (Reynolds et al. 1991 b), 
measurements of digesta flow and nutrient disappearance from the gut lumen (Tagari & 
Bergman, 1978) or infusion of nutrients into the rumen (Huntington e f  al. 1983; Seal & 
Parker, 1991 a, 1993a, b), abomasum (Guerino et al. 1991) or intravenously (Baird et al. 
1980; Balcells et al. 1992) the technique can yield invaluable data describing the role of the 
splanchnic bed in the delivery of nutrients to peripheral tissues. The combination of 
multicatheterization techniques and isotopic measurements of nutrient turnover also 
enables the measurement of unidirectional metabolism by portal drained viscera (PDV) 
and liver (Bergman, 1975). 
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M E A S U R E M E N T  O F  B L O O D  F L O W  
Application of the Fick principle (Zierler, 1961) to measurements of venous-arterial 
concentration differences of nutrients and blood flow in the venous drainage is used to 
calculate net rates of metabolism across tissues. Intravascular infusions of radiolabelled 
substrates and measurement of changes in metabolite specific activity across tissues are 
used to differentiate between these net flux rates and actual utilization rates within tissues 
(Bergman et al. 1970). The key determinant for both these processes is the accurate 
measurement of blood flow. Several techniques have been used including indicator dilution 
or liver clearance using sulphobromophthalein (Bradley et al. 1945), labelled erythrocytes 
(Schambye, 1955; Conrad et al. 1958), indocyanate green (Shoemaker, 1964; Wangsness & 
McGilliard, 1972), para-amino hippuric acid (PAH) (Roe et al. 1966), thermal dilution 
methods (White et al. 1967), and electromagnetic or Doppler electronic flow probes (Carr 
& Jacobson, 1968; Prewitt el ul. 1975; Durand et al. 1988; Huntington et al. 1990). There 
have been recent improvements in the use of the Doppler principle for measurement of total 
volume flow in blood vessels, but anatomical constraints at the junction of the anterior 
mesenteric, gastrosplenic and gastroduodenal veins limit the usefulness of this technique in 
most cattle (Huntington et al. 1990). In sheep, which are more likely to have a common 
portal vein, the probes have been used successfully for measurements of portal vein blood 
flow (E. N. Bergman, personal communication), although the measurement of hepatic 
artery or total liver blood flow is also required for measurement of liver flux. Liver 
clearance techniques must be used in combination with other techniques for measuring 
portal vein flow in order to calculate liver flux (Shoemaker, 1964), although many 
researchers assume portal flow contributes a fixed proportion of liver flow and do  not 
obtain direct measurements. To date the majority of studies in ruminants has used PAH 
dilution as the preferred method for measuring blood flow in long term studies. As PAH 
is acetylated in the liver, analytical procedures developed for sheep include deacetylation 
(Katz & Bergman, 1969b). In cattle, deacetylation affects total concentration of PAH 
measured using automated procedures, but not venous-arterial concentration differences, 
and therefore does not affect blood flow determinations (Huntington, 1982). 

R U M I N A N T  S P L A N C H N I C  V A S C U L A T U R E  
Anatomical differences between bovine and ovine splanchnic vasculature are highlighted in 
Fig. 1. The collateral branch of the mesenteric vein (h) in the bovine is not found in the 
sheep and forms a looped structure in the mesenteric drainage of this species, through 
which venous blood may flow in either direction before mixing at  the anterior mesenteric 
vein (g). In cattle, the junction of anterior mesenteric and gastrosplenic veins occurs over 
a relatively shorter distance than that in the sheep, where the separation of these vessels is 
generally more distinct, with the gastrosplenic vein joining at a less acute angle to the 
mesenteric vein. This provides a common portal vein prior to the porta hepatis which is 
often not present in cattle. Consideration of these differences is important in the location 
of catheters for measuring absorption across the mesenteric drained viscera (MDV) and 
PDV in these species. Tissues of the PDV include the entire digestive tract and associated 
organs comprising the pancreas, spleen and mesenteric fat. Catheters inserted into specific 
blood vessels can therefore be used to identify metabolism across specific tissue beds. The 
gastrosplenic vein drains the rumen, reticulum, omasum, cranial abomasum, spleen and 
pancreas; the anterior mesenteric vein the small intestine, caecum, large intestine, 
mesenteric fat and pancreas; and the gastroduodenal vein the caudal abomasum, cranial 
duodenum and pancreas. Measurements of venous-arterial concentration differences from 
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Fig. 1. Schematic view of ovine (a) and bovine ( b )  splanchnic vasculature showing anatomical differences 
between the two species (adapted from Huntington et a / .  1989). a, Diaphragm; b, liver; c, gall bladder: 
d. portal vein; e, gastrosplenic vein: f, jejunum: g. anterior mesenteric vein; h, collateral branch of 
mesentcric vein; i, distal branch of mescnteric vein; j ,  caecum; k, ilcocaecal vein; I ,  large intestine; 1, sites 
of infusion catheters; M, sites of mesenteric sampling catheters; P, site of portal sampling catheter. 

these vessels have been used to differentiate stomach and post-stomach absorption of 
nutrients (Reynolds & Huntington, 1988a, h ;  Seal et af. 1992). 

Generally there are three to five major and any number of smaller hepatic veins which 
empty into the bovine vena cava (Fig. 2). These major veins drain the left lateral lobe (one 
or two veins), central liver (one or two veins draining the quadrate and right lobes) and the 
caudate process. Using a paracostal or 12th rib resection for surgical approach, the central 
vein, usually lying adjacent to the gall bladder, is the most accessible and drains the largest 
portion of the liver (Huntington et al. 1989). However, most workers with sheep have used 
a branch of the left lateral vein for catheterization (Katz & Bergman, 1969~).  Assuming 
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Fig. 2. Schematic view of major hepatic blood vessels of the bovine liver viewed from the visceral surface. 
A, caudate process; B, porta hepatis; C, insertion point for hepatic vein catheter; D, gall bladder; E, tip 
location of portal catheter; F, left lateral lobe; G .  vena cava; H. tip location for hepatic vein catheter. 

complete mixing of portal vein blood prior to the porta hepatis, the vein used should not 
affect data obtained. 

Regional differences in the distribution of portal vein blood to the liver have been 
demonstrated in sheep (Hancock & Milligan, 1985), but are diminished by rumen 
development in lambs (Heath & Perkins, 1985). Laminar flow in the portal vein and 
regional differences in blood supply to the liver may be of greater concern in cattle which 
have little, if any, common portal vein prior to the porta hepatis. Indeed, cattle whose 
portal veins do  not enter the liver at a perpendicular angle to the surface of the liver should 
not be used for splanchnic catheterization studies, because the turbulence which mixes 
portal blood at the porta hepatis may be reduced (Reynolds et a/. 1988a), and portal vein 
catheter tips should always be introduced well past the porta hepatis and into the left lateral 
lobe to take advantage of mixing of portal blood at the porta hepatis (Reynolds et al. 
1988a; Huntington et al. 1989). While there is inherent variation in blood flow over time, 
errors associated with measurement of blood flow are greatly reduced when careful 
attention is given to placement and immobilization of sampling and PAH infusion catheters 
(Huntington et al. 1989). 

For compounds whose net metabolism by PDV and liver is low relative to their high rates 
of blood flow, venous-arterial concentration differences are low and difficult to measure. 
For example, venous-arterial concentration differences across the PDV are quite large for 
ammonia but extremely small for many individual amino acids. Therefore it is essential that 
the analytical techniques used are as sensitive and precise as possible, and that within 
individual studies analytical procedures are strictly adhered to. Variation in patterns of net 
metabolism over time and sampling protocols must also be carefully considered in applying 
these techniques for specific experiments. Many researchers feed daily rations in equal 
meals delivered at  frequent intervals to reduce postprandial responses and then sample over 
shorter time periods, particularly in experiments involving the infusion of labelled 
substrates for which ‘steady state’ conditions are required. However, frequent feeding 
disrupts normal diurnal behaviour patterns, and level of intake and diet digestibility also 
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affect postprandial responses. For example, in steers fed every 2 h a highly digestible, high 
protein diet at low intakes, postprandial increases in blood flow and ammonia absorption 
were still dramatic (Maltby, 1993). Higher intakes reduce postprandial responses, but in 
growing animals assessment of the efficiency of utilization of nutrients requires 
measurements at varying increments of intake. Researchers must assess sample size, blood 
volume taken and processing and analytical constraints against sampling frequency, 
duration and period. Generally, longer sampling periods and slow, frequent sampling 
reduce error, especially in animals fed once or twice daily (as would occur in production 
circumstances) or for the study of compounds whose metabolism is subject to inherent 
variation such as insulin and glucagon (Reynolds et ul. 1989). Where characterization of 
changes in metabolism over short time periods is not needed, integrated sample withdrawal 
provides the most accurate quantitative estimate of total metabolism (Harris et al. 1992). 

ENERGY 

Techniques for estimating tissue oxygen consumption include in vitro incubation of 
isolated cells or tissue biopsies obtained during experiments by endoscopy and at  slaughter 
in addition to direct measurements of oxygen removal across tissue beds in vivo using 
animals with indwelling catheters. In v i t ro  techniques are also used to investigate the 
partitioning of energy expenditure by particular biochemical processes such as Na+, K'- 
ATPase dependent respiration and protein synthesis through the use of specific metabolic 
inhibitors (McBride & Kelly, 1990). These experiments underline the energy requirements 
of the gastrointestinal tract and liver, which constitute about 10-13% of total body mass 
but account for 38-50 YO of whole body oxygen consumption (Table 1 ) .  Of this total energy 
expenditure between 28 and 61 '10 is associated with the maintenance of Na+, K'-ATPase 
(EC 3.6 .1  . 3 )  activity in the gastrointestinal mucosa, 2&23 YO with protein synthesis and 
4 O/O with protein degradation (McBride & Kelly, 1990). Oxygen consumption increases 
following meal consumption (Christopherson & Brockman, 1989; Kelly et uf. 1989) and 
changes with level of feed intake (Webster e? al. 1975; McBride & Milligan, 1985; Burrin 
et af. 1989). The heat increment of feeding has been attributed to several factors including 
those directly associated with eating, changes in microbial fermentation in the gut, 
increased metabolic activity in non-intestinal tissues and changes in the metabolic activity 
of the PDV, the latter being quantitatively the most important in animals fed above 
maintenance (Webster, 1980). 

The relationship between metabolizable energy (ME) intake and PDV heat production, 
calculated from PDV oxygen consumption using the factor of McLean (1972), is shown in 
Fig. 3. It is interesting that although there is close correlation between experiments across 
a wide range of diets, those animals fed diets based on ensiled forages with a higher non- 
digestible fibrous component tend to produce more PDV heat per unit ME intake than 
animals fed diets based on concentrates or dried forage. This may be equated to the 
increased work of digestion related to the physical and chemical nature of the diet, gut fill 
and changes in the components of ME absorbed (Webster, 1980; Johnson e? al. 1990). The 
expenditure of energy in the physical digestion of feedstuffs is apparent from animals 
maintained by intragastric infusions (Fig. 3), which had lower rates of PDV oxygen 
consumption compared with those fed lucerne (Gross et af. 1990~).  The small intestines of 
these animals were empty of digesta and showed considerable tissue atrophy. Similarly, in 
animals fasted for 65 h in which the digesta content of the gastrointestinal tract would be 
temporarily reduced, PDV heat energy was decreased by 43% to 0.09 MJ/d per kgO.'j 
compared with concentrate fed controls (Huntington et af. 1990). This latter figure is 
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Table 1. Contribution of gastrointestinal tract and liver to whole body oxygen 
consumption 

% of whole body 0, 
Tissue Animal consumption Reference 

Rumen 
Duodenum 

Jejunum 

PDV* 
PDV 

PDV 

PDV 
PDV 
PDV 

PDV 
PDV 
Liver 
Liver 
Liver 

Liver 
Liver 

Steers 
c o w s  

Dry 
Lactating 

Sheep 
Fasted 
Fed 

Steers 

Heifers 
c o w s  

c o w s  

Steers 
Steers 
Steers 

Fed 
Fasted 

Steers 
Sheep 
Heifers 
Steers 
Steers 

Fed 

Steers 
Sheep 

Lactating 

Lactating 

Fasted 

Determinations in virro 
16.9-19.3 

34.9 
53.8-55.0 

28.6 
48.1-61.3 
26.1 26.2 

Determinations in vivo 
22,627.5 

17.5 

20.0 
25.0 
19.8-24.0 

19.9-25.4 
17.8- I99 
18.9-23.2 
19&28.0 

1 7 . 5 3 0 9  
18.5 -26.3 

20.5-20.7 
25.2-264 
163-22.5 
2 2 . 0 4  1 .o 

Kelly er al. (1989) 

McBride & Milligan (1984) 

McBride & Milligan (1985) 

McBride er a/.  ( 1  989) 

Reynolds er al. (1991 b) 

Huntington & Tyrrell (1985) 

Reynolds el al. (1986) 
Huntington er a/ .  (1989) 
Huntington er al. (1990) 

Eisemann & Nienaber (1990) 

Reynolds er al. (1992a) 
Burrin er al. (1989) 
Reynolds er al. ( 199 1 h)  
Huntington er al. (1990) 

Eisemann & Nienaber (1990) 

Reynolds er al. (1992a) 
Burrin el al. (1989) 

* PDV. portal drained viscera. 

simi!ar to other data for fasted steers (0.07 and 0.08 MJ/d per kg0.”, Eisemann & Nienaber, 
1990), and the intercept value for animals at zero ME intake (Fig. 3) suggests a minimum 
rate of energy expenditure for tissue maintenance. Comparisons between diets within the 
same experiment suggest that this maintenance energy requirement may vary with diet 
composition (Reynolds et af .  1991 b) .  In this experiment, although increases in PDV oxygen 
use with greater ME were similar for the two diets, PDV oxygen consumption per unit ME 
was always greater for heifers fed the higher fibre lucerne diet. Therefore, while the slopes 
of the two regressions were similar for the two diets, the intercept value was greater when 
heifers were fed lucerne. This may be attributable in part to increases in gut mass resulting 
from greater gut fill and perhaps volatile fatty acid (VFA) production and absorption 
(Reynolds et af .  1993). 

High rates of liver oxygen consumption are also attributable to energy costs of ion 
transport and protein synthesis and degradation. In addition, other processes such as 
substrate cycling, free radical scavenging, glucose and urea synthesis and detoxification of 
phenols and other compounds all contribute to liver energy requirements. The exact costs 
of specific processes are difficult to ascertain, as there is considerable interplay and 
exchange of metabolic intermediates. For example, the ATP requirement of the urea cycle 
is lower when the phosphate bonds generated by fumarate metabolism in the tricarboxylic 
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Fig. 3. The relationship between portal drained visceral (PDV) heat energy (MJ/d per kg"'') and 
metabolizable energy (ME) intake (MJ/d per kg"''). (F), > 50% forage diet; (C), > 50% concentrate 
diet; (S), ensiled forage diet; (M), ensiled forage/concentrate mixed diet; (X), fasted animals; (I), 
animals maintained by intragastric infusion (not included in regression analysis). Each point represents 
animal means from individual experiments. The equation of the regression line is J = 0.059fO.109.r 
(R' = 0,612). Data are from the experiments of Harmon e t a / .  (1988). Huntington et at. (1988). Reynolds 
& Huntington (1988~). Reynolds et at. (1988~. 6) .  Eisemann & Nienaber (1990). Gross et at. (19900. b), 
Huntington et a/. (l990), Guerino et a/. (1991). Reynolds et at. (1991 b), Reynolds ef al. (19920, b) and 
Maltby (1993). 

acid cycle are considered (Newsholme & Leach, 1983). It has long been assumed that 
increases in heat production of cattle resulting from excess protein intake are a direct 
consequence of the energy costs of urea synthesis (Tyrrell et al. 1970), but in a number of 
studies in cattle, diet-induced increases in PDV ammonia absorption and liver urea 
synthesis have not altered liver oxygen use (Reynolds, 1992; Maltby, 1993). However, in 
each of these studies other changes in PDV nutrient absorption and liver metabolism may 
have balanced increased oxygen requirements for ureagenesis. In this regard, a recent study 
found increased body oxygen use resulting from feeding excess protein to beef steers to be 
due to increases in both PDV and liver oxygen use (Reynolds ef al. 1992~) .  

VOLATILE FATTY ACIDS 

Ruminants absorb little dietary carbon as glucose, even when diets high in starch resistant 
to rumen fermentation are fed (Bergman et al. 1970; Bergman, 1990). As products of 
microbial fermentation in the digestive tract, VFA are the primary form in which energy 
is absorbed into blood by the PDV of ruminants (Baird ef al. 1980; Reynolds et al. 19886). 
The contribution of VFA to body energy requirements is even greater when their extensive 
metabolism by PDV is accounted for. Direct comparisons between VFA production rates 
and net absorption rates into the portal vein are restricted by the limited amount of data 
in which both of these variables have been determined in the same animals, due mainly to 
the complexity of surgical procedures for the implantation of indwelling catheters, which 
restricts the use of rumen or intestinal cannulae. Alternative approaches must therefore be 
used, either based on data for rumen VFA production rates measured in animals fed similar 
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Table 2. Comparison between rwnen volatile fa t t y  acid production rates and net portal 
absorption rates (nzolesld) 

Rumen production 
rate Portal absorption rate 

Animal Diet A P B  A P B Reference 

Lambs 

Lambs 

Sheep 

Sheep 
Cattle 
Steers 

Steers 

Steers 

Steers 

Infusion* 

lnfusion 

Infusion 

Forage 
Concentrate 
Concentrate 

Forage 
Concentrate 
Forage 
+ Propionate 
+ Propionate 
Concentrate 
+ Butyrate 

3.53 1.94 0.32 
3.27 1.16 0.31 
3.53 0.47 0.33 
3.59 1.11 0.44 
3.94 1.21 048 
4.69 1.44 0.58 

1.86 - 

2.99 - 

3.3 0.9 0.6 
16.9 6.1 4.8 
23.7" 20.2 0.9 

15.75 4.25 - 

13.25 4.75 - 

7.74 3.22 - 

8.86 3.72 

- 1.58 
- - 2.78 

- 3.98 
- 5.1 8 
- 6.38 

- 7.58 

7.65 4.16 - 

1.88 (0.53)t 
1.97 (0.60) 
1.57 (0.44) 
1.64 (0.45) 
1.59 (0.40) 
2.49 (0.53) 
- 
- 

2.3 (0.69) 
9.5 (0.56) 

1020 (043)h 

7.56 (048) 
6.89 (052) 
7.40 (0.96) 
6.52 (0.74) 
5.80 (0.76) 

1.29 (0.66) 
0 8 1  (0.69) 
0.32 (0.67) 
0.85 (077) 
0.63 (0.52) 
1.12 (0.78) 
1.06 (057) 
1.79 (0.59) 
0.44 (0.49) 
4.2 (0.69) 
8.14 (040) 

1.26 (0.30) 
1.41 (0.30) 
1.69 (0.52) 
2.09 (0.56) 
2.44 (0.58) 

0.08 (0.28) 
0.08 (026) 
0.08 (0.26) 
0.1 1 (0.25) 
0.07 (0.14) 
0.1 5 (0.26) 

- 

0.05 (0.08) 
1 . 1  (0.23) 
0.6 (0.66) 

0.3 I 
0.25 

- 

0.74 (0.47) 
0.86 (0.3 I )  
1.34 (0.34) 
1.63 (0.32) 
1.90 (0.30) 
2.23 (0.29) 

Gross ef al. (1990h) 

Gross ef a/ .  (1990~) 

Weekes & Webster 

Bergman ( 1  990) 
Harmon ef (11. (1988) 
"Sharp el a/. (1982) 
"Huntington & 
Reynolds (1983) 
Seal et u/.  (1992) 

Seal & Parker ( 1 9 9 3 ~ )  

(1975) 

Krehbiel ef 01. (1992) 

* lntragastric infusion. 
t Values in parentheses, proportion of rumen production rate. 
A, Acetate; P, Propionate; B, Butyrate. -. value not determined. 

diets in different experiments, or on theoretical production rates calculated from organic 
matter digestibilities and observed molar proportions of VFA in rumen fluid. For individual 
VFA their rate of metabolism by rumen tissue in vitro increases with chain length (Stevens 
& Stettler, 1966). The main products of this metabolism are ketone bodies, CO, and to a 
lesser extent lactate. Propionate may also be converted into alanine (Bergman, 1990) and, 
as shown in the rabbit hind gut, acetate carbon may appear in aspartate and glutamate used 
in protein synthesis (Vernay, 1989). Table 2 shows that 0.314.60 of acetate, 0.22-0.7 of 
propionate and 0.34-0.92 of butyrate produced in the rumen do not appear in the portal 
vein. Portal appearance rates, however, not only reflect metabolism within the rumen and 
across the rumen wall, but also include the metabolism of VFA by tissues of the MDV. In 
sheep, unidirectional absorption of acetate, measured isotopically, represented 0.7 of 
acetate produced in the rumen and presumably absorbed; however, net PDV absorption of 
acetate, which includes utilization of arterial acetate, was only 0.5 of rumen production 
(Bergman & Wolff, 1971). These relationships were also observed in sheep maintained by 
intragastric infusion (Table 2) and cattle receiving intraruminal acetate (Huntington et al. 
1983). Fermentation of residual carbohydrate flowing to the hind gut may contribute 
significant quantities of VFA to the portal drainage via the ileocaecal vein (Faichney, 1969; 
DeGregorio et af. 1984). This latter point is particularly important for the siting of 
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indwelling catheters for measurement of metabolism within the mesenteric drained viscera; 
if the catheter tip is sited caudal to the ileocaecal vein/mesenteric vein junction, net acetate 
utilization by the MDV may be masked by acetate produced in the large intestine (Seal et 
al. 1992; Seal & Parker, 19936). When MDV flux of beef steers included all the post- 
stomach tissues of the gastrointestinal tract, net flux of acetate across MDV was positive 
when concentrate was fed, reflecting carbohydrate fermentation in the large intestine and 
caecum (Owens et al. 1986). When lucerne was fed, net MDV flux of acetate was negative, 
suggesting that any acetate absorption resulting from microbial fermentation of 
carbohydrate in the small intestine and caecum was exceeded by MDV utilization of 
arterial acetate. 

Net absorption of VFA across the PDV is highly correlated with the composition of the 
diet and the level of feed intake (Huntington, 1983; Huntington & Prior, 1983). However, 
the proportions of each VFA produced in the rumen which appear in the portal vein remain 
constant across a wide range of different diets. Absolute absorption rates increase during 
lactation (Stangassinger & Giesecke, 1986) in parallel with increased feed intake, but 
despite the increase in gut and liver tissue mass associated with lactation (Campbell & Fell, 
1970; Fell et al. 1972; Fell & Weekes, 1975) there is little change in the relative proportions 
of VFA absorbed into the portal vein. Changing rumen fermentation pattern by altering 
the forage:concentrate ratio of the diet or by infusions of individual VFA may alter the 
pattern of VFA absorbed, but the extent of metabolism of the fatty acids remains constant 
(Krehbiel et al. 1992; Seal et al. 1992; Seal & Parker, 19936). Recent experiments from 
Peters et al. (1990) have suggested that over a wide range of rumen propionate production 
rates approximately 0.66 of available propionate disappeared from within the rumen 
(presumed to be absorbed) and 0.34 passed from the rumen to the lower tract in the liquid 
phase. These data suggest that at  least some of the apparent shortfall in VFA appearing in 
the portal vein may be attributed to metabolism within abomasal and omasal tissues in 
addition to that lost across the rumen wall. 

Excluding acetate, the liver removes 85-100Y0 of VFA appearing across PDV on a net 
basis (Reynolds et al. 19886). Therefore, acetate is the only VFA present in peripheral 
blood in substantial quantities and represents an important energy substrate for peripheral 
and PDV tissues. Net acetate flux across liver is usually slightly positive, but net 
measurements can mask simultaneous unidirectional uptake and release of acetate by the 
ruminant liver (Bergman & Wolff, 1971), which are perhaps due to zonal heterogeneity of 
liver metabolism as described for non-ruminants (Katz, 1992). In the liver, VFA removed 
contributes carbon for glucose and 3-hydroxybutyrate synthesis, and precursors of acetyl- 
CoA provide carbon which can enter a number of metabolic pathways. In the fed state the 
ruminant liver removes acetoacetate and produces 3-hydroxybutyrate, with n-butyrate 
contributing 2 W 8  YO of carbon in the 3-hydroxybutyrate produced (Lomax & Baird, 1983; 
Reynolds et al. 19886, 1991 a). Other sources of carbon for 3-hydroxybutyrate release 
include acetoacetate produced by PDV (Heitmann et al. 1986) and the oxidation of non- 
esterified fatty acids extracted from portal vein and arterial blood (Bell, 1979). In fasted 
animals the liver flux of acetoacetate switches from removal to release, and the contribution 
of n-butyrate to ketone body production decreases and its absorption by PDV and the 
contribution of non-esterified fatty acids to liver ketone body production rises (Heitmann 
et al. 1986). As for acetate, 3-hydroxybutyrate is a source of oxidizable substrate for 
extrahepatic tissues. 

Propionate is the principal source of carbon for glucose synthesis in liver, which meets 
85-90 % of body glucose requirements in sheep (Bergman et al. 1970). Assuming a maximal 
use of propionate removed by liver for glucose synthesis, propionate accounts for 32-73 O h  

of liver glucose release (Table 3). Theoretical calculations addressing carbon randomization 
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Table 3. Maximal net contributions of precursors removed to glucose released (mmollh) 
by ruminant liver 

Animal 

Percentage of net glucose release 
- 

Glucose Amino 
Diet release Propionate acids L-Lactate Reference 

Mature sheep Lucerne 21.7 40 .3  29-0 

Growing steers Concentrate 180 72.8 12.1 13.1 

Growing steers 
Growing steers 

Growing steers 
Growing steers 
Mature steers 
Growing heifers 

Mature heifers 

Lactating cows 
Lactating cows 
Dry cows 
Lactating cows 

Fescue hay 
Concentrate 

Low intake, saline 
Low intake+GRF 
High intake, saline 
High intake+GRF 

Concentrate: hay 
Lucerne 
Concentrate 
Lucerne 

Low intake 
High intake 

Low intake 
High intake 

Concentrate 

Forage 
Concentrate 
Ad libitum 
Ad libitum 
Restricted 
Ad libitum 

147 46.3 21.4 10.9 

123 58.5 11.6 10.7 
105 56.1 5.8 14.2 
245 53.9 15.1 I .4 
237 67.3 13.2 I .6 
I I6 52.6 28.4 44.0 
227 42.5 19.6 15.0 
190 32.2 20.0 9.9 

1 I9 52.2 32.4 7.0 
263 59.9 35.3 9.3 

116 46.6 23.9 9.1 
285 59.8 24.6 1.9 
192 75.8 260 8.2 
214 59,6 23.5 6.6 
392 52.8 22.9 
325 46.0 16.0 
240 56.6 10.6 
713 55.4 16.5 17.5 

Bergman el al. (1970); 
Bergman & WolfT (1971); 
Wolff & Bergman (1972) 

(1988) 
Huntington & Eisemann 

Harmon et al. (1991 b) 

Reynolds et at. (19926); 
Reynolds et al. (1992a) 

Krehbiel er al. (1992) 
Harmon et al. (1993) 
Reynolds et a/ .  (1992~)  

Reynolds er al. (1 99 I b) ; 
Reynolds et al. (19936) 

Reynolds & Tyrrell (1991); 
Reynolds et al. (1991~)  

Baird er al. (1980) 
Lomax & Baird (1983) 

Reynolds et nl. (19886) 

GRF, growth hormone releasing factor. 

during isotope transfer studies suggest that almost all of the propionate removed by liver 
is used in glucose synthesis (Armentano, 1992). 

A M I N O  A C I D S  A N D  PEPTIDES 

Mechanisms for the uptake and transport of amino acids and peptides have been 
extensively reviewed (Webb & Bergman, 1991 ; Webb et al. 1992), and these have received 
added attention with the use of improved analytical techniques for the determination of 
free amino acids and low molecular weight peptides in plasma. Although limited by the 
number of animals used in the experiment, Tagari & Bergman (1978) clearly demonstrated 
that the quantity of amino acids appearing in the portal blood of sheep did not balance the 
amount disappearing from the intestinal lumen, and this report and various others since 
have suggested that between 30 and 80 O h  of amino acids disappearing from the lumen do 
not appear in the portal vein. In steers given postruminal casein (Guerino et al. 1991) only 
28 O h  of the casein nitrogen infused abomasally appeared in the portal blood as a-amino 
nitrogen. Piccioli Cappelli et al. (I993 6 )  similarly demonstrated that up to 48 O/O of 
[I3C]leucine infused directly into the duodenum of sheep could not be recovered in the 
portal vein when measured on a net transfer basis. However, if the sequestration of arterial 
13C tracer by the gut tissues is taken into account, recovery of [13C]leucine administered to 
the small intestine may be nearer 70% (MacRae et al. 1993). High rates of protein turnover 
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Fig. 4. The relationship between portal drained visceral (PDV) flux of a-amino nitrogen in whole blood 
(g/d) and nitrogen intake (g/d). Each point represents animal means from individual experiments. The 
equation of the regression line is y = 20.429k0.136~ ( R z  = 0.235). Data are from the experiments of 
Harmon er a/. (1988). Huntington ct a/. (1988). Reynolds & Huntington (1988a), Eisemann & Nienaber 
(1990), Guerino et d. (1991). Reynolds er a/. (1991 c), Reynolds & Tyrrell(l991). Reynolds et a/. (19926) 
and Harmon et a/. (1993). 

within the gastrointestinal tract, together with the use of amino acids as energy substrates 
within the mucosa, are cited as possible fates of those amino acids lost across the gut wall, 
substantially affecting the pattern of amino acids available to the liver and peripheral 
tissues (Lobley et al. 1980). Gut protein synthesis rates vary with feed intake and 
physiological state (see for example Bardcos et al. 1991) and change during postnatal 
growth and development (Reeds et al. 1993). Glutamine, glutamate and aspartate have 
been shown to be important fuels in rat intestinal tissues (Windmueller & Spaeth, 1978, 
1980). Unidirectional utilization of glutamate and glutamine by PDV in sheep (Heitmann 
& Bergman, 1981) and net extraction by PDV of cattle (Huntington, 1983; Wilton, 1989) 
suggests that this may also be the case in ruminant gut tissues; however, venous-arterial 
concentration differences for glutamine are consistently smaller in these species compared 
with the rat (C.  J .  Seal & D. S. Parker, unpublished observations). Net glutamine 
utilization by the MDV in forage-fed steers compared with animals fed a diet containing 
50% flaked maize (Seal et ul. 1992) and similar responses across the PDV of steers when 
switched from forage to concentrate diets (Reynolds & Huntington, 1 9 8 8 ~ )  indicate that 
amino acid metabolism within the gut tissues alters in these different dietary situations. 

Measurements of net PDV a-amino nitrogen flux over a wide range of nitrogen intakes 
and different diets (Fig. 4) suggest that amino acid release by PDV is not correlated with 
dietary nitrogen supply. Within individual experiments it has been suggested, however, that 
net a-amino nitrogen release by PDV is correlated with ME intake (Huntington et al. 1988; 
Huntington, 1989; Reynolds et ul. 1991 b), the principal determinant of microbial protein 
synthesis and therefore duodenal protein flow (Clark et ul. 1992). However, comparisons 
between experiments again show poor correlation, perhaps due to differences between 
experiments in sample processing and analytical techniques (Maltby, 1993). This confirms 
the complex interaction between gastrointestinal tissues and the diet, which may be a direct 
response to changes in gut energy expenditure or patterns of rumen fermentation. 
Changing propionate supply by intraruminal infusion of propionic acid in steers resulted 
in higher circulating amino acid levels and elevated net absorption rates of amino acids 
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across the MDV and PDV (Seal & Parker, 1991~) .  Subsequent experiments with 
cannulated sheep infused with propionate (Seal et al. 1 9 9 3 ~ )  showed that these responses 
were not associated with changes in overall nitrogen digestibility or alterations in rumen 
microbial metabolism and the flow of microbial nitrogen into the small intestine. 
Circulating amino acid levels were also increased in these animals, and the results imply 
that amino acid utilization within the intestinal tissues had been reduced as a direct 
response to increased ruminal propionate availability. In contrast, Harmon (199 1) showed 
that increased butyrate availability in animals maintained by intragastric infusion reduced 
net PDV a-amino nitrogen flux. A similar response was observed in steers (Krehbiel el al. 
1992), where increasing ruminal butyrate tended to lower PDV a-amino nitrogen flux. It 
was suggested that this was due to increased tissue amino acid requirements in response to 
the known trophic stimulus of butyrate (Sakata & Tamate, 1978). 

The studies of Bergman and co-workers have demonstrated both net and unidirectional 
metabolism of individual amino acids by liver of sheep, as well as the impact of fasting, 
acidosis and hormonal manipulation on splanchnic amino acid metabolism (for reviews see 
Bergman & Heitmann, 1978; Bergman & Pell, 1984; Bergman, 1989). Most amino acids are 
removed on a net basis by the liver, reducing the availability to other body tissues of amino 
acids absorbed across PDV. Exceptions include the branched chain amino acids and 
glutamate, which are usually released by liver. These studies also identified a number of 
interorgan amino acid cycles for which the liver is a central player. Participants include 
glutamate and glutamine, glycine and alanine and also arginine, ornithine and citrulline. 
These cycles shuttle carbon and nitrogen between the liver - as a site of glucose, protein and 
urea synthesis - and peripheral tissues - -  as sites of glucose utilization and protein synthesis 
and turnover. Nitrogen arising from the catabolism of amino acids in peripheral tissues is 
carried to the liver as alanine, glycine or glutamine for urea synthesis, avoiding excessive 
release of potentially toxic ammonia into the peripheral circulation. Alanine, glycine and 
urea cycle intermediates serve the same function for nitrogen arising from amino acid 
catabolism in PDV tissues. 

Metabolism of glutamine, glutamate and urea show zonal heterogeneity in non-ruminant 
liver, with glutamine uptake, urea synthesis and glutamate synthesis more active in 
periportal cells, and glutamine synthesis and glutamate uptake more active in pericaval cells 
(Haussinger, 1983). Simultaneous unidirectional release and uptake of glutamate and 
glutamine in sheep liver (Heitmann & Bergman, 1981) imply a similar zonal heterogeneity 
in this species, but to date studies of zonal heterogeneity have not been conducted for 
ruminant liver. On a net basis the ruminant liver releases glutamate and removes glutamine. 
Glutamate is an important source of nitrogen for liver ureagenesis, supplying one or two 
nitrogens in urea via aspartate, and increases in liver urea production are often associated 
with decreases in liver glutamate release (Reynolds, 1992). 

Amino acids removed by liver represent important precursors for glucose and protein 
synthesis (Table 3). Their exact contribution to glucose synthesis has been difficult to 
determine precisely, in part due to the problems of label randomization in carbon exchange 
studies, but total gluconeogenic amino acid removal maximally accounted for 30 O/O of liver 
glucose release in maintenance fed sheep (Wolff & Bergman, 1972), which is within the 
range of theoretical net contributions calculated from measured extraction of amino acids 
across the liver (Table 3). The liver has a pivotal role in the integration of body nutrient 
requirements with nutrient supply from the PDV. In beef steers receiving abomasal 
infusions of casein, increased PDV absorption of a-amino nitrogen was matched by 
increased liver removal such that there was little change in splanchnic release of total amino 
acids and a marked increase in liver urea synthesis and urinary nitrogen excretion (Guerino 
et al. 1991). However, when body nitrogen retention of beef steers was doubled by growth 
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hormone releasing factor injections, liver a-amino nitrogen removal was reduced, sparing 
absorbed amino acids for protein synthesis in peripheral tissues (Reynolds et al. 19926). 
Changes in liver amino acid removal were accompanied by decreased liver urea production, 
a decrease in the cycling of ammonia and urea between PDV and liver, and decreased 
urinary nitrogen excretion. The impact of liver metabolism on the availability of absorbed 
amino acids was also apparent in steers fed rumen protected methionine and lysine (Maltby 
et al. 1991). Increased PDV absorption of these amino acids was matched by their liver 
removal and therefore there was no change in their total splanchnic release to peripheral 
tissues. 

Speculation about the apparent loss of amino acids across the gut tissues has generated 
renewed interest in the possible contribution of peptide bound amino acids (PBAA) to the 
total a-amino nitrogen flux. The absorption of intact peptides across the gastrointestinal 
barrier in vivo is not well documented, although there is considerable in vitro information 
which supports the notion of specific transport mechanisms for the uptake of peptides into 
the enterocyte (Webb & Bergman, 1991). Net PDV release (positive venous -arterial 
concentration differences) of PBAA as measured with hydrolysed sulphosalicylic acid 
supernatants has been shown in steers and sheep (Koeln & Webb, 1982; Read, 1988; Webb 
et al. 1993) and in perchloric acid supernatants separated by HPLC from rat plasma (Seal 
& Parker, 1991 6). Concentrations of PBAA measured in this way (44-6.8 mM (McCormick 
& Webb, 1982; Danilson et al. 1987); 3.3- 3.9 mM (Read, 1988); 3.8-6.1 mM (Seal & Parker, 
199 1 b)) exceeded plasma free amino acid concentrations two- to three-fold, and relative 
concentrations were different between ruminant and non-ruminant species (Seal & Parker, 
1991 6). Recent work from the Newcastle group has involved the use of molecular weight 
filters (Millipore Corporation, Milford, MA) to remove large proteins from plasma. Whilst 
the concentrations of free amino acids in filtrates were similar to those measured in acid 
supernatants, the corresponding PBAA levels in filtrates separated by HPLC were much 
lower (Seal & Parker, 1993b), suggesting that acid treatment of plasma samples may 
produce higher apparent PBAA levels, either through residual oligopeptides/small proteins 
remaining in supernatants or by the ‘production’ of small peptides through partial acid 
hydrolysis of labile plasma proteins. Net PBAA release across the mesenteric and portal 
drained viscera calculated from these data averaged 1.76 and 3.02 mmol/min respectively. 
PBAA release by the non-mesenteric tissues (P-M, 1.26 mmol/min) was in contrast to 
removal of free amino acids by these tissues (-0.99 mmol/min), suggesting net output of 
PBAA but not free amino acids from large intestinal, stomach and proximal small intestinal 
tissues. Webb et al. (1993) have recently suggested that ruminal and omasal epithelia 
incubated in vitro have the capacity to transport small peptides, and the same group 
present data showing positive non-mesenteric flux of peptides in sheep and steers. Despite 
numerous publications suggesting the potential of ruminant gastrointestinal tissues to 
absorb peptides, there is no direct evidence that luminally derived peptides are absorbed 
intact across the gut wall in vivo or that PBAA appearing in the portal drainage are solely 
of dietary origin - the high rates of protein turnover within gut tissues may also contribute 
a significant amount of peptide material to this pool. The contributions of plasma protein 
pools and peptides to PDV and liver nitrogen and carbon exchange need to be defined and 
quantified. 

A M M O N I A  A N D  U R E A  

Non-protein nitrogen in the form of ammonia and urea form an important route through 
which nitrogen is recycled and conserved in the ruminant animal. Net PDV ammonia 
nitrogen flux is highly correlated with dietary nitrogen intake (Fig. 5) and especially 
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Fig. 5. The relationship between portal drained visceral (PDV) flux of ammonia nitrogen (g/d) and 
nitrogen intake (g/d). Each point represents animal means from individual experiments. The equation 
of the regression line is j = - 12.96k0.594,~ (R2 = 0.772). Data are from the experiments of Wolff el a/ .  
(1972). Sniffen &Jacobson (1975). Huntington (1983). Huntington & Prior (1983), Harmon er a/ .  (1988), 
Huntington el al. (1988). Reynolds & Huntington (1988a), Eisemann & Nienaber (1990). Guerino PI  a/.  
(1991), Reynolds e ta / .  (1991 c), Reynolds & Tyrrell(1991), Reynolds e /  a / .  (1992b). Seal e t a / .  (1992) and 
Harmon er a/.  (1993). 

digestible nitrogen intake (Reynolds et al. 1991c, 1 9 9 2 ~ ) ;  it can account for as much as 
65 YO of nitrogen intake, and under normal circumstances is at  least equal to and usually 
exceeds a-amino nitrogen absorption rates (Huntington, 1986). Quantities of ammonia 
absorbed by PDV are determined not only by intake of digestible nitrogen but also by the 
nature of the carbohydrate and protein consumed. All ammonia absorbed by PDV is 
subsequently removed by liver so that splanchnic flux is very low or negative; however, 
other routes of ammonia absorption from the gut have been identified (Chalmers et al. 
1971). Ammonia removed by the liver is converted into urea or used in other synthetic 
pathways. Ammonia absorbed across the PDV is derived in part from urea transferred into 
the gut lumen, and a substantial cycling of urea and ammonia between the PDV and liver 
occurs in ruminants (Huntington, 1986). In growing cattle fed diets high in rumen soluble 
nitrogen, excessive ammonia absorption has been associated with increased net removal of 
amino acids by liver (Huntington, 1989; Reynolds et al. 1991~).  This response has been 
attributed to an increase in urea cycle requirements for cytosolic aspartate and glutamate, 
which cannot be met by mitochondria1 capture of ammonia as glutamate (Reynolds, 1992); 
however, recent studies have failed to repeat this effect of ammonia uptake on liver amino 
acid removal (Reynolds et al. 1 9 9 2 ~ :  Maltby, 1993). This response has been observed 
primarily in younger animals at  higher ME intakes, and the variability of the response 
across studies may relate to the interactions between protein requirements and the 
availability of labile protein pools (Elwyn, 1970). 

GLUCOSE 

Under normal dietary conditions for ruminants fed a mixed diet, the levels of glucose 
available for absorption in the small intestine are low, and the contribution of absorbed 
glucose to whole body glucose supply is minimal. When diets contain high levels of cereal 
grain, and in particular ground maize, there is evidence that significant quantities of starch 
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Table 4. Comparison between whole body glucose turnover rate and net portal glucose 
utilization rate 

mmol/h per kg”.” 

Animal Diet/Treatment GTR* PGUt PGU/GTR Reference 

Sheep Non-pregnant Hay 
Concentrate 
Fasted 

Fasted 

Concentrate 

Pregnant Hay 

Sheep Hay 

Sheep Pregnant Mixed diet 

Sheep Straw based diet 
Lactating 

+0.9 mrnol/h per kg0-” i.v. 3 
+ 1.8 mmol/h per kgo.’s i.v. 

+ 1.7 mmol/h per kg0.75 i.v. 
+ 1.7 mmol/h per kg0.75 i.d.8 

+ 0 5  mole propionate/d;l 
+ 1.0 mole propionate/d 

Sheep Dried grass pellet diet 

Steers Dried grass pellet diet 

1.33 0.17 0.13 Bergman et a / .  (1970) 
1.67 0.22 0.13 
1.06 0.28 0.26 
2.00 0.44 0.22 
1.33 0.28 0.2 1 
2.35 0.15 006 Huntington er al. (1980) 
3.79 0.40 0.1 1 
2.56 0.41 0.16 Van der Walt et al. (1983) 
3.76 0.75 0.20 
1.73 0.68 0.39 Balcells et d. (1992) 
2.54 0.95 0.37 
3.70 1.49 0.40 
2.04 070  0.34 Piccioli Cappelli el al. (19930) 
3.09 0.91 0.29 
3.41 1.05 0.3 1 
3.19 0.86 0.27 Seal & Parker (1992) 
3.09 0 3 5  0.1 I 
3.74 0.39 0.1 I 

* Glucose turnover rate 
t Portal glucose utilization rate. 
1 Intravenous infusion. 
(i lntraduodenal infusion. 

11 Infused into the rumen. 

may escape rumen fermentation and pass into the duodenum (Waldo, 1973; Armstrong & 
Smithard, 1979; Rooney & Pfugfelder, 1986). Despite suggestions that small intestinal 
starch digestion may be limited by low levels of enzyme activity and adequate access of 
enzymes to starch granules (Owens et al. 1986), substantial quantities of starch disappearing 
in the small intestine with digestibilities ranging from 10 to 96% have been reported 
(Harmon, 1992). Recovery of abomasally infused glucose and corn starch in beef steers 
averaged 65 O/O of the glucose and 35 YO of the starch as increased glucose absorption into 
portal blood (Huntington & Reynolds, 1986). Kreikemeier et al. (1991) have also 
demonstrated lower recoveries of starch glucose in the portal vein from abomasal infusions 
of corn starch compared with equivalent infusions of glucose. A recent experiment with 
growing steers fed lucerne in which potato starch was infused directly into the duodenum 
(Seal et al. 1993b) showed that these forage-fed animals were able to hydrolyse starch very 
rapidly, and that plasma glucose levels were elevated within one hour of presenting starch 
to the intestine. Recovery of starch glucose in the portal vein averaged 84% and was not 
increased by the third day of a continuous starch infusion. The higher recovery of glucose 
may be due to differences in the chemical structure of the potato starch used in this 
experiment compared with previous work using corn starch (Nocek & Tamminga, 1991), 
but the results clearly demonstrate the capacity of the small intestine to absorb significant 
quantities of glucose if present in the gut lumen, despite the suggestion that during 
development of the enterocyte the Na ‘-glucose cotransporter is regulated by the presence 
of sugar substrate in the lumen (Shirazi-Beechey et al. 1991 a).  This is in agreement with the 
suggestion of Mayes & 0rskov (1974) that it is the capacity to hydrolyse starch rather than 
to absorb glucose which is limiting in ruminants. 
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Measurements of net glucose absorption by MDV and PDV in ruminants consuming 
forages generally show a net extraction (i.e. negative venous-arterial concentration 
difference) of glucose by the digestive tract compared with those fed concentrates for which 
net uptake may be observed (Parker, 1990). These studies do not consider the effect of 
glucose metabolism within the gut tissues, and reflect the overall balance of absorption and 
utilization across the tissue bed. Net glucose utilization rates, which reflect the metabolic 
requirement of intestinal tissues, determined by comparison of glucose-specific radioactivity 
in arterial and venous blood (Bergman et al. 1970), show that on average portal utilization 
of arterial glucose accounts for about 22% of whole-body glucose turnover (Table 4). 
Within individual experiments, increasing the glucose turnover rate causes a proportionate 
increase in glucose utilization by the PDV, except for animals receiving intraruminal 
propionate (Seal & Parker, 1992), where portal glucose utilization was significantly reduced 
by exogenous propionate. The results indicate that glucose utilization responds to increased 
glucose supply, and that this requirement may be met from both vascularly and luminally 
derived substrate (Piccioli Cappelli et af. 1993~) .  Manipulation of starch availability to the 
small intestine, and the consequences that this may have on glucose metabolism within the 
gut tissues and the use of other energy-yielding substrates, is clearly an area requiring 
further investigation. 

S U M M A R Y  

In conclusion, the splanchnic tissues have a profound impact on the supply of nutrients for 
maintenance and production in ruminants. Their metabolism accounts for a substantial 
portion of maintenance costs, but in a manner which varies with diet composition and 
intake level. Specific details of the quantitative and structural impact of gut and liver 
metabolism on absorbed nutrients and the integration of this metabolism with nutrients 
produced by other body tissues have resulted from in vivo studies utilizing multi- 
catheterization techniques. The judicious use of these techniques should further our 
quantitative understanding of how diet affects nutrient supply for productive processes 
such as growth or lactation. In the future, nutritionists may be able to formulate diets to 
meet the nutritional requirements of specific tissues, including the gut and liver. Changes 
in the quantity and pattern of nutrients available to the splanchnic bed influence the 
distribution of nutrients to the body. While it may appear that these tissues compete with 
other tissues for absorbed nutrients, their metabolism is in fact integrated with the 
metabolism of peripheral tissue and supportive of changes in requirements of all body 
tissues. 
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