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Active flow control based on reinforcement learning has received much attention in recent
years. Indeed, the requirement for substantial data for trial-and-error in reinforcement
learning policies has posed a significant impediment to their practical application, which
also serves as a limiting factor in the training of cross-case agents. This study proposes
an in-context active flow control policy learning framework grounded in reinforcement
learning data. A transformer-based policy improvement operator is set up to model
the process of reinforcement learning as a causal sequence and autoregressively give
actions with sufficiently long context on new unseen cases. In flow separation problems,
this framework demonstrates the capability to successfully learn and apply efficient
flow control strategies across various airfoil configurations. Compared with general
reinforcement learning, this learning mode without the need for updating the network
parameter has even higher efficiency. This study presents an effective novel technique
in using a single transformer model to address the flow separation active flow control
problem on different airfoils. Additionally, the study provides an innovative demonstration
of incorporating reinforcement-learning-based flow control with aerodynamic shape
optimization, leading to collective enhancement in performance. This method efficiently
lessens the training burden of the new flow control policy during shape optimization, and
opens up a promising avenue for interdisciplinary intelligent co-design of future vehicles.

Key words: machine learning

1. Introduction

For a long time, improving aerodynamic performance has consistently stood as a critical
objective for aeronautical researchers and manufacturers. The pursuit of this goal is
driven by various factors, including economic benefits, energy conservation and military
requirements. Consequently, there has been a substantial focus on advancing aerodynamic
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capabilities, leading to the development of technologies such as aerodynamic shape
optimization (Jameson 2003; Li, Du & Martins 2022) and active flow control (Collis et al.
2004; Choi, Jeon & Kim 2008). Typically, these technologies are dealt with separately
due to the inherent complexity of finding effective solutions for their specific challenges.
The intricate nature of these problems demands focused attention, acknowledging the
multifaceted aspects involved to achieve superior aerodynamic performance.

Active flow control (AFC) emerges as a promising area of research where actuators
(Cattafesta & Sheplak 2011), such as mass jets and fluidic vortex generators, are commonly
installed on vehicle surfaces to induce controlled disturbances in the flow. Control laws, or
policies, can be adaptively specified to address diverse objectives, ranging from separation
delays (Greenblatt & Wygnanski 2000) to vibration eliminations (Yao & Jaiman 2017;
Zheng et al. 2021). However, devising efficient control policies demands substantial
effort, given the complex challenge of precisely modelling high-dimensional nonlinear
flow systems (Choi et al. 1993; Lee, Kim & Choi 1998; Gao et al. 2017; Deem et al.
2020). In recent times, reinforcement learning, as a model-free control method, has
gained growing attention in the field of fluid mechanics (Gazzola, Hejazialhosseini &
Koumoutsakos 2014; Reddy et al. 2018; Verma, Novati & Koumoutsakos 2018; Yan
et al. 2020). Within the AFC domain, Rabault et al. (2019) showcased a successful
demonstration of cylinder-drag reduction through a computational fluid dynamics (CFD)
simulation employing an artificial neural network. This demonstration established a
control policy from velocity probes to control mass jets. Similarly, Fan et al. (2020)
illustrated the effectiveness of reinforcement learning in experimental settings, specifically
for drag reduction. In larger scale high-fidelity three-dimensional (3-D) simulations, such
as channel flow, Guastoni et al. (2023) and Sonoda et al. (2023) each proposed their own
novel reinforcement learning flow control solutions for drag reduction, further advancing
our understanding of complex, turbulent physical systems. Each passing year witnesses
the publication of numerous related works, showing researchers actively tapping into the
potential of reinforcement learning in AFC (Rabault et al. 2020; Garnier et al. 2021;
Vignon, Rabault & Vinuesa 2023b; Xie et al. 2023).

Reinforcement learning, being an interactive data-driven method, exhibits a substantial
demand for data (Botvinick et al. 2019; Zheng et al. 2022). The costs associated with
acquiring flow data and the lengthy training times, particularly when compared with more
common applications such as video games (Shao et al. 2019), have limited the widespread
adoption of this algorithm. However, there are related studies, such as those focusing on
parallelization across multi-environments (Rabault et al. 2020) and transferring policies
from coarse-mesh cases to finer-mesh cases (Ren, Rabault & Tang 2021), that have
demonstrated significant acceleration effects on single cases. Consequently, another
innovative approach involves identifying and extracting correlations between similar
problems, which enables rapid adaptation without having to restart the learning process
from scratch with each iteration. Transfer learning, a method involving the transfer of
parameters from source domains to target domains, has proven effective and is widely
employed in various domains, including fluid dynamics (Konishi, Inubushi & Goto 2022;
Wang et al. 2022). More directly, Tang et al. (2020) trains a robust flow control agent
over a range of Reynolds numbers, i.e. 100, 200, 300, 400, which can also effectively
reduce drag for any previously unseen value of the Reynolds number between 60 and
400. However, when there exists a significant divergence in data distribution and features
between the source and target domains, the policy in the source domain may be invalid
and require substantial adjustments bringing higher training costs. This challenge is
particularly pronounced in aircraft design (Raymer 2012), a domain characterized by
iterative processes that span the entire design cycle. The significant distinctions between

1001 A53-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1133


In-context AFC policy learning across airfoils

first-generation and final-generation prototypes impose increased demands on the effective
adaptation and performance improvement of AFC.

To tackle the challenges, researchers advocate using transformers, recognized for
their ability to adeptly manage extensive sequences and contextual information through
attention mechanisms (Vaswani et al. 2017). Transformers have proven successful across
various AI domains, including natural language processing (Wolf et al. 2020) and
computer vision (Han et al. 2022). In the field of fluid mechanics, Wang et al. (2024)
uses the transformer architecture to model the time-dependent behaviour of partially
observable flapping airfoils, achieving enhanced performance compared with approaches
using recurrent neural networks or multilayer perceptrons. For reinforcement learning,
transformers are increasingly employed in in-context learning (Dong et al. 2022; Min
et al. 2022), where the model leverages previously observed sequences as context to infer
optimal actions without the need for explicit parameter updates. This reframes the Markov
decision process as a sequence modelling challenge, aiming to generate action sequences
that yield substantial rewards when executed in a given environment (Chen et al. 2021;
Janner, Li & Levine 2021).

Meanwhile, a new paradigm for policy learning across multiple cases has emerged,
involving policy extraction from extensive datasets encompassing sequence data from
diverse domains (Lee et al. 2022; Reed et al. 2022). Notably, Laskin et al. (2022)
proposes transformers as policy improvement operators in environments with sparse
rewards, combinatorial case structures and pixel-based observations. Their algorithm
distillation technique incrementally enhances policies for new cases through in-context
interactions with the environment, meaning the model adapts to new situations based on
past experiences without requiring additional training. This approach offers meaningful
insights for reinforcement-learning-based active flow control, especially in highly
repeatable domains like aircraft design, where the model can efficiently apply learned
control strategies across varying airfoil configurations.

In this study, it is the first time that the algorithm distillation is introduced to
enhance reinforcement learning-based AFC challenges. Leveraging a transformer model,
we formulate the reinforcement learning sequence and predict actions autoregressively,
using learning histories as contextual information. This model acts as an in-context
policy improvement operator, gradually refining policies as long as the contextual
information spans a sufficient duration. We establish an in-context AFC policy learning
framework grounded in this policy improvement operator, encompassing three key
stages: data collection, offline training and online evaluation. We have prepared a
low-Reynolds-number airfoil flow separation system to assess the efficiency of this
framework. It demonstrates that the transformer neural network can learn closed-loop
AFC policy improvement operators, which is exactly the same as a general reinforcement
learning algorithm except the learning happens without updating the network parameters.
One machine learning model can be used to address different active flow control
cases. Finally, this study showcases how to integrate an in-context active flow control
policy learning framework with aerodynamic shape optimization to jointly enhance
performance. Moreover, the research showcases an innovative approach by integrating
reinforcement-learning-based flow control with aerodynamic shape optimization, resulting
in a notable improvement in performance.

The remainder of this paper is organized as follows: § 2 introduces the methods mainly
used in our framework; § 3 provides an overview of the environment configuration
considered in this study; the results are detailed in § 4; and finally, we summarize our
key conclusions and prospect our future work in § 5.
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Figure 1. Whole architecture of the active flow control policy learning framework via policy improvement
operator.

2. Methodology

This section introduces a new in-context AFC policy learning framework using a policy
improvement operator. The flow chart of this method is depicted in figure 1, outlining
three stages: data collection, offline training and online evaluation. In the first stage,
reinforcement learning agents generate learning data for various cases. Subsequently,
a policy improvement operator is established to model reinforcement learning as a
causal sequence prediction problem. The concept of algorithm distillation supports the
learning of policy improvement operators. During the online evaluation stage, the trained
agent interacts with the environment autoregressively, enhancing the AFC policy only
in-context. A comprehensive overview of the entire framework is provided in § 2.4.

2.1. Reinforcement learning
Reinforcement learning (Sutton & Barto 2018) is the policy optimization algorithm
that furnishes process data for policy improvement during the data collection stage.
This algorithm addresses flow control problems as Markov decision processes (MDPs).
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The environment (flow system) evolves from the state st to the next state st+1 based on
action at and provides feedback reward rt to the agent, modelled as

xt+1 = f (xt, at), t = 0, 1, 2, 3, . . . , (2.1)
where xt = [st, rt]. In the context of reinforcement learning, the objective is to find an
optimal policy π∗ that dictates which action to take in this MDP. The cost function J is
equivalent to the expected value of the discounted sum of rewards for a given policy π,
defined as

J(π) = Eτ∼π

[ T∑
t=0

γ trt

]
, (2.2)

where T marks the end of an episode and τ = (s0, a0, r0, s1, a1, r1, s2, . . .) is closely tied
to the policy π. Here, γ represents the reward discount factor for algorithm convergence.
Each reinforcement learning algorithm follows a distinct optimization process for the
objective function. Typically, the policy is represented by a parametrized function πθ .

The proximal policy optimization (PPO) algorithm (Schulman et al. 2017) is employed
in the data collection stage for each individual agent. Drawing inspiration from policy
gradient (Sutton et al. 1999) and trust region methods (Schulman et al. 2015), the
PPO algorithm introduces a novel surrogate objective function, created through a linear
approximation of the original objective. By dynamically constraining the magnitude of
policy updates, the algorithm ensures that the outcomes of the subsequent update will
consistently outperform the previous one. The loss function Lclip(θ) of the PPO algorithm
is the following:

Lclip(θ) = Eπθ [min(ρ(θ)Aπθ (s, a), clip(ρ(θ), 1 − ε, 1 + ε)Aπθ (s, a))]. (2.3)
Here, ρ(θ) = πθ (a | s)/πθold(a | s) represents the probability ratio, ε is the clipping
parameter and A is the advantage function, estimating the additional future return at
state s compared with the mean. The optimization of this objective is carried out using
stochastic gradient ascent on the data batch derived from environment interactions.
A detailed mathematical introduction to the PPO method is available in Appendix A.

2.2. Transformer and self-attention
Vaswani et al. (2017) introduced a pioneering neural network architecture for machine
translation, relying exclusively on attention layers rather than recurrence. In essence, a
transformer model follows an encoder-decoder structure. The model is auto-regressive at
each step, incorporating previously generated symbols as additional input when generating
the next. In this context, we elaborate on the encoder architecture, which constitutes our
operator model.

The encoder model consists of a stack of N identical layers, each comprising two main
components: a multi-head self-attention block, followed by a position-wise feed-forward
network. The multi-head self-attention block takes input, including query Q, key K and
value V vectors, with dimensions dQ, dK and dV , respectively. The key-value pairs compute
attention distribution and selectively extract information from the value V . The attention
function is calculated as

Attention(Q, K, V) = softmax
(

QKT
√

dK

)
V. (2.4)

In the transformer, instead of performing a single attention function with d-dimensional
Q, K and V , these vectors are projected h times (number of attention heads) with different
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learned linear projections to a smaller dimension dQ = d/h, dK = d/h and dV = d/h
respectively. The attention function is then applied in parallel on these projected queries,
keys and values to yield dV -dimensional output values. These outputs are concatenated
and once again projected, resulting in the final d-dimensional values. The output of this
multi-head attention block is

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)Wo, (2.5)

headi = Attention(QWQ
i , KWK

i , VWV
i ), (2.6)

where W are projections matrices.
In this study, we use N = 4 identical encoder layers, d = 128 output dimensions and

h = 4 heads for both cases. Additionally, artificial neural networks with different shapes
are employed to adapt to various case dimensions.

2.3. Algorithm distillation
Algorithm distillation, introduced by Laskin et al. (2022), is an innovative method that
integrates reinforcement learning (Sutton et al. 1999), offline policy distillation (Lee et al.
2022; Reed et al. 2022), in-context learning (Brown et al. 2020) and more. The premise
is that if a transformer’s context is sufficiently long to encompass policy improvement
resulting from learning updates, it should be able to represent not only a fixed policy
but also a policy improvement operator by attending to states, actions and rewards from
previous episodes. This study is inspired by this idea, which suggests that different flow
control policies can also be obtained through an operator trained on reinforcement learning
data.

Algorithm distillation consists of two primary components. First, it generates a large
data buffer D by preserving the training histories of a source reinforcement learning
algorithm Psource on numerous individual cases Mn

N
n=1:

D := {(s(n)
0 , a(n)

0 , r(n)
0 , . . . , s(n)

T , a(n)
T , r(n)

T ) ∼ Psource
Mn

}N
n=1, (2.7)

where N is the number of cases for data generation. Then, the method distils the source
algorithm’s behaviour into a sequence model that maps long histories to probabilities
over actions with a negative log likelihood (NLL) loss. A neural network models Pθ with
parameters θ is trained by minimizing the following loss function:

L(θ) := −
N∑

n=1

T−1∑
t=1

logPθ
(A = h(n)

t−1 | s(n)
0 , s(n)

t ), (2.8)

h(n)
t−1 = (s(n)

0 , a(n)
0 , r(n)

0 , . . . , s(n)
t−1, a(n)

t−1, r(n)
t−1). (2.9)

After the completion of training, the model undergoes evaluation to deduce the improved
policy by predicting the actions based on the history of new cases.

2.4. In-context AFC policy learning framework
This section introduces the in-context AFC policy learning framework via the policy
improvement operator, illustrated in figure 1. The framework comprises three stages:
collecting data, offline training and online evaluation.

In the initial stage, a substantial data buffer is established, encompassing variations in
cases arising from distinct system with different airfoils. Each case involves an individual
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Figure 2. Neural network architecture of policy improvement operator.

reinforcement learning agent interacting with the numerical simulation environment and
implementing control for a predefined target. The control policy undergoes iterative
optimization using the PPO algorithm, and the learning histories are recorded. The
data buffer compiles the entire reinforcement learning process, connecting all episodes
sequentially for each case.

The second stage involves learning a policy improvement operator model on a
transformer, as depicted in figure 2. In our work, this model f , parametrized by θ , is
designed with three components: embedding network f E

θ , transformer network f T
θ and actor

network f A
θ . The embedding network is built with mapping the across-episodic histories

to an embedded dynamical system, where the transition (at−1, rt−1, st) corresponds to an
embedded state ξt, denoted as

ξt = f E
θ (at−1, rt−1, st). (2.10)

The embedded representation sequence Ξt = [ξt−L, ξt−L+1, . . . , ξt] of the physical system
with position embedding is entered into the transformer network, which is a stack of four
identical encoder layers. The details of the transformer have already been discussed earlier.
The output Zt = [zt−L, zt−L+1, . . . , zt] of transformer encoder is denoted as

Zt = f T
θ (Ξt). (2.11)

In the end, the actor network, composed of three feed forward networks, decodes the Zt
into predicted action sequences

Apred
t = f A

θ (Zt). (2.12)

Our problem involves a continuous-space control problem, and we use root-mean-square
errors as the loss function:

L(θ) = 1
m

m∑
i=1

‖Atruth
t,i − Apred

t,i ‖2. (2.13)

Here, Atruth
t and Apred

t respectively represent the real and predicted action sequence, and m
represents the batch size.

The final stage involves online evaluation. For instance, in an aerodynamic shape
optimization where various new airfoils serve as intermediate prototypes, flow control
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configurations remain consistent across different cases, such as the positions of jets
and probes. An empty context queue is initialized and filled with interaction transitions
from the new environment. The context with the current state is input into the policy
improvement operator model, and the history-conditioned action is returned. With further
interactions, the sum of rewards is recorded, serving as an indicator that presents the
improvement level achieved through reinforcement learning.

In this study, we also develop a framework for surrogate model modelling and
aerodynamic shape optimization using Gaussian processes and Bayesian optimization
methods (Frazier 2018; Schulz, Speekenbrink & Krause 2018). Additionally, the rapid
exploration and learning of flow control policies on the newly generated airfoil shape is
achieved, which provides an example for the combination of reinforcement-learning-based
active flow control and aerodynamic shape optimization, as illustrated in § 4.2.

In this work, all the reinforcement learning models and the transformer policy
improvement operators are developed using PyTorch, a widely used PYTHON package
for machine learning (Paszke et al. 2019).

In addition to addressing the flow separation problem on various airfoils, this flow
control strategy exploration framework can be applied to other challenges as well.
Appendix C includes a vortex-induced vibration system governed by the Ogink model
(Ogink & Metrikine 2010), which is used to further validate the effectiveness of the control
framework.

3. Environment configuration

This section outlines the configuration of the airflow separation flow control system
(environment). It involves a numerical simulation of airfoil flow separation using
computational fluid dynamics. The shape of the airfoil changes randomly, which means
different boundary conditions for the flow, resulting in different vortex structures. These
various cases brings challenges to the learning.

3.1. Numerical simulation for airfoil flow separation
Research on airfoil flow separation represents one of the fundamental challenges in
aerodynamics. A well-designed flow separation control policy contributes to increased
lift or reduced drag, leading to enhanced energy efficiency and improved manoeuvrability.

In our work, the active flow control policy is explored to improve the lift of the airfoil.
As illustrated in figure 3, the airfoil is located at the position of (x = 0, y = 0), with
a chord length of L = 1 m. The computational domain is extended from x = −30 m at
the inlet to x = 30 m at the outlet and from y = −30 m to y = 30 m in the cross-flow
direction. The uniform inflow velocity is 1 m s−1, and there is an angle of attack β = 20◦
between the inflow and the chord of the airfoil. The Reynolds number Re, as an important
dimensionless number to characterize the viscous effect of flow, is set to 1000 in this case.

We place 10 probes on the upper surface of the airfoil to capture pressure information,
which serves as the reinforcement learning state. Three actuator jets are strategically
positioned at 25 %, 50 % and 75 % of the upper surface, each with a width of 5 %. These
jets feature a parabolic spatial velocity profile to ensure a seamless transition. The injected
flow mass instantaneously sums to zero, eliminating storage requirements for turnover
in practical applications. Each episode spans 20 seconds and is subdivided into 200
interaction steps.
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Figure 3. Configuration of airfoil flow and active flow control.

In the present study, the incompressible Navier–Stokes equation and the continuity
equation are considered to solve this fluid dynamic problem, written in integral form:

∂

∂t

∫
V

ρv dV +
∫

S
ρvv · n dS =

∫
S

div T · n dS +
∫

V
ρb dV, (3.1)

∂

∂t

∫
V

ρv dV +
∫

S
ρv · n dS = 0. (3.2)

Here, ρ represents fluid density, v is the fluid velocity, S is the control volume (CV) surface
with n as the unit normal vector directed outwards, V denotes the CV, T stands for the
tensor representing surface forces due to pressure and viscous stresses, and b represents
volumetric forces such as gravity. The finite volume method within the open-source
OpenFOAM platform is employed to solve the problem. This method involves dividing
the computational domain into discrete control volumes CV . By summing all the flux
approximations and source terms, an algebraic equation is derived, relating the variable
value at the CV-centre to the values at neighbouring CVs with which it shares common
faces:

Apφp +
∑

k

AkφNk = qp. (3.3)

Here, φ represents a generic scalar quantity, and the index k runs over all CV-faces. The
coefficients Ak typically include contributions from convection and diffusion fluxes, while
Q encompasses source terms and deferred corrections. The PIMPLE algorithm is adopted
here to decouple the velocity and pressure equations through an iterative prediction and
correction process. A brief introduction to the numerical validation of grid size and time
step is provided in Appendix D.

In this environment, the control objective is set to maximize lift and minimize drag of
the airfoil. Two dimensionless parameters, lift coefficient Cl and drag coefficient Cd, are
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defined for the quantification as follows:

Cl =

∫
C

(σ · n) · el dS

1
2
ρŪ2C

, (3.4)

Cd =

∫
C

(σ · n) · ed dS

1
2
ρŪ2C

, (3.5)

where σ is the Cauchy stress tensor, n is the unit vector normal to the outer airfoil surface,
S is the surface of the airfoil, C is the chord length of the airfoil, ρ is the volumetric
mass density of the fluid, Ū is the velocity of the uniform flow, ed = (sin β, cos β)

and el = (cos β, − sin β), where β is the attack angle. According to the target, the key
parameter reward is composed of both lift coefficient Cl and drag coefficient Cd, and
action regularization:

rt = αClt + βCdt − γ
√

|at|, (3.6)

where α, β, γ are weightings. The configuration of rewards plays a critical role
in determining the outcomes of optimization. The first two represent direct control
objectives, while the third parameter is directly related to energy consumption and control
cost-effectiveness. In our experiment, α = 1.0, β = −0.5, γ = 0.1. For a discussion
on how to balance aerodynamic performance and energy consumption, and choose a
reasonable weight gamma, please refer to Appendix E. As the main focus of this study
is on improving the aerodynamic performance of various airfoils, for a more direct setting
on energy control reward functions, please refer to Fan et al. (2020).

To provide a more intuitive presentation of the learning situation, the sum of rewards
SoR (without decay) of each episode is recorded as follows:

SoR =
200∑
t=0

rt. (3.7)

Each learning curve will use the SoR to represent the improvement of the strategy.

4. Results and discussions

In this section, we apply the proposed in-context AFC policy learning framework via
policy improvement operator in an airfoil flow separation system. We investigate the
evaluation results of the AFC policy improvement operator on new cases. Finally, we
demonstrate an example of incorporating the in-context active flow control method into
airfoil shape optimization design.

4.1. Control on airfoil flow separation
This subsection tests the proposed AFC policy learning framework on flow separation
environment. Compared with the first case, this one is closer to practical industrial
applications. The flow past different airfoils exhibits various flow phenomena, closely
related to the thickness and curvature of the shape. The active flow control policies are
discussed with the same control configuration but different airfoils. In the data collection
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Figure 4. NACA-4-digit airfoil data buffer for collecting data.

stage, learning histories of 50 NACA-4-digit airfoils are gathered, as shown in figure 4.
The selection of these airfoils was randomly done through Latin hypercube sampling.

The evaluation of a trained policy improvement operator occurs in two stages. Initially,
12 pre-existing airfoils are employed to assess the learning capability of this framework
in active flow control. The policy improvement operator is applied to each airfoil case,
and the results are depicted in figure 5. While different cases exhibit distinct learning
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Figure 5. Results display of train cases on airfoil flow separation environment. (a) Sum of rewards
improvement between controlled flow and uncontrolled flow. (b) Learning progress via policy improvement
operator on 12 new airfoils.

curves, there is a common trend of gradual policy enhancement. Figure 5(a) summarizes
the improvement of the sum of rewards (SoR) achieved by the policy improvement operator
on the new airfoils compared with uncontrolled conditions. The second stage involves
integrating in-context active flow control with airfoil shape optimization to achieve higher
aerodynamic performance, which is detailed in the following subsection.

Figure 6 illustrates the evaluation performance of policies through the policy
improvement operator on the Munk M-6 airfoil. In comparison with the airfoil without
control, the average drag coefficient of a cycle is reduced from 0.079335 to 0.042523, and
the average lift coefficient of a cycle is increased from 0.908699 to 1.018136. Figure 6(d)
further demonstrates that flow control has a beneficial effect on the periodic average
pressure distribution on the upper surface.

Due to viscous resistance and other factors, the fluid on the upper surface faces
challenges in overcoming the reverse pressure gradient after passing the highest point,
resulting in backflow. This phenomenon, where forward flow detaches from the surface,
creates a local high-pressure zone, leading to increased drag and reduced lift – a condition
known as flow separation (Greenblatt & Wygnanski 2000; Chang 2014). Flow separation
is a very complex phenomenon, where both fluid detachment and reattachment around the
airfoil occur, resulting in the generation of different vortexes.

Figure 7 shows the process of vortex generated from the upper surface being influenced
by flow control. The time of each flow field snapshot is also indicated in figure 6. In
figure 6(a), a backflow effect is generated in front of jet 1, so the action 1 maximizes
the suction to create an attachment effect on forward flow. Then the vortex in green box
moves by the jet 2 in figure 6(b) and hence t = 17.3 is the time when the suction action
is strongest. When the vortex moves above the jet 3 with t = 17.9, the injection of jet 3
will enhance the intensity of the reverse flow of fluid at the interface between the vortex
and the surface. Therefore, the action of jet 3 is at its lowest point, while jet 1 and jet 2
still help the fluid to reattach. In figure 6(d), in addition to the jet affecting the generation
of a new vortex, as shown in figure 6(a), jet 3 also promotes vortex shedding in the green
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Figure 6. Episode performance of policies via policy improvement operator on Munk M-6 airfoil. (a) Three
jet action trajectory. Four special annotations correspond to figure 7(a–d). (b) Comparison of lift coefficient.
(c) Comparison of drag coefficient. (d) Comparison of periodic-averaged surface pressure distribution. The
results of controlled episode are represented in red, while those of uncontrolled episode are represented in
black. The reason why the pressure near the tail of the upper surface actually increases is because the vortex is
enhanced by the jet when it reaches the tail, but the overall pressure on the upper surface decreases, as explained
with figure 7.

box at maximum jet velocity. Due to the increase in flow velocity caused by the jet, the
reverse pressure gradient at the tail is also strengthened, which can also be seen in the
periodic-averaged surface pressure distribution in figure 6.

Figure 8 presents a comparison between our transformer-based policy improvement
operator and PPO agent, showcasing results from three repeated experiments. The solid
lines represent the mean learning SoR for different experiments on the same case, while
the coloured bands indicate the standard deviation. As anticipated, the policy improvement
operator outperforms PPO agents with limited interactions in LIBECK L1003, NASA
LRN 1015 and LANGLEY NLF 0414F. These results demonstrate that the learning mode
proposed in this experiment can, to some extent, replace reinforcement learning agents
when flow control strategies require repeated learning. However, enhancing the learning
ability of this operator necessitates more data on various airfoils and cases, representing a
crucial avenue for advancing towards more generalized fluid models in the future.

4.2. Multi-airfoil AFC policy learning for airfoil shape optimization design
This subsection extends the application of the proposed in-context active flow control
policy learning framework to the aerodynamic optimization of airfoils, a critical and
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Figure 7. Flow field snapshot of Munk M-6 airfoil with flow control. Black represents streamline, and the
background is instantaneous pressure contour. (a) Jet 1 maximizes the suction to create an attachment effect.
(b) Jet 2 maximizes the suction to strengthen the attachment effect. (c) Jet 3 minimizes the injection to avoid
enhancing local backflow. (d) Jet 3 maximizes the injection to promote vortex shedding, but also enhances the
backflow effect at the tail end. (a) t = 16.6, (b) t = 17.3, (c) t = 17.9 and (d) t = 18.5.
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Figure 8. Evaluation performance of policy improvement operator (in red) and reinforcement learning (in
blue) on airfoil flow separation. Under limited number of interactions, the policy improvement operator
outperforms in three evaluation new cases. (a) Evaluation LIBECK L1003, (b) evaluation NASA LRN 1015
and (c) evaluation LANGLEY NLF 0414F.

well-researched area in the field. The article uses industry-standard methods, particularly
surrogate-based approaches (Forrester, Sobester & Keane 2008; Han & Zhang 2012),
as shown in figure 9. Using the class function/shape function transformation method
(CST) (Kulfan 2008), the airfoil shape is parametrized into a vector. A surrogate model
is then built to estimate the aerodynamic forces for each airfoil CST vector. The global
optimization algorithm uses the surrogate model’s predictions to infer the optimal airfoil
shape, avoiding the need for repeated CFD simulations. At each iteration, the predicted
optimal airfoil is simulated with CFD, and the results are added as new sample points
to update the surrogate model, continuously refining predictions for the next optimal
airfoil. In this framework, the transformer-based policy improvement operator is dedicated
solely to quickly learning flow control policies for the optimized airfoils, without directly
contributing to the shape optimization. In figure 9(a), solid lines represent the aerodynamic
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Figure 9. Integration of reinforcement learning and aerodynamic shape optimization. (a) Flowchart of
aerodynamic shape optimization framework. (b) Dynamic optimization process of surrogate model.

optimization process, while dashed lines indicate the flow control learning. A detailed
method explanation can be found in Appendix E.

This study takes the NACA0012 airfoil as the benchmark, with a deformation range
constraint of 20 %, and the optimization objective is to maximize the lift drag ratio of the
airfoil, as follows:

max Cl/Cd (4.1)

such that Cl/Cd > Cl/Cdbenchmark (4.2)

max T ≥ max Tbenchmark (4.3)

min T ≤ min Tbenchmark, (4.4)

where Cl is the lift coefficient, Cd is the drag coefficient and T is the thickness. The process
of dynamic sampling is illustrated in figure 9. Most of the latest sampled points, with a
redder colour, will be concentrated in the lower right corner, which is the area with a high
lift-to-drag ratio. After fifty iterations, the optimization process ends.

Every ten iterations, active flow control is introduced to the airfoil corresponding to the
maximum Cl/Cd predicted by the model to enhance aerodynamic performance. Figure 10
illustrates the performance of the active flow control rapid adaptation framework on these
six new airfoils. As observed in previous results, the policy consistently improves through
interactions until convergence. The capacity for in-context learning further boosts the
efficiency of policy improvement by eliminating the need for training.

Figure 11 compares the aerodynamic performance of the benchmark airfoil, optimized
airfoil and airfoil with applied flow control for a more intuitive explanation. The SoRs
are plotted on the vertical axis, with six optimized airfoils presented on the horizontal
axis. From an aesthetic standpoint, the optimized airfoil after fifty iterations exhibits the
smoothest shape, indicating an anticipated improvement in performance. Except for the
first one, the aerodynamic performances of the other airfoils without flow control surpass
the benchmark. In comparison with the benchmark, the optimized airfoil sees a 41.23 %
increase, while the airfoil with active flow control achieves a 54.72 % improvement in
terms of the SoR. This outcome aligns with the study’s goal, demonstrating the ability
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Figure 10. Learning progress via policy improvement operator on new airfoils generated from aerodynamic
shape optimization progress.
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Figure 11. Performance enhancement from aerodynamic shape optimization and active flow control. The
shape of the corresponding airfoil is drawn below the horizontal axis.

to achieve active flow control policy in-context learning on various cases using only one
trained network.

For clarity, periodic-average surface pressure distributions and pressure fields are
relatively drawn in figures 12 and 13. Figure 12(a) shows the results of CST-based
aerodynamic shape optimization, with beneficial improvements on both the upper and
lower surfaces. In figure 12(b), active flow control mainly changes the pressure distribution
on the upper surface, with lower periodic pressure in front of the upper surface. The reason
for the increase in periodic pressure near the trailing edge was explained in the previous
chapters. These results also match well with the results of the periodic average pressure
field, as shown in figure 13.

5. Conclusions

In this study, we propose a novel active flow control policy learning framework via an
improvement operator. Employing the proximal policy optimization algorithm, we collect
extensive learning histories from various cases as sequences. The framework incorporates
an agent built on a transformer architecture to conceptualize the reinforcement learning
process as a causal sequence prediction problem. With a sufficiently extended context
length, the agent learns not a static policy but rather a policy improvement operator.
When confronted with new flow control cases, such as those involving new airfoils, the
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Figure 12. Comparison between shape-optimized, controlled and uncontrolled periodic-average surface
pressure distribution. The pressure near the tail of the upper surface has also increased, similar to the situation
of Munk M-6. (a) Periodic-averaged surface pressure distribution of benchmark and shape-optimized airfoil
and (b) periodic-averaged surface pressure distribution of shape-optimized airfoils with control and without
control.
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Figure 13. Comparison between controlled and uncontrolled periodic-average pressure field. The flow field
results are consistent with the pressure distribution results. (a) Uncontrolled periodic-average pressure field
and (b) controlled periodic-average pressure field.

agent performs policy learning entirely in-context. This implies that there is no need
to update network parameters during the learning process, showcasing the adaptability
and efficiency of the proposed framework for continuous learning in scientific control
problems.

This study explores two active flow control environments: vortex-induced vibration and
airfoil flow separation. The results notably illustrate the adept learning capabilities of
the intelligent agent across diverse cases. Moreover, the paper emphasizes the seamless
integration of this learning framework with existing research methods, particularly in
the context of airfoil optimization design. This integration eliminates the necessity
for training new flow control cases from scratch, highlighting the importance of the
proposed approach. Although flow control and shape optimization are currently conducted
separately – meaning the control strategy is developed based on the shape-optimized
airfoil – there must ultimately be a common objective function for enhanced performance
(Pehlivanoglu & Yagiz 2011; Zhang & He 2015). Looking ahead, it is conceivable that
the entire process, from developing flow control policies to the overall system design of
vehicles, could be accomplished through the cooperation of reinforcement learning for
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optimization (Viquerat et al. 2021) and the transformer as a universal model. It is crucial
to highlight that while the demonstrated policies exhibit effectiveness, achieving further
performance improvements necessitates additional training cases. Future developments
in the field of artificial intelligence in fluid dynamics should consider the establishment
of multi-task general models capable of handling substantial data. This direction holds
promise for advancing the sophistication and applicability of learned policies in diverse
fluid-related applications.

To the author’s knowledge, this study is one of the first to use transformer architecture
to design active flow control policies for various airfoils. Transformer networks excel at
capturing long-range dependencies within input data, making them ideal for modelling the
time-dependent behaviour. Their parallel processing capabilities allow for faster training
times compared with architectures that process data sequentially, such as RNNs, which is
particularly appealing for handling long sequences and large datasets (Vaswani et al. 2017).
This study uses transformer architectures to construct a policy improvement operator from
complex across-episodic training histories. However, this article did not explore the output
performance of the transformer. At the same time, we also note that many previous studies
have achieved success in studying the curse of action space dimensions (Belus et al. 2019;
Vignon et al. 2023a; Peitz et al. 2024). Leveraging invariants in the domain, there could be
higher expectations for the transformer architecture’s ability to handle long sequences with
more complex dimension and the local agent setting to avoid the curse of dimensionality
on the control space dimension.

Following Tang et al. (2020), this study once again uses one machine learning
model to tackle various reinforcement-learning-based active flow control cases.
This innovative approach offers a fresh perspective on the advancement of the
reinforcement-learning-based active flow control field. The anticipation is that this work
not only introduces inventive ideas to the readers but also showcases the collaborative
potential of machine learning technologies, specifically reinforcement learning and
transformers, in the domain of flow control. The exploration of a unified model for diverse
cases opens new avenues for efficiency and adaptability in addressing complex challenges
within the domain of active flow control.
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China (grant no. 92271107).
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Appendix A. Proximal policy optimization

The algorithms have been presented in detail previously (Kakade & Langford 2002;
Schulman et al. 2017; Queeney, Paschalidis & Cassandras 2021), and a brief explanation
is provided here. The objective function of reinforcement learning is defined as (2.2), or in
another form, with state value function vπθ :

J(πθ ) = vπθ (s0), (A1)

where s0 is the initial state and vπθ (s0) = Eτ∼π,s0[
∑T

t=1 γ trt] is the state value
function. There is also a state-action value function qπθ (s0, a0), defined as
qπθ (so, ao) = Eτ∼π,s0,a0[

∑T
t=1 γ trt]. Next, the improvement between new and old policies
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is calculated:

J(πnew) − J(πold) = Eτ∼πnew

[ T∑
t=0

rt

]
− Eτ∼πold

[ T∑
t=0

rt

]

= Eτ∼πnew

[ T∑
t=0

rt − vπold(s0)

]

= Eτ∼πnew

[ T∑
t=0

γ t(rt + γ vπnew(st+1) − vπold(st))

]
, (A2)

where τ = (s0, a0, r0, s1, a1, r1, s2, . . .). Let Aπold(st, at) = rt + γ vπnew(st+1) − vπold(st),
which is defined as the advantage function. Additionally, the improvement is

J(πnew) − J(πold) = Eτ∼πnew[Aπold(st, at)]

=
T∑

t=0

γ t
∑

st

Pr(s0 → st, st, t, πnew)
∑

at

πnew(at | st)Aπold(st,at)

=
∑

s

ρπnew(s)
∑

a

πnew(a | s)Aπold(s,a). (A3)

Here, ρπ(s) = ∑T
t=0 γ tPr(s0 → s, s, t, πθ ) is the discounted state distribution. Obviously,∑

s Pr(s0 → s, s, t, πθ ) = 1,
∑

a π(a | s) = 1. The summation of ρπ(s) is
∑

s ρπ(s) =∑T
t=0 γ t ∑

s Pr(s0 → s, s, t, πθ ) = 1/(1 − γ ). Let dπ(s) = (1 − γ )ρπ(s), representing
state visitation distributions, and the improvement is calculated by

J(πnew) − J(πold) =
∑

s

ρπnew(s)
∑

a

πnew(a | s)Aπold(s,a)

= 1
1 − γ

Es∼dπnew ,a∼πnew[Aπold(s,a)]

= 1
1 − γ

Es∼dπold ,a∼πnew[Aπold(s,a)]

+ 1
1 − γ

{Es∼dπnew ,a∼πnew[Aπold(s,a)]

− Es∼Dπold ,a∼πnew[Aπold(s,a)]}

≥ 1
1 − γ

Es∼dπold ,a∼πnew[Aπold(s,a)]

− 1
1 − γ

|Es∼dπnew ,a∼πnew[Aπold(s,a)]

− Es∼dπold ,a∼πnew[Aπold(s,a)]|. (A4)

1001 A53-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1133


C. Zheng, F. Xie, T. Ji, H. Zhou and Y. Zheng

According to the Holder inequality,

J(πnew) − J(πold) ≥ 1
1 − γ

Es∼Dπold ,a∼πnew[Aπold(s,a)]

− 1
1 − γ

‖dπnew − dπold‖1‖Es∼Dπold ,a∼πnew[Aπold(s,a)]‖∞. (A5)

LEMMA A.1 (Achiam et al. 2017). Consider a reference policy πref and a future policy
π. Then, the total variation distance between the state visitation distributions Dπref and
Dπ is bounded by

TV(π, πref ) ≤ γ

1 − γ
Es∼dπref [TV(π, πref )(s)], (A6)

where TV(π, πref )(s) represents the total variation distance between the distributions π(· |
s) and πref (· | s).

From the definition of total variation distance and Lemma A.1, we have

‖dπnew − dπold‖1 = 2TV(dπnew, dπold)

≤ 2γ

1 − γ
Es∼dπold [TV(πnew, πold)(s)]

= 2γ

1 − γ
Es∼dπold

[
1
2

∫
|πnew(a | s) − πold(a | s)| da

]

= 2γ

1 − γ
Es∼dπold

[
1
2

∫
πold(a | s)

∣∣∣∣πnew(a | s)
πold(a | s)

− 1
∣∣∣∣ da

]

= γ

1 − γ
Es,a∼dπold

[∣∣∣∣πnew(a | s)
πold(a | s)

− 1
∣∣∣∣
]

. (A7)

Also note that

‖Es∼Dπold ,a∼πnew[Aπold(s,a)]‖∞ = max
s

|Ea∼π∗[Aπold(s, a)]| = Cπnew,πold . (A8)

Then, we can rewrite the right-hand side of (A5) as

J(πnew) − J(πold) ≥ 1
1 − γ

Es∼dπold ,a∼πnew[Aπold(s,a)]

− 2γ Cπnew,πold

(1 − γ )2 Es∼dπold ,a∼πold

[∣∣∣∣πnew(a | s)
πold(a | s)

− 1
∣∣∣∣
]

(A9)

= 1
1 − γ

Es∼dπold ,a∼πold

[
πnew(a | s)
πold(a | s)

Aπold(s,a)

]
(A10)

− 2γ Cπnew,πold

(1 − γ )2 Es∼dπold ,a∼πold

[∣∣∣∣πnew(a | s)
πold(a | s)

− 1
∣∣∣∣
]

. (A11)

The right-hand side of the inequality is called policy improvement lower bound (PILB),
where the first term is the summary objective (SO) and the second term is the penalty
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term (PT). When improving, as long as the lower bound is ensured to be positive, that is,
PILB = SO − PT ≥ 0, it can ensure that the new policy is superior to the old.

To ensure J(πnew) − J(πold) ≥ PILB ≥ 0, proximal policy optimization needs to
improve SO, i.e

maximize
πnew

Es∼dπold ,a∼πold

[
πnew(a | s)
πold(a | s)

Aπold(s,a)

]
(A12)

such that Es∼dπold ,a∼πold

[∣∣∣∣πnew(a | s)
πold(a | s)

− 1
∣∣∣∣
]

≤ δ. (A13)

Here, dπold is not directly obtainable, but it can be estimated using interaction trajectories
τπold . Furthermore, incorporating constraints into the objective function

Lclip(θ) = Eτ∼πold [min(ρ(θ)Aπθ (s, a), clip(ρ(θ), 1 − ε, 1 + ε)Aπθ (s, a))], (A14)

where ρ(θ) = πθ (a | s)/πθold(a | s) denotes the probability ratio and ε is the clipping
parameter. Regardless of whether A is greater than 0 or not, the clip mechanism can ensure
that there is not much difference between the new and old policies.

Appendix B. Control cost-efficiency discussion

In our framework, the reward is indeed a combination of the lift coefficient Cl, drag
coefficient Cd and action regularization at. To provide more transparency, the reward
function is structured as follows:

rt = αClt + βCdt − γ
√

|at|, (B1)

where α, β, γ are weightings. For flow control issues, it is important to consider
energy expenditure and efficiency. In this framework, these weights, especially action
regularization weightings γ , are not arbitrary but are carefully tuned to balance
aerodynamic performance and cost. Our goal is to ensure that the reinforcement learning
agent favours solutions that provide aerodynamic benefits while balancing energy costs
associated with control actions. When we carefully selected aerodynamic targets and
action regularization weights, we conducted parameter discussions on control efficiency.
Here, we define a control cost-efficiency parameter, which is the increase in aerodynamic
target caused by the unit active flow control mass flow rate per episode as

η = (αCd + βCl) − (αCd + βCl)0
n∑
i

∫
Sjeti

|ai| · s ds

, (B2)

where the upper line represents the episodic average, n is the number of the jets, subscript
0 represents indicates the uncontrolled forces, α = 1 and β = −0.5. Then, we set up five
sets of experiments to select the most suitable weighting γ from [0.0, 0.05, 0.1, 0.5, 1.0].
The settings for experiment are the same as the original text, only the reward function
configuration has changed. Each experiment trains a stable intelligent agent and ultimately
evaluate its control cost-efficiency, as shown in figure 14.

In the first configuration γ = 0.0, the system achieves the maximum aerodynamic
gain per unit of jet mass flow rate, as no regularization is applied to the control
actions. This essentially means that the reinforcement learning agent is free to maximize
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Figure 14. Control cost-efficiency η and force coefficients across different weightings γ . (a) Case γ = 0.0
drag and lift force coefficient in one episode. (b) Case γ = 0.05 drag and lift force coefficient in one episode.
(c) Case γ = 0.1 drag and lift force coefficient in one episode. (d) Case γ = 0.5 drag and lift force coefficient
in one episode. (e) Case γ = 1.0 drag and lift force coefficient in one episode.

aerodynamic performance without considering control costs. While the RL training
converges successfully in this case, it does not result in stable physical behaviour, as
indicated by the lack of periodic or steady-state forces. This instability suggests that while
the agent can optimize short-term performance, it does so at the expense of physically
meaningful solutions over time.

Through prior experience, we understand that control strategies involving large,
unrestricted control actions often require longer simulation durations – typically more
than 20 seconds per iteration – to stabilize and produce physically consistent results.
Unfortunately, this was not feasible in this case, and similar instability was observed when
using γ = 0.05, where the action regularization was introduced but remained insufficient
to promote stability over the desired simulation time frame.

Thus, we opted for the third experimental configuration with γ = 0.1, which strikes
a more effective balance between aerodynamic performance and control cost. With this
value, the system can deliver stable results while keeping the control efforts within
reasonable limits. Although some fluctuations are still present in the lift curve, as shown
in panel (c), the drag curve exhibits smooth periodic behaviour, indicating that the system
is physically stable overall. In addition, we consider minimizing restrictions on actions as
much as possible and giving the agent a larger action space to explore reasonable control
strategies in different cases.

This decision was driven by the need to ensure that the RL-based control not only
optimizes aerodynamic performance but also leads to physically realistic and stable
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Figure 15. Decomposition of the vortex fluid force on the wake oscillator and the centroid displacement of
vortex-induced vibration.

flow conditions. We believe that the combination of moderate action regularization and
appropriate simulation time in the case γ = 0.1 provides the best trade-off between control
effectiveness and aerodynamic gains.

Appendix C. Validation on vortex-induced vibration system

Prior to conducting separation flow control experiments, this study validated the proposed
active flow control framework on a vortex induced vibration system.

C.1. Numerical simulation for vortex-induced vibration
Vortex-induced vibration (VIV) (Williamson & Govardhan 2004, 2008) is a common and
potentially hazardous phenomenon in flexible cylindrical structures like offshore risers
and cables. As fluid flows around these structures, unsteady vortices form, leading to
self-excited oscillations. This study applies active flow control to a wake oscillator model
proposed by Ogink & Metrikine (2010) to simulate VIV in cylinders, as shown in figure 15.
The following dimensionless equations are used for analysis:

ẍ + 2Ωnζ ẋ + Ω2
n x = 1

m∗ + Ca

1
2π3 + St2

Cvx, (C1)

ÿ + 2Ωnζ ẏ + Ω2
n y = 1

m∗ + Ca

1
2π3 + St2

Cvy, (C2)

q̈ + ε(q2 − 1)q̇ + q = A(ẍ cos β − ÿ sin β) + Action, (C3)

where x is the in-flow displacement, y is the cross-flow displacement, Ωn = 6.0 is the
natural frequency, ζ = 0.0015 is the damping ratio, m∗ = 5.0 is the mass ratio, Ca =
1.0 is the added mass coefficient, St = 0.1932 is the Strouhal number, β = 0.0 is the
incoming angle, ε = 0.05 and A = 4.0 are tuning parameters, Cvx is the in-flow vortex
force coefficient, Cvy is the cross-flow vortex force coefficient, q is the wake variable.
The Action parameter is added for fluidic control. The decomposed vortex forces Cvx and
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Cvy are calculated as follows:

Cvx =
[

ĈD0(cos β − 2πStẋ) − ĈD0q
2

(sin β − 2πStẏ)

]

× [(cos β − 2πStẋ)2 + (sin β − 2πStẏ)2]1/2, (C4)

Cvy = [ĈD0(sin β − 2πStẏ) − ĈD0q
2

(cos β − 2πStẋ)]

× [(cos β − 2πStẋ)2 + (sin β − 2πStẏ)2]1/2, (C5)

where ĈD0 = 0.1856 is the drag force and ĈL0 = 0.3824 is the lift force from a stationary
cylinder.

In this experiment setting, each episode spans 20 seconds, consisting of 200 interaction
steps. The fourth-order Runge–Kutta method is employed to simulate the system’s
evolution. The controller applies a fluidic force represented by the variable Action directly
to the system. The control objective is to mitigate both cross-flow and in-flow vibrations.
The reward function is defined as follows:

rt = αxt + β ẋt, (C6)

where α and β are weightings. The policy improvement operator and PPO agent are trained
to obtain the most rewards in one episode.

C.2. Control on vortex-induced vibration
In this experiment, we set up 36 VIV test systems with varying tuning parameters [ε, A]
and structural system parameters [m∗, Ca, ζ ], as shown in figure 16. These parameters
were randomly sampled near the upper branch values from Ogink & Metrikine (2010). For
the first 30 systems, reinforcement learning agents were trained using the PPO algorithm
introduced in § 2.2. The learning curves of cases 3, 18 and 30 are shown in figure 16. Each
agent interacted and learned online for 300 episodes, with the experiences stored as long
sequences to train the policy improvement operator.

In the online evaluation stage, learning happens entirely in-context without updating
the transformer’s parameters. For evaluation cases 31–36, a context of length 2000 is
pre-filled with random interactions. As seen in figure 17, the SoR increases with more
episodes, showing that the transformer has learned to improve policies dynamically
without adjusting network parameters. We also compared the performance of the PPO
algorithm in the same cases, repeating the experiment five times. The policy improvement
operator outperformed the original algorithm, achieving higher rewards with the same
number of episodes.

The case involving vortex-induced vibration governed by the Ogink equation
demonstrates the method’s strong policy learning abilities across different structures.
It also showcases effective order reduction and control in complex fluid–structure
interactions, validating both the method and its parameters for future work.

Appendix D. Grid independence and time-step convergence

The validation of grid independence and time-step convergence for our computational
fluid dynamics solver is detailed in tables 1 and 2. We use the NACA0012 airfoil as a
benchmark, which employs the same grid generation process and time-step settings as
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Figure 16. Results display of train cases on vortex-induced vibration environment. (a) Reinforcement learning
progress of train cases 6, 9 and 21. (b) Parameter sets for 30 train cases (in black) and 6 evaluation cases
(in red).

other airfoils studied. In table 1, we examine six different grid set-ups, finding that the grid
cell number increases in proportion to the number of mesh cells on the airfoil’s surface. It
is not until the fourth grid (G4) that the period-average lift and drag coefficients begin to
show signs of convergence.

Additionally, six experiments are conducted to establish the independence of the time
step, also presented in table 1. When the time step is reduced to less than 0.002,
the variation between the period-average coefficients is less than 0.001. Given the
considerations of computational efficiency, the S4 time step was selected for simulations.

As shown in figure 18, the combination of the G4 grid and S4 time step not only meets
the accuracy requirements but also optimizes computational resources.

Appendix E. Surrogate-based airfoil shape optimization

This study employed a surrogate-based method to optimize the airfoil shape, significantly
reducing the computational cost associated with traditional CFD-based design cycles.
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Figure 17. Evaluation performance of policy improvement operator and reinforcement learning on
vortex-induced vibration. The line is the average SoR among five repeated tests and the area within the standard
deviation is filled with the corresponding light colour. The learning speed of policy improvement operators on
new cases is generally fast and more stable.

Grid index Grid cell number Period-average Cd Period-average Cl

G1 26228 0.09264458 0.83475960
G2 31358 0.10431400 0.81874720
G3 36678 0.10767702 0.81595560
G4 41903 0.10880071 0.81492423
G5 47318 0.10887883 0.81489620
G6 52448 0.10889633 0.81504476

Table 1. Verification of grid independence of CFD solver (NACA0012, Re = 1000, time step = 0.002,
β = 20◦, 20 cores, Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50 GHz).

Step index Time step Period-average Cd Period-average Cl

S1 0.02 0.10472689 0.81070570
S2 0.01 0.10839233 0.81325900
S3 0.005 0.10887397 0.81380280
S4 0.002 0.10880071 0.81502423
S5 0.001 0.10836251 0.81588930
S6 0.0005 0.10794874 0.81564180

Table 2. Verification of time-step convergence of CFD solver (NACA0012, Re = 1000,
grid cell number = 41 903, β = 20◦, 20 cores, Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50 GHz).

As demonstrated in § 4.1, optimization algorithms do not directly use the results of
CFD numerical simulations, but instead use the predicted values of surrogate models.
The surrogate model is constructed using Gaussian process regression (GPR) (Schulz
et al. 2018), a powerful tool for modelling complex relationships between inputs and
outputs. GPR is particularly well suited for design optimization tasks as it not only
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Figure 18. Comparison between different grid-sizes and time steps. (a) Grid independence. (b) Time-step
convergence.

predicts the output (e.g. aerodynamic forces) but also provides a measure of uncertainty
in its predictions. This allows for more informed decision-making during the optimization
process. The GPR model assumes that the outputs f (x) follow a Gaussian distribution GP,
with a mean function μ(x) and a covariance function k(x, x′), described as

f (x) ∼ GP(μ(x), k(x, x′)). (E1)

The predicted output f (x∗) for a new input x∗ is given by the posterior mean and variance:

μ(x∗) = kT
∗ K−1y, (E2)

δ2(x∗) = k(x∗, x∗) − kT
∗ K−1k∗, (E3)

where k∗ is the covariance vector between the new input x∗ and the training inputs x, K
is the covariance matrix of the training data, and y represents the observed outputs. The
covariance between points is typically modelled using a squared exponential kernel:

k(x, x′) = δ2
f exp

(
−‖x − x′‖2

2l2

)
, (E4)

where δ2
f is the variance and l is the length scale, controlling the smoothness of

the function. The uncertainty estimates provided by GPR are crucial for guiding the
optimization process, particularly in Bayesian optimization (Frazier 2018).

The airfoil shapes were parametrized using the class function/shape function
transformation (CST) method (Kulfan 2008), which simplifies complex airfoil geometries
into a small set of 12 design variables. The CST method expresses the airfoil surface
coordinates as a combination of class and shape functions as

z(x) = C(x) · S(x), (E5)

where x is the normalized chord length (ranging from 0 to 1), C(x) is the class function,
typically defined as

C(x) = xN1(1 − x)N2, (E6)

where N1 = 1 and N2 = 0.5 are control parameters, S(x) is the shape function,

S(x) =
n∑

i=0

Bn
i (x) · ai, (E7)

where n = 5 is the order and ai are the coefficients that control the airfoil shape.
This parametrization method reduces the complexity of the optimization problem by
transforming the airfoil into a vector of design variables that can be efficiently optimized.
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The optimization process itself was driven by Bayesian optimization, a sequential
approach that balances exploration and exploitation using an acquisition function.
One commonly used acquisition function is the expected improvement (EI), which is
defined as

EI(x) = E[max(0, f (x) − f (xbest))], (E8)

where f (xbest) is the best objective function value observed so far. The EI function
selects the next candidate airfoil by considering both the predicted performance and the
uncertainty from the GPR model.

At each iteration shown in figure 9, the surrogate model predicts the performance of
various airfoil configurations, and the acquisition function selects the next airfoil shape to
be evaluated by CFD. The results from the CFD simulations are then used to update the
GPR model, improving its accuracy over time. This process iterates until an optimal airfoil
shape is identified, with each step efficiently guided by the Bayesian framework.

This combined approach of GPR, CST and Bayesian optimization allows for the
rapid exploration of the airfoil design space while minimizing the need for costly
CFD simulations. The uncertainty quantification provided by GPR enables informed
decision-making, while the CST method ensures that the airfoil shapes remain both
aerodynamic and practical. By employing Bayesian optimization, the study achieves a
balance between exploring new design possibilities and refining known high-performing
designs, leading to the identification of an optimized airfoil shape with significantly
reduced computational overhead.
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