
Article

umx: Twin and Path-Based Structural Equation Modeling in R

Timothy C. Bates1, Hermine Maes2 and Michael C. Neale2
1Department of Psychology, University of Edinburgh, Edinburgh, UK and 2Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth
University, Richmond, VA, USA

Abstract

Structural equation modeling (SEM) is an important research tool, both for path-based model specification (common in the social sciences)
and also for matrix-based models (in heavy use in behavior genetics). We developed umx to give more immediate access, relatively concise
syntax and helpful defaults for users in these two broad disciplines. umx supports development, modification and comparison of models, as
well as both graphical and tabular outputs. The second major focus of umx, behavior genetic models, is supported via functions implementing
standard multigroup twin models. These functions support raw and covariance data, including joint ordinal data, and give solutions for ACE
models, including support for covariates, common- and independent-pathwaymodels, and gene× environment interactionmodels. A tutorial
site and question forum are also available.
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Structural equation modeling (SEM; Jöreskog, 1969) enables
modeling with latent and measured variables, and allows
researchers to realize the power of causal modeling (Pearl, 2009).
It has grown substantially in importance (Hershberger, 2003).
Despite its utility, learning, implementing and interpreting, these
techniques have remained a bottleneck for many researchers,
especially for more complex multiple-group models common
in advanced fields such as behavior genetics. The advent of
modular software such as OpenMx has provided tools for
software solutions in this field (Boker et al., 2011; Neale et al.,
2016). The present article describes umx, a package designed
to give more immediate access, concise syntax and helpful
defaults for path-based SEM, together with a set of high-level
functions implementing matrix-based, multigroup twin model-
ing. Practical examples of umx usage are given. Users interested
only in learning about twin modeling in umx may wish to skip to
the section with that name.

Existing SEM Packages

While a number of closed-source commercial applications exist
(e.g., Mplus; Muthén & Muthén, 1998–2016), SAS proc calis (SAS
Institute Inc., 2003), SPSS Amos (IBM Corp, 2013) and GLAMM
in STATA (Stata Corp LP, 2016), there are now three open-source
R packages for performing SEM: sem (Fox et al., 2014); lavaan
(Rosseel, 2012); and OpenMx (Boker et al., 2011; Neale et al., 2016).
As is common in R, these interoperate with an ecosystem of
packages, such as semTools (semTools Contributors, 2016), Onyx

(von Oertzen et al., 2015), ctsem, EasyMx, ifaTools, lvnet, metaSEM
and semtree, to provide additional features.

sem includes functions for fitting general linear structural equation
models, including both observed and latent variables, using the
RAM (McArdle & Boker, 1990) approach. It also allows fitting
structural equations in observed-variable models by two-stage least
squares. Models are input using an ‘arrow specification’ with paths
described in an intuitively straightforward notation encompassing
regression coefficients (‘A -> B’), variances (‘A <-> A’) and
covariances (‘A <-> B’). Models can be optimized against a maxi-
mum-likelihood objective assuming multivariate normality as
well as multivariate-normal full-information maximum likelihood
(FIML) in the presence of missing data, with alternative objectives
including generalized least squares or user-specified objective
functions. The sem package also implements multigroup models.

lavaan implements a similar string-based syntax for model
description, comparable multigroup capability and a range of
estimators including robust ML and variants of Weighted Least
Squares (WLS). It outputs standard errors (SEs) including robust
and bootstrap SEs, along with standard fit indices and statistics
such as Satorra-Bentler, Satterthwaite and Bollen-Stine bootstrap.
lavaan can handle missing data via FIML estimation. It allows the
use of linear and nonlinear equality (and inequality) constraints via
a string syntax; for example, to equate model parameters ‘a1’ and
‘a2’, the user includes the following in their model statement:
‘a1 = a2’. More complex statements are supported; for instance,
‘a1þ a2þ a3 = 3’. As of version 0.5, lavaan supports models with
mixtures of binary, ordinal and continuous observed variables.
Exogenous categorical variables are supported via dummy varia-
bles, with additional variables being created to represent the levels
of nominal measures with more than two levels. Modeling of
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binary and ordinal endogenous categorical variables (but not
nominal) is supported by a three-stageWLS approach. lavaan out-
puts results in a format familiar to users of Mplus and EQS. It is
also possible to translate Mplus code into lavaan format via the
function mplus2lavaan.

OpenMx provides a sophisticated kit of basic objects for building
structural equation models, including modeling via arbitrary matri-
ces, algebras, constraints and fit-functions. It also supports RAM
(McArdle & Boker, 1990) and LISREL (Jöreskog, 1969) path-based
models. It accepts both summary and rawdata and arbitrarymixtures
of continuous, ordinal and binary data. FIML analysis with missing
data is supported, as isWLS.With rawdata,modelsmay include row-
specific values (definition variables). Multiple-group models are
supported, and constraints and equalities may be implemented via
label-based equating and algebra-based linear and nonlinear con-
straint specification. TheOpenMx package includes two open-source
optimization packages — CSOLNP and SLSQP — and can use the
closed-source NPSOL optimizer. OpenMx has developed a strong
following among geneticists and twin researchers, reflected in several
hundred citations in published projects, many of which rely on
testing complex models, often with constraints, using data compris-
ing mixtures of binary, ordinal and continuous data, with missing-
ness, and wide-format data comprising multiple genetically related
groups (in particular, identical and fraternal twins, siblings, parents,
grand-parents, offspring and adoptive parents), with data nested in
these family structures.

Accessible Modeling with Concise Syntax and Helpful
Defaults

The umx package evolved over the last 7 years in response to mod-
eling demands experienced in practical path-based modeling and
matrix-based behavior genetics structural modeling and in teach-
ing SEM. Its concise syntax aids in time-constrained lessons and
affords researchers the ability to rapidly implement and modify
new models, while high-level implementations of complex models
increase the speed and reliability of behavior genetics modeling.
Attention was paid to smart defaults — for instance, setting
start values and automatically labeling paths— as well as ensuring
functions handle a wide range of inputs, so that users can offer up a
wide range of data and get the results they expect. For instance,
models can accept not only continuous data, but mixtures of
ordinal and continuous data, with the umx functions handling
the error-prone process of setting up threshold matrices and inte-
grating these with latent variables. To aid learning and help users
correct coding mistakes, help files contain substantial, well-com-
mented practical code examples oriented toward being used
directly in class instruction or self-directed learning. umx functions
include significant error checking. Errors and warnings are written
to explain both why a problem occurred and how to fix it. Where
possible, what was expected as input and what the user offered up
are succinctly summarized. In addition, example code likely to fix
the problem is included in the warning.

Finally,umxprovidesmethods for generating graphical and tabu-
lar output suitable for publication (e.g., Table 2). Function names
and parameters have been refined based on feedback and a drive
for consistency and memorability. Where appropriate, these are
implemented as S3 methods well known to R users: for instance,
plot() and residuals(). A number of papers using the package have
been published (Archontaki et al., 2013; Ritchie & Bates, 2013)
and umx is under active development — with updates on CRAN

everymonth or two, and a road-map of future extensions of the twin
modeling functions including use of WLS objectives, 5-group twin
models, direct variance (rather than Cholesky) based models,
bivariate G × E models, simplex models, as well as multivariate
sex-limitation models using correlated factors rather than Cholesky
factorization approach (Maes et al., 2004).

In total, the package includes approximately 140 high- and low-
level helpers for such tasks as data processing, creating and editing
data structures, updating model parameters and reporting. The
functions provided by umxmay be grouped under three headings:

1. Model building and reporting functions.
2. Functions implementing behavior genetic models.
3. Wrappers and helpers to simplify or enhance model building

and data wrangling.

In the next section, umx’s path-based functions are introduced
in the context of practical models, such as that shown in Figure 1.
The second major section covers behavior genetic modeling in
umx. Not detailed here, we briefly note some of the additional
helper functions available in umx. While the numerous wrapper
and helper functions make little claim to innovation, they offer
increased speed of coding, reduced errors and more readable code.
For instance, umxMatrix is a wrapper formxMatrix that places the
matrix name as the first parameter (increasing readability) and
automatically adds labels in a standard format. Other helpers sim-
plify repetitive tasks, such as generating lists of twin variables from
base names, and residualizing family-based data.

Installing the Package

umx can be installed using the standard R-code to access the
CRAN version of the package.

install.packages("umx")

The library is loaded as usual with

library("umx")

This document assumes umx version 1.8.0 or higher. The
current package version can be shown with:

umxVersion("umx")

Fig. 1. Example CFA path diagram, showing standardized path estimates.
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This gives a compact summary integrating information
available via sessionInfo(), but also showing the optimizer used
and other information.

Current developer betas are available on www.github.com.
These may have new features or respond to user requests between
CRAN releases. They are installed using:

install_github("tbates/umx")

umx also aids installing custom versions of OpenMx via the
install. OpenMx() function. These include versions with propri-
etary optimizers or nightly builds.

Path-Based Models in umx

Path-Based Models Using umxRAM and umxPath

In umx, a path-based structural model consists of a model con-
tainer, some data and a collection of paths. The model container
is the umxRAM function. This specifies the data, a name for the
model, options such as autoRun, and, importantly, a collection
of umxPaths specifying the paths that make up the model. As cod-
ing is often best learned by doing, we introduce these functions via
building the Confirmatory Factor Analysis (CFA) model shown in
Figure 1. To build this CFA model, we will specify three things:

1. An arbitrary name — ‘CFA’
2. The data (in this case a built-in dataset demoOneFactor con-

taining five correlated variables x1:x5). In keeping with famil-
iar R functions such as ‘lm’, the data to be modeled are
provided via the data parameter. The umxRAM function
can accept a data frame, covariance matrix ormxData as data.

3. The paths of which the model is composed. The paths required
in this model are those needed to create a latent variable ‘G’
with mean of 0 and variance of 1, the five manifest variables
x1:x5, each with freely estimated mean and variance, and
single-headed paths from G to each of the five manifest
variables.

Building, running and saving this model in its run state for pos-
sible modification or comparison, along with producing summary
data and a plot, can be done in a few lines (excluding comments,
loading the library and data) of model code shown below as ‘CFA
Code’. This five-line example might be two lines in lavaan, high-
lighting the choice in umx to assume fewer defaults.

CFA Code

# Load the umx library (this is assumed in subsequent examples)

library("umx")

# Load demo data consisting of 5 correlated variables, x1:x5

data(demoOneFactor)

# Create a list of the manifest variables for use in specifying the
model manifests

manifests = paste0("x", 1:5) # ‘x1’, ‘x2’, : : : ’x5’

# Create model cfa1, with name ‘CFA’, data demoOneFactor, and
the CFA paths.

cfa1 <- umxRAM("CFA", data = demoOneFactor,

# Create latent variable ‘G’, with fixed variance of 1 and
mean of 0

umxPath(v1m0 = "G"),

# Create manifest variables, x1:x5, with free variance andmean

umxPath(v.m. = manifests),

# Create 1-headed paths from G to each of the manifests

umxPath("G", to = manifests)

)

This code block builds the model, echoing to the console which
latent and manifest variables were created. By default, umxRAM
also runs the model, plots it graphically and prints a brief fit sta-
tistic summary:

�2 5ð Þ ¼ 7:4; p ¼ :193; CFI ¼ 0:999; TLI ¼ 0:999; RMSEA

¼ 0:031

Two aspects of this code are noteworthy. First, we did not
explicitly specify a list of manifest and latent variables contained
in the model. Instead, umxRAM maps these from the data
provided. Any variable name not found in the data is assumed
to be a latent variable. As with lm, unused variables are excluded
from the model automatically. Second, we did not need to
specify starting values for the parameters. umx generates feasible
start values. Currently, manifest variable means are set to
the observed means, residual variances are set to 80% of the
observed variance of each variable and single-headed paths
are set to a positive starting value. The start-value strategy is
subject to improvement and will be documented in the help
for umxRAM.

umxPath in Detail

umxPath creates paths in a model using a compact syntax, describ-
ing a full range of path types and settings. A complete list of
umxPath keywords is set out in Table 1.

For example, to create a two-headed path allowing a variable ‘a’
to covary with variable ‘b’, with the covariance fixed at the value 1,
the user would add a call to

umxPath("a", with = "b", fixedAt = 1).

To specify a mean for a manifest or latent variable, say the var-
iable ‘b’, the umxPath code would be umxPath(means = “b”). As
specifying the mean and variance of variables is such a common
task, umxPath supports doing both in one line with the v1m0
and v.m. parameters we saw used in the above CFA model to
specify normalized (fixed mean = 0, variance = 1) or freely esti-
mated variables, respectively.

Parameter Labels

The umx package automatically adds labels to all parameters of
a model. These labels allow the user not only to get and set
the values of parameters by label, but also to equate parameters
by setting their labels to be the same (see section on
umxModify below).
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One-headed paths are labeled ‘Var1_to_Var2’. Thus the
path umxPath(“IQ”, to = “earnings”) would be labeled
‘IQ_to_earnings’. For two-headed paths, ‘_to_’ is replaced with
‘_with_’. This is consistent with Onyx (von Oertzen et al.,

2015). Future versions of umx may extend the labeling scheme
to encode more information in each label, for instance, the extra
information captured in LISREL-type models.

For matrix-style models (such as the behavior genetic twin
models described below), umx uses a more general labeling
scheme, in which labels are a concatenation of the matrix name,
an underscore, the letter ‘r’ for row, the row number, followed
by the letter ‘c’ for ‘column’ and, finally, the column number of
the matrix cell. The following code returns the $labels slot of a
matrix ‘means’ to show an example of this labeling scheme:

x = umxLabel(mxMatrix(name="means", "Full",
ncol = 2, nrow = 2))

x$labels

[,1] [,2]

[1,] "means_r1c1" "means_r1c2"
[2,] "means_r2c1" "means_r2c2"

Controlling Graphical and Summary Output

Aparameter table (see Table 2) can be requested from umxRAM by
setting the showEstimates parameter to ‘std’. More control and
creation of summary output tables and plots is possible, however,
using umxSummary on the model returned from umxRAM.

umxSummary

Output from umxSummary can be as little as a line of fit informa-
tion (the default) or a table of standardized or raw estimates
(requested with show = “std” or show = “raw”). Example output
from umxSummary(cfa1, show = "std") is shown in Table 2.

This report is customizable, with parameters to filter non-
significant (‘NS’) or significant (‘SIG’) parameters and to show
or hide SE and RMSEA_CI columns. The summary table can also
be directed to different outputs. By default, the table is composed in
markdown, and this is written to the console. Alternative
formats are possible, for instance, LATEX. Table format can be
set using umx_set_table_format. Markdown is easy to read in the
console or to include in a reproducible document. If the format is
html, a file is opened in the user’s browser. This is useful for
copying the formatted table into a word processor.

Plot

umx includes S3 plot methods for RAM and twin models. These
rely on the dot language, invented at Bell Laboratories (as was S:
the ancestor of R) to specify graphs in a text-based format of edges
and vertices, analogous to the way that the LATEX system separates
content from layout. Plots from umx are displayed in the user’s
browser courtesy of the DiagrammR package.

The defaults for diagrams encourage users to produce math-
ematically complete diagrams. This is important for communica-
tion and scientific replication, and so we encourage it. By default, in
addition to free paths, plot displays paths fixed at non-zero values
(e.g. the unit variance of ‘G’ in Figure 1). This can be changed using
the ‘fixed=‘ option. Similarly, by default, plot draws the means
model (paths from the ‘one’ triangle). This can be toggled using
the ‘means=’ parameter. plot can also standardize the model using
‘std = TRUE’, and control numeric precision (with the digits
parameter). Other options include control over how residuals

Table 1. Table of umxPath options

umxPath syntax Result

umxPath(means = ‘b’) Add means expectation for
variable b.

umxPath(var = c(‘a’,‘b’)) Variance for “a” and for “b”.
Value free.

umxPath(‘a’, with = ‘b’) Covariance of “a” with “b”.
Value free.

umxPath(‘a’, with = ‘b’, fixedAt = 1) 2-headed path a↔b. Value
fixed at 1.

umxPath(‘a’, with = ‘b’, freeAt = 1) 2-headed path a↔b. Value
free, but started at 1.

umxPath(‘a’, to = vars, firstAt = 1) Path from ‘a’ to vars, with
first path fixed at 1,
remainder free.

umxPath(v1m0 = ‘g’) = ‘g’) Fix variance of “g” at 1,
mean at 0.

umxPath(v.m0 = c(‘wt’,‘mpg’)) Free variance, mean fixed at 0

umxPath(v.m. = c(‘wt’,‘mpg’)) Estimated variance and mean.

umxPath(v0m0 = c(‘wt’,‘mpg’)) Variance and mean fixed at
zero.

umxPath(c(‘a’,‘b’,‘c’), forms = ‘A’) Define a formative latent
variable (“A”) with incoming
paths from a, b and c to A,
variances for a, b and c, and
covariances among them.

umxPath(unique.pairs = c(‘A’,‘B’)) Create paths A→A, B→B, A→B

umxPath(unique.bivariate = c(‘A’,‘B’,‘C’)) Create paths A↔B, B↔C, A↔C

umxPath(fromEach = c(‘A’,‘B’)) Create A→B, B→A

umxPath(Cholesky = c(‘A’,‘B’),
to=c(‘a’,‘b’))

Create the lower-triangle
(Cholesky) paths: A→a, A→b,
B→b

umxPath(defn = ‘A’, label = ‘age’) Create path A,
value = data.age

Table 2. Example output table from umxSummary

Name Std. Estimate Std.SE CI

G to x1 0.89 0.01 0.89 [0.87, 0.91]

G to x2 0.93 0.01 0.93 [0.92, 0.95]

G to x3 0.94 0.01 0.94 [0.93, 0.95]

G to x4 0.96 0.00 0.96 [0.95, 0.97]

G to x5 0.97 0.00 0.97 [0.97, 0.98]

x1 with x1 0.21 0.02 0.21 [0.17, 0.24]

x2 with x2 0.13 0.01 0.13 [0.11, 0.15]

x3 with x3 0.11 0.01 0.11 [0.09, 0.13]

x4 with x4 0.07 0.01 0.07 [0.06, 0.09]

x5 with x5 0.05 0.01 0.05 [0.04, 0.07]

G with G 1.00 0.00 1[1,1]
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are drawn. By default, these appear as conventional circles with
double-headed arrows.

Plotting is useful not only to display final models, but also
may be used during model construction to verify or test what
the code build to date is specifying. To make this easier when
the user is “sketching out” ideas, requiring the data implied
by the model paths, the user can simply offer up a list of variable
names expected to be encountered as manifests and write the
model they wish to visualize. For instance, to explore the
unique.pairs construction of umxPath, the following model
could be plotted:

m1 = umxRAM("play", data = c("A", "B", "C"),

umxPath(unique.pairs = c("A", "B", "C"))

)

For publication purposes, further processing of the diagram is
often desirable. This is done by editing the file created by plot. The
graph is written to a text file, by default ‘model_name.gv’. This can
be overridden by setting the file = parameter to the desired file
name. This file can be edited using either open-source graph
visualization software available at http://www.graphviz.org, or
closed software such as Omnigraffle®, or Visio®.

Inspecting Model Parameters and Residuals

Often, we wish to see a subset of estimates in a model. As shown
above, umxSummary can filter the output according to whether
parameters are significant or not, that is, umxSummary(cfa1,
show=“std”, filter= “SIG”). The generic coef function can return a list
ofmodel coefficients.umxprovides the convenience functionparam-
eters, which adds support for filtering by name and value and returns
the parameters and estimates of a model as a neatly formatted table;
for example, this snippetwill show the parameters ofmodel cfa1 esti-
mated as greater than 0.5, and whose label contains the string ‘x2’:

parameters(cfa1, "above", .5, pattern = "x2")

name Estimate

G_to_x2 0.5

Another common need in modeling is to inspect the residuals,
that is, the observed — expected statistics. umx implements a
residual method. Table 3 shows these for the cfa1 model. The user
can zoom in on specific values with the suppress parameter. For
instance, this call will hide residuals <.005:

residuals(cfa1, suppress = .005)

Modifying and Comparing Models

Model comparison and modification is a key modeling task
(MacCallum, 2003). Here, we introduce the umx functions ena-
bling these tasks in the context of a classic example, modified from
Duncan et al. (1968); (see Figure 2). This is a moderately complex
model, often used in teaching because of the range of structural
model elements it displays.

The code this model is shown in Code block 1 (see next page).
This model introduces some new features and reinforces others
already discussed. It is presented in three parts. First, reading in
data. This uses a helper function included in umx for converting
lower matrices to symmetrical, full matrices. There are many help-
ers such as this included in umx, and readers who adopt the

Fig. 2. A model of aspiration (modified from
Duncan et al., 1968).

Table 3. Result of the residuals function on model ‘cfa1’

X1 X2 X3 X4 X5

X1 .01

X2 .01 −.01

X3 .01 .01

X4 −.01

X5
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package in their work will find these documented in the help for the
package, where they are conveniently grouped in functional
families:

# Variable names in the Duncan data

dimnames = c("RespOccAsp", "RespEduAsp",
"RespParAsp", "RespIQ", "RespSES",

"FrndOccAsp", "FrndEduAsp", "FrndParAsp",
"FrndIQ", "FrndSES")

# lower-triangle of correlations among these variables

tmp = c(

0.6247,

0.2137, 0.2742,

0.4105, 0.4043, 0.1839,

0.3240, 0.4047, 0.0489, 0.2220,

0.3269, 0.3669, 0.1124, 0.2903, 0.3054,

0.4216, 0.3275, 0.0839, 0.2598,
0.2786, 0.6404,

0.0760, 0.0702, 0.1147, 0.1021, 0.0931,
0.2784, 0.1988,

0.2995, 0.2863, 0.0782, 0.3355, 0.2302,
0.5191, 0.5007, 0.2087,

0.2930, 0.2407, 0.0186, 0.1861, 0.2707,
0.4105, 0.3607, -0.0438, 0.2950

)

# Use the umx_lower2full function to create a full correlation
matrix

duncanCov = umx_lower2full(tmp, diag = FALSE,
dimnames = dimnames)

# Turn the duncan data into an mxData object for the model

duncanCov = mxData(duncanCov, type = "cov",
numObs = 300)

Next, we make some useful lists of variables to use when creat-
ing paths. These will help reduce errors and increase the readability
of code:

respondentFormants = c("RespSES", "FrndSES",
"RespIQ", "RespParAsp")

friendFormants = c("FrndSES", "RespSES",
"FrndIQ", "FrndParAsp")

latentAspiration = c("RespLatentAsp",
"FrndLatentAsp")

respondentOutcomeAsp = c("RespOccAsp",
"RespEduAsp")

friendOutcomeAsp = c("FrndOccAsp",
"FrndEduAsp")

Finally, we build the model using the data and variable lists
created above:

duncan1 = umxRAM("Duncan", data = duncanCov,

# Working from the left of the model, as laid out in the figure,
to right : : :

# 1. Add all distinct paths between variables to allow the

# exogenous manifests to covary with each other.

umxPath(unique.bivariate =
c(friendFormants, respondentFormants)),

# 2. Add variances for the exogenous manifests,

# Assumed to be error-free, and are fixed at their known value).

umxPath(var = c(friendFormants,
respondentFormants), fixedAt = 1),

# 3. Paths from IQ, SES, and parent aspiration to latent aspiration

umxPath(respondentFormants,
to = "RespLatentAsp"),

# Same for friends

umxPath(friendFormants,
to = "FrndLatentAsp"),

# 4. Add residual variance for the two aspiration latent traits.

umxPath(var = latentAspiration),

# 5. Allow the latent traits to influence each other.

# This is done using fromEach, and the values are bounded to
improve stability.

# note: Using one-label would equate these 2 influences

umxPath(fromEach = latentAspiration,
lbound = 0, ubound = 1),

# 6. Allow aspiration to affect respondent’s occupational &
educational aspiration.

# note: firstAt = 1 provides scale to the latent variables.

umxPath("RespLatentAsp",
to = respondentOutcomeAsp, firstAt = 1),

# And their friends

umxPath("FrndLatentAsp",
to = friendOutcomeAsp, firstAt = 1),

# 7. Finally, we add residual variance for the endogenous
manifests.

umxPath(var = c(respondentOutcomeAsp,
friendOutcomeAsp))

)
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Modifying Models

The model fits well, χ2(22) = 24.59, p = .317; CFI = 0.997;
TLI = 0.993; RMSEA = 0.02. However, for theoretically interest-
ing models, the user will typically wish to test different versions of
the model, dropping or adding paths corresponding to alternative
hypotheses. The umxModify function supports this task, updat-
ing the model, giving the model a new name, running the new
model and printing a table comparing fits of the old and new
models.

In its simplest use, paths to be dropped are passed in as a
vector or labels to the update parameter. The following code
snippet will run a modified version of our example CFA, with the
paths ‘RespLatentAsp to FrndLatentAsp’ and ‘FrndLatentAsp to
RespLatentAsp’ dropped (fixed at zero). The newmodel is renamed
to reflect this, and fit-comparison table printed (See Table 4):

# List the paths to drop

pathList = c(
"RespLatentAsp_to_FrndLatentAsp",
"FrndLatentAsp_to_RespLatentAsp")

# Modify duncan1 model, requesting a comparison table

duncan2 = umxModify(duncan1, update =
pathList,

name = "No_influence", comparison = TRUE)

By default, updated paths are fixed at zero, but any value is pos-
sible via the values argument. Regular expressions can be used to
pick out parameters that match a given pattern. A regular expres-
sion is a search pattern with powerful features greatly exceeding
normal wildcards. While regular expressions are somewhat com-
plex to learn, they repay the user in a wide range of computing
applications and allow more compact syntax.

As an instance of using regular expressions in updating amodel,
consider a user who wants to test the effect of dropping all paths
from ‘G’ in the cfa1 model. By label, these all begin with the string
‘G_to_’, followed by a variable name; for example, ‘G_to_x1’.
Rather than listing each label in the update parameter, a regular
expression that matches all instances could be used. Something
as simple as ‘G_to_.*’ would work in this case (i.e., any character
(‘.’) repeated any number of times ‘*’, matching any characters
following “G_to_”). For more explicit safety, the regular expression
anchor character (‘^’) could be used to ensure the match starts
at the first character of the label, whereas ‘G_to_.*’ would
match labels such as ‘notG_to_x1’, the carat (‘^’) prevents this
by anchoring the expression at the first character. An example
in R code would be:

cfa2 = umxModify(cfa1, regex = "^G_to.*")

umxModify can also be used to add or replace objects inmodels,
for instance, if a umxPath is passed in to the ‘update’ parameter, the
path will be added to the model.

Equating Model Parameters

In addition to modifying a model by dropping or adding
parameters, a second common task in modeling is to equate param-
eters — setting two or more paths to have the same value.
These parameters are picked out via their labels and setting two
or more parameters to have the same value is accomplished by set-
ting one set of parameters to have the same label(s) as a master set of
parameters, thus constraining them to take the same value during
model fitting.

This can be done using umxModify, which is useful for one-step
modifications. This is done using the master parameter to set a
master label or labels, for example, master = ‘G_toX1’, and update
to set the additional label(s) which are to be equated (take the
same value as) the master label. Because the process of equating
parameters often occurs when building models (rather than modi-
fying an already-run model), umx provides a dedicated function,
umxEquate, which is useful when model building as by default,
it does not run the new model.

As an example of using umxEquate, based on the duncan1
model, we might test if the effect of IQ on aspiration levels can
be equated for respondent and friend. This is done by making a
newmodel in which they are equated and comparing the twomod-
els as follows (Table 5):

# Use parameters to quickly search themodel and find the paths to
equate.

parameters(duncan1, pattern = "IQ_to_")

# name Estimate

# RespIQ_to_RespLatentAsp 0.25

# FrndIQ_to_FrndLatentAsp 0.35

# Modify duncan1 model, request a comparison table

duncan3 = umxEquate(duncan1, name = "Equate IQ
effect",

master = "RespIQ_to_RespLatentAsp",

slave = "FrndIQ_to_FrndLatentAsp"

)

Table 4. Comparison of effect of dropping reciprocal influence from the duncan
model

Model EP Δ-2lnL Δdf p AIC Compare with

Duncan 33 −19.411

No influence 31 19.509 2 <.001 −3.902 Duncan

Table 5. Comparison of equating IQ effects in respondents and friends

Model EP Δ-2lnL Δdf p AIC Compare with

Duncan 33 −19.41

Equate friend IQ effect 32 2.265 1 .132 −19.14 Duncan
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# Equivalently, with autoRun and plot by default

duncan3 = umxModify(duncan1, name = "Equate IQ
effect", comparison = TRUE,

master = "RespIQ_to_RespLatentAsp",

update = "FrndIQ_to_FrndLatentAsp"

)

Comparing Models

The table of model comparison output from umxModify is shown
in Table 4. This comparison table can be generated directly
using the umxCompare function. umxCompare takes one or more
base models and one or more comparison models and prints a
table of model comparisons. This includes a column directing
the reader to the base model used for each comparison. The table
is formatted with control over precision via the standard
digits parameter. It can report the results to the console, or else
open a browser table for pasting into a word processor. Printing
to console is by default in markdown style (change this with
umx_set_table_format set to one of latex, html, markdown, pan-
doc or rst). If report = “inline” is selected, umxCompare also
reports the output in one or more sentences to help the user
describe the results in text form. An example of using this
function is given below: it will print a plain English description
(the new model name is used to describe what was done and will
need some editing). An example of this format is:

umxCompare(duncan1, duncan2, report =
"inline")

The output from the above code snippet is ‘The hypothesis
that no reciprocal influence was tested by dropping no reciprocal
influence from Duncan. This caused a significant loss of fit,
χ2(2) = 19.51, p ≤ .001: AIC = −3.902’.

To open the output as an html table in a browser, say:

umxCompare(duncan1, duncan2, report = "html")

There are numerous additional functions in the umx library
facilitating model interrogation; some are discussed at the end
of this paper. For a complete listing, however, we direct the reader
to the package help “?umx” and to the tutorial site for umx: http://
tbates.github.io Next, we turn to twin modeling.

Behavior Genetic Twin Modeling

A major goal of umx was to provide support for common
twin models, including Cholesky, Common-Pathway (CP),
Independent-Pathway (IP) and gene × environment moderation
models, with full support for tables and graphical output suitable
for publication, as well as support for model comparison and
modification. These functions are outlined below, beginning with
a brief introduction to a common twin model (see Figure 3).

Twin Models and Matrix-Based Modeling

Twin and familymodeling takes advantage of classes of genetic and
environmental covariance present in nature. For example, ‘identi-
cal’ ormonozygotic (MZ) twins who share 100% of their genes, and
fraternal (DZ: dizygotic) twins who share, on average, half of their
genes, siblings, who also share 50% of their genes, but differ in year

of birth, adoptees who are unrelated genetically to their rearing
family, but who share that family environment. These classes of
relatedness allow researchers to specify proposed structural and
measurement models of their phenotype(s) of interest and to
model many types of relatedness using multiple-groupmodels that
are fitted simultaneously to arrive at estimates of genetic and envi-
ronmental variance consistent with the covariances found among
the variables in the different groups of relatedness (Knopik et al.,
2016; Neale &Maes, 1996; Yong-Kyu, 2009). A classic approach to
modeling data such as these is shown in Figure 3. This shows the
decomposition of variance in behavior ‘x’measured in two related
individuals— eitherMZ twins or DZ twins— into additive genetic
(A), shared environmental (C) and unique environmental (E)
components. There are two groups in the model, one for each
of the data sets. The correlation between A1 and A2 is fixed at 1
(all variable genes shared) in the MZ group, and at .5 for the
DZ group (reflecting their 50% sharing of variable genes). umx
implements this ACE model as a function — umxACE — and it
is described in more detail below.

The ACE model decomposes phenotypic variance into additive
genetic (A), unique environ- mental (E), and one of either shared
environment (C) or non-additive genetic effects (D). This latter
restriction emerges due to confounding of C and D when data
are available from only MZ and DZ twin pairs reared together.
The Cholesky or lower-triangle decomposition allows a model that
is both sure to be solvable and it provides a saturated model against
which models with fewer parameters can be compared. This model
creates as many latent A, C and E variables as there are phenotypes,
and, moving from left to right, decomposes the variance in each
component into successively restricted factors (see Figure 4).

For efficiency, twin models in umx are implemented using a
matrix-based approach (rather than the path approach used in
Section 2). Each of the A, C and E components are modeled using
square matrices, with the same number of rows and columns as
there are variables under analysis. These in turn are formed from
the product of lower-triangle matrices a, c and e respectively,
multiplied by their transpose to form the variance component
matrices (e.g., A = aa 0). The utility of the Cholesky factorization
is the product of a lower-triangular matrix and its transpose; for
example, aa 0 is guaranteed to be positive definite. The total phe-
notypic (observed) covariance is modeled as the sum of these three
components: Vp = A þ C þ E.

Figure 4 shows how the path diagram is mapped onto matrices
in the case of the additive genetic (A) matrix. As shown, the latent
additive genetic variables form the columns of the A matrix. The
variables aremapped to rows of this matrix, and paths from a latent
variable to a manifest variable appear in the appropriate cell, for

Fig. 3. Genetic (A) components of a tri-variate ACE model (C and E not shown) in
graphical (left panel) and matrix (right panel) forms.
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instance, the value of the path from A2 to var2 appears in cell A[2,
2] of matrix A.

The ACE Cholesky Model

The multivariate ACE or Cholesky model (Neale & Maes, 1996) is
implemented in the function umxACE (see Figure 4). This function
can be used to fit an ACE model to a single variable to decompose
its variance as shown in the example below. It can also be applied to
two (bivariate) or more (multivariate) models, decomposing not
only the variance, but also the covariance of the traits. We should
note here that some of the text and images in this and other sec-
tions are used also in the package documentation of umx. This flow
has been in both directions, with text written for this paper, and
improved by helpful comments from reviewers and the editors
flowing into umx documentation updates.

The umxACE function accepts either raw or summary (covari-
ance) data, offering up suitable covariance matrices tomzData and
dzData and entering the number of subjects in each via numObsDZ
and numObsMZ. In an important capability, the model transpar-
ently handles ordinal (binary or multi-level ordered factor data)
inputs and can handle mixtures of continuous, binary and ordinal
data in any combination. This involves setting up threshold matri-
ces for binary and ordinal data, which are modeled as thresholds
applied to underlying latent variables.

It is often desirable to include covariates within twin models. We
currently support ACE models with fixed covariates (covariates
included in the means model) for continuous variables, and as ran-
dom effects (i.e., modeled in the covariance matrix, allowed to covary
with themain variables of interest (Neale &Martin, 1989). In the next
major version of umx, this functionality will be enhanced to allow
modeling covariates in ordinal andmixed data across all twinmodels.

Weighting of individual data rows is supported in umxACE. In
this case, the model is estimated for each row individually, the like-
lihood of each row is multiplied by its weight and the logarithm is
taken. These weighted log-likelihoods are then summed to form
the model log- likelihood, which is to be maximized (by minimiz-
ing the -2ln(Likelihood)). In addition, umxACE supports varying
the DZ genetic association (defaulting to .5) to allow exploring
assortative mating effects, as well as varying the DZ ‘C’ factor from
1 (the default for modeling family-level effects shared 100% by
twins in a pair), to .25 to model dominance effects. This weighting
feature is used in Section Window-based G × E section.

When it comes to interpretation and graphing, models built
by umxACE can be plotted and summarized using plot and
umxSummary methods. umxSummary can report summary A,
C and E multivariate path coefficients, along with model fit indices
and genetic correlations. The umx package provides custom plot
methods to handle graphical reporting of twin models, including
ACEmodels, and othermodels discussed below. This provides out-
put as seen in Figure 4.

ACE Examples

We first set up data for a summary-data ACE analysis of weight
data (usingabuilt-in exampledata set fromtheAustralian twin sample
of ProfessorNickMartin (Martin& Jardine, 1986;Martin et al., 1986):

require(umx);

# Open the built in dataset.

data("twinData")

selDVs = c("wt")

dz = twinData[twinData$zygosity == "DZFF",]

mz = twinData[twinData$zygosity == "MZFF",]

The next code block uses umxACE to build and run the model.

ACE1 = umxACE(selDVs = selDVs, dzData = dz,
mzData = mz, sep = " ")

umxACE prints feedback to the console, noting that the varia-
bles are continuous and that the data have been treated as raw. It
then prints the fit

� 2� logðLikelihoodÞ ¼ 12186:28ðdf ¼ 4Þ

and outputs a plot of the fitted model (see Figure 5) and a table
of the fitted parameters (Table 6). By default, the report table
is written to the console in the format set by umx_set_table_format.

The tabular output can also be requested at any time with
umxSummary. Among other options, the user can request the
genetic and environmental correlations with showRg = TRUE. If
confidence intervals have been computed, these can be displayed
with CIs = TRUE. The user can control output precision using
the digits parameter. The following snippet creates a tabular sum-
mary of the unstandardized model (note, by default it will also plot
the model. This can be controlled with umx_set_auto_plot(FALSE)).
The function help (?umxACE) gives extensive examples, including
for binary, ordinal and joint-ordinal cases:

# An example using more control features of umxSummary

# This would print a table of raw parameters to the console in
markdown,

# open the table in the browser, set rounding to 3-digits,

# and print a table showing the comparative fit of ACE1
and ACE2

ACE2 = umxModify(ACE1, update = "c_r1c1",
name = "dropC")

umxSummary(ACE1, std = FALSE, report = ‘html’,
digits = 3, comparison = ACE2)

Fig. 4. Cholesky decomposition (ACE model) of variance in behavior (x) in twin-1 and
twin-2, decomposed into A (additive genetic), C (Shared environmental) and E (unique
environmental) components. There are two groups in the model: Identical (MZ) twins
and Fraternal (DZ) twins.
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Using Labels to Drop Paths in Twin Models

Wenoted above how labels can be used to update amodel. For twin
models, such model reduction by dropping paths is routine. For
instance, to examine the effects of shared or family-level environ-
ment, wemay wish to update this model by dropping the C (shared
environment) paths. The matrix-based model labeling scheme
(used in all the twin models) follows a systematic pattern, with
the path coefficients underlying the A, C and E factors stored in
matrices named a, c and e. We can view the c parameters with a
call to parameters:

# Show free parameters in model ACE1

parameters(ACE1)

This reveals the following 4-parameter labels (and their current
(unstandardized) estimated values) (See Table 7). It shows the four
matrices for free parameters— a, c, e and expMean— each with 1
row and 1 column as this is a univariate model.

These labels take the form: matrix name, ‘_r’ followed by a row
number, then ‘c’ followed by the column number of the matrix cell
containing the parameter; for example, matrix a row 1 column 2
would be labeled ‘a_r1c2’.

A straightforward way to drop the shared environment
paths we wish to test is using the update option of umxModify.
For example, this code snippet will test the effect of dropping the
first latent C trait on the second variable in the model:

ACE2 = umxModify(ACE1, update = "c_r2c1",
name = "dropC", comparison = TRUE)

As shown in the resulting table of fit comparison table (Table 8),
this parameter could be dropped without significant loss of fit. We
next discuss a nested model, the CP model.

CP Model

The CP model provides a powerful tool for theory-based decom-
position of genetic and environmental differences (Neale & Maes,

1996). This allows one to test, for instance, if genes and environ-
ment work through a common latent personality trait (Lewis &
Bates, 2014), or to test claims regarding the specificity or generality
of a theorized latent psychological or other construct (Lewis &
Bates, 2010). umxCP supports CP modeling for pairs of MZ and
DZ twins reared together to model the genetic and environmental
structure of multiple phenotypes according to one or more CPs. As
can be seen at the bottom of Figure 6, each phenotype also has A, C
and E influences specific to that phenotype.

Like the ACE model, the CP model decomposes phenotypic
variance into additive genetic (A), unique environmental (E)
and, optionally, either common or shared environment (C) or
non-additive genetic effects (D). Unlike the Cholesky, however,

Fig. 5. Output from plot(m1) for univariate ACE model of weight, rendered as default in
DiagrammR (left) and after editing in Omnigraffle (right graphic).
Note: For simplicity, the unit variance of A, C and E are assumed, and not drawn in this
figure.

Table 6. Standardized path loadings for ACE model

a1 c1 e1

Weight 0.92 . 0.39

Table 7. Free paths loadings for ACE model

Name Estimate

expMean_r1c1 58.80

a_r1c1 8.19

c_r1c1 0.00

e_r1c1 4.55

Table 8. Fit comparison of full ACE model and AE model

EP Δ −2LL Δdf p AIC

4 19,515.23

3 0 1 1.00 19,513.23

Fig. 6. CP twin model with three common factors (CF1, CF2 and CF3), for five mea-
sured variables (phenotypes) Var 1–Var 5. The variable-specific A, C and E structure
is depicted at the base of the figure (drawn for only first and last phenotypes).
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these factors do not act directly on the phenotype. Instead, latent A,
C and E impact on latent factors (by default 1) which then account
for variance in the phenotypes (see Figure 5). Often researchers use
only a single CP. Such models seldom provide a good fit to multi-
variate data, and umxCP supports the more theoretically plausible
situation of multiple CPs simply by setting the nFac parameter
from its default (1) to the desired number of CPs to be modeled.

As with umxACE, umxCP can transparently handle mixtures of
continuous and ordinal (binary or multi-level ordered factor data)
inputs. Similar options are available for controlling parameters
such as the DZ genetic correlation, and plot and umxSummary
implement comprehensive model reporting and graphical output.
Note, for comparison of this CP model with the IP model to be
discussed next, one should set the number of common factors
to 3 using nFac = 3.

We endeavored to keep the matrix names used in the behavior
genetic models memorable (e.g., expMean, a, c and e in the
umxACE model). For the CP model, the loadings of a, c and e,
on the CP factors are stored in matrices a_cp, c_cp and e_cp,
and the specific loadings in the diagonals of matrices as, cs and
es, respectively. The loadings of the common factors onto the
manifest variables are stored in the cp loadings matrix. Thus, when
the researcher wishes to drop paths, it is in these matrices that they
would find the labels to set to zero. For instance, to drop the specific
shared environmental effect for variable 2 in a CP model, the user
would modify the model, updating the parameter labeled ‘cs_r2c2’
to be fixed at zero.

Example CP Model

In this example CPmodel, we first set up the data for an analysis of
height and weight using the built-in twinData data.frame:

# load twin data built into umx

data("twinData")

# Selecting the ‘ht’ and ‘wt’ variables

selDVs = c("ht", "wt")

# create dataset consisting of MZ and DZ female twins
respectively.

mzData = subset(twinData, zygosity ==
"MZFF",)

dzData = subset(twinData, zygosity ==
"DZFF",)

The next section shows how umxCP allows the user to build the
CP model in one line. By default, this will call umxSummary and
plot. The output from these shows the fit and parameter estimates
(see Tables 9–12) and a graphical plot (Figure 7).

The following code will build and run a CP model:

# Run and report a common pathway model

CP1 = umxCP(selDVs = selDVs, dzData = dzData,
mzData = mzData, suffix = "")

A straightforward way to test dropping all the shared environ-
ment paths from this model is shown below, with the comparative
fit shown in Table 13:

# make a list of paths to drop

paths = c("c_cp_r1c1", "cs_r1c1", "cs_r2c2")

CP2 = umxModify(CP1, update = paths, name =
"dropC", comparison = TRUE)

For users who understand the syntax of regular expression, we
can select the same subset of labels using a pattern match:

CP2 = umxModify(CP1, regex =
"(^cs_)|(^c_cp_)", name = "dropC")

umxSummary(CP2, comparison = CP1)

IP Model

The basic IP model is nested within the three-factor CPmodel (it is
a CPmodel with each of A, C and E acting on only one factor). The
IP models are created using umxIP. In this model, one or more
latent A, C and E factors are proposed, each influencing all man-
ifests. In addition, each manifest (phenotype) has A, C and E
influences specific to itself (see Figure 8).

Data input and additional control parameters for umxIP closely
reflect those available for umxCP and umxACE, making it easier to
move between these functions. Likewise plot and umxSummary
transparently handle model reporting and graphical output func-
tionality identically to how it is implemented for other models,
again lowering the learning curve and increasing productivity.
Users can of course implement ACE, CP and IP models, then

Table 9. CP model common factor path loadings

A C E

Common factor 1 0.98 . 0.21

Table 10. CP model common factor path loadings for each trait

CP1

Height 0.85

Weight 0.55

Table 11. CP model standardized specific factor loadings

As1 As2 Cs1 Cs2 Es1 Es2

ht1 −0.44 . . . −0.29 .

wt1 . 0.75 . . . 0.37

Table 12. CP model genetic and environmental correlations

rA1 rA2 rC1 rC2 rE1 rE2

Height 1.00 0.51 1.00 0.93 1.00 0.16

Weight 0.51 1.00 0.93 1.00 0.16 1.00
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submit these as nested comparisons using umxCompare to test
which of these models is preferred.

Gene × Environment Models

umxGxE implements the (Purcell, 2002) gene–environment inter-
action single-phenotype model. In this model, a standard ACE
model is modified to include a moderator variable, measured for

each subject. This moderator (known as a definition variable
because it is defined for each subject) is represented on the path
diagram as a diamond (or, in this case, we write the path formula
on the path, including the definition-variable moderator, rather
than drawing paths from a diamond). In G × E models, the mod-
erator is included in the means model, removing any heritable
effects it has on the DV of interest, and also moderates the A, C
and E path values (See Figure 9). A common application of this
type of model has been to examine changes in heritability (and
environmentality) across a range of values of a moderator such
as, in human twin research, developmental stress or parental socio-
economic status (Bates et al., 2016, 2013).

As with all umx functions, examples of this type of analysis are
included in the help documents linked to each function. As the
moderator is crucial to the estimated model, all rows must have
the moderator present, and rows with NA in the moderator are
excluded (umxGxE will do this for the user if necessary, reporting
the quantity of data loss).

Example Gene × Environment Model

As usual, we first set up the input data. Because G × E models use
definition variables (variables with a value for each subject in the
data), rowsmust not contain NA for any definition variable used in
the model. umxGxE takes care of this by removing these rows
(reporting explicitly to the user what it has done for MZ and
DZ data separately):

data("twinData")

# create age variables for twin 1 and twin 2

twinData$age1 = twinData$age2 = twinData$age

# Define the DV and definition variables

selDVs = c("bmi1", "bmi2")

selDefs = c("age1", "age2")

selVars = c(selDVs, selDefs)

Fig. 8. IP model with a single independent general factor for each of A, C or D and E
loadings on all phenotypes (Var 1–Var 5), and showing the ACE structure of residual
variance specific to each phenotype (drawn for variables 1 and 5 only for clarity).

Fig. 9. Univariate gene × measured shared environment twin model.

Fig. 7. CP model for height and weight plot.
Note: In practice, more than two phenotypes would be measured.

Table 13. Fit comparison dropping shared environment effects from CP model
CP1

Model EP Δ -2lnL Δdf p AIC Compare with model

CP 13 −751.012

drop C 10 2.0414 3 .564 −754.970 CP
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# Create datasets

mzData = subset(twinData, zygosity == "MZFF")

dzData = subset(twinData, zygosity == "DZFF")

With setup out of the way, what remains is to call
umxGxE, allowing the model to auto-run. The user can request
a custom umxSummary if desired. In this case, the summary is
reported as a plot, which may be either the raw or standardized
output, in two side-by-side plots, or in separate plots (see
Figure 10):

# Build, run and report the GxE model using selected DV and
moderator

# umxGxE will remove and report rows with missing data in
definition variables.

GE1 = umxGxE(selDVs = selDVs, selDefs =
selDefs,

dzData = dzData, mzData = mzData,
dropMissingDef = TRUE)

# Shift the legend to the top right

umxSummary(GE1, location = "topright")

# Plot standardized and raw output in separate graphs

umxSummary(GE1, separateGraphs = TRUE)

Fig. 10. GxE analysis default plot output.

Table 14. Model reduction table generated for the example G×E model using umxReduce

Model EP Δ-2lnL Δdf p AIC Compare with model

G × E 9 1000958.352

No lin mean 8 −44684.14 1 1.000 956272.216 G by E

No quad mean 8 −999320.62 1 1.000 1635.730 G by E

No means moderation 7 −999097.00 2 1.000 1857.350 G by E

DropA 8 149404.86 1 <.001 1150361.208 G by E

DropC 8 15192.63 1 <.001 1016148.987 G by E

No mod on A 8 692656.81 1 <.001 1693613.165 G by E

No mod on C 8 520231.54 1 <.001 1521187.896 G by E

No mod on E 8 286226.09 1 <.001 1287182.445 G by E

No moderation 6 −999259.71 3 1.000 1692.639 G by E

No A no mod on A 7 732979.50 2 <.001 1733933.851 G by E

No C no mod on C 7 520664.23 2 <.001 1521618.585 G by E

No c no ce mod 6 1325976.22 3 <.001 2326928.580 G by E

No c no moderation 5 −999259.71 4 1.000 1690.639 G by E
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As with all umx functions, all parameters are consistently
labeled, and umxModify can be used to, for instance, drop the
moderated additive genetic path by label and request a test of
change in likelihood for significance:

GE2 = umxModify(GE1, update = "am_r1c1",
comparison = TRUE)

umxReduce

In order to facilitate theory-driven model reduction, umx imple-
ments the umxReduce function which, if it knows about the type
of model input, can intelligently reduce the model, outputting a
table of model comparisons. In the case of umxGxE models, there
is a standard set of comparisons, and these have been implemented
in umxReduce. Functionality continues to improve for other model
types. This is shown for the example G × E model in Table 14:

# Reduce the model and output a comparison table

umxReduce(GE1)

Window-Based G × E

umxGxE_window (Briley et al., 2015) also implements a gene–
environment interaction model. It does this not by imposing a
particular function (linear or otherwise) on the interaction, but
by estimating the model sequentially on windows of the data.
In this way, it generates a spline-style interaction function that
can take arbitrary forms (see Figure 11). The function linking genetic
influence and context is not necessarily linear, but may react more
steeply at extremes of themoderator, take the form of known growth
functions of age, or take other, unknown forms. To avoid obscuring
the underlying shape of the interaction effect, local structural
equation modeling (LOSEM) may be used, and umxGxE_window
implements thismodel. LOSEM is non-parametric, estimating latent
interaction effects across the range of a measured moderator using a
windowing function which is walked along the context dimension,

and which weights subjects near the center of the window highly
relative to subjects far above or below the window center. This
allows detecting and visualizing arbitrary G × E (or C × E or E × E)
interaction forms.

Example G × E Windowed Analysis

We first need to set up the data correctly for the analysis.
umxGxE_window takes a data.frame consisting of a moderator
and two DV columns: one for each twin. The model also assumes
two groups: MZ and DZ. Moderator cannot be missing, so to be
explicit, we delete cases with missing moderator prior to analysis.
The first three lines open the data set and define the name of the
moderator column in the data set (‘age’ in this case), along with the
DV (‘bmi’):

require(umx);

data("twinData")

mod = "age"

selDVs = c("bmi1", "bmi2")

We next pull out the younger cohort from the data, remove
rows where the moderator is missing and generate the MZ and
DZ subsets of the data:

# select the younger cohort of twins

tmpTwin = twinData[twinData$cohort ==
"younger",]

# Drop twins with missing moderator

tmpTwin = tmpTwin[!is.na(tmpTwin[mod]),]

mzData = subset(tmpTwin, zygosity == "MZFF",
c(selDVs, mod))

dzData = subset(tmpTwin, zygosity == "DZFF",
c(selDVs, mod))

Next, we run the analysis:

# toggle auto-plot off, so we don’t plot every

# level of the moderator

umx_set_auto_plot(FALSE)

# Run the GxE analyses across all the windows

umxGxE_window(selDVs = selDVs,
moderator = mod,

mzData = mzData, dzData = dzData)

umx_set_auto_plot(TRUE)

The software reports to the user as it works through each level of
the moderator encountered and produces a graph at the end of this
run, plotting the A, C and E windowed estimates at each level of
the moderator (see Figure 11). It is possible to run the function

Fig. 11. Output graphic from a windowed or ‘LOSEM’ G × age analysis.
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at only a single level or chosen range of moderator values, and of
course the model results may be subjected to additional tests
(Briley et al., 2015).

Summary

umx offers a variety of functions for rapid path-based modeling, a
growing set of twinmodels, and helpful plotting and reporting rou-
tines. It makes available a set of data-processing functions, espe-
cially suitable for twin or wide-format data. Helping to lower the
learning curve, a tutorial blog site operates at http://tbates.github.
io. In addition, a help forum for users of the package is provided
at the OpenMx website http://openmx.ssri.psu.edu/forums.

It is hoped that the package is useful not only to those learning
and undertaking behavior genetics but also to the wider set of users
seeking to utilize the power of structural modeling in their work
and who seek approachable but powerful open-source solutions
for this need.
Note: All example code in this paper available in the umx package
as ?umxExamples.
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