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Abstract

If G, H and B are groups such that G x B =; H x B, G/[G, G]. Z(G) is free abelian and B is finitely
generated abelian, then G 2; H. The equivalence classes of triples (V,^,A) where Fand A are finitely
generated free abelian groups and ;: V ® V -> A is a bilinear form constitute a semigroup 31 under a natural
external orthogonal sum. This semigroup M is cancellative. A cancellation theorem for class 2 nilpotent
groups is deduced.

1980 Mathematics subject classification (Amer. Math. Soc): 20 F 06, 20 F 18, 15 A 63, 10 C 05.

1. Introduction

In an attempt at the problems mentioned in Mislin (1974) we obtained the following
results.

THEOREM I. Let G, H and A be groups such that GxA ~ / / + /l. Suppose
that G/[G,G~]. Z(G) is free abelian and A is finitely generated abelian. Then G ^ H.

THEOREM II. Let N UN2 and M be finitely generated torsion free nilpotent groups of
nilpotency class ^ 2. Then N , x M i N2 x M implies Ni ~ JV2.

In Section 2 we prove Theorem I using Theorem 2.2 and the relation between 2-
cocyles and central extensions. Theorem 2.2 is of interest on its own. The key is
Lemma 2.1 which can be found, for example, in Mislin (1974). We show (in Theorem
2.5) how it can be utilized effectively in proving various already known cancellation
theorems. Theorem 3 of Hirshon (1977) is obtained as a consequence of Theorem I.

This research was carried out while the author was on leave from T.I.F.R. and spending a year at the
University of Calgary. Financial support from NRC grants A 8225 and A 7693 is gratefully
acknowledged.
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We note that Theorem II follows easily from Theorem I and Theorem 3 of Hirshon
(1977). In Section 3 we prove more general results than Theorem II above. Here
again we exploit the relation between 2-cocycles and central extensions. We consider
certain equivalence classes of triples (V, £, A) where Fand A are finitely generated free
abelian groups and <!;: F ® V-+ A is a bilinear form. Under a natural external
orthogonal sum, these form a semigroup $?. We show that this semigroup 3$ is
cancellative (Theorem 3.5).

We are grateful to Mislin for bringing to our notice the works of Hirshon. Thanks
are due to the referees for several useful comments.

2. Groups

In this section Theorem I is proved. For a Cartesian product decomposition
G = Xj G, of a group G let iGi denote the inclusion map G, <=-*. G and let nGi denote
the projection map G-»Gj. For any group H = XJHJ and a m a p / G -> H the
composite map

G, -^U G -̂ —> / / - ^ i * tf,

is denoted by/(G;, //,). For any two maps/, gr: G -> H, where / / is a group, the map
which associates x >-* f(x). ^(x*1) is denoted by f±g.

LEMMA 2.1. Let k GxA2^ H x A be an automorphism where G, H and A are
groups. Suppose M,A,A) is an automorphism of A. Then / " l(H, G) is an isomorphism
with

a = X{G, H) - k(A, H) ° (X{A, A))~lo ;.(G, A)

as its inverse.

PROOF. Since X ° X " ' = IdH x A, by taking appropriate restrictions, we obtain

and

X(G, H) o X ~\H,G) + X(A,H)oX- \H,A) = IdH.

Thus

a o X ~ \H, G) = X(G, H) o X ~ \H, G)

- X(A, H) = (X(A, A)) ~1 o A(G, A) ° X ~ \H, G)

Similarly we can verify that X~l(H,G)»a = IdG.
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THEOREM 2.2. Let A and B be abelian groups, X a set andf,g: X —> B set theoretic
maps. Suppose A: B@A:=>-B®Aisan automorphism such that A °iB°f= iB° g- If A
is finitely generated then there exists an automorphism A': B^> B such that

PROOF. Clearly it suffices to prove the statement when A is either infinite cyclic or
isomorphic to Z / p \ for some prime p ^ 2 and some k ^ 1. We first consider a special
case: '/.(A,A) is an automorphism': The hypothesis A ° I B ° / = iB°g implies

(2.1) ,.(B,B)of=g; A(B,A)°/=0.

Hence if we take /.' = a where a is as in Lemma 2.1 (with G = H = A) then A' is as
required.

Now suppose A(X,/1) is not an isomorphism. Then A.(B,A) is nontrivial. Let
K = ker A(B, ,4). We claim that there exists a subgroup C of B such that K © C = B
and C =s A If A is infinite cyclic then the exact sequence

0 >K

yields a split exact sequence

0 >K >B<

ImA(B.X)

On the other hand, suppose A ^ Z/p*. Then End 04) is a local ring. From
A = A"1 = Idg@/) we obtain

(2.2) A(^,/l)oA-1(^M) + ^ B , ^ ) ° ^ ^ 1 ( ^ 8 ) = Idj4.

By assumption A(A, A) is not an automorphism. Hence it follows that
A(B,A)°A~1(A,B) is an automorphism. Thus A(B,A): B-* A has a right inverse
ft A -> B. Taking C = Im 0 in both the cases it follows that B = K®C and C ^ A
Since A(K,/1) = 0 (2.2) yields

(2.3) A(A,A)^.'\

Hence there exists an automorphism fi of C © A such that

) = r'(A,C) and fi(A,A) = A~\A,A).

Take A" = (IK, /z). Then A" is clearly an automorphism of B © A. Since A(B, A) of = 0
we have I m / £ K. Hence

UK. y) °iB°f= (Jjc> H°tc)°f=lB°f
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Hence X"°iB°f=X°iB°f=iB°g. Finally

A"(A,A) = TZAOA°(IK,H)OIA

= k(C,A)°

Thus we are back in the special case with X replaced by /.". This completes the proof
of the theorem.

PROOF OF THEOREM I.

Clearly Z(G) x A ^ Z(H) x A and hence Z(G) ^ Z(H) = B say. Also we have

G/Z{G) ^ G x A/Z(G) xA~Hx A/Z{H) x A ~ H/Z(H) = K

say. Without loss of generality we can assume that G and H are given by central
extensions

E: B ^ * G -» K,

F: B>-+ H^> K

corresponding to [£] , [ F ] e H2(K; B\ with Z(G) = B = Z(H). Thus an isomor-
phism 4>: Gx A ^ H x A yields an isomorphism of central extentions

Bx A >-> Gx^l - » K

BxA >-> HxA -**K

which is equivalent to say /.„. oij,([£]) = i g . ^dT ' ] ) = ^( [F] ) where
<p*([F]) = [F] say. For abelian group L, by the Universal Coefficient Theorem, we
have a natural exact sequence

Ext(H1(K),L)>^ H2(K,L)-»Hom(H2(K); L).

Since H{(K) = ab(K) ^ G/[G,G].Z(G) is free abelian it follows that

h: H2(K, L) ^ Hom(H2(K); L)

is an isomorphism. Thus we obtain ?.°iB°h([E]) = iB°h([F]) for maps

2(K) ^ B.

From Theorem 2.2 there is an automorphism X' of B such that / ' ° h([E~]) = h([F~\).
This in turn implies /'*([£]) = [F] = ^*([F]) in H2(X; B) and hence yields an
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isomorphism of central extensions

E: B^-G-^K

K I* iiq>

F: B^+H-^-K

In particular, we have proved that G ^ H.

COROLLARY 2.4. (Hirshon (1977).) Let GxA~HxA where A is a finitely
generated abelian group and G is a finitely generated tosion free nilpotent group of
nilpotency class l.Then G ~ H.

PROOF. Since nil(G) < 2, [G, G] £ Z(G). Since G is finitely generated torsion free
GI[G, G]. Z(G) = G/Z(G) is also a finitely generated torsion free abelian group and
hence free. We can now apply the above theorem.

We shall now illustrate how Lemma 2.1 can be effectively employed in cancelling
an infinite cyclic factor:

THEOREM 2.5. Let G x Z ~ H x Z. Then G m H if one of the following conditions

holds:

(a) Z{G) is periodic [Walker (1956)].
(b) Z(G) is divisible [Hirshon (1977)].
(c) G is nilpotent and Z(G) is infinite cyclic [Hirshon (1975), Baumslag (1975)].

PROOF. We shall prove (c) here. The proof of (a) and (b) will be similar and simpler.
So let /: G x Z ^ H x Z be an isomorphism and G be a nilpotent group with
Z(G) ^ Z. This induces isomorphisms

Z, / 2 : [G,G]- • [ / / , / / ]

and

A3: Z{G) n [G, G] -> Z(H) n [H, H]

by restriction. Set

V= Z(G)/Z(G) n [G, G] and W= Z{H)/Z{H) n [//, H].

Now /. i and /.3 together induce an isomorphism x: Fx Z -> Wx Z such that
/(Z, Z) = A(Z, Z). Since G is nilpotent Z(G) n [G, G] is nontrivial and since
Z(G)^Z, it follows that V is finite. Hence I(V,Z) = 0. Thus A(Z,Z) is an
isomorphism. Now we use Lemma 2.1 to conclude that G ^ H.

Finally we state and prove a lemma which we are going to use in the next section.
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LEMMA 2.6. Let A: GxH-^GxHbean automorphism where G and H are arbitrary
groups. Suppose A(H,H) and X~l(H,H) are trivial. Then /.(G,G) + k(H,G)° k(G,H) is
an automorphism of G with /.~1(G,G) + A~i(H,G)°A~1(G,H) as its inverse.

PROOF. Using the fact that A is an automorphism and that elements of G and H
commute one can check in a straightforward manner that A(G, G) + A(H, G) C A(G, H)
is a homomorphism. The rest of the proof is similar to the arguments in Lemma 2.1.

3. Bilinear forms

We consider the family of triples (V,t;,A) where Kand A are finitely generated
abelian groups and £: V® V-* A is a bilinear form. The external orthogonal sum
(Vi, fi , A j) ®(V2,£2,A2) is defined to be the triple (W,9,B) with W= V1®V2,
B = Av ® A2 and 9 = (iAi° £^1.(1^° £2)'wherel.denotes the usual orthogonal sum.
A triple (V,£,A) is said to be 'decomposable' if there exist triples (V^^A^, i = 1,2,
such that

and at least one of Vt or At is nontrivial; otherwise it is said to be 'indecomposable'.
(Note that unfortunately this terminology differs from the usual meaning of
decomposable bilinear forms over a ring.) We introduce an equivalence relation ~ ,
in this family by saying (V,£,A) ~ (W,6,B) if and only if there are isomorphisms
f. V-* Wand A: A -> B such that X ° £, = 9 ° (f <8>/)- We denote the equivalence class
represented by (V,£,A) by [K,^,^4]. Clearly © is well denned on these equivalence
classes and forms a (commutative) semigroup which we denote by St. The zero
element of this semigroup is [0,0,0]. Throughout this section (9 will denote a trivial
form, the domain and the range of it being understood from the context. The
following propositions are easily seen.

PROPOSITION 3.1. (V,£,A) is indecomposable if t, is anisotropic and A ^ Z.

PROPOSITION 3.2. / / (V,£,A) is indecomposable and c, is nontrivial then t, is
anisotropic and rank (Im £) = rank (A).

PROPOSITION 3.3. Every triple (V,^, A) is the external orthogonal sum of finitely
many indecomposable ones.

Before actually going to the main result of this section we will state and prove a
special case of it, using arguments similar to that in Theorem 2.2.
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PROPOSITION 3.4. Let £{. K® V-* A be bilinear forms, i = 1,2 where Vand A are free
abelian groups. Suppose there is an automorphism f. F© Z -> F© Z such that ^®O
= (£2 ©6) ° ( / ® / ) where (9: Z ® Z -» A is f/ie trivial form. Then there exists an
automorphism g'.V-* V such that ^ = £2 ° (3 ® g\

PROOF. First consider the special case where: ' / (Z, Z) is an isomorphism'. Then as
in the proof of Theorem 2.2

g=f{V,V) - / ( Z , 7) o (/(Z, Z)) -* = / (K Z)

is an automorphism of V. Moreover £ t©C? = (£2®0) ° ( / ® / ) implies, by restriction,
that

and

Hence ^2 = (g®fi() = ^ as required.
Now suppose / (Z , Z) is not an isomorphism. Then / (Z , F) is a nontrivial

homomorphism and hence we can write V = Vy © V2 with V2 ^ Z and
F2 2 Im/(Z, V) ^ Z. We first claim that £2(i;2 ® t?) = 0 = <^2(v ® v2) for every
v2eV2, ve V. By choice, there exists a nonzero integer n such that nv2 = / ( Z ,
Then

B)

v) = (^,1(P)(1 ®/"1(^)) = 0.

(Here I E Z C V© Z is the generator of the second factor Z). Hence £2(v2 ® v) = 0.
Similarly, <̂ 2(f ® v2) = 0. Thus for any automorphisms y of V2 © Z it follows that

Since/is an isomorphism, by arguments similar to that in Theorem 2.2, it follows
that there exists an automorphism y of V2 © Z such that if/' = (IdK2,y)r-f then
/ '(Z,Z) = Idz. Moreover

and hence we are back in the special case with/replaced by/ ' . This completes the
proof of 3.4.

We shall now state and prove the main result of this section.

THEOREM 3.5. $ is cancellative. In other words,

https://doi.org/10.1017/S1446788700021947 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021947


94 A. R. Shastri [8]

More generally, we have the following theorem, from which Theorem 3.5 follows
as an immediate corollary.

THEOREM 3.6. Let A, B, Vand Wbefree abelian groups and^: F® V-> A, i = 1,2,
and ft W® W—> B be any bilinear forms. Suppose there are automorphisms
f: V® W^> V® Wand k. A®B^A®B such that

(3.1) Ao(ii4o{1li1,o0) = ( I i | o ^ i , B o0 )o ( /® / )

and that Wand B are finitely generated. Then there exists automorphism g: V^ Vand

ji: A ̂  A such that [i°^x
 = £2 °(d ® 9)-

PROOF. By Proposition 3.3 and a simple induction argument we can assume that
(W, 9, B) is indecomposable.

Suppose first that ft W® W-* B is the trivial form. Then either W= 0 and
(B ~ Z) or B = 0 (and W~Z) since (W, 9, B) is assumed to be indecomposable. The
conclusion of the theorem would then follow by appealing to either Theorem 2.2 or
to Proposition 3.4 respectively.

So from now on we shall assume that 9 is nontrivial also. By taking appropriate
restriction and projections the condition (3.1) in the statement of the theorem is seen
to be equivalent to the following set of conditions:

( 1 2 ) \M,B)°Z2U(B,B)°9 =(&l9)°(f®f)

which in turn is equivalent to

(3.3)

){A, B)o{, = 0o(/(V, W) <g)/(V, W));

\A(B,B)°9 =

Also (3.1) is equivalent to

which in turn, is equivalent to statements (3.2)~' and (3.3)": analogous to (3.2) and
(3.3).

We first claim that A(B, B) is injective or }{B, A) is injective. Assuming on the
contrary, we shall prove that (W,9,B) is decomposable which contradicts our
assumption. So let B, = Kerl(B,X), B2 = Kerl(B,B), Wx = lmf~l(W,W) and
W2 = lmf-\V, W). We shall show that

(W,9,B) = (Wu0,,Bt)©(W2,92,B2) (for some 8it i = 1,2).

https://doi.org/10.1017/S1446788700021947 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021947


] Some cancellation theorems 95

Clearly W= W, + W2. By (3.2)"' we have

and hence for any wl =f~l(W, W)(w'),W e Wand w2 = / ~ 1 ( K W){v), veV, we have

0(Wl <g> w2) = (010)( /~

Similarly 0(w2 (g) w j = 0, for any vv,e W;, i = 1,2. By the anisotropy of 6 it now
follows that WlnW2= 0. Hence Wl®W2 = W.

Let 0, = 0/W<® Wt, i = 1,2. We now claim that Im0,. £B,-, i = 1,2. So let
w, = / ~ '(VK W)(w') for some w'e VK Then for any x e Wu

A(B,A)odl{wl®x)=A(B,A)°d(f~1{W,W)(w')®x)

= (A(A, A)o^ LX(B, A) o6)(f- V ) ® x)

It follows that /.(B,A)°9l = 0, i.e. I m ^ S B , . Similar arguments yield that
Im 92 £ B2. Hence Im 0 = 1m 0t + Im 02 £ B! + B2. Clearly Bt n B2 = 0. Thus in
order to prove that B, © B2 = B it suffices to prove that Bl + B2 is a pure subgroup
of B, since by Proposition 3.2

rank(B) ^ rank(B, +B2) ^ rank(lm0) = rank(B).

So let nbeBl+ B2 for some n # 0, 6 e B any. Let nb = bl+b2, b(eBh i = 1,2, say.
Then

with A(b,)f;Band A(b2)ey4. If/.(fe) = fo3 + a3 for some b3 e B, a3 e A then nb3 = ^.(bj)
and na3 = A(fe2). Taking x = X~i{b2) and y = A~'(a3) it follows that nx = &! and
ny = fe2. Since Bt and B2 are pure subgroups of A + B it follows that x e B , and
yeB2. Now nfc = n{x + y) and hence fe = x + y. Hence beBl +B 2 . Thus we have
shown that B, + B2 is a pure subgroup of B, and hence B = Bt® B2. This completes
the proof of our claim that k(B, B) or A(B, A) is injective.

We shall now prove the theorem considering these two cases separately.

Case 1. A(B, B) is injective. We shall show that/(F) = F(that is,/(K W) = 0) and
hence defines an automorphism g of V, namely g =f{V, V). Then from (3.3) we have

and

A(A, B)o£, = 6o(/(K ^ ) ® / ( K ^ ) = 0 (since/(K W) = 0).
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Hence k ° iA ° £, t = iA ° £2 ° (d ® g)- By applying Theorem 2.2 we obtain an automor-
phism /i of A such that ^ ° £ i = £2 ° (# x S) a s desired.

So, in order to prove that/(K W) = 0 we first observe that/(W^ W): W>-*-W. For
any w e VK suppose f(w) e V. Then

k{B, B) ° 0(w ® x) = 0(/(W^ W)(w) ® / ( ^ W)(x)) = 0

for every xeW. Since /.(£, B) is injective and 0 is anisotropic, this implies w = 0, that
is/( W, W): W >-> VK Since W is finitely generated it follows that for every w e W there
is an integer n ^ 0 and w'e VFsuch that/(W^ VF)(w') = mv. Now for any t\

nO(f{V, W){v) ® w) =

= (G19)(f(v)J(W'))

= (A(/l, B)o^[U(B, B)oO)(v® w)) = 0.

Hence 6(f(V, W)(v) <£> w) = 0 for every we W. Since 0 is anisotropic, this implies
f(V,W) = 0, as claimed.

Case 2. k(B, A) is injective. We first make the following two observations:

(a) k{B, A) is injective and the hypothesis (3.1) imply / " \W, W) = 0.
(b) / " \W, W) = 0 and the hypothesis (3.1)"J imply k~\B, B) = 0.

Proof of {a). Fix we W. Then for every W e W

and hence 6{f ~ \ W, W) (w) ® w') = 0. By the anisotropy of 0 it follows that
f~\W,W) = 0.

Proof of (b). From (3.1)~! we have

and hence k~1(B,B)(lm0) = 0. Since rank(Im0) = rank(B) it follows that

From (a) and (b) it follows that under the hypothesis (3.1) (which is equivalent to
(3.1)"l) we have the following chain of implications:

k(B,A) is injective =>f-1(W,W) = 0=>/.-\B,B) = 0

and hence in particular,

k~\B,A) is injective => f(W, W) = 0 => k(B, B) = 0.
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Hence, from Lemma (2.6)

g =f(V,V) +/(W, W) =/(V, W) and n = /.(A, A) + k(B, A)° )\A, B)

are automorphisms of Kand A respectively. Finally, using (3.2) it is easily verified

that / l ^ ! = £2 o [g (g) g).

This completes the proof of Theorem 3.6.

REMARK 3.7. If Land K are abelian groups, the exact sequence

0 —>Exl(K,L) >H2(K; L)--^ Horn(H2(K); L) >0

can be identified with the canonical exact sequence

0 —>Ext(/CL) >H2{K\ L)-^ Hom{A2 K; L) >0
where a is given by the commutator form (see, for example Warfield (1976), p. 29).
Thus when K is free abelian we obtain a canonical isomorphism

//2(K;L)~ Hom(A2K;L).

By using standard arguments as in the proof of Theorem I it is not hard to see that
Theorem II is equivalent to Theorem 3.5 restricted to alternating forms. Finally it is
also clear how one can obtain slightly more general result than Theorem II out of
Theorem 3.6.
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