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We compare a higher-order asymptotic construction for balance in geophysical flows with
the method of ‘optimal balance’, a purely numerical approach to separating inertia—gravity
waves from vortical modes. Both methods augment the linear geostrophic mode with
dependent inertia—gravity wave mode contributions, the so-called slaved modes, such that
the resulting approximately balanced states are characterized by very small residual wave
emission during subsequent time evolution. In our benchmark setting — the single-layer
rotating shallow water equations in the quasi-geostrophic regime — the performance of
both methods is comparable across a range of Rossby numbers and for different initial
conditions. Cross-balancing, i.e. balancing the model with one method and diagnosing
the imbalance with the other, suggests that both methods find approximately the same
balanced state. Our results also reinforce results from previous studies suggesting that
spontaneous wave emission from balanced flow is very small. We further compare two
numerical implementations of each of the methods: one pseudospectral, and the other a
finite difference scheme on the standard C-grid. We find that a state that is balanced relative
to one numerical scheme is poorly balanced for the other, independent of the method
that was used for balancing. This shows that the notion of balance in the discrete case is
fundamentally tied to a particular scheme.
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1. Introduction

Geophysical flows are characterized by rapid rotation of the frame of reference and by
density stratification in the vertical direction. In the mid-latitudes, the dominant force
balance is between the Coriolis force due to rotation and the pressure gradient forces. The
leading-order concept, geostrophic balance, is exact in linearized dynamics; corrections
beyond the leading order are more subtle, as nonlinear interactions begin to play a role. In
practical terms, a well-balanced state is one that minimizes fast geostrophic adjustment by
gravity wave activity in its subsequent time evolution.

The necessity to provide balanced initial conditions was recognized early in the
development of numerical weather prediction (see, e.g. Lynch 2006 for a historical
account). Machenhauer (1977) and Baer & Tribbia (1977) pioneered the idea of nonlinear
normal mode initialization, where Machenhauer obtained the first consistent nonlinear
correction to a linear mode decomposition, which corresponds to the quasi-geostrophic
balanced state (Leith 1980). Baer and Tribbia, in the same year, proposed a multiple
time-scale expansion which produces consistent higher-order balance relations and gave
explicit second-order expressions. Warn et al. (1995) revisit the problem from a more
abstract perspective, see § 3.1 below. They reformulate the procedure without the need to
introduce explicit fast-time and slow-time variables, and raise the issue that the resulting
series is asymptotic, but not necessarily convergent.

Geometrically, a balance relation defines a slow manifold. A slow manifold is a
submanifold of the phase space on which the solution trajectory evolves more slowly than
anywhere else. For systems with a small asymptotic order parameter, ‘more slowly’ is
usually defined as ‘increases at a lower asymptotic rate as the order parameter goes to
zero’. In the well-studied case of so-called normally hyperbolic systems — the van der Pol
oscillator being a classical example — slow manifolds are attracting, unique and exactly
invariant. In this situation, it is possible to reduce the dynamics exactly to a dynamical
system of lesser dimension on the slow manifold. Large-scale geophysical fluid flow, on
the other hand, is essentially inviscid. The Kolmogorov scale at which molecular viscosity
becomes relevant is so far removed from the scales of interest that, for the purpose of
characterizing balance, we need to work in the conceptual framework of Hamiltonian
dynamics.

For Hamiltonian systems, the existence of exactly invariant slow manifolds is too
much to hope for. MacKay (2004), for example, constructs an elementary example which
shows that an exactly invariant slow manifold cannot survive small generic Hamiltonian
perturbations. He argues that a useful notion of slow manifold should include any
submanifold of phase space with the following properties:

(i) The vector field is approximately tangent to the manifold, i.e. the manifold is nearly
invariant.

(i) The component of the vector field normal to the manifold grows strongly away from
the manifold, i.e. the typical dynamic time scale off the manifold is much faster than
the time rate of change on the manifold.

In this framework, slow manifolds are not unique. One slow manifold may be better than
another in the sense that the approximate invariance of the manifold under the flow is
more accurate. Often, a hierarchy of slow manifolds is given by an asymptotic series.
In this situation, non-existence of an exactly invariant slow manifold is seen through
the divergence of the asymptotic series. Yet, applying optimal truncation, exponential
smallness of remainders can often be proved — see, e.g. Vanneste & Yavneh (2004) for
exponential asymptotics of a simple model equation, Vanneste (2013) for a review from
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the geophysical fluid dynamics perspective and MacKay (2004) and references therein for
a more mathematical perspective.

For a practical decomposition of the state variables into their balanced and unbalanced
components, an optimal truncation of the divergent series is not directly available.
Therefore, high-accuracy diagnostics will either need to use a fixed, but possibly
higher-order balance, or rely on a purely numerical proxy for optimal truncation, known
as optimal balance. Regarding the first practical method, fixed higher-order asymptotics,
Chouksey, Eden & Briiggemann (2018) have shown that, in order to diagnose the true
gravity wave signal of waves emitted from an unstable jet, the residual of the first-order
balance obtained from the nonlinear normal mode initialization procedure of Machenhauer
(1977) is still dominated by slaved (slow) modes, not by the true wave signal, which only
becomes visible at third or fourth order (Eden, Chouksey & Olbers 2019a), if at all. This
is of relevance since wave emission is proposed as a significant sink of meso-scale eddy
energy globally in the ocean from laboratory experiments (Williams, Haine & Read 2008)
and idealized numerical simulations (Briiggemann & Eden 2015; Sugimoto & Plougonven
2016), but it is possible that the signals discussed in those experiments are related to the
so-called slaved modes and not to actual wave emission.

The second practical method for computing balance was pioneered by Viudez &
Dritschel (2004). Their optimal potential vorticity balance (OPV balance) was first
conceived as a modification of a Lagrangian contour-advecting numerical code in which
the perturbation potential vorticity is slowly ‘ramped’ from a trivial state to a fully
nonlinear state ‘in which the amount of inertia—gravity waves is minimal’, but the original
approach by Viudez and Dritschel can be formulated for any model code as shown below.
The approach is attractive because it produces high quality balance without any explicit
asymptotics at non-trivial, but moderate computational expense, and is relatively easy to
implement for a given numerical code.

Cotter (2013) realized that Viddez and Dritschel’s procedure can be understood
theoretically in terms of adiabatic invariance in the following sense: a trajectory that is
initially close to a slow manifold, thus evolving approximately along this manifold, will
continue to do so when the manifold is deformed slowly in time. Cotter provided proof,
in the context of a finite-dimensional Hamiltonian system, that the resulting balance is
exponentially accurate, just as balance itself can only be defined up to exponentially small
remainders. His argument presumes that the required integration is performed over an
unbounded interval of time. Gottwald, Mohamad & Oliver (2017) studied optimal balance
for the same finite-dimensional model restricted to a finite interval of time, which is
necessary for any practical implementation. They realized that the required ramp function
must satisfy consistency conditions at the temporal end points that preclude the use of
analytic normal form theory for the mathematical analysis. Yet, they were able to prove
exponential estimates, albeit with a smaller power of the time separation parameter in the
exponent. Thus, the state produced by ‘optimal balance’ (here not ‘OPV balance’ because
the principle goes beyond a potential vorticity formulation of the problem) is not optimal
in the strict sense, but very good in the sense that the remainder is small beyond all orders,
and arguably the best practically accessible algorithm for flow separation.

In this study, we compare the higher-order balancing method by Warn ez al. (1995) with
the optimal balance method by Masur & Oliver (2020) using two different discretizations
of the single-layer shallow water equations, and for two qualitatively different initial
states. In the following section, the model equations and their spectral representation
are specified. Both methods are re-derived within the same framework in § 3. It turns
out that they can both be understood as a correction to the linear geostrophic mode zo

971 A2-3


https://doi.org/10.1017/jfm.2023.602

https://doi.org/10.1017/jfm.2023.602 Published online by Cambridge University Press

M. Chouksey, C. Eden, G.T. Masur and M. Oliver

for the nonlinear model, using only zq itself. In §4, the numerical codes, our model
diagnosis strategy and the initial conditions are detailed. Section 5 presents the results
of the comparison. The paper concludes with a short discussion.

2. Model description
2.1. The single-layer model

As a simple test case, we take a reduced gravity model for a single layer of constant density
with mean height Hy. The dimensional equations of motion for velocity u and perturbation
height & are given by

du+u-Vu+fut+gVh=0, (2.1a)
dh~+ HoV -u+V - (hu) =0, (2.1b)

where ut denotes anticlockwise rotation of the vector u = (u, v) by m/2, i.e. ut =
(=v,u), f is the Coriolis parameter and g the acceleration due to gravity. We
non-dimensionalize (2.1) in terms of the usual Rossby (Ro), Burger (Bu) and Froude (Fr)

numbers

U Ro?

U
Ro=—, Bu=—, and Fr= —, 2.2a—c
Fr? c ( )

where f; denotes the constant background rate of rotation and ¢ = gHy is the phase
speed of gravity waves in the high wavenumber limit. Also, U and L denote the horizontal

velocity scale and length scale, respectively. Assuming that Coriolis and pressure gradient
forces approximately balance and choosing the fast time scale associated with the
propagation of gravity waves, we have

du+fut+Vh=—Rou-Vu, (2.3a)
oth+BuV -u=—RoV - (hu), (2.3b)

where all symbols refer to non-dimensional quantities. We now assume a constant rate
of rotation, taking the scaled Coriolis parameter f = 1 and choose the quasi-geostrophic
distinguished limit by setting Bu = 1.

2.2. Normal mode representation

We consider the model on a doubly periodic square domain of length 27t. Using the Fourier
representation

u(x, ) = Y up(t) exp(ik - x), (2.4)

kez?

where the complex coefficients satisfy u_p =uj so that wu(x,?) is real, with a
corresponding representation for A, writing zx = (ug, vk, hi), and denoting the vector of
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all Fourier coefficients by z = (zx)zez2, we write (2.3) in the form

d
£ = iAz + RoN(z, 2). 2.5)
The system matrix A is given by
0 e
Ar = i 0 ), A=Ak, k= (k1) (2.6)

—Buk —But¢ 0

and the nonlinear interactions N(z,z) = (INx)gez2 are given by the symmetric bilinear
form

, i Umpm - U, +u, m - uy
Ni@2)=—3 ), <hmk-uf+h;:1k-ug,) @7
L+m=k

where 7’ is a second coefficient vector with components u; and /) and A denotes the
infinite block-diagonal matrix made of components Ax with corresponding ordering to fit
to 2 = (Zk)xez2- The expression for Ny has been symmetrized, which is not necessary at
this point, but makes it easy to separate the interactions between different modes as in

(2.12) below.
The matrix Ag has three eigenvalues a)g =0 and a),j(E = 4/1 + Bu|k|?. Two of them,
w™, correspond to inertia—gravity waves, henceforth referred to as gravity waves for short.

The other one, w°, corresponds to a vortical mode, sometimes also referred to as the
Rossby mode or Rossby wave (here, it is a zero-frequency ‘wave’ since the f is constant.)
In the more general case when f is slowly varying in space, the Rossby wave frequency
is finite but remains much smaller than |w®| (see, e.g. appendix B of Eden, Chouksey &
Olbers (2019b) for an expression using first-order perturbation theory).

The corresponding left and right eigenvectors, satisfying (pZ)HAk = (PZ)H“)Z and
Arqy = wiq;, for o =0, —, + are (see, e.g. Eden et al. 2019b)

olwlk + ikt olwlk + ik*
@G=| 1-0%% |, po=ng| 1-022 (2.8a,b)
1 Bu™!,

with normalization
Bu |olw?* —1|
14+ 021+ Bulk|?’

(2.9)

g _
n, =

so that orthonormality holds, i.e. (pg)H qi/ = 85. The superscript H denotes the

Hermitian conjugate. We write PY to denote the orthogonal projector onto the vortical
modes, and P* and P~ to denote the orthogonal projector onto each of the gravity wave
modes, given for every fixed wavenumber k by

P; =q3(p7)", foro =0, —,+, (2.10)

set z7 =P7z, N° = P°N and introduce the short-hand notation P8 = P + P~ and
78" =zt 4+ z~. In the basis of right eigenvectors, the linear part of the components of
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(2.5) is diagonal, so that

Bk 027 = RoNT 2.11
E — 1w, 3 = RO k(Z,Z)7 (2.11)
where the case ¢ = 0 corresponds to the slow (vortical) modes and o = = to the fast

(gravity wave) modes. We note that
N%(z,2) = N2, 2%) + 2N (2%, ") + N7 (2, 2"), (2.12)

so that we can sort the nonlinear interactions into vortical—vortical, vortical-gravity and
gravity—gravity mode interactions. Due to this coupling, an accurate description of the

slow manifold will involve not only the linear geostrophic modes z°, but also some
non-zero contributions in the linear gravity wave modes z8" = z* +z~.

3. Nonlinear high-order balance
3.1. Higher-order balance procedure

We assume a state in which the gravity waves are initially small, namely z* = O(Ro).
Accordingly, we expand the gravity wave amplitudes as

7 = Roz?E + Rozzi|E + R0 z3i + - 3.1

It can be shown that, under this assumption, the gravity wave amplitudes are growing only
weakly in time, so that this ansatz remains consistent for an extended period of (slow)
time.

The time derivative in (2.5) includes fast gravity waves with frequency w® and the slow
growth and decay of the amplitudes of both slow and fast modes due to the nonlinear
interactions. Therefore, we introduce a slow time variable s = Rot so that d/dt = 9; +
Roo,.

Assume now that z¥ is a function of slow time only, whereas z
and fast times. Thus, (2.11) for the vortical mode o = 0 reads

+ is a function of slow

R0d,2° = RoNV(z, 7). (3.2)

Using (2.12) and inserting the expansion (3.1), we see that the leading order of (3.2) is
given by

3,20 = N°(2°, 2%). (3.3)

This first-order balanced model is identical to the familiar (first-order) quasi-geostrophic
approximation, as observed by Leith (1980). Only the vortical modes z° are involved, and
this is why (3.3) — which is a spectral representation of the quasi-geostrophic potential
vorticity equation — is closed.

To obtain a model which is second- or higher-order accurate, diagnostic relations for
the ageostrophic balanced modes or slaved modes z,jf need to be derived. These modes are
part of the balanced motion since they evolve only slowly (Warn et al. 1995; Mclntyre &
Norton 2000; Kafiabad & Bartello 2018). The lowest order of these, zfc, corresponds to the
first-order (ageostrophic) variables in the quasi-geostrophic approximation (Leith 1980),
which are not needed to predict the evolution of the geostrophic variables and generally
unknown in the quasi-geostrophic model. However, they are required for all higher-order
balance models.
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To first order in Ro, (2.5) for the gravity wave modes reads
dzy —iotzf = N (2,20, (3.4)

where w® denotes the diagonal operator acting as multiplication by a)ng or w,

respectively, on each of the eigenspaces.
A non-zero time derivative in (3.4) reflects the existence of fast waves with frequency
w*. Thus, to enforce a balanced state, it is necessary to have

=iN*@", %) /™. (3.5)
Inserting this relation back into (2.5), we obtain a second-order balance model of the form
352" = N°(2%, 2% + 2RoN° 2", ™). (3.6)

Setting d,z7 = 0 to suppress generation of gravity waves in general, we write (2.11) as

o0
> (R0 9 — iwFRoMz = RoN*(2°,2°)

n=1
oo o0
+2) RNt 28 + Y Ro™ Y NE(E, ), 3.7)
n=1 n=2 i+j=n

with 2" =z} + z,, . In particular, the second, third and fourth orders are given by

dzi — i 25 = 2NE (0, 2") (3.8a)
925 —iw® 25 = 2NF(°, 28") + NEES", 25") (3.8b)
2y —iwTzy = 2N* (2%, 25") +2N* (2", 5. (3.80)

Hence, we can calculate z2 from (3.8a), z3 from (3.8b) and so on. The slow time derivative
aszl in (3.8a) is calculated analytically by taking the derivative of (3.5) and inserting (3.3)
as outlined in Kafiabad & Bartello (2018) and Eden et al. (2019a, § 2); 83155 and higher
are calculated by integrating the model with (the inverse Fourier transform of) zg + Roz‘f v
as initial condition for a few time steps and taking a finite difference. Since only slow
time derivatives d; show up, the slaved modes (or ageostrophic balanced modes) z;" =
z7 +z, are only slowly evolving in time, just as the vortical mode. The combination
of vortical mode amplitude z° and z;" defines the balanced mode in spectral space, and
inverse Fourier transform yields the balanced flow in physical space. In the following, we
will denote the slaved modes by

n n
By(2%) =) Ro'z" =) Ro'(zf +z;). (3.9)

i=1 i=1

3.2. Optimal balance in primitive variables

Optimal balance in primitive variables, which are u and h for the single-layer model,
was introduced by Masur & Oliver (2020). The method works by integrating the model
over an interval [0, T'] of artificial time t while gradually switching on the nonlinear
interactions. Initially, at T = 0, the nonlinear interactions are switched off and an exact
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linear mode decomposition allows the complete removal of gravity waves. When the
nonlinear interactions are fully switched on, at T = T, the system is in a state which
is nearly optimally balanced with regard to an evolution of the shallow water model in
physical time. The method is based on the principle that, so long as the change between
linear and fully nonlinear time evolution is slow, i.e. comparable to the physical motion on
the slow time scale, a state on a slow manifold will continue to evolve close to it as the
system and hence the manifold undergoes a slow deformation. In particular, since the fast
energy is identically zero at T = 0, it will remain zero to a good approximation at T = 7.

Usually, we would want to compute the balanced state which corresponds to a known
physical field, the ‘base point variable’, such as z in the set-up above. In that case, we
obtain a boundary value problem in time, where the ‘linear end’ boundary condition at T =
0 encodes that no gravity waves are present, and the ‘nonlinear end’ boundary condition
at T = T encodes that the prescribed value of the base point variable is met.

Optimal balance is implemented by multiplying all nonlinear terms with a smooth
monotonic ‘ramp function’ p(t/T), where p: [0, 1] — [0, 1] with p(0) =0 and p(1) =
1. Further, a sufficient number of derivatives of p need to vanish at the temporal endpoints;
Gottwald et al. (2017) give a rigorous analysis of why this is so. In this study, we use as
ramp function

DY) L —
fO) +f(1—-6)
which was shown to yield asymptotically the best performance in Masur & Oliver (2020).
For the shallow water equations in the form (2.3), this corresponds to the following set of
equations:

f(0) = exp(=1/0), (3.10)

d.u+ fut +Vh=—Rop(z/T)u-Vu, (3.11a)
drh+ BuV «u = —Rop(t/T)V - (hu). (3.11b)

At the linear end, in the notation set up in § 2.2, the boundary condition
P&Yz(0) = 0, (3.11¢)
encodes that no linear gravity waves are present. At the nonlinear end, we use the condition
PO%(T) = 22, (3.11d)

where z0 denotes the prescribed linear vortical mode component of the flow. This is
equivalent to taking the linear potential vorticity of the nonlinear flow as the ‘base point’
coordinate. Other base point coordinates, such as nonlinear potential vorticity or height,
have been explored in Masur & Oliver (2020). The output balanced state is then given by

2 = PE2(T) = Bop(z2). (3.12)

As described in Masur & Oliver (2020), we solve the boundary value problem
approximately using a backward—forward nudging process. At the final time 7 =7, we
impose boundary condition (3.11d), leaving the complementary components P8"z(T)
unchanged. We then integrate backward up until v = 0. At this initial time, we impose
boundary condition (3.11¢), leaving the complementary components P’z(0) unchanged.
To close the cycle, we integrate forward again up to v = 7. This cycle is iterated until,
at T =T, the difference between consecutive updates falls below a certain tolerance
threshold. It can be shown that, under a suitable smallness assumption for the vortical
number, the iterates converge to a function that solves (3.11) up to possibly a small
remainder which is comparable to the (exponentially small) balancing residual of optimal
balance itself (Masur 2022; Masur, Mohamad & Oliver 2023).
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4. Experimental set-up
4.1. Numerical schemes

To solve the single-layer model (2.3), we discretize the spatially periodic domain of length
L =27 with 255 grid points in each direction, and use the following two numerical
schemes. The first is a pseudospectral scheme with rotationally symmetric truncation of
2/3 of the largest wavenumber to compute the Fourier transforms of the convolutions of
nonlinear terms in physical space, and is also used by and further detailed in Masur &
Oliver (2020). The spatial mesh is an A-grid. The other scheme uses finite differences on
a standard C-grid and is identical, except for the time-stepping scheme, to the one used
by Eden et al. (2019b), where the discretization of the nonlinear terms in the momentum
equation follows the energy-conserving scheme by Sadourny (1975). The time-stepping
scheme for both cases is the third-order Adam—Bashforth method. In the spectral model,
we use a time-step selection based on the code by Poulin (2016), and in the finite difference
model we use a fixed time step At = 0.002, unless noted otherwise. In both cases, there is
no other damping in the model by frictional or mixing terms.

Note that for the balancing procedure and the diagnostics of the imbalance, we use the
eigenvectors p; and g7, representative of the discrete equations of the C-grid as given in
Eden et al. (2019b) for the finite difference model, and the analytical version of p§, and g5,
given by (2.8a,b) for the spectral model on the A-grid. We note that the use of eigenvectors
that are compatible with the numerical scheme is crucial for the quality of balance.

4.2. Diagnosed imbalance

As we have no direct access to a well-balanced reference state, we evaluate the balancing
schemes via the following notion of diagnosed imbalance. Any balance scheme can be seen
a map from a ‘base point’, here the linear vortical mode contribution z°, to the remaining
phase space coordinates, here the linear gravity mode contribution z8", which we express
as

= = B("). (4.1)

This map may be B = B,,, the higher-order balance to order n described in § 3.1, or B =
By, the result of the optimal balance procedure as described in § 3.2. We perform the
following steps:

(1) Given a prescribed base point zg, initialize the full nonlinear model at (physical)
time ¢t = 0 in a balanced state by setting z(0) = zg + B(zg).
(i1) Evolve this state by numerically solving the shallow water equations (2.5) starting
from ¢ = 0 up to some time ¢t = ¢'. Set 7’ = z(¢')
(iii) ‘Rebalance’ the evolved flow, setting 7/ = Pz’ + B(P'Z)).
(iv) Compute the diagnosed imbalance as the relative difference between the evolved
state and the rebalanced state, i.e.

o' —u”|

Iy = e —v
YT+ )

4.2)

And similarly for A, where ||-|| is the Euclidean norm (or root mean square) on the
computational grid. We use separate norms for both u and 4 since it is not obvious to
define a single norm representative of the diagnosed imbalance that reflects the correct
scaling behaviour as Ro — 0. In particular, the energy norm is not appropriate as our
results, see § 5, show that u and & behave differently.
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The diagnosed imbalance is based on the idea that the phase angles of the fast degrees
of freedom are essentially random when viewed on the slow time scale. Therefore, it is
highly unlikely that fast degrees of freedom, if present, will be preserved in the rebalancing
step (iii) so that any fast component of the motion will, with high probability, contribute
to the diagnosed imbalance. Numerical tests, e.g. as reported in von Storch, Badin &
Oliver (2019), have shown that even in low-dimensional systems, the diagnosed imbalance
provides a robust measure for the fast energy. Here, since the number of fast degrees of
freedom is large, if the fast degrees of freedom were truly random and independently
distributed, a central limit argument would prove that the variance of the diagnosed
imbalance goes to zero as the number of degrees of freedom increases. This argument
is not rigorous, of course, as there is no proof of statistical independence in some limiting
regime.

However, it is possible that the diagnosed imbalance underestimates the level of fast
energy because there might be recurrence points at which the actual fast dynamics has a
close approach to the slow manifold given by the balance relation (4.1). But the diagnosed
imbalance may also pick up the ‘real’ fast wave signal due to spontaneous emission of
gravity waves during the forward time evolution from 7 = 0 to ¢ = 7. However, it appears
that wave emission of balanced flow is in general very weak — only in case of instabilities
of the flow significant wave generation can be detected (Chouksey, Eden & Olbers 2022).
Consistent with this expectation, experiments with varying forward integration time 7
support the conclusion that spontaneous emission does not contribute significantly to the
results shown below.

Thus, even though not perfect, the diagnosed imbalance [ is the most accessible and
unbiased diagnostic tool to quantify the quality of balance obtained from a balance relation
of the form (4.1).

4.3. Initialization

At time ¢t = 0, we choose the base point coordinate for our balance comparison from two
different flow configurations. The first configuration is taken from Masur & Oliver (2020)
and constructed from a random height anomaly field /2 where the amplitude of the Fourier
coefficients /iy are adjusted so that the spectral energy density S(k) is given by

7

—_—, 4.3
(k2 + ak})?b 3

hg ~ ry/S(k)/k  with S(k) =

where k = |k| and r is a random complex number with zero mean and unit variance. With
b= (74+d)/4 and a = (4/7)b — 1, the spectral slope becomes S(k) ~ k4 as k — oo,
with the maximum of S(k) at k = kg. We choose d = 6 and ky = 6. The base point is then
obtained by projecting z = (0, 0, i) onto the geostrophic mode, i.e. setting zg = sz, then
rescaling the result such that max|4| = 0.2, which finally yields z,4,4. Figure 1 shows the
resulting optimally balanced initial state zyunq + Bopr(Zrana) for the spectral model with
Ro = 0.1 (a—c), and the evolved state at ¥ = 0.5/Ro (d—f) from which the diagnosed
imbalance is then computed as laid out in § 4.2. The evolved state is moderately different
from the state at = 0. The corresponding fields for the finite difference model and the
different balancing methods are visually very similar, but the diagnosed imbalance differs
as discussed below. Further, the fields for z,4,4, Which is balanced only to zero order, are
visually very close t0 Zand + Bopi(Zrana), but do contain a substantial contribution of fast
motion.
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Figure 1. Random field initialization Zyuud + Bopr(Zrana) in the spectral model for Ro = 0.1. We show £, u and
v at r =0 in panels (@), (b) and (c), respectively, as well as the evolved state at ¢ = 0.5/Ro (d—f). For the

optimal balance method, the ramp time is 7 = 2 and the convergence threshold is 1074

The second configuration is a developing instability from two counter-flowing jets in the
double periodic domain, also used by Eden et al. (20190), initially of the form

u(y) ~ exp(—(y — L/4)?/(L/50)%) — exp(—(y — 3L/4)?/(L/50)®),  (4.4)

where, as before, L = 27t denotes the extent of the domain. We use the Fourier transform
of (4.4), ug, plus a small sinusoidal perturbation in the corresponding hy from h ~
sin(10mx/L) to form the state vector z = (ug, 0, hx). The corresponding sinusoidal
perturbation in v is chosen to be approximately 10~ times smaller than the jet-like flow
in u. As before, we obtain the base point by projecting z on the geostrophic mode, i.e.
2= sz (again, with the projector chosen to be compatible with the numerical scheme in
use). The amplitude of zg is then scaled to yield a maximum jet speed of u = 1.4, which
finally yields zje;. Figure 2(a—c) shows the resulting jet-like balanced initial condition
Zjer + B4(Zjer) in the finite difference model for Ro = 0.1. Both models are integrated
from t =0 to r = = 4/Ro where the imbalance I is diagnosed. Here, we choose a
larger 7 compared with the random field configuration to allow the flow to fully develop
its instability where it may emit waves. The fully developed instability can be seen in
figure 2(d—f) for the finite difference model, the fields for the spectral model and using
different balancing methods are again visually very similar.

5. Results
In this section, we discuss the performance of the two balancing methods — higher order
(B1, ..., B4) and optimal balance (B,,) — in the two different models — the spectral

(SPEC) and finite difference (DIFF) discretizations — using the two different balanced
initial conditions —random (z,4,¢) and jet-like (zje;). In general, the diagnosed imbalance or
residual wave signal is very small in both models, for both initial conditions. We therefore
detect no significant wave emission in any of the experiments discussed here in agreement
with the results of Chouksey ef al. (2022). However, we shall describe and discuss small
differences in performance which are particularly visible in the jet-like test case.
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Figure 2. Asin figure 1, but for the jet flow initialization zje; + B4(zje;) in the finite difference model for
Ro = 0.1. We show the fields at 1 = 0 (a—c) and the evolved state at ¢’ = 4/Ro (d—f).

5.1. Random initial conditions

Figure 3 shows the diagnosed imbalance in DIFF for z,4,4 using B, for different orders
n. The residual wave signal scales as expected for By to B», i.e. as Ro for By, as Ro? for
B; and as Ro’ for B,. For B3 and By, the expected scaling is only seen for small Rossby
numbers. In fact, for Ro getting close to 1, the residuals start growing when the order is
increased. It is difficult to judge if this behaviour is due to actual gravity wave emission,
imperfection of our implementation of the method, an already diverging power series or
numerical truncation errors. We expect that for Ro approaching 1, the optimal truncation
is of rather low order so that the quality of balance decreases when including higher-order
terms, as seen in figure 3. However, we noticed that small details in the numerical coding
affect the residual drastically (not shown), as already noted by Eden et al. (2019a), pointing
towards a large role of numerical truncation errors.

Figure 4 compares the performance of B4 and B, in SPEC and DIFF; B, scales in
general similar to B4 in all cases, but the overall level of the residuals can be different,
although still very small in all cases. The residual wave signal is here slightly larger in
SPEC than DIFF. However, using also 7' = 2 for B,,, in DIFF, the residuals are getting
very similar to B, in SPEC (not shown). The impact of ramp time 7 on the diagnosed
imbalanced is documented in Masur & Oliver (2020) and not repeated here. For larger 7,
the residual gets smaller, but for even larger 7', the residual increases again. The optimal
T for this configuration is between 7 = 2 and T = 4 for DIFF, but for SPEC the optimal
T is between 7' = 0.5 and T' = 2. This points towards the importance of the numerics for
the performance of the optimal balance method. Masur & Oliver (2020) also discussed
the impact of the threshold to terminate the iteration in B,; they show that the impact is
minor and the same is true here. The impact of the choice of the ramp function p(t/7T) is
also documented in Masur & Oliver (2020); here, we use the exponential ramp function
given in (3.10), which is the optimal choice in Masur & Oliver (2020).

The diagnosed imbalance for DIFF using B,,; with T = 4 gets rather noisy at small Ro
and fluctuates by orders of magnitude for small changes in Ro. When decreasing the time
step by a factor 10, this behaviour disappears, the dependency of the diagnosed imbalance
on Ro becomes smooth and the residuals get again smaller than with larger time step.
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Figure 3. Diagnosed imbalance /(u) (a) and /(h) (b) in DIFF using the field z,,,4 balanced with B4 (black),
B3 (green), By (magenta), By (red) and By (orange), as a function of Rossby number Ro. The thin black lines

denote different scaling laws, i.e. Ro? (dotted), Ro® (dashed) and Ro* (dashed-dotted).
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Figure 4. Diagnosed imbalance /(u) (a) and I(h) (b) using the field z,4,4 balanced with By in DIFF (black),
Bgpr in SPEC with T = 2 (blue), B,y in DIFF with T = 4 (green) and B, in DIFF with T = 4 but 10 times
smaller time step (red). The thin black lines denote different scaling laws, i.e. Ro? (dotted), Ro® (dashed) and
Ro* (dashed-dotted). Dots denote individual experiments.

An accurate time-stepping scheme appears therefore important for the performance of
optimal balance, while this is not the case for B4 (not shown). Reducing the time step
further by an overall factor of 20 reduces the residual only at very small Ro (not shown),
so that for the parameter range shown, the results for B, are not affected by the accuracy
of the time-stepping scheme and other errors appear to dominate.

Figure 5 shows the residual wave signal z’ — z” after rebalancing at 1 = 0.5/Ro for
a fixed Rossby number Ro = 0.1 using z,4nq, both models and balancing methods. For
all cases, the residual shows in all variables a large-scale pattern, clearly deviating from
geostrophic balance. We see no systematic difference for the different balancing methods
in their spatial patterns, except for the different magnitude of the residual. However, the
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Figure 5. Residual wave signal 7/ — z” after rebalancing at = 0.5/Ro for Ro = 0.1 and Z,4,,4 in DIFF and By
(@), in SPEC and B, with T = 2 (b) and in DIFF and B, with T = 4 and 10 times smaller time step (c). We

show h/Ro4 in colour and u, v as arrows, with magnitude of 0(10*6).

case using DIFF and B,; with T = 4 and smaller time step shows also noise on smaller
scales which is not present for the other cases which have larger diagnosed imbalance.
Using a time step 20 times smaller, the noise remains the same, and also the diagnosed
imbalance as mentioned before.

5.2. Jet-like initial conditions

Figure 6 shows the diagnosed imbalance of both methods in both models using the jet-like
initial conditions instead of the random case. Here, By scales roughly as Ro®*, similar to
the case using z,4z4, pointing again to numerical truncation errors for the highest orders;
By scales shallower, but shows smaller residuals for Ro > 0.1 than B4 and B, in DIFF
depends again on the quality of the time-stepping method, i.e. the fluctuations of the
diagnosed imbalance for only small changes in Ro seen at small Ro < 0.1 for the normal
time step disappear using a 20 times smaller time step. Also, By, in SPEC has smaller
residuals than B, in DIFF for Ro < 0.1 in I(h), but larger residuals than B, in DIFF for
Ro < 0.1 in I(u), while they are similar for Ro > 0.1. This shows that, at the level of the
very small residuals, the different model codes can better reduce the residuals in different
variables, and points again to the large role of numerical details and different errors for the
quality of the balancing methods.

Figure 7 shows the residual wave signal for Ro = 0.1 for the different balancing methods
and numerical models using zj,;. While the residuals in DIFF are on the same scale as
the jet, the very small residual in % using B, in SPEC begins to show smaller scales
similar to what has been reported before as gravity wave emission during frontogenesis
(e.g. Plougonven & Snyder 2007). However, note the small magnitude of the signal, which
is much different to the wave signal reported in the previous section for the random field
case.

5.3. Cross-balancing

In this section we discuss experiments where the imbalance /(u) and I(h) of the balanced
state from the one method is diagnosed with the other method, which we refer to as
cross-balancing. Note that using any balanced state from SPEC in DIFF or vice versa
introduces errors already at zero order in Ro, because of the incompatible eigenvectors
for the different numerical grids (A-grid vs C-grid). Figure 8 (green line) shows such a
case, where the analytical eigenvectors g7, p; appropriate for an A-grid instead of the
corresponding ones for the C-grid are used for balancing with B4. The error is large
and does not change much for smaller Ro. The spectral model behaves correspondingly.
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Figure 7. Residual wave signal z’ — z” after rebalancing at t = 4/Ro for Ro = 0.1 in DIFF for zj, using By
(a), in SPEC using By with T =4 (b) and in DIFF using B,y with T = 4 and 20 times smaller time step

(c). We show h/Ro4 in colour and u, v as arrows, with magnitude of 0(1077).

However, cross-balancing in the same numerical model with the same grid will provide
additional information how the different (approximately) balanced states differ.

First, we balance DIFF using z,4,4 at t = 0 with By, then we integrate to t = 0.5/Ro
and rebalance with B, (using T = 4) and diagnose the imbalance from the difference
to the state at + = 0.5/Ro (shown as yellow line in figure 8). Second, we initially
balance with B, (using T = 4) and rebalance later with B4 and diagnose the imbalance
(shown as red line in figure 8). In both cases, the resulting diagnosed imbalance is only
slightly larger than or almost equal to the maximum of 7(u) or /(h) of the corresponding
experiments using either B,y or B4 only. Thus, we conclude that both methods find a
similar (approximately) balanced state.

6. Discussion and conclusions

In this study, we compare two different methods to approximately balance geophysical
flows: the higher-order asymptotic implementation inspired by Warn et al. (1995) and the
optimal balance implementation of Masur & Oliver (2020). We use here a single-layer
shallow water model as example, but both methods can also readily be applied in
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Figure 8. Diagnosed imbalance I(u) (a) and I(h) (b) for z,4,q in DIFF using By (black), B,y with T = 4 (blue)
and the cross-balancing experiments using first B4 then B, (green) and first B,y then By (red). The thin black
lines denote different scaling laws, i.e. Ro® (dotted), Ro> (dashed) and Ro* (dashed-dotted). Also shown is a
case with B4 in DIFF (orange), where the eigenvectors for the A-grid are used instead of the correct ones.

three-dimensional models. We show that both methods can be understood as adding to
the linear geostrophic mode z( contributions B, (zo) and B,(z0), respectively, taken from
the linear wave modes, the so-called slaved modes, to generate a balanced state which
evolves only slowly in time in the nonlinear model.

The main finding of this paper is that optimal balance and fourth-order in
Rossby-number asymptotics can be considered equivalent for practical purposes. The
residual wave signals of both balancing methods are comparable and show similar
spatial patterns. There are, however, differences in the magnitude of the diagnosed
imbalance for different model codes and initial conditions. It is difficult to decide if these
differences are due to numerical issues such as truncation error or errors introduced by the
time-stepping scheme, or systematic. Cross-balancing, i.e. balancing the model with one
method and diagnosing the imbalance with the other one, suggests that both methods find
approximately the same balanced states.

It has long been known that the quality of preservation of balance might depend on
the numerical scheme (see, e.g. Mohebalhojeh & Dritschel 2000). Here, we are able to
show that adapting the notion of balance when changing between the finite difference and
the spectral scheme yields comparably very good preservation of balance. It is only when
mixing notions of balance across schemes that quality of preservation of balance drops. For
more practical applications, such as defining balance for observational data, this implies
that for a single-time snapshot of observational data the leading-order balance is as good
(or bad) as higher-order balance. To increase the accuracy for the splitting of observational
data into balanced and imbalanced motion, the only way is to use temporal-spatial data
with a data assimilation scheme which includes a higher-order characterization of balance
that matches the numerical model.

A practical difference between the balancing methods presented here is the computing
resource demand. While the higher-order balance method only needs to run the model for
a few time steps at maximum, followed by a few (fast) Fourier transforms, the optimal
balance method needs to integrate the model over a sufficiently long ramping time, which
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needs significantly more computing resources. On the other hand, the optimal balance
model appears easier to implement for a given numerical code.

Our results are presented in terms of the ‘diagnosed imbalance’ which picks up
contributions that could be either due to imperfections of the balancing method or due
to actual wave emission of the balanced flow. We find that the diagnosed imbalance, thus
both contributing signals, decay rapidly with decreasing Rossby number. This implies, in
particular that spontaneous emission of gravity waves is negligible in flows within typical
geophysical parameters, in agreement with much earlier work such as Dritschel & Vitdez
(2007) or Chouksey et al. (2022) who found significant wave emission during balanced
shear flow instabilities in a three-dimensional flow only if symmetric or convective
instabilities occur and the Rossby number is close to unity. This conclusion is of practical
relevance since several studies have previously reported significant spontaneous wave
emission by balanced flow (e.g. Plougonven & Snyder 2007; Borchert, Achatz & Fruman
2014), which is also proposed as a significant sink of meso-scale eddy energy in the
ocean based on global estimates from laboratory experiments (Williams et al. 2008) and
idealized numerical simulations (Briiggemann & Eden 2015; Sugimoto & Plougonven
2016). It is possible that the signals in those experiments are dominated by slaved modes
rather than actual wave emission, which calls for re-evaluation of the experiments with the
high-order methods available now. It is, however, outside of the scope of the present study
to answer this issue.

There are two more obvious questions that also lie outside of the scope of this paper.
First, none of our results is directly applicable to the original OPV formulation of Viidez &
Dritschel (2004) and it would be interesting to benchmark their scheme in comparison with
others. However, this raises a new dimension of issues because, for a given resolution of the
Eulerian grid, the effective resolution of the contour-advective semi-Lagrangian (CASL)
scheme used in OPV balance is much higher, and so is the computational cost. Thus, we
choose to focus on balancing schemes that appear best suited for future application to
operational implementations of full atmosphere and ocean models.

Second, our current model setting is highly idealized. Other studies have explored
more complex settings for wave-vortex decomposition, such as Mclntyre & Norton
(2000) using potential vorticity inversion, Mohebalhojeh & Dritschel (2000) and Mirzaei,
Mohebalhojeh & Ahmadi-Givi (2012) using the CASL and diabatic-CASL schemes,
respectively, and Chouksey et al. (2018), Eden et al. (2019a) and Chouksey et al.
(2022) extending first-order (Machenhauer 1977) to higher-order balance of Warn et al.
(1995) for a range of flow regimes. We conjecture that both methods analysed here are
good candidates for computing high-accuracy balance in these and other circumstances.
However, one common obstacle is that a spectral transform is necessary to project on
the linear geostrophic mode, which is difficult to implement in non-trivial cases. We are
currently working to resolve this issue, with the goal to apply the optimal balance method
to realistic ocean models which will offer a variety of interesting practical applications of
the method.
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