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Abstract

We propose a stochastic model for the failure times of items subject to two external ran-
dom shocks occurring as events in an underlying bivariate counting process. This is a
special formulation of the competing risks model, which is of interest in reliability the-
ory and survival analysis. Specifically, we assume that a system, or an item, fails when
the sum of the two types of shock reaches a critical random threshold. In detail, the two
kinds of shock occur according to a bivariate space-fractional Poisson process, which is
a two-dimensional vector of independent homogeneous Poisson processes time-changed
by an independent stable subordinator. Various results are given, such as analytic haz-
ard rates, failure densities, the probability that the failure occurs due to a specific type
of shock, and the survival function. Some special cases and ageing notions related to
the NBU characterization are also considered. In this way we generalize certain results
in the literature, which can be recovered when the underlying process reduces to the
homogeneous Poisson process.
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1. Introduction

Consider a shock model for a system subject to two types of shocks that occur according to
a generalized bivariate Poisson process

(
Nν

1 (t), Nν
2 (t)

)
, t ≥ 0. Namely, the underlying process

is a bivariate counting process. Its components are independent homogeneous Poisson pro-
cesses with time changed by means of a suitable non-decreasing Lévy process, i.e. the stable
subordinator. For this model we analyze the related competing risks model. Specifically, we
deal with the pair (T, δ), where T is the failure time of the system and δ is the failure cause. In
other terms, since Nν

i (t) describes the number of shocks of type i that have arrived up to time
t, i = 1, 2, then T is the first-hitting time of the total number of shocks Nν

1 (t) + Nν
2 (t) through a

random integer-valued threshold, say M. The latter represents the number of fatal shocks that
cause the failure of the system. Moreover, δ = i means that the cause of the failure is a shock
of type i, i = 1, 2, i.e. an instantaneous jump of Nν

i (t) by which Nν
1 (t) + Nν

2 (t) = M for the first
time.
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In many contexts of applied probability, counting processes are considered to model occur-
rences of shocks, claims, or other kinds of events. Besides the standard cases based on the
classical Poisson process, as an example we recall here some recent developments centered on
other kinds of processes. For instance, Cha and Giorgio [6] developed a new class of bivariate
counting processes having a ‘marginal regularity’ property and allowing simultaneous occur-
rences of two types of events, and considered some applications to a shock model. Further
kinds of underlying counting processes to shock models were investigated recently by Cha and
Finkelstein [5] in the case of a generalized Pólya process, and by Di Crescenzo and Pellerey
[11] in the case of a geometric counting process. In the present paper, the underlying model
is based on a time-changed bivariate Poisson process, which is also known in the literature as
a space-fractional Poisson process. This choice is motivated by the intention of constructing a
more general model of the Poisson process, aiming to describe even more complex phenomena.
For recent developments in this research area, see e.g. [18] and [22].

The classical competing risks model is largely adopted in reliability theory and survival
analysis to describe system failures; see e.g. [3] and [7]. In some instances the risks can be
identified with certain first-hitting times of stochastic processes. For instance, the paper [9] is
concerned with the case when the risks are due to shocks governed by a bivariate homogeneous
Poisson process with independent components.

This paper is oriented to the more general setting, which includes the presence of an under-
lying stable subordinator, say Aν(t), t ≥ 0. The latter describes the time change of the bivariate
Poisson process leading to a bivariate space-fractional Poisson process. This entails a more
flexible and complex model, due to the presence of the index of stability ν ∈ (0, 1]. The anal-
ysis is centered on the determination of the hazard rates of the two causes of failure. Such
functions allow us to find the failure densities of the model, i.e. the sub-densities that describe
the first-hitting times through M.

Another function of interest is the survival function of the system. In this case it is found to
be expressed in terms of the Fox–Wright function. Moreover, the probabilities of the causes of
failures are expressed in series form, depending on the distribution of the threshold M. Hence
the specification of the distribution of M is essential to obtain closed-form expressions of the
survival function of T in suitable cases.

The analysis of the model also involves the determination of the ageing characteristics of
the random life-length T . In particular, we refer to certain typical ageing notions, i.e. the new
better than used and new worse than used characteristics, which are defined properly within
the competing risks model (see [8]).

The structure of the paper is as follows. In Section 2 we recall some basic facts regarding
bivariate shock models. Then, in Section 3, we describe the bivariate space-fractional Poisson
process, focusing on its main characteristics, and obtain expressions for the hazard rate, the
failure density, the survival function, and the failure probability. Section 4 is devoted to the
analysis of some special cases: we give closed-form expressions for the survival function of
the random lifetime. In the final section we discuss some ageing notions with regard to the
NBU and NBU∗ characterization.

2. Background

The competing risks model is often employed in reliability theory and survival analysis,
being appropriate to describe the failures of devices or organisms in the presence of different
types of risks. Hereafter we describe the basic notions that will be used in the rest of the paper.
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Let T be an absolutely continuous non-negative random variable which describes the ran-
dom failure time of a system subject to two possible causes of failure. We set δ = i if the failure
occurs due to a shock of type i, i = 1, 2. Let N(t) denote the total number of shocks occurring
in [0, t], with t ≥ 0. Moreover, let Ni(t) denote the counting process representing the number
of shocks of type i occurring in [0, t], i = 1, 2, N1(t) and N2(t) being independent. Clearly we
have

N(t) = N1(t) + N2(t), t ≥ 0.

Moreover, we assume that the system fails when the sum of shocks of type 1 and type 2 reaches
a random threshold M that takes values in N= {1, 2, . . .}. In other words, failures are assumed
to occur, due to a single cause, at the first instant in which N1(t) + N2(t) = M. The probability
distribution and the survival probability of M will be respectively denoted by

pk = P(M = k), k ∈N, (2.1)

and
Pk = P(M > k), k ∈N0 =N∪ {0}. (2.2)

Letting fT (t), t ≥ 0, denote the probability density function of the failure time (first-hitting time)

T = inf{t ≥ 0 : N(t) = M},
we have

fT (t) = f1(t) + f2(t), t ≥ 0, (2.3)

where fi(t) is the sub-density defined by

fi(t) = d

dt
P{T ≤ t, δ = i}, t ≥ 0, i = 1, 2.

Furthermore, the probability that the failure occurs due to a shock of type i reads

P(δ = i) =
∫ ∞

0
fi(t) dt, i = 1, 2. (2.4)

In order to express the sub-densities fi(t), i = 1, 2, in terms of the joint probability distribution
of (N1(t), N2(t)), we now introduce the hazard rates

r1(x1, x2; t) = lim
τ→0+

1

τ
P
{
N1(t + τ ) = x1 + 1, N2(t + τ ) = x2|N1(t) = x1, N2(t) = x2

}
, (2.5a)

r2(x1, x2; t) = lim
τ→0+

1

τ
P
{
N1(t + τ ) = x1, N2(t + τ ) = x2 + 1|N1(t) = x1, N2(t) = x2

}
, (2.5b)

with (x1, x2) ∈N
2
0 and t ≥ 0. Given that x1 shocks of type 1 and x2 shocks of type 2 occurred

in [0, t], the hazard rate ri(x1, x2; t) gives the intensity of the occurrence of a shock of type i
immediately after t, with i = 1, 2. Hence, conditioning on M and recalling (2.1) and (2.5), for
t ≥ 0 and i = 1, 2, the failure densities can be expressed as

fi(t) =
+∞∑
k=1

pk

∑
x1+x2=k−1

P{N1(t) = x1, N2(t) = x2} ri(x1, x2; t). (2.6)

https://doi.org/10.1017/jpr.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.80


712 A. DI CRESCENZO AND A. MEOLI

A relation similar to (2.6) holds for the survival function of T , denoted by

FT (t) = P{T > t}, t ≥ 0.

Indeed, conditioning on (N1(t), N2(t)) and recalling (2.2), we obtain

FT (t) =
+∞∑
k=0

Pk

∑
x1+x2=k

P{N1(t) = x1, N2(t) = x2}, t ≥ 0, (2.7)

where P0 = 1.

3. The model and main results

In this section we introduce the specific stochastic model that will be adopted for the bivari-
ate counting process of interest. Then we extensively study the quantities of interest for the
competing risks model under the introduced scheme. Let {Aν(t) : t ≥ 0} be the stable subor-
dinator, i.e. the non-decreasing Lévy process with Bernštein function f (u) = uν, ν ∈ (0, 1). Its
Laplace transform is therefore

E
(
e−uAν (t)) = e−uν t, u ≥ 0 (3.1)

(see [2, Example 1.3.18]). We also recall that the Lévy measure associated with f is

ν(ds) = νs−ν−1

�(1 − ν)
ds.

We denote the density of Aν(t) by fAν (t), that is (see [23]),

fAν (t)(y, t) dy = P(Aν(t) ∈ dy) = 1

π

∞∑
k=1

(−1)k+1 �(νk + 1)

k!
tk

yνk+1
sin (πνk) dy, y > 0.

Furthermore, the joint density function, defined as

fAν (t1),Aν (t2)(y1, t1; y2, t2) dy1 dy2 = P(Aν(t1) ∈ dy1, Aν(t2) ∈ dy2),

is given by

fAν (t1),Aν (t2)(y1, t1; y2, t2) dy1 dy2 = fAν (t2−t1)(y2 − y1, t2 − t1)fAν (t1)(y1, t1) dy1 dy2, (3.2)

since the process Aν(t) has independent and stationary increments. We assume that the two
kinds of shocks affect the system according to a bivariate space-fractional Poisson process,
which is a particular case of the more general multivariate space–time fractional Poisson pro-
cess considered in [4]. It is the time-change of a bivariate vector of independent classical
homogeneous Poisson processes where the time change is an independent stable subordinator,
defined hereafter.

Definition 3.1. Let {{Pi(t) : t ≥ 0} : i ∈ {1, 2}} be two independent homogeneous Poisson pro-
cesses with intensities λ1 and λ2 respectively. Then, for ν ∈ (0, 1], we consider the bivariate
process (

Nν
1 (t), Nν

2 (t)
)

:= (P1(Aν(t)),P2(Aν(t))
)
, t ≥ 0,

where Pi(t), i = 1, 2, and Aν(t) are independent.
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We remark that the processes
{{

Nν
i (t) : t ≥ 0

}
: i ∈ {1, 2}} are conditionally independent

given Aν(t) for 0 < ν < 1. Unlike the classical Poisson process, they are non-renewal pro-
cesses, as noted in [12] and [22]. In addition, they are point processes with stationary
independent increments generalizing the Poisson process, in that they perform non-unitary
jumps with non-negligible probability. We refer the reader to [20] and [21] for more details.
Note that for ν = 1 we have A1(t) = t, so they are independent in this case. The state
probabilities of the process in Definition 3.1 read, for x1, x2 ∈N0 (see [4, equation (6)]),

P
{
Nν

1 (t) = x1, Nν
2 (t) = x2

} = λ
x1
1 λ

x2
2

(λ1 + λ2)x1+x2

(−1)x1+x2

x1!x2!
× 1�1

[
(1, ν)

(1 − (x1 + x2), ν)

∣∣∣∣ (−(λ1 + λ2)ν t)

]
, (3.3)

where

p�q

[
(al, αl)1,p

(bl, βl)1,q

∣∣∣∣ z

]
:=

+∞∑
k=0

∏p
i=1 �(al + αlk)∏q
j=1 �

(
bj + βjk

) zk

k!
is the generalized Wright function(

z ∈C, ai, bj ∈C, αi, βj ∈R, αi, βj 	= 0; i = 1, 2, . . . , p; j = 1, 2, . . . , q
)
,

under the convergence condition

q∑
k=1

βk −
p∑

h=1

αh > −1.

For details see e.g. [16, equations (1.11.14), (1.11.15)]. We observe that the joint distribution
of the process

(
Nν

1 (t), Nν
2 (t)

)
is exchangeable. Furthermore, by resorting to the expression of

the probability generating function given in equation (5) of [4], one can easily check that
the expected value of each of the two components of the process is infinite, thus making our
model suitable to describe bursty dynamics. In order to evaluate the hazard rates, we state the
following lemma.

Lemma 3.1. Fix m ∈N0. Then

dm

dum

(
e−uν t) = u−m e−uν t

m∑
k=0

(uν t)k

k!
k∑

j=0

(−1)j
(

k

j

)
(νj)m, (3.4)

where (x)m = x(x − 1) · · · (x − m + 1) denotes the falling factorial.

Proof. We recall that if a and b are functions with a sufficient number of derivatives, then
Hoppe’s formula for the m-fold derivative of a composition of functions [15] states that

dm

dtm
a(b(t)) =

m∑
k=0

1

k!
dk

dbk
a(b)Am,k(b(t)),

where

Am,k(b(t)) =
k∑

j=0

(
k

j

)
(−b(t))k−j dm

dtm
(b(t))j.
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For b(t) := −uν t and a(b) := eb, we have

dm

dtm
(b(t))j = (−t)j(νj)muνj−m, 0 ≤ j ≤ m.

Therefore
dm

dum

(
e−uν t) =

m∑
k=0

e−uν t

k!
k∑

j=0

(
k

j

)
(uν t)k−j(−t)j(νj)muνj−m,

and, after simplifying, we obtain (3.4). �

We now derive the expression of the hazard rates (2.5) of the process introduced in
Definition 3.1.

Proposition 3.1. Let i ∈ {1, 2}. Under the assumptions of the model in Definition 3.1, for all
x1, x2 ∈N0 and t ≥ 0, we have

ri(x1, x2; t) =
(

1�1

[
(1, ν)

(1 − (x1 + x2), ν)

∣∣∣∣ (−(λ1 + λ2)ν t)

])−1

× λiν(λ1 + λ2)ν−1 e−(λ1+λ2)ν t
x1+x2∑
k=0

[(λ1 + λ2)ν t]k

k!
k∑

j=0

(−1)j
(

k

j

)
(νj)x1+x2 .

(3.5)

Proof. Fix i = 1 and let t ≥ 0. To begin with, we observe that (2.5a) can be equivalently
rewritten as

lim
τ→t

P
{
Nν

1 (τ ) = x1 + 1, Nν
2 (τ ) = x2, Nν

1 (t) = x1, Nν
2 (t) = x2

}
(τ − t)P

{
Nν

1 (t) = x1, Nν
2 (t) = x2

} . (3.6)

We concentrate our attention on the numerator. From Definition 3.1 we know that the governing
fractional bivariate process can be considered as a two-dimensional vector of homogeneous
Poisson processes stopped at a random time Aν(t). Therefore we have

P
{
Nν

1 (τ ) = x1 + 1, Nν
2 (τ ) = x2, Nν

1 (t) = x1, Nν
2 (t) = x2

}
=

∫ +∞

0

∫ v

0
P
{
N1(v) = x1 + 1, N2(v) = x2, N1(u) = x1, N2(u) = x2

}
× P(Aν(τ ) ∈ dv,Aν(t) ∈ du)

by (3.2)=
∫ +∞

0

∫ v

0
P
{P1(v) = x1 + 1, P2(v) = x2, P1(u) = x1, P2(u) = x2

}
× fAν (τ−t)(v − u, τ − t)fAν (t)(u, t) dv du. (3.7)

The two homogeneous Poisson processes P1(t) and P2(t) are independent, and hence

P
{P1(v) = x1 + 1, P2(v) = x2, P1(u) = x1, P2(u) = x2

}
= P

{P1(v − u) = 1, P2(v − u) = 0
}
P
{P1(u) = x1, P2(u) = x2

}
= e−(λ1+λ2)vλ

x1+1
1 λ

x2
2 ux1+x2 (v − u)

x1!x2! . (3.8)
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We put (3.8) into (3.7) and get

P
{
Nν

1 (τ ) = x1 + 1, Nν
2 (τ ) = x2, Nν

1 (t) = x1, Nν
2 (t) = x2

}
= λ

x1+1
1 λ

x2
2

x1!x2!
∫ +∞

0
e−(λ1+λ2)v dv

∫ v

0
ux1+x2 (v − u)fAν (τ−t)(v − u, τ − t)fAν (t)(u, t) du

= λ
x1+1
1 λ

x2
2

x1!x2!
∫ +∞

0
ux1+x2 fAν (t)(u, t) du

∫ +∞

u
e−(λ1+λ2)v(v − u)fAν (τ−t)(v − u, τ − t) dv,

by changing the order of integration. By the change of variable v − u = y, we obtain

P
{
Nν

1 (τ ) = x1 + 1, Nν
2 (τ ) = x2, Nν

1 (t) = x1, Nν
2 (t) = x2

}
= λ

x1+1
1 λ

x2
2

x1!x2! I(x1 + x2, t) · I(1, τ − t), (3.9)

where, for h ∈N,

I(h, t) :=
∫ +∞

0
e−(λ1+λ2)uuhfAν (t)(u, t) du.

It turns out that, due to (3.1) and (3.4),

I(h, t) = (−1)h dh

duh
E

(
e−uAν (t))∣∣∣∣

u=λ1+λ2

= (−1)h dh

duh
e−uν t

∣∣∣∣
u=λ1+λ2

= (−1)h

(λ1 + λ2)h
e−(λ1+λ2)ν t

h∑
k=0

[(λ1 + λ2)ν t]h

h!
k∑

j=0

(−1)j
(

k

j

)
(νj)h.

By exploiting the previous expression, we evaluate (3.9) as follows:

P
{
Nν

1 (z) = x1 + 1, Nν
2 (z) = x2, Nν

1 (t) = x1, Nν
2 (t) = x2

}
= λ

x1+1
1 λ

x2
2

x1!x2! ν(z − t)(λ1 + λ2)ν−1−x1−x2 e−(λ1+λ2)νz(−1)x1+x2

×
x1+x2∑
k=0

[(λ1 + λ2)ν t]k

k!
k∑

j=0

(−1)j
(

k

j

)
(νj)x1+x2 . (3.10)

The hazard rate (3.6) can now be easily computed by taking into account (3.3) and (3.10), thus
getting the desired result. The case i = 2 can be treated analogously, and this concludes the
proof. �

Remark 3.1. We observe that (3.5) with ν = 1 meets a known formula for the non-fractional
case (see [9, Section 3]), i.e. ri(x1, x2; t) = λi, i ∈ {1, 2}. Indeed, since (j)x1+x2 = 0 when
j < x1 + x2, the sum

x1+x2∑
k=0

[(λ1 + λ2)t]k

k!
k∑

j=0

(−1)j
(

k

j

)
(j)x1+x2
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reduces to

[(λ1 + λ2)t]x1+x2

(x1 + x2)! (−1)x1+x2 (x1 + x2)x1+x2 = [−(λ1 + λ2)t]x1+x2 .

Moreover, the Fox–Wright function 1�1 simplifies to

1�1

[
(1, 1)

(1 − (x1 + x2), 1)

∣∣∣∣ −(λ1 + λ2)t

]
=

+∞∑
h=0

�(h + 1)

�(1 − x1 − x2 + h)

[−(λ1 + λ2)t]h

h!

=
+∞∑

h=x1+x2

[−(λ1 + λ2)t]h

(h − x1 − x2)!
= [−(λ1 + λ2)t]x1+x2 e−(λ1+λ2)t.

The second equality holds because the summands with h < x1 + x2 are equal to 0. In the light
of this, after some manipulations, the hazard rate (3.5) reduces to λi, i.e. the hazard rate in the
classical case.

Hereafter we present the formulas for the failure densities (2.6) and for the survival function
of T given in (2.7).

Proposition 3.2. Under the assumptions of the model in Definition 3.1, for t ≥ 0 and i = 1, 2,

we have the following results.

(i) The failure densities can be expressed as

fi(t) = λiν(λ1 + λ2)ν−1 e−(λ1+λ2)ν t
+∞∑
k=1

(−1)k−1 pk

(k − 1)!

×
k−1∑
h=0

[(λ1 + λ2)ν t]h

h!
h∑

j=0

(−1)j
(

h

j

)
(νj)k−1. (3.11)

(ii) The survival function of T reads

FT (t) =
+∞∑
k=0

(−1)k

k! Pk 1�1

[
(1, ν)

(1 − k, ν)

∣∣∣∣ −(λ1 + λ2)ν t

]
. (3.12)

Proof. (i) We substitute in (2.6) the expression of the state probability (3.3) and of the hazard
rate (3.5), thus getting, after some computations,

fi(t) =
+∞∑
k=1

pk

∑
x1+x2=k−1

λ
x1
1 λ

x2
2 (−1)x1+x2

(λ1 + λ2)x1+x2x1!x2!λiν(λ1 + λ2)ν−1 e−(λ1+λ2)ν t

×
x1+x2∑
h=0

[(λ1 + λ2)ν t]h

h!
h∑

j=0

(−1)j
(

h

j

)
(νj)x1+x2
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= λiν(λ1 + λ2)ν−1 e−(λ1+λ2)ν t
+∞∑
k=1

pk

(k − 1)!
(−1)k−1

(λ1 + λ2)k−1

×
k−1∑
x1=0

(k − 1)!
x1!(k − 1 − x1)!λ

x1
1 λ

k−1−x1
2

k−1∑
h=0

[(λ1 + λ2)ν t]h

h!
h∑

j=0

(−1)j
(

h

j

)
(νj)k−1.

The thesis follows from a straightforward application of the binomial theorem.
(ii) The second desired result can be obtained similarly, by considering (2.7) and (3.3) and

by performing the same kind of computation. �

We conclude this section by deriving the distribution of the ith cause of failure (2.4).

Proposition 3.3. Let i = 1, 2. Under the assumptions of the model specified in Definition 3.1,
we have

P(δ = i) = λi

λ1 + λ2
ν

+∞∑
k=1

(−1)k−1 pk

(k − 1)!
k−1∑
j=0

(−1)j
(

k

j + 1

)
(νj)k−1. (3.13)

Proof. With reference to (2.4) and to (3.11), we have

P(δ = i) = λiν(λ1 + λ2)ν−1
+∞∑
k=1

(−1)k−1 pk

(k − 1)!
k−1∑
h=0

(λ1 + λ2)νh

h!

×
∫ +∞

0
e−(λ1+λ2)ν tth dt

h∑
j=0

(−1)j
(

h

j

)
(νj)k−1.

We apply formula 3.351.3 of [13], and get

P(δ = i) = λi

λ1 + λ2
ν

+∞∑
k=1

(−1)k−1 pk

(k − 1)!
k−1∑
h=0

h∑
j=0

(−1)j
(

h

j

)
(νj)k−1.

By changing the order of the finite summations and using the hockey stick identity, the thesis
immediately follows. �

A typical problem in this area is to investigate the dependence between the failure time T
and the cause of failure δ. For instance, Di Crescenzo and Meoli [10] presented a stochastic
model for competing risks involving the Mittag–Leffler distribution, and inspired by fractional
random growth phenomena, where T and δ prove to be independent.

However, in the present context, formula (3.13) makes it clear that the failure time T and
the type of failure δ are in general dependent. In fact, due to (2.3) and (3.11), the probability
density function of the failure time T is, for t ≥ 0,

fT (t) = ν(λ1 + λ2)ν e−(λ1+λ2)ν t
+∞∑
k=1

(−1)k−1 pk

(k − 1)!

×
k−1∑
h=0

[(λ1 + λ2)ν t]h

h!
h∑

j=0

(−1)j
(

h

j

)
(νj)k−1. (3.14)
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For there to be independence, it must be fi(t) = fT (t)P(δ = i), or, equivalently, P(δ = i) =
λi/(λ1 + λ2) (see (3.11) and (3.14)). In general this is not true, as can easily be checked in
some special cases.

4. Special cases

With reference to the stochastic model treated so far, in this section we present some exam-
ples for the probability distribution of the random lifetime T by specializing the distribution
of the threshold M by means of (2.2). The starting point for our investigation is the following
expansion, proved in Theorem 2.2 of [20]:

e−λα(1−u)α t =
+∞∑
k=0

uk (−1)k

k! 1�1

[
(1, ν)

(1 − k, ν)

∣∣∣∣ −λν t

]
, t ≥ 0. (4.1)

We examine four special cases for the distribution of the threshold M.

(1) M is geometrically distributed with parameter p, that is to say,

Pk = (1 − p)k, 0 < p ≤ 1.

To derive the distribution of T , put the previous survival probability in (3.12); then
set λ := λ1 + λ2 and u := 1 − p. Due to (4.1), we thus find that the random time T
is exponentially distributed with parameter [p(λ1 + λ2)]ν , that is,

FT (t) = e−[p(λ1+λ2)]ν t, t ≥ 0.

(2) M is logarithmically distributed with parameter p. The survival probability of M reads

Pk = −B(p; k + 1, 0)

ln (1 − p)
, 0 < p < 1,

where

B(x; a, b) =
∫ x

0
ua−1(1 − u)b−1 du

is the incomplete beta function. From (3.12) and (4.1), we get, for t ≥ 0,

FT (t) =
+∞∑
k=0

(−1)k

k!
(

−B(p; k + 1, 0)

ln (1 − p)

)
1�1

[
(1, ν)

(1 − k, ν)

∣∣∣∣ −(λ1 + λ2)ν t

]

= − 1

ln (1 − p)

+∞∑
k=0

(−1)k

k!
∫ p

0
zk(1 − z)−1

1�1

[
(1, ν)

(1 − k, ν)

∣∣∣∣ −(λ1 + λ2)ν t

]
dz

= − 1

ln (1 − p)

∫ p

0
(1 − z)−1 e−(λ1+λ2)ν t(1−z)ν dz.

Due to the Taylor expansion of the exponential function, we have

FT (t) = 1 − 1

ln (1 − p)

+∞∑
k=1

[−(λ1 + λ2)ν t]k

k!
∫ p

0
(1 − z)−1+νk dz

= 1 − 1

ν ln (1 − p)

[+∞∑
k=1

[−(λ1 + λ2)ν t]k

k · k! −
+∞∑
k=1

[−(λ1 + λ2)ν t(1 − p)ν]k

k · k!

]
.
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In order to simplify the previous expression, we make use of the series expansion of the
exponential integral

E1(z) =
∫ +∞

1

e−uz

u
du

(see [1, 5.1.11]). The survival function of T finally reads

FT (t) = E1[(λ1 + λ2)ν t] − E1[(λ1 + λ2)ν(1 − p)ν t]

ν ln (1 − p)
, t ≥ 0.

The next two cases can be evaluated similarly, and thus we omit the calculations.

(3) If M is such that

Pk = γ (k + 1; a, p)

e−a − e−p
, 0 ≤ a < p ≤ 1,

where

γ (a, x1, x2) =
∫ x2

x1

e−uua−1 du

is the generalized incomplete gamma function, then

FT (t) = 1

e−a − e−p

∫ p

a
e−z−(λ1+λ2)ν t(1−z)ν dz, t ≥ 0.

(4) If M is such that

Pk = Si (k + 1; a, p)

cos a − cos p
, 0 ≤ a < p ≤ 1,

where

Si (a, x1, x2) =
∫ x2

x1

ua−1 sin u du

is the generalized sine integral, then

FT (t) = 1

cos a − cos p

∫ p

a
sin z e−(λ1+λ2)ν t(1−z)ν dz, t ≥ 0.

In Figure 1 we provide some plots of the survival function of T with reference to the four
cases analyzed, for various choices of the parameters involved. In cases (3) and (4) the relevant
integrals have been evaluated by means of routines available in MATLAB�. We observe that in
each of the four cases the survival function of T is increasing in ν. Moreover, the distributions
that refer to cases (2), (3), and (4) have thinner tails than the exponential distribution, which
refers to case (1).

5. Ageing notions

In this section we discuss some ageing characteristics of the random life-length T with
respect to some of the special cases analyzed in Section 4. We briefly recall the main issues
which we will refer to. See [17] or [19] for a comprehensive coverage of the subject matter.
A random lifetime T of an item is said to be NBU [NWU] (new better [worse] than used)
if FT (t + x) ≤ [≥] FT (t)FT (x) for all x, t ≥ 0. This means that the lifetime of a used item of
age t is stochastically less [greater] than the lifetime of a brand new item. Moreover, if T has a
density fT (t) for which the hazard rate f (t)/FT (t) is increasing [decreasing] in t, the failure time
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FIGURE 1. Plots of the survival function of T with λ1 + λ2 = 1, a = 0, p = 0.5, when the distribu-
tion of M is from left to right, from top to bottom, geometric, logarithmic, pk = γ (k; a,p)

e−a−e−p − γ (k+1; a,p)
e−a−e−p ,

pk = Si (k; a,p)
cos a−cos p − Si (k+1; a,p)

cos a−cos p .

T is said to have an increasing [decreasing] hazard rate (IHR [DHR]). Proposition B.8.a. of
[17] states that if the density fT (t) is log-concave, then T is IHR, while if fT (t) is log-convex on
[0, +∞), then T is DHR. Clearly, in case (1) of Section 4, the density of T , being exponential,
is both log-concave and log-convex.

The following result refers to case (2) of Section 4.

Proposition 5.1. If M has a logarithmic distribution with parameter p, 0 < p < 1, then T is
DHR.

Proof. We consider case (2) of Section 4. By differentiation, the density of T reads

fT (t) = e−(λ1+λ2)ν (1−p)ν t − e−(λ1+λ2)ν t

tν log (1 − p)−1
, t > 0.

With reference to [14], set a := e−(λ1+λ2)ν t and b := e−(λ1+λ2)ν (1−p)ν t. It turns out that
b > a > 0, so

fT (t) = g(a,b)(t)

ν log (1 − p)−1
, t > 0,
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where

ga,b(t) =
⎧⎨
⎩

bt − at

t
if t 	= 0,

b − a if t = 0.

Since ν log (1 − p)−1 > 0 and g(a,b)(t) is logarithmically convex on (0, +∞) (see
[14, Section 2]), the density fT (t) is logarithmically convex as well. Therefore T
is DHR. �

It is well known that the NBU [NWU] property is implied by the IHR [DHR] property.
The NBU ageing notion and its dual, the NWU one, have been expressed in the context of
competing risks models in [8]. In this case they are denoted as NBU∗ and NWU∗ and are
defined as follows. Let i ∈ {1, 2} and let Xi be the random variable that describes the lifetime
of the item when δ = i. We have that Xi is NBU∗ [NWU∗] if and only if P(T > t + x, δ = i) ≤
[≥] FT (t)P(T > x, δ = i), x, t ≥ 0. Namely, NBU∗ [NWU∗] expresses the positive [negative]
ageing notion for a specific cause of failure. Finally, in the following proposition we consider
the NBU∗ ageing notion in a special case. It is an immediate consequence of Remark 3.2
of [8].

Proposition 5.2. If M has a geometric distribution with parameter p, 0 < p ≤ 1, then at most
one of the following statements holds:

(i) X1 and X2 are simultaneously NBU∗ and NWU∗,

(ii) one of the variables X1 and X2 is NBU∗ and the other is NWU∗.

Proof. We consider case (1) of Section 4. The result is an immediate consequence of
Remark 3.2 of [8], since T is exponentially distributed. �

6. Conclusions

Motivated by applications in reliability theory, medical research, insurance, and economics,
to name just a few, in this paper we have studied a counterpart of a known bivariate stochas-
tic shock model based on the space-fractional Poisson process. First we described the general
setting of the model, then we obtained the hazard rates and showed a wide range of related
results. Next we obtained explicit formulae for the survival function of the random lifetime in
four special cases. Finally we discussed ageing notions with respect to the NBU and NBU∗
characterizations. For the sake of simplicity, we restricted our attention to an underlying
bivariate space-fractional Poisson process, but our analysis can be easily generalized by con-
sidering a model based on the multivariate space-fractional Poisson process [4]. Follow-up
research might relate to other ways of generalizing the underlying bivariate counting pro-
cess. Indeed, we might consider the composition of a two-dimensional vector of independent
classical Poisson processes with an independent tempered stable subordinator, with an inde-
pendent subordinator associated with a general Bernštein function, or with the components of
an independent bivariate stable subordinator.
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