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Abstract
The embedded Nash problem for a hypersurface in a smooth algebraic variety is to characterize geometrically the
maximal irreducible families of arcs with fixed order of contact along the hypersurface. We show that divisors on
minimal models of the pair contribute with such families. We solve the problem for unibranch plane curve germs,
in terms of the resolution graph. These are embedded analogs of known results for the classical Nash problem on
singular varieties.
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1. Introduction

We address the embedded Nash problem for a hypersurface in a smooth algebraic variety. There is some
analogy with the classical Nash problem which we recall now.

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2024.13 Published online by Cambridge University Press

doi:10.1017/fmp.2024.13
https://orcid.org/0000-0002-0181-9988
https://orcid.org/0000-0001-7654-2752
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2024.13&domain=pdf
https://doi.org/10.1017/fmp.2024.13


2 N. Budur et al.

1.1. The classical Nash problem.

Let V be a complex algebraic variety. To every maximal irreducible family of arcs through the singular
locus of V, one can associate a divisorial valuation, called a Nash valuation. The classical Nash problem
is to characterize the Nash valuations in terms of resolutions of singularities of V. An essential valuation
is a divisorial valuation whose center on every resolution of V is an irreducible component of the inverse
image of the singular locus of V. A divisorial valuation over V is called a terminal valuation if it is
given by some exceptional divisor on some minimal model over V of a resolution of V. The name comes
from the fact that minimal models have terminal singularities, a mild type of singularities. One has the
following:

Theorem 1.2. Let V be a complex algebraic variety.
(i) (de Fernex-Docampo [11]) There are inclusions

{terminal valuations} ⊂ {Nash valuations} ⊂ {essential valuations}.

(ii) (Fernández de Bobadilla-Pe Pereira [17]) If dim𝑉 = 2, the three sets are equal.

See [4] for further results. If dim𝑉 = 2, essential valuations are terminal valuations due to existence of
minimal resolutions. Thus, (i) implies (ii), which solves the Nash problem in this case.

1.3. The embedded Nash problem.

Let (𝑋, 𝐷) be a pair consisting of a smooth complex algebraic variety X and a nonzero effective divisor
D. The interesting arcs on X are now the ones with prescribed order of contact with D. Contact loci
of arcs are fundamental for motivic integration and appear in the monodromy conjecture; see Denef-
Loeser [12]. They also appear in a conjectural algebraic description of the Floer cohomology of iterates
of the monodromy by Budur-Fernández de Bobadilla-Lê-Nguyen [7].

Every maximal irreducible family of arcs in X with fixed positive order of contact with D is obtained
from some prime divisor on a log resolution of (𝑋, 𝐷), by Ein-Lazarsfeld-Mustaţă [15], and thus,
one can associate to it a divisorial valuation, which we call a contact valuation. The embedded Nash
problem, posed in [15, §2], is the geometric characterization of the contact valuations in terms of log
resolutions of (𝑋, 𝐷).

There is a priori no reason why the Nash problem for a pair should be related with the classical Nash
problem. Indeed, the arc space of D is complementary in the arc space of X to the set of arcs with finite
order of contact with D. Nevertheless, we show that Theorem 1.2 has an analog for pairs. We give now
a gentle introduction to the results. Precise statements are given in 1.5.

We introduce essential valuations for a pair (𝑋, 𝐷) in terms of log resolutions satisfying a separating
property which has appeared in work of Nicaise-Sebag [38, 39] and McLean [31], and in [7]. If D is
reduced, we introduce divisorial log terminal valuations (or dlt valuations) as those given by prime
divisors lying over D in dlt modifications of (𝑋, 𝐷). Dlt modifications are minimal models over X
obtained from log resolutions of (𝑋, 𝐷) and have dlt singularities, a mild type of singularities. Their
existence is proved by Odaka-Xu [40].

Our first main result is that, for X smooth and D a reduced effective divisor, there are inclusions

{dlt valuations} ⊂ {contact valuations} ⊂ {essential valuations}.

The proof is based on a variation of an argument from [7], where positivity of a relative ample divisor
on a log resolution is exchanged with that of the log canonical divisor on a dlt modification. Positivity
is used to estimate intersection numbers with the arcs in a 1-parameter family of arcs, a theme common
to [17, 11, 7].

Among the dlt valuations are the jump valuations – that is, valuations defined by prime divisors
computing jumping numbers of (𝑋, 𝐷). The top contact valuations – that is, those contact valuations
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which correspond to minimal-codimension irreducible components of loci of arcs with fixed contact
order – can be determined numerically from log resolutions.

For an irreducible formal plane curve germ, the three sets of valuations are not equal, unlike in the
dimension-two case of the classical Nash problem. Our second main result is the characterization in
terms of the resolution graph of the set of contact valuations. This solves the embedded Nash problem
in this case. The main idea, besides minimal separating log resolutions, is to use the topology of the
Milnor fibration in terms of Dehn twists to rule out adjacencies between strata of contact loci. It turns
out that the irreducible components of contact loci in this case are disjoint.

1.4. Previous work.

The embedded Nash problem is solved for an affine toric variety given by a cone together with a toric
invariant ideal by Ishii [21], and for hyperplane arrangements by Budur-Tue [8]; see Section 4. Closely
related to the embedded Nash problem is the generalized Nash problem, introduced in [22], which
consists of studying adjacencies between maximal divisorial sets; the case of maximal divisorial sets in
the plane was treated in [18].

A related problem is the characterization of irreducible components of jet schemes of a singular
variety. Known results in this direction provide numerical characterizations in cases with combinatorial
flavor. This gives sometimes that all contact valuations are top (see Section 5) (e.g., hypersurfaces with
maximal-multiplicity rational singularities by Mourtada [33], Bruschek-Mourtada-Schepers [6], and
determinants of generic square matrices by Docampo [14]). In general, the passage from a numerical
characterization of the configuration of irreducible components of the jet schemes of D to a geometric
characterization (that is, in terms of valuations) of the irreducible components of the contact loci of
(𝑋, 𝐷) is more difficult, and only partial solutions to the embedded Nash problem are obtained; see
[33, 34, 35, 23, 10, 29].

A numerical algorithm to determine the configuration of irreducible components of the jet schemes
of a unibranch curve singularity was given by Mourtada [32]. This gave information in terms of the
resolution graph only for certain divisors in Lejeune-Jalabert-Mourtada-Reguera [30, Thm. 2.7]. Our
solution of the embedded Nash problem in this case does not use [32].

1.5. The results in detail.

Let ℒ(𝑋) = HomC−sch(SpecC�𝑡�, 𝑋) be the arc space of X. Let Σ ⊂ 𝐷𝑟𝑒𝑑 be a nonempty Zariski
closed subset. Let 𝑚 ≥ 1 be an integer.
Definition 1.6. The m-contact locus of (𝑋, 𝐷, Σ) is

𝒳𝑚 (𝑋, 𝐷, Σ) := {𝛾 ∈ ℒ(𝑋) | 𝛾(0) ∈ Σ and ord𝛾𝐷 = 𝑚}.

For simplicity, we use the notation 𝒳𝑚 when the context is clear. We set 𝒳𝑚 (𝑋, 𝐷) := 𝒳𝑚(𝑋, 𝐷, 𝐷𝑟𝑒𝑑).
Definition 1.7. Let 𝜇 : 𝑌 → 𝑋 be a log resolution of (𝑋, 𝐷, Σ) – that is, 𝜇 is a projective birational
morphism from a smooth variety Y such that 𝜇−1(𝐷) and 𝜇−1 (Σ) are simple normal crossings divisors.
Write the decomposition into irreducible components

Supp(𝜇−1 (𝐷)) = ∪𝑖∈𝑆𝐸𝑖

and let

𝑁𝑖 := ord𝐸𝑖𝐷, 𝜈𝑖 := 1 + ord𝐸𝑖 (𝐾𝑌 /𝑋 ).

We set

𝑆𝑚 := {𝑖 ∈ 𝑆 | 𝜇(𝐸𝑖) ⊂ Σ and 𝑁𝑖 divides 𝑚}.
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For every 𝑖 ∈ 𝑆, we set

𝒳𝑚,𝑖 := {𝛾 ∈ 𝒳𝑚 | 𝛾 lifts to an arc on 𝑌 centered on 𝐸◦
𝑖 },

where 𝐸◦
𝑖 is the complement of ∪ 𝑗∈𝑆\{𝑖 }𝐸 𝑗 in 𝐸𝑖 . Note that the lift of the arc is unique since m is finite,

by the valuative criterion of properness.

Definition 1.8. A log resolution 𝜇 : 𝑌 → 𝑋 of (𝑋, 𝐷, Σ) is called m-separating if, in addition, 𝜇 is an
isomorphism over 𝑋 \ 𝐷, and for any 𝑖 ≠ 𝑗 ∈ 𝑆 with 𝐸𝑖 ∩ 𝐸 𝑗 ≠ ∅, one has 𝑁𝑖 + 𝑁 𝑗 > 𝑚.

This notion appeared with a different name in [38, Lemma 5.17], [39]. The name was coined in
[31] and used in [7]. Starting with a log resolution, one can blow up further smooth centers until an
m-separating one is obtained; see [7, Lemma 2.9]. If 𝜇 is an m-separating log resolution of (𝑋, 𝐷, Σ),
by [15], there is a partition into nonempty smooth irreducible locally closed subvarieties; see also
Proposition 3.2:

𝒳𝑚 =
⊔
𝑖∈𝑆𝑚

𝒳𝑚,𝑖 . (1.1)

Definition 1.9. An m-valuation of (𝑋, 𝐷, Σ) is a divisorial valuation v on X given by 𝐸𝑖 – that is,
𝑣 = ord𝐸𝑖 , for some 𝑖 ∈ 𝑆𝑚 with respect to some log resolution (equivalently, some m-separating log
resolution) 𝜇 of (𝑋, 𝐷, Σ).

Thus, every irreducible component of 𝒳𝑚 arises as the Zariski closure of some 𝒳𝑚,𝑖 with respect to
some m-separating log resolution, and hence, it corresponds to a unique m-valuation of (𝑋, 𝐷, Σ).

Definition 1.10. A contact m-valuation of (𝑋, 𝐷, Σ) is an m-valuation corresponding to an irreducible
component 𝒳𝑚,𝑖 of the m-contact locus 𝒳𝑚 of (𝑋, 𝐷, Σ). A contact valuation of (𝑋, 𝐷, Σ) is a contact
m-valuation for some 𝑚 ≥ 1. A contact valuation can be an 𝑚′-valuation without being a contact 𝑚′-
valuation.

Definition 1.11. An essential m-valuation of (𝑋, 𝐷, Σ) is an m-valuation with center a prime divisor
lying over Σ on every m-separating log resolution of (𝑋, 𝐷, Σ). An essential valuation of (𝑋, 𝐷, Σ) is
an essential m-valuation for some 𝑚 ≥ 1. An essential valuation can be an 𝑚′-valuation without being
an essential 𝑚′-valuation. Contact m-valuations are essential m-valuations by (1.1).

Definition 1.12. Assume D is reduced. A divisorial log terminal valuation (or dlt valuation) of (𝑋, 𝐷, Σ)
is a valuation of X given by a prime divisor lying over Σ in a dlt modification of (𝑋, 𝐷) (see Definition
2.4). A dlt m-valuation of (𝑋, 𝐷, Σ) is a dlt valuation that is also an m-valuation.

Theorem 1.13. Let X be a smooth complex algebraic variety, D a nonzero reduced effective divisor on
X, and Σ a Zariski closed subset of D. Let 𝑚 ≥ 1 be an integer. Then for (𝑋, 𝐷, Σ),

{dlt 𝑚−𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠} ⊂ {contact 𝑚−𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠} ⊂ {essential 𝑚−𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠}. (1.2)

For hyperplane arrangements, all three sets in (1.2) are equal if the log resolution satisfies an additional
property; see Section 4.

Theorem 1.14. If D is a hyperplane arrangement in 𝑋 = C𝑛, and 𝑚 ∈ Z>0, then for (𝑋, 𝐷), the three
sets of m-valuations in (1.2) are equal and consist of the divisorial valuations corresponding to 𝐸𝑖 with
𝑖 ∈ 𝑆𝑚 as in Definition 1.7 for any good m-separating log resolution of (𝑋, 𝐷).

Next, we show that some interesting valuations lie in the sets from (1.2).

Definition 1.15. A jump valuation of (𝑋, 𝐷, Σ) is a valuation given by a prime divisor lying over Σ in
a log resolution of (𝑋, 𝐷, Σ) that contributes with a jumping number to (𝑋, 𝐷); see Definition 3.7.
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Adapting the proof of a result of Smith-Tucker [3, Appendix] we show the following:

Theorem 1.16. Let (𝑋, 𝐷, Σ) be as in Theorem 1.13. If 𝜇 is a log resolution of (𝑋, 𝐷, Σ) and 𝐸𝑖
with 𝑖 ∈ 𝑆 defines a jump valuation of (𝑋, 𝐷, Σ), then 𝐸𝑖 defines a dlt valuation, and hence a contact
m-valuation, of (𝑋, 𝐷, Σ) for every m divisible by 𝑁𝑖 .

The converse does not always hold; see Baumers-Veys [3, §7].

Definition 1.17. The top contact m-valuations of (𝑋, 𝐷, Σ) are the contact m-valuations corresponding
to the minimal-codimension irreducible components of 𝒳𝑚.

Definition 1.18. If D is an effective divisor, and 𝜇 is an m-separating log resolution of (𝑋, 𝐷, Σ), the
m-log canonical threshold of (𝑋, 𝐷, Σ) is

lct𝑚(𝑋, 𝐷, Σ) := min {𝜈𝑖/𝑁𝑖 | 𝑖 ∈ 𝑆𝑚}.

The right-hand side depends on the log resolution if the m-separating condition is dropped. Never-
theless, lct𝑚(𝑋, 𝐷, Σ) is independent of 𝜇 by the following, essentially contained in [37], [15], where it
was stated for the usual log canonical thresholds:

Proposition 1.19. The codimension of 𝒳𝑚 is 𝑚 lct𝑚(𝑋, 𝐷, Σ). The set of top contact m-valuations is
the set of m-valuations (necessarily essential m-valuations) 𝐸𝑖 such that lct𝑚 (𝑋, 𝐷, Σ) = 𝜈𝑖/𝑁𝑖 .

Remark 1.20. (i) Despite the similar appearance, lct𝑚(𝑋, 𝐷, Σ) is not necessarily equal to the usual
log canonical threshold of (𝑋, 𝐷) in a neighborhood of Σ,

lctΣ (𝑋, 𝐷) := min {𝜈𝑖/𝑁𝑖 | 𝑖 ∈ 𝑆 and 𝜇(𝐸𝑖) ∩ Σ ≠ ∅} .

In general, lctΣ (𝑋, 𝐷) ≤ lct𝑚(𝑋, 𝐷, Σ) and the inequality can be strict.
(ii) Every prime divisor 𝐸𝑖 lying over Σ in some log resolution of (𝑋, 𝐷, Σ), such that 𝐸𝑖 computes

lctΣ (𝑋, 𝐷), gives a top contact m-valuation of (𝑋, 𝐷, Σ) for all m divisible by 𝑁𝑖 .
(iii) The numbers lct𝑚(𝑋, 𝐷, Σ) and the number of top contact m-valuations of (𝑋, 𝐷, Σ) for all

𝑚 ≥ 1 are read from a single log resolution 𝜇 of (𝑋, 𝐷, Σ) by applying the virtual Poincaré polynomial
realization to the expression in terms of 𝜇 of the motivic zeta function of (𝑋, 𝐷, Σ), cf. [9, Ch. 2,
Corollary 3.5.12.].

Next, we look at cases when D is has mild singularities.

Theorem 1.21. Suppose D is reduced and (𝑋, 𝐷) is log canonical. For (𝑋, 𝐷, Σ):
(i) If lct𝑚(𝑋, 𝐷, Σ) = 1, then {dlt 𝑚-valuations} = {top contact 𝑚-valuations}.
(ii) If lct𝑚 (𝑋, 𝐷, Σ) ≠ 1, then {dlt 𝑚-valuations} = ∅.
(iii) If Σ = 𝐷, then for every 𝑚 ≥ 1,

{dlt 𝑚-valuations} = {contact 𝑚-valuations} = {top contact 𝑚-valuations}.

(iv) The last three sets are singletons, consisting of the valuation defined by D if, in addition, D has
rational singularities.

Part (ii) implies that if a singular hypersurface D in a smooth variety X has rational singularities,
then there are no dlt valuations for (𝑋, 𝐷, 𝐷𝑠𝑖𝑛𝑔). One wonders then if there is chaos or order among
the contact valuations in this case. We address some examples in Section 5.

Assume now that X is a smooth surface. For simplicity, we state the results for an irreducible formal
plane curve germ singularity (C2, 𝐶, 0). A minimal m-separating log resolution exists. Its resolution
graph Γ𝑚 is a refinement of Γ𝑚−1, easily obtained by inserting vertices on edges until the m-separating
condition is satisfied; Γ1 is the resolution graph of the minimal log resolution. The essential m-valuations
correspond to the subset 𝑆𝑚 (as in Definition 1.7) of vertices of Γ𝑚.
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Figure 1. Resolution graph Γ𝑚 for the minimal m-separating log resolution, with the irreducible
components (if nonempty) of the m-contact locus 𝒳𝑚 in gray.

We label the rupture vertices by 𝐸𝑅1 , . . . , 𝐸𝑅𝑔 in the order of their appearance in the resolution
process. Here, 𝑔 ≥ 1 is the number of Puiseux pairs of the germ. The strict transform of C is denoted by
�̃�. We denote by 𝑍 𝑗 , for 𝑗 = 1, . . . , 𝑔, the subset of arcs in the contact locus 𝒳𝑚 = 𝒳𝑚 (C

2, 𝐶, 0) which
lift to one of the divisors from the vertical groups in Γ𝑚 as in Figure 1. Denote by 𝑆′𝑚 the remaining
vertices in Γ𝑚 which also lie in 𝑆𝑚. We let 𝒳𝑚,𝑖 for 𝑖 ∈ 𝑆𝑚 be as in (1.1).

Theorem 1.22. Let (C2, 𝐶, 𝑂) be an irreducible formal plane curve germ singularity with 𝑔 ≥ 1 Puiseux
pairs. Let 𝑚 ≥ 1 be an integer. Then

𝒳𝑚 =
𝑔⊔
𝑗=1

𝑍 𝑗 �
⊔
𝑖∈𝑆′𝑚

𝒳𝑚,𝑖

is a disjoint union decomposition such that, in the Zariski topology,
(i) Each nonempty set in the decomposition is irreducible and a connected component of 𝒳𝑚.
(ii) 𝒳𝑚,𝑖 is nonempty for 𝑖 ∈ 𝑆′𝑚.
(iii) 𝑍 𝑗 is nonempty if and only if there exists a vertex 𝑖 ∈ 𝑆𝑚 in the j-th vertical group in Figure 1.

If 𝐸𝑅1 is not in 𝑆𝑚, then the vertices with 𝑖 ∈ 𝑆𝑚 in the first vertical group can only appear on one side
of 𝐸𝑅1 . If 𝑍 𝑗 is nonempty, the unique vertex 𝑖0 ∈ 𝑆𝑚 in the j-th vertical group that is the closest to the
rupture divisor 𝐸𝑅 𝑗 (it could be 𝐸𝑅 𝑗 itself) satisfies 𝑍 𝑗 = 𝒳𝑚,𝑖0 .

This solves the embedded Nash problem for irreducible formal plane curve germs. The dlt m-
valuations correspond to the points in 𝑆𝑚 on the horizontal path from 𝐸𝑅1 to �̃� in Γ𝑚 by Proposition 6.6.

Organization. In Section 2, we recall facts about relative minimal models. In Section 3, we recall
the arc spaces and contact loci, and prove Theorem 1.13, Theorem 1.16, Proposition 1.19 and Theorem
1.21. In Section 4, we address hyperplane arrangements. In Section 5, we look at some hypersurfaces
with rational singularities. In Section 6, we characterize the essential and the dlt valuations in terms of
the resolution graph for curves on smooth surfaces. In Section 7, we prove Theorem 1.22.

2. Relative minimal models

We recall some basic terminology and facts about minimal models; cf. [28, 26]. A divisor on a normal
complex variety X will mean a Weil divisor. If we allow Q-coefficients, we refer to it as a Q-divisor. If
𝐷1, 𝐷2 are Q-divisors, 𝐷1 ≥ 𝐷2 means that the inequality is satisfied by the coefficients of each prime
divisor. If D is a divisor, recall that O𝑋 (𝐷) denotes the sheaf of rational functions g with div(𝑔) +𝐷 ≥ 0.
It is a reflexive sheaf of rank 1, and it is locally free if and only if D is Cartier. We say that X isQ-factorial
if every Q-divisor is Q-Cartier.
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Definition 2.1. Let (𝑋, 𝐷) be a pair consisting of a normal complex variety X and a Q-divisor D on
X such that 𝐾𝑋 + 𝐷 is Q-Cartier. If E is a prime divisor over X, the log discrepancy of E with respect
to (𝑋, 𝐷), denoted 𝑎(𝐸, 𝑋, 𝐷), is defined as follows. Let 𝜇 : 𝑌 → 𝑋 be a birational morphism from a
normal variety Y. Then there is a Q-linear equivalence of Q-Cartier Q-divisors

𝐾𝑌 + 𝜇−1
∗ 𝐷 + Ex(𝜇) ∼

Q
𝜇∗(𝐾𝑋 + 𝐷) +

∑
𝑖∈𝐼

𝑎(𝐸𝑖 , 𝑋, 𝐷)𝐸𝑖

for some 𝑎(𝐸𝑖 , 𝑋, 𝐷) ∈ Q, where 𝜇−1
∗ denotes the strict transform, and Ex(𝜇) =

∑
𝑖∈𝐼 𝐸𝑖 is the sum of the

exceptional prime divisors with coefficients 1. If 𝐸 = 𝐸𝑖 for some 𝜇, define 𝑎(𝐸, 𝑋, 𝐷) = 𝑎(𝐸𝑖 , 𝑋, 𝐷). If
E is an irreducible component of D, define 𝑎(𝐸, 𝑋, 𝐷) = 1−ord𝐸𝐷. For all other prime divisors E over
X, set 𝑎(𝐸, 𝑋, 𝐷) = 0. This definition is independent of the choice of 𝜇. Note that 𝑎(𝐸𝑖 , 𝑋, 𝐷) = 𝜈𝑖 −𝑁𝑖
for all 𝑖 ∈ 𝐼, where 𝜈𝑖 − 1 = ord𝐸𝑖 (𝐾𝑌 /𝑋 ) and 𝑁𝑖 = ord𝐸𝑖𝐷.

Definition 2.2. Let (𝑋, 𝐷) be a pair consisting of a normal variety X and aQ-divisor 𝐷 =
∑
𝑖 𝑎𝑖𝐷𝑖 such

that 𝐾𝑋 + 𝐷 is Q-Cartier. We assume that D is a boundary – that is, 0 ≤ 𝑎𝑖 ≤ 1 for all i. Then we say
that (𝑋, 𝐷) is a divisorial log terminal pair (or dlt pair) if there is a closed subset 𝑍 ⊂ 𝑋 such that 𝑋 \ 𝑍
is smooth, 𝐷 |𝑋\𝑍 is a simple normal crossings divisor, and if for a (equivalently, for all) log resolution
𝜇 : 𝑌 → 𝑋 of (𝑋, 𝐷) with 𝜇−1(𝑍) pure of codimension 1, the condition 𝑎(𝐸, 𝑋, 𝐷) > 0 is satisfied for
every prime divisor 𝐸 ⊂ 𝜇−1(𝑍). In other words, a dlt pair is snc outside the klt locus Z. We say that
(𝑋, 𝐷) is a log canonical pair if 𝑎(𝐸, 𝑋, 𝐷) ≥ 0 for all prime divisors E over X. In particular, a dlt pair
is log canonical.

Definition 2.3. Let 𝜇 : 𝑌 → 𝑋 be a projective morphism between normal varieties and let 𝐾𝑌 + Δ be a
Q-Cartier Q-divisor. Then 𝐾𝑌 +Δ is semiample over X if there exist a morphism 𝜙 : 𝑌 → 𝑍 to a normal
variety Z over X and a Q-divisor A on Z which is ample over X, such that 𝐾𝑌 + Δ ∼Q 𝜙∗𝐴.

Definition 2.4. Let (𝑌,Δ) be a dlt pair, 𝜇 : 𝑌 → 𝑋 a projective morphism of complex algebraic
varieties, and D a boundary on X.

(i) We say that (𝑌,Δ) is a minimal model (respectively good minimal model) over X if 𝐾𝑌 + Δ is
𝜇-nef (resp. 𝜇-semiample).

(ii) We say that (𝑌,Δ) is a dlt modification (resp. good dlt modification) of (𝑋, 𝐷) if it is a (good)
minimal model over X and Δ = 𝜇−1

∗ 𝐷 + Ex(𝜇).
(iii) Let (𝑌 ′,Δ ′) be a pair sitting in a diagram

(𝑌,Δ)

𝜇
���

��
��

��
�

𝜙 ��������� (𝑌 ′,Δ ′)

𝜇′�����
��
��
��

𝑋.

(2.1)

We say (𝑌 ′,Δ ′) is a minimal model (resp. good minimal model) of (𝑌,Δ) over X if

(a) 𝜙 : 𝑌 � 𝑌 ′ is a birational contraction – that is, 𝜙−1 has no exceptional divisors,
(b) 𝜇′ : 𝑌 ′ → 𝑋 a projective morphism, and 𝜇′ ◦ 𝜙 = 𝜇 as birational maps,
(c) 𝑌 ′ is a normal variety,
(d) Δ ′ = 𝜙∗Δ ,
(e) 𝑎(𝐸,𝑌,Δ) < 𝑎(𝐸,𝑌 ′,Δ ′) for every 𝜙-exceptional divisor 𝐸 ⊂ 𝑌 ,
(f) 𝐾𝑌 ′ + Δ ′ is Q-Cartier and 𝜇′-nef (resp. 𝜇′-semiample).

The conditions (a)–(f) imply that 𝑎(𝐸,𝑌,Δ) ≤ 𝑎(𝐸,𝑌 ′,Δ ′) for all divisors E over Y by [26,
Proposition 1.22], but it is not automatically clear if (𝑌 ′,Δ ′) is dlt.

Theorem 2.5 [26, Corollary 1.23]. If (𝑌 ′,Δ ′) is as in Definition 2.4 and it is obtained by running the
MMP for (𝑌,Δ) over X, then
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(i) (𝑌 ′,Δ ′) is a dlt pair, and
(ii) For any prime divisor E over Y, 𝑎(𝐸,𝑌,Δ) < 𝑎(𝐸,𝑌 ′,Δ ′) iff 𝜙 is not a local isomorphism at the

generic point of the center of E on Y.

Regarding the validity of the minimal model program, one has the following. While it is not stated
in the same way as in [40], the proof of the main result contains it.

Theorem 2.6 (Odaka-Xu [40]). Let X be a normal quasi-projective variety and D a boundary on X such
that 𝐾𝑋 + 𝐷 is Q-Cartier (resp. X is also Q-factorial). For any log resolution 𝜇 : 𝑌 → 𝑋 of (𝑋, 𝐷), the
minimal model program for (𝑌,Δ = 𝜇−1

∗ 𝐷 + Ex(𝜇)) over X runs – that is, flips exist – and terminates
with good dlt minimal models (resp. good dlt Q-factorial minimal models) of (𝑌,Δ) over X.

One can characterize which divisors get contracted on minimal models using stable base loci:

Definition 2.7. Let 𝜇 : 𝑌 → 𝑋 be a projective morphism of normal varieties. Assume that X is affine
(for our applications, this case suffices). If Δ is a Q-Cartier Q-divisor on Y, the stable base locus of Δ
over X is

B(Δ/𝑋) =
⋂

𝑘∈N, 𝑘Δ is Cartier

⋂
𝑠∈𝐻 0 (𝑌 ,O𝑌 (𝑘Δ))

Supp(div(𝑠)).

Proposition 2.8 ([26, 1.21], [20, Lemma 2.4]). Let 𝜇 : 𝑌 → 𝑋 be a projective morphism of varieties,
(𝑌,Δ) a dlt pair, and 𝜙 : 𝑌�𝑌 ′, 𝜓 : 𝑌�𝑌 ′′ two minimal models of (𝑌,Δ) over X. Then

(a) 𝑌 ′�𝑌 ′′ is an isomorphism in codimension 1 such that for all prime divisors E over X, one has
𝑎(𝐸,𝑌 ′, 𝜙∗Δ) = 𝑎(𝐸,𝑌 ′′, 𝜓∗Δ).

(b) If (𝑌 ′, 𝜙∗Δ) is a dlt good minimal model of (𝑌,Δ) over X, so is (𝑌 ′′, 𝜓∗Δ).
(c) If (𝑌 ′, 𝜙∗Δ) is a dlt good minimal model of (𝑌,Δ) over X, then the set of 𝜙-exceptional divisors

is the set of divisors contained in the stable base locus B(𝐾𝑌 + Δ/𝑋).

One can compare minimal models obtained from a tower of projective birational morphisms:

Proposition 2.9 [26, 1.27]. Let 𝜇 : 𝑌 → 𝑋 be a projective morphism of varieties. Let 𝜋 : 𝑌1 → 𝑌
be a projective birational morphism. Let Δ1 and Δ be Q-divisors on 𝑌1 and Y, respectively, such that
Δ = 𝜋∗Δ1. Assume that (𝑌1,Δ1), (𝑌,Δ) are dlt pairs and that 𝑎(𝐸,𝑌1,Δ1) < 𝑎(𝐸,𝑌,Δ) for every prime
𝜋-exceptional divisor 𝐸 ⊂ 𝑌1. Then every minimal model of (𝑌,Δ) over X is also a minimal model of
(𝑌1,Δ1) over X.

A consequence of this proposition is the following:

Lemma 2.10. Let X be a complex algebraic variety, D a boundary divisor on X. Suppose that (𝑌 ′,Δ ′) is
a dlt modification of (𝑋, 𝐷). Then (𝑌 ′,Δ ′) is a minimal model of (𝑌,Δ) over X for any log resolution 𝜙 :
𝑌 → 𝑌 ′ of (𝑌 ′,Δ ′) that is an isomorphism over the non-klt locus of (𝑌 ′,Δ ′), where Δ = 𝜙−1

∗ Δ ′ +Ex(𝜙).

Proof. Note that Δ is also equal to 𝜇−1
∗ 𝐷 + Ex(𝜇), where 𝜇 = 𝜇′ ◦ 𝜙. Since (𝑌 ′,Δ ′) is a dlt pair,

𝑎(𝐸,𝑌 ′,Δ ′) > 0 for every 𝜙-exceptional divisor E. For such E, 𝑎(𝐸,𝑌,Δ) = 0. The claim then follows
from Proposition 2.9. �

The following lemma will be useful for the characterization of dlt m-valuations:

Lemma 2.11. Let X be smooth affine variety, D a boundary on X, 𝜇 : 𝑌 → 𝑋 a log resolution of (𝑋, 𝐷),
and Δ = 𝜇−1

∗ 𝐷 + Ex(𝜇). Let 𝜋 : 𝑌1 → 𝑌 be a projective birational morphism such that 𝜇1 = 𝜇 ◦ 𝜋 is
a log resolution of (𝑋, 𝐷), and let Δ1 = (𝜇1)

−1
∗ 𝐷 + Ex(𝜇1). Let F be a prime divisor on 𝑌1 such that

𝐸 = 𝜋∗𝐹 is a nonzero divisor. Then F does not get contracted on minimal models of (𝑌1,Δ1) over X if
and only if E does not get contracted on minimal models of (𝑌,Δ) over X.

Proof. Theorem 2.6 applies and gives a good minimal models for 𝜇 and 𝜇1. Then by Proposition 2.8,
all minimal models are good, and we can use stable base loci to describe which divisors get contracted
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or not on minimal models. Suppose that F does not get contracted. Then there is some 𝑘 ∈ N such that
F is not in the base locus of 𝑘 (𝐾𝑌1 + Δ1) over X.

Let 𝐺 =
∑
𝐸′ 𝑎(𝐸 ′, 𝑋, 𝐷)𝐸 ′, where the sum is over the 𝜇-exceptional prime divisors 𝐸 ′ in Y, so

𝐾𝑌 + Δ = 𝜇∗(𝐾𝑋 + 𝐷) +𝐺. Let 𝑃 =
∑
𝐹 ′ 𝑎(𝐹 ′, 𝑌 ,Δ)𝐹 ′, where the sum is over the 𝜋-exceptional prime

divisors 𝐹 ′ in 𝑌1. Then 𝐾𝑌1 + Δ1 = 𝜋∗(𝐾𝑌 + Δ) + 𝑃. Then P is effective since (𝑌,Δ) is dlt. Then

𝐾𝑌1 + Δ1 = 𝜇∗1 (𝐾𝑋 + 𝐷) + 𝜋∗𝐺 + 𝑃 ∼𝜇1 𝜋
∗𝐺 + 𝑃.

Thus, there is a strict inclusion of vector subspaces

𝐻0(𝑌1,O𝑌1 (𝑘 (𝜋
∗𝐺 + 𝑃) − 𝐹)) � 𝐻0 (𝑌1,O𝑌1 (𝑘 (𝜋

∗𝐺 + 𝑃)))

because F is not in the base locus of 𝑘 (𝐾𝑌1 + Δ1) over X. By the definition of 𝜋∗, this is the same as

𝐻0(𝑌, 𝜋∗O𝑌1 (𝑘 (𝜋
∗𝐺 + 𝑃) − 𝐹)) � 𝐻0(𝑌, 𝜋∗O𝑌1 (𝑘 (𝜋

∗𝐺 + 𝑃))).

Now,

𝜋∗O𝑌1 (𝑘 (𝜋
∗𝐺 + 𝑃)) = O𝑌 (𝑘𝐺) ⊗O𝑌 𝜋∗O𝑌1 (𝑘𝑃) = O𝑌 (𝑘𝐺),

the first equality due to the projection formula, the second equality due to 𝑘𝑃 being effective and 𝜋-
exceptional. Similarly,

𝜋∗O𝑌1 (𝑘 (𝜋
∗𝐺 + 𝑃) − 𝐹) = O𝑌 (𝑘𝐺) ⊗O𝑌 𝜋∗O𝑌1 (𝑘𝑃 − 𝐹) = O𝑌 (𝑘𝐺 − 𝐸),

tha last equality due to F being the strict transform of E. Thus, the above strict inclusion is

𝐻0 (𝑌,O𝑌 (𝑘𝐺 − 𝐸)) � 𝐻0(𝑌,O𝑌 (𝑘𝐺)),

and so E is not contained in B(𝐺/𝑋) = B(𝐾𝑌 + Δ/𝑋). Hence, E does not get contracted on minimal
models of (𝑌,Δ) over X. Also, it is clear that the proof runs in the converse direction as well. �

3. Dlt and contact valuations

3.1. Arcs, jets and contact loci.

For 𝑙 ∈ N, the l-jet space ℒ𝑙 (𝑋) of a complex variety X is the C-scheme of finite type whose set of
A-points, for all C-algebras A, consists of all morphisms of C-schemes Spec 𝐴[𝑡]/(𝑡𝑙+1) → 𝑋 . The
arc space ℒ(𝑋) is the C-scheme of infinite type whose A-points are the morphisms of C-schemes
Spec 𝐴�𝑡� → 𝑋 . Truncation of arcs and jets gives natural morphism

𝜋𝑙 : ℒ(𝑋) → ℒ𝑙 (𝑋), 𝜋𝑙,𝑙′ : ℒ𝑙 (𝑋) → ℒ𝑙′ (𝑋)

for 𝑙, 𝑙 ′ ∈ N with 𝑙 ≥ 𝑙 ′.
From now on, we use the setup from the introduction: X is smooth, D an effective divisor, Σ ≠ ∅

a closed subset of 𝐷𝑟𝑒𝑑 . In this setting, we have defined the m-contact locus 𝒳(𝑋, 𝐷, Σ) for nonzero
𝑚 ∈ N; see Definition 1.6. An alternative definition in terms of jet spaces of D is

𝒳𝑚(𝑋, 𝐷, Σ) =
[
𝜋−1
𝑚−1(ℒ𝑚−1 (𝐷)) \ 𝜋−1

𝑚 (ℒ𝑚 (𝐷))
]
∩ 𝜋−1

0 (Σ). (3.1)

If D is reduced and smooth, then the image 𝜋𝑚 (𝒳𝑚(𝑋, 𝐷, Σ)) in ℒ𝑚 (𝑋) is Zariski locally trival fibered
by C𝑚𝑛−𝑚+1 \ C𝑚𝑛−𝑚 over Σ, where 𝑛 = dim 𝑋 . Hence, 𝒳𝑚 (𝑋, 𝐷, Σ) = 𝜋−1

𝑚 𝜋𝑚 (𝒳𝑚(𝑋, 𝐷, Σ)) has
codimension 𝑚 + codim𝐷Σ and is irreducible if Σ is.
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The main reason to use m-separating log resolutions in relation with contact loci is the next proposi-
tion. The version for restricted contact loci has appeared in [7, Lemma 2.1, Lemma 2.6]; see also [15].
We use the notation introduced in 1.3.

Proposition 3.2. Let (𝑋, 𝐷, Σ) be such that X is a smooth complex algebraic variety, 𝐷 ≠ 0 is an
effective integral divisor on X, and Σ ≠ ∅ is a Zariski closed subset of the support of D. Let 𝑚 ∈ Z>0
and let 𝜇 : 𝑌 → 𝑋 be an m-separating log resolution of (𝑋, 𝐷, Σ). Then there is a disjoint union
decomposition of the m-contact locus of (𝑋, 𝐷, Σ) as in (1.1) such that, for all 𝑙 ∈ N large enough,
𝒳𝑚,𝑖 is the inverse image under 𝜋𝑙 in the arc space ℒ(𝑋) of a nonempty smooth irreducible Zariski
locally closed subset 𝒳𝑙

𝑚,𝑖 of codimension 𝑚𝜈𝑖/𝑁𝑖 in the l-jet space ℒ𝑙 (𝑋). Moreover, 𝒳𝑙
𝑚,𝑖 is homotopy

equivalent to the normal circle bundle of 𝐸◦
𝑖 .

Proof. The proof is similar to that of [7, Lemma 2.1, Lemma 2.6] for restricted contact loci. The
differences in the proof are as follows. Unlike for restricted contact loci, one does not need to consider
the finite unramified covers �̃�◦

𝑖 → 𝐸◦
𝑖 from the proof of [7, Lemma 2.6]. Thus, ‘smooth variety’ in

the statement of [7, Lemma 2.6] means possibly finitely many disjoint copies of an irreducible smooth
variety, while in our case, we have irreducibility of 𝒳𝑙

𝑚,𝑖 . Another difference is that the varieties 𝒳𝑙
𝑚,𝑖

have dimension one more than the their version for restricted contact loci. The extra coordinate takes
any value in C∗, this being the coefficient of 𝑡𝑘𝑖 in the last line of the proof of [7, Lemma 2.6]. This
identifies the analog of the morphism �̃�𝑙0 from that proof, up to homotopy, with the C∗-bundle on 𝐸◦

𝑖
obtained by removing the zero section of the normal bundle. �

Proof of Proposition 1.19. It follows directly from the previous proposition. �

3.3. Dlt valuations.

From now on, we also assume that D is a reduced divisor on X. If 𝜇 : 𝑌 → 𝑋 is an m-separating log
resolution of (𝑋, 𝐷, Σ), we define as in the introduction Δ = 𝜇∗(𝐷)𝑟𝑒𝑑 =

∑
𝑖∈𝑆 𝐸𝑖 . By Theorem 2.6,

(𝑋, 𝐷) admits dlt modifications, and (𝑌,Δ) admits minimal models over X.

Lemma 3.4. Any dlt valuation v of (𝑋, 𝐷, Σ) is an m-valuation of (𝑋, 𝐷, Σ) for any m divisible by
𝑣(𝐷). Moreover, the center of v is a prime divisor on some minimal model of (𝑌,Δ) over X for some
m-separating log resolution 𝜇 : 𝑌 → 𝑋 of (𝑋, 𝐷, Σ).

Proof. Suppose v has center a prime divisor E on some dlt modification (𝑌 ′,Δ ′) of (𝑋, 𝐷) such that E
lies over Σ. Note that the dlt modification restricts to an isomorphism𝑌 ′\Δ ′ ∼

−→ 𝑋 \𝐷 by Proposition 2.9.
Take m divisible by 𝑣(𝐷) = ord𝐸𝐷. By sufficiently blowing up the klt locus of (𝑌 ′,Δ ′), we obtain an
m-separating log resolution 𝜇 : 𝑌 → 𝑋; see [7, Proof of Lemma 2.9]. Thus, v is an m-valuation. By
Lemma 2.10, (𝑌 ′,Δ ′) is a minimal model of (𝑌,Δ) over X if Δ = (𝜇∗𝐷)𝑟𝑒𝑑 . �

Lemma 3.5. If 𝜇 : 𝑌 → 𝑋 is an m-separating log resolution of (𝑋, 𝐷, Σ) and 𝐸𝑖 ⊂ 𝑌 is the center of a
dlt m-valuation of (𝑋, 𝐷, Σ), then 𝐸𝑖 does not get contracted on minimal models of (𝑌,Δ).

Proof. Suppose that 𝐸𝑖 is the birational strict transform of F, a prime divisor on another m-separating
log resolution 𝜇1 : 𝑌1 → 𝑋 of (𝑋, 𝐷, Σ) such that F does not get contracted on minimal models of
(𝑌1,Δ1 = 𝜇∗1 (𝐷)𝑟𝑒𝑑) over X. By performing further blowups of smooth centers, we can find a log
resolution 𝜇2 : 𝑌2 → 𝑋 which factors through both 𝜇 and 𝜇1 and is an isomorphism over 𝑋 \ 𝐷. By
blowing up further, we can assume that 𝜇2 is m-separating, by [7, Proof of Lemma 2.9]. Then Lemma
2.11 implies first that the strict transform of F in 𝑌2 does not get contracted on minimal models of
(𝑌2,Δ2 = 𝜇∗2(𝐷)𝑟𝑒𝑑), and then that 𝐸𝑖 does not get contracted on minimal models of (𝑌,Δ). �

Proof of Theorem 1.13. Only the first inclusion in (1.2) needs to be proven. We fix a dlt m-valuation
of (𝑋, 𝐷, Σ). By Lemma 3.5, it is given by a divisor 𝐸𝑖 on some m-separating log resolution Y for
some fixed 𝑖 ∈ 𝑆𝑚, such that 𝐸𝑖 does not get contracted on any minimal model of (𝑌,Δ) over X, with
Δ = 𝜇∗(𝐷)𝑟𝑒𝑑 =

∑
𝑘∈𝑆 𝐸𝑘 . We want to show that the Zariski closure 𝒳𝑚,𝑖 is an irreducible component
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of 𝒳𝑚. Suppose that it is not. Then there exists 𝑗 ∈ 𝑆𝑚 \ {𝑖} such that 𝒳𝑚,𝑖 ⊂ 𝒳𝑚, 𝑗 , and the latter is
an irreducible component of 𝒳𝑚, by the decomposition (1.1). In particular, the codimension of 𝒳𝑚,𝑖 is
strictly bigger than the codimension of 𝒳𝑚, 𝑗 . This is equivalent to

𝑎(𝐸𝑖 , 𝑋, 𝐷)𝑚/𝑁𝑖 > 𝑎(𝐸 𝑗 , 𝑋, 𝐷)𝑚/𝑁 𝑗 (3.2)

since 𝑎(𝐸𝑘 , 𝑋, 𝐷) = 𝜈𝑘 − 𝑁𝑘 and codim 𝒳𝑚,𝑘 = 𝑚𝜈𝑘/𝑁𝑘 for all 𝑘 ∈ 𝑆𝑚 by Proposition 3.2.
We fix a minimal model (𝑌 ′,Δ ′, 𝜙, 𝜇′) of (𝑌,Δ) over X as in (2.1). We have that 𝐸𝑖 is not

𝜙-exceptional. From now on, we will denote by 𝐸 ′
𝑘 the image 𝜙∗𝐸𝑘 for 𝑘 ∈ 𝑆, and by 𝑆′ = {𝑘 ∈

𝑆 | 𝐸 ′
𝑘 ≠ 0}. Thus, Δ ′ = 𝜙∗Δ = (𝜇′)∗ (𝐷)𝑟𝑒𝑑 =

∑
𝑘∈𝑆′ 𝐸

′
𝑘 .

Pick an arc 𝛾 ∈ 𝒳𝑚,𝑖 . By assumption, 𝛾 is a limit of arcs in 𝒳𝑚, 𝑗 . Using the curve selection lemma
(see [7, Proof of Lemma 2.5]), one can assume that there exists a complex analytic surface germ

𝛼 : (C2, (0, 0)) → (𝑋, 𝛾(0)), (𝑡, 𝑠) ↦→ 𝛼(𝑡, 𝑠)

such that 𝛼0 (𝑡) := 𝛼(𝑡, 0) = 𝛾(𝑡), and 𝛼𝑠 (𝑡) := 𝛼(𝑡, 𝑠) is an arc lifting through 𝐸◦
𝑗 for all 𝑠 ≠ 0. By

assumption, the induced meromorphic map �̃� : C2 � 𝑌 has 2-dimensional image and has indeterminacy.
Since 𝐸𝑖 is not 𝜙-exceptional, the composition �̃�′ = 𝜙 ◦ �̃� : C2 � 𝑌 ′ also has 2-dimensional image and
has indeterminacy. Using a sequence of blowups, one resolves simultaneously the indeterminacy of �̃�
and �̃�′ to obtain a commutative diagram

𝑍

𝛽 ����
���

���
��

𝛽′

������
�����

�����
�����

�����
���

𝜎

��

(𝑌,Δ)
𝜇

���
��

��
��

��
𝜙 ��������� (𝑌 ′, 𝜙∗Δ)

𝜇′
����
��
��
��
�

(C2, 0)

�̃�

��					 �̃�′

		













𝛼

�� 𝑋.

Here, we work with a small neighborhood of the origin in C2.
We write 𝐿𝑠 for the line {(𝑡, 𝑠) | 𝑡 ∈ C} in C2. Denote by 𝜎−1(0) = ∪𝑎∈𝐴𝐹𝑎 the irreducible

components of the exceptional divisor of 𝜎. Then we have rationally equivalent cycles

𝜎∗𝐿𝑠 = �̃�𝑠 (for 𝑠 ≠ 0) and 𝜎∗𝐿0 = �̃�0 +
∑
𝑎∈𝐴

𝑏𝑎𝐹𝑎,

for some integers 𝑏𝑎 > 0 and 𝐹𝑎 𝜎-exceptional prime divisors, where �̃�𝑠 denotes the strict transform.
Let G be the strict transform under 𝜎 of the s-axis in C2. Then 𝛽(𝐺) ⊂ 𝐸 𝑗 since 𝐸 𝑗 is proper and

�̃�𝑠 (0) ∈ 𝐸◦
𝑗 for generic small 𝑠 ≠ 0. The inverse image in Z under 𝛽 of any subset of the support of Δ

is contained in (∪𝑎𝐹𝑎) ∪ 𝐺. This is because 𝛼−1(𝐷) is contained in the s-axis, shrinking to a smaller
neighborhood of 0 ∈ C2 if necessary, and Z factors through C2 ×𝑋 𝑌 – similarly for 𝛽′−1 of subsets of
the support of 𝜙∗Δ .

Consider the Q-divisor on 𝑌 ′

𝑊 :=
∑
𝑘∈𝑆′

𝑎(𝐸 ′
𝑘 , 𝑋, 𝐷)𝐸 ′

𝑘 =
∑
𝑘∈𝑆′

𝑎(𝐸𝑘 , 𝑋, 𝐷)𝐸 ′
𝑘 .

Then W is 𝜇′-exceptional, and there is a Q-linear equivalence of Q-Cartier Q-divisors

𝑊 = 𝐾𝑌 ′ + Δ ′ − 𝜇′∗ (𝐾𝑋 + 𝐷)
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by the definition of log discrepancy. As above, 𝛽′∗𝑊 is supported on (∪𝑎𝐹𝑎) ∪ 𝐺. The intersection
products

𝜎∗𝐿𝑠 · 𝛽
′∗𝑊 = 𝜎∗𝐿0 · 𝛽

′∗𝑊 (3.3)

are well-defined and are equal for all small s since the same is true for the intersection with the compact
𝐹𝑎, while for the non-compact G, 𝜎∗𝐿𝑠 · 𝐺 = 1 for all s by the projection formula. We will derive
a contradiction from computing both sides. For the right-hand side, we use the nefness property of
𝐾𝑌 ′ + Δ ′. For the left-hand side, we use the property that log discrepancies do not decrease on relative
minimal models.

The right-hand side is

𝜎∗𝐿0 · 𝛽
′∗𝑊 = 𝛽′∗𝜎

∗𝐿0 ·𝑊 = 𝛽′∗ �̃�0 ·𝑊 +
∑
𝑎∈𝐴

𝑏𝑎𝛽
′
∗𝐹𝑎 ·𝑊.

Since 𝐸𝑖 is not 𝜙-exceptional, 𝛽′∗ �̃�0 · 𝐸 ′
𝑘 = 0 if 𝑘 ≠ 𝑖 and 𝛽′∗ �̃�0 · 𝐸 ′

𝑖 = ord𝛾 (𝐸𝑖) = 𝑚/𝑁𝑖 . Thus,
𝛽′∗ �̃�0 · 𝑊 = 𝑎(𝐸𝑖 , 𝑋, 𝐷)𝑚/𝑁𝑖 . Further, since 𝛽′∗𝐹𝑎 is contained in the 𝜇′-exceptional locus of 𝑌 ′,
𝛽′∗𝐹𝑎 · 𝜇′∗ (𝐾𝑋 + 𝐷) = 0. Thus, 𝛽′∗𝐹𝑎 ·𝑊 = 𝛽′∗𝐹𝑎 · (𝐾𝑌 ′ + Δ ′), and this is ≥ 0 by the 𝜇′-nefness of
𝐾𝑌 ′ + Δ ′. Since 𝑏𝑎 ≥ 0, we have obtained that

𝜎∗𝐿0 · 𝛽
′∗𝑊 ≥ 𝑎(𝐸𝑖 , 𝑋, 𝐷)𝑚/𝑁𝑖 . (3.4)

However, for 𝑠 ≠ 0,

𝜎∗𝐿𝑠 · 𝛽
′∗𝑊 = �̃�𝑠 · 𝛽

′∗𝑊.

Note that in general it is not necessarily true for divisors that 𝛽∗ ◦ 𝜙∗ = 𝛽′∗ since 𝜙 is only a birational
map and not a morphism; see [26, 1.20]. However, 𝜙 is a morphism in codimension 1. Hence, 𝜙 is a
morphism on a neighborhood in Y of a general point of 𝐸 𝑗 . We can assume the center of the arc �̃�𝑠 is
such a general point of 𝐸◦

𝑗 . Then

�̃�𝑠 · 𝛽
′∗𝑊 = 𝛽∗𝐿𝑠 · 𝜙

∗𝑊.

The only contribution to this product is from 𝐸 𝑗 and its coefficient in 𝜙∗𝑊 . We can estimate it as follows.
One has by the definition of log discrepancy that

𝐾𝑌 + Δ = 𝜙∗(𝐾𝑌 ′ + Δ ′) +
∑
𝑘∈𝑆\𝑆′

𝑎(𝐸𝑘 , 𝑌
′,Δ ′)𝐸𝑘 ,

where the sum is over the 𝜙-exceptional divisors in Y and

𝐾𝑌 + Δ = 𝜇∗(𝐾𝑋 + 𝐷) +
∑
𝑘∈𝑆

𝑎(𝐸𝑘 , 𝑋, 𝐷)𝐸𝑘 .

Note that on divisors 𝜙∗ ◦ 𝜇′∗ = 𝜇∗ since 𝜇′ is a morphism (see [26, 1.20.1]); hence. 𝜇∗(𝐾𝑋 + 𝐷) =
𝜙∗𝜇′∗ (𝐾𝑋 + 𝐷). Thus,

𝜙∗𝑊 =
∑
𝑘∈𝑆

(𝑎(𝐸𝑘 , 𝑋, 𝐷) − 𝑎(𝐸𝑘 , 𝑌
′,Δ ′))𝐸𝑘

since 𝑎(𝐸𝑘 , 𝑌 ′,Δ ′) = 0 if 𝑘 ∈ 𝑆′. Hence,

�̃�𝑠 · 𝛽
′∗𝑊 = (𝑎(𝐸 𝑗 , 𝑋, 𝐷) − 𝑎(𝐸 𝑗 , 𝑌

′,Δ ′))𝑚/𝑁 𝑗 .
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By the definition of minimal models of (𝑌,Δ) over X, 𝑎(𝐸 𝑗 , 𝑌 ′,Δ ′) ≥ 𝑎(𝐸 𝑗 , 𝑌 ,Δ) = 0. We have thus
obtained that

𝜎∗𝐿𝑠 · 𝛽
′∗𝑊 ≤ 𝑎(𝐸 𝑗 , 𝑋, 𝐷)𝑚/𝑁 𝑗 .

From (3.3) and (3.4), this implies 𝑎(𝐸 𝑗 , 𝑋, 𝐷)𝑚/𝑁 𝑗 ≥ 𝑎(𝐸𝑖 , 𝑋, 𝐷)𝑚/𝑁𝑖 , which contradicts (3.2). �

We note that the hypothesis that X is smooth was used in (3.2) and that D is reduced was used in the
analysis of W.

3.6. Jump valuations.

Now we prove Theorem 1.16. First recall the following terminology.

Definition 3.7. Let X be smooth complex algebraic variety and D an effective divisor on X. Let
𝜇 : 𝑌 → 𝑋 be a log resolution of (𝑋, 𝐷). For 𝜆 ∈ Q>0, the multiplier ideal sheaf of (𝑋, 𝜆𝐷) is

J (𝑋, 𝜆𝐷) := 𝜇∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�) ⊂ O𝑋 ,

where �_� means taking the round-down of each coefficient in a Q-divisor, and 𝐾𝑌 /𝑋 is the unique
𝜇-exceptional divisor linearly equivalent to 𝐾𝑌 − 𝜇∗𝐾𝑋 . It is well-known that this definition does not
depend on 𝜇. A number 𝜆 ∈ Q>0 is called a jumping number of (𝑋, 𝐷) if J (𝑋, 𝜆𝐷) � J (𝑋, (𝜆− 𝜖)𝐷)
for all 0 < 𝜖 � 1. We say that a prime 𝜇-exceptional divisor 𝐸𝑖 on Y contributes with 𝜆 as a jumping
number of (𝑋, 𝐷) if 𝜆 = (𝜈𝑖 + 𝑏)/𝑁𝑖 for some 𝑏 ∈ N and

J (𝑋, 𝜆𝐷) � 𝜇∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷� + 𝐸𝑖).

This depends on the valuation defined by 𝐸𝑖 and not on 𝜇, and implies that 𝜆 is a jumping number.

Proof of Theorem 1.16. Step 1: Preparation. We can assume that 𝐸𝑖 is 𝜇-exceptional since otherwise
the claim is true. It is enough to show that 𝐸𝑖 does not get contracted on a minimal model of (𝑌,Δ)
over X, where Δ = 𝜇−1

∗ 𝐷 + Ex(𝜇). Hence, it is enough to show that 𝐸𝑖 does not get contracted after any
step of the minimal model program for (𝑌,Δ) over X. Here, by a step of the minimal model program,
we mean an extremal-ray contraction followed by a flip if necessary. Let 𝜇′ : (𝑌 ′,Δ ′) → 𝑋 be obtained
after a succession of steps, with Δ ′ = 𝜙∗Δ = 𝜇′

∗
−1𝐷 + Ex(𝜇′) and 𝜙 : 𝑌 � 𝑌 ′ is the natural birational

map. Assume that (𝑌 ′,Δ ′) is the last step before 𝐸𝑖 gets contracted. Thus, 𝐸 ′
𝑖 = 𝜙∗(𝐸𝑖) ≠ 0 contains an

open dense subset covered by curves of numerical class C such that (𝐾𝑌 ′ + Δ ′) · 𝐶 < 0. We will derive
a contradiction.

We do not need Y anymore, but we need some log resolution of (𝑋, 𝐷, Σ) which factors through
𝜇′ and on which the valuation defined by 𝐸𝑖 has a prime center to compare contributions to jumping
numbers. To avoid introducing new notation, by taking a common log resolution, we can assume that
𝜙 : 𝑌 → 𝑌 ′ is a birational projective morphism.

Step 2: Multiplier ideals are computed by 𝜇′. Since (𝑌 ′,Δ ′) is a log canonical pair, the multiplier
ideals J (𝑋, 𝜆𝐷) are computed via 𝜇′ by a result of Smith-Tucker [3, Theorem A.2] – that is,

J (𝑋, 𝜆𝐷) = 𝜇′
∗O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�) (3.5)

for every 𝜆 ∈ R>0. Here, 𝐾𝑌 ′/𝑋 is the unique exceptional divisor Q-linearly equivalent to 𝐾𝑌 ′ − 𝜇′∗𝐾𝑋 .
It has integral coefficients since X is smooth. We recall the proof since we will need an intermediate
step. Since there is an equality of divisors 𝜙∗(𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�) = 𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�, there is an inclusion
of sheaves 𝜙∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�) ⊂ O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�). We will show
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𝜙∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�) = O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�). (3.6)

Taking direct image under 𝜇′, we then get (3.5).
Let g be a section of O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�) – that is,

div(𝑔) + 𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� ≥ 0. (3.7)

Pick 𝜖 ∈ Q>0 small enough such that Δ − 𝜖 𝜇∗(𝜆𝐷) ≥ {𝜇∗(𝜆𝐷)}. Here, {_} means taking the fractional
part of each coefficient. This also implies that Δ ′ − 𝜖 𝜇′∗ (𝜆𝐷) ≥ {𝜇′∗ (𝜆𝐷)} by applying 𝜙∗. Then
Δ − 𝜖 �𝜇∗(𝜆𝐷)� − (1 + 𝜖){𝜇∗(𝜆𝐷)} ≥ 0, and so

Δ ′ − 𝜖 �𝜇′∗ (𝜆𝐷)� − (1 + 𝜖){𝜇′∗ (𝜆𝐷)} ≥ 0. (3.8)

Adding (3.7) and (3.8), we get div(𝑔) +𝐾𝑌 ′/𝑋 +Δ ′− (1+𝜖)𝜇′∗ (𝜆𝐷) ≥ 0. The left-hand side isQ-Cartier;
hence, we can pull it back via 𝜙. We obtain

div(𝑔 ◦ 𝜙) − 𝜇∗𝐾𝑋 + 𝜙∗(𝐾𝑌 ′ + Δ ′) − (1 + 𝜖)𝜇∗(𝜆𝐷) ≥ 0.

Since (𝑌 ′,Δ ′) has log canonical singularities, 𝐾𝑌 + Δ ≥ 𝜙∗(𝐾𝑌 ′ + Δ ′), and hence,

div(𝑔 ◦ 𝜙) − 𝜇∗𝐾𝑋 + 𝐾𝑌 + Δ − (1 + 𝜖)𝜇∗(𝜆𝐷) ≥ 0.

Taking integral parts, it follows that div(𝑔 ◦ 𝜙) + 𝐾𝑌 /𝑋 − �𝜇∗(𝜆𝐷)� ≥ 0, – that is, g is a section of
𝜙∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�). This proves (3.6).

Step 3: Contribution to jumping numbers can be read from 𝜇′. Assume now that 𝐸𝑖 contributes with
the jumping number 𝜆 of (𝑋, 𝐷). We show that 𝐸 ′

𝑖 also does – that is,

J (𝑋, 𝜆𝐷) � 𝜇′
∗O𝑌 (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′

𝑖 ). (3.9)

Since there is an equality of divisors 𝜙∗(𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷� + 𝐸𝑖) = 𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′
𝑖 , there is an

inclusion of sheaves 𝜙∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷� + 𝐸𝑖) ⊂ O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′
𝑖 ). Taking direct image

under 𝜇′, we obtain 𝜇∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷� + 𝐸𝑖) ⊂ 𝜇′
∗O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′

𝑖 ). By assumption,
the first sheaf strictly contains J (𝑋, 𝜆𝐷). Then (3.9) follows.

Step 4: Local vanishing for 𝜇′. Since 𝜇 = 𝜇′ ◦ 𝜙, the Grothendieck spectral sequence implies that
there is a injective morphism of sheaves of O𝑋 -modules

𝑅1𝜇′
∗ (𝜙∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�)) ⊂ 𝑅1𝜇∗O𝑌 (𝐾𝑌 /𝑋 − �𝜆𝜇∗𝐷�).

By local vanishing [24, Theorem 1.2.3], the last sheaf is 0; hence, the first sheaf is also 0. By (3.6), this
means that

𝑅1𝜇′
∗O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�) = 0. (3.10)

Step 5: Non-vanishing. There is a short exact sequence of sheaves of O𝑌 ′-modules

0 → O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�) → O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′
𝑖 ) → Q → 0

for some sheaf Q. Applying 𝜇′
∗ and using (3.5), (3.9) and (3.10), we get a short exact sequence of

sheaves of O𝑋 -modules

0 → J (𝑋, 𝜆𝐷) → 𝜇′
∗O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′

𝑖 ) → 𝜇′
∗Q → 0
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such that the last term is nonzero. Assuming that X is affine, which we can since the problem is local on
X, this implies that 𝐻0 (𝑌 ′,Q) ≠ 0 and

𝐻0(𝑌 ′,O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷�)) � 𝐻0 (𝑌 ′,O𝑌 ′ (𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′
𝑖 )).

Thus, there exists a rational function g on 𝑌 ′ such that

𝑃 = div(𝑔) + 𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′
𝑖 ≥ 0,

but 𝑃 − 𝐸 ′
𝑖 is not effective. Therefore, 𝐸 ′

𝑖 has coefficient 0 in P, and P is linearly equivalent to
𝐾𝑌 ′/𝑋 − �𝜆𝜇′∗𝐷� + 𝐸 ′

𝑖 .
Step 6: The contradiction. We have that 𝐾𝑌 ′ + Δ ′ is Q-linearly equivalent over X to

𝐾𝑌 ′/𝑋 − 𝜇′∗ (𝜆𝐷) + Δ ′ = (𝐾𝑌 ′/𝑋 − �𝜇′∗ (𝜆𝐷)� + 𝐸 ′
𝑖 ) + (Δ ′ − 𝐸 ′

𝑖 − {𝜇′∗ (𝜆𝐷)}).

Note that 𝑅 = Δ ′ − 𝐸 ′
𝑖 − {𝜇′∗ (𝜆𝐷)} is effective, and its support does not contain 𝐸 ′

𝑖 . By Step 1, we have
0 > 𝐶 · (𝐾𝑌 ′ + Δ ′). Using the splitting from above and Q-factoriality of 𝑌 ′, we get 0 > 𝐶 · (𝑃 + 𝑅) |𝐸′

𝑖
,

where P is as in Step 5. Note that the restriction of 𝑃 + 𝑅 to 𝐸 ′
𝑖 is a well-defined effective Q-Cartier

Q-divisor. But the curves in 𝐸 ′
𝑖 in the numerical equivalence class C cover an open subset of 𝐸 ′

𝑖 ; hence,
𝐶 · (𝑃 + 𝑅) |𝐸′

𝑖
≥ 0. This is a contradiction. �

3.8. Proof of Theorem 1.21.

Let 𝜇 : 𝑌 → 𝑋 be an m-separating log resolution of (𝑋, 𝐷, Σ). Let Δ = (𝜇∗𝐷)𝑟𝑒𝑑 . Since (𝑋, 𝐷) is log
canonical, one can apply [26, 1.35] with 𝑐𝑖 = 1. The conclusion is that (𝑌,Δ) has a minimal model over
X that contracts all 𝜇-exceptional prime divisors 𝐸𝑖 with 𝜈𝑖/𝑁𝑖 ≠ 1, and it contracts no other prime
divisors. This implies (i) and (ii).

If Σ = 𝐷, then lct𝑚(𝑋, 𝐷, Σ) = 1 for all 𝑚 ≥ 1, and (i) applies. Moreover, since (𝑋, 𝐷) is log
canonical, then D is log canonical by [25, 7.3.2]. Since D is log canonical, the m-th jet scheme ℒ𝑚 (𝐷)
is equidimensional for every m by [16, Theorem 1.3]. By definition, 𝒳𝑚

𝑚 (𝑋, 𝐷), the m-contact locus in
ℒ𝑚 (𝑋), is a Zariski open subset of 𝜋−1

𝑚,𝑚−1 (ℒ𝑚−1 (𝐷)), where 𝜋𝑚,𝑚−1 : ℒ𝑚(𝑋) → ℒ𝑚−1(𝑋) is the
truncation morphism. Since the latter is a trivial fibration, 𝒳𝑚

𝑚 (𝑋, 𝐷) is also equidimensional. Since
𝒳𝑚 (𝑋, 𝐷) = 𝜋−1

𝑚 (𝒳𝑚
𝑚 (𝑋, 𝐷)), it follows that all irreducible components of 𝒳𝑚 (𝑋, 𝐷) have the same

codimension. This proves (iii).
One knows that D has rational singularities if and only if (𝑋, 𝐷) is dlt, by applying [25, (7.9),

(11.1.1)] to our setup – namely, X is smooth and D is reduced – and taking 𝑍 = 𝑆𝑖𝑛𝑔(𝐷) in Definition
2.2. If this is the case, ℒ𝑚 (𝐷) is irreducible for all 𝑚 ≥ 1 by [36, Theorem 0.1], and thus, 𝒳𝑚(𝑋, 𝐷) is
also irreducible by the same argument as above. This proves (iv).

4. Hyperplane arrangements

In this section, we prove Theorem 1.14. We consider pairs (𝑋 = C𝑛, 𝐷) where D is a nonzero effective
divisor supported on a union of hyperplanes. We call D a hyperplane (multi-)arrangement if it is
(maybe non-)reduced. The canonical log resolution of (𝑋, 𝐷) is obtained by blowing up successively by
increasing dimension the strict transforms of edges of D. An edge is an intersection of some hyperplanes
in the arrangement.

Remark 4.1. A minimal (that is, factoring all others) log resolution exits. In contrast, there is no minimal
m-separating log resolution for (𝑋, 𝐷) (e.g., 𝐷 = {𝑥𝑦𝑧 = 0} ⊂ C3 and 𝑚 = 2).

Definition 4.2. A log resolution of (𝑋, 𝐷) is good if it is obtained by successively blowing up, starting
from the canonical log resolution, nonempty intersections of two distinct irreducible components of the
strict transform of D. Such resolutions exist by [7, Proof of Lemma 2.9].
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The proof of Theorem 1.14 rests on two results. The first one was obtained in [8, Proposition 7.4],
where the statement, but not the proof, needs ‘good’ to be added:

Proposition 4.3 [8]. If D is a hyperplane multi-arrangement in 𝑋 = C𝑛, and 𝑚 ∈ Z>0, then (1.1) is the
decomposition into connected components of the m-contact locus 𝒳𝑚(𝑋, 𝐷), for any good m-separating
log resolution of (𝑋, 𝐷).

Proposition 4.4. Let (𝑋 = C𝑛, 𝐷) be a hyperplane arrangement. Let 𝜇 : 𝑌 → 𝑋 be a good log
resolution. Let Δ = 𝜇−1

∗ 𝐷 + Ex(𝜇). Then (𝑌,Δ) is its own minimal model over X.

Proof. It is enough to show that the 𝐾𝑌 + Δ is 𝜇-nef. In fact, it is enough to prove that 𝐾�̄� + Δ̄ is nef,
where �̄� : 𝑌 → �̄� is a good log resolution of ( �̄�, �̄� + 𝐻), �̄� = P𝑛 = C𝑛 � 𝐻, H is the hyperplane
at infinity, �̄� is the compactification of D in P𝑛, and Δ is ( �̄�−1(�̄� + 𝐻))𝑟𝑒𝑑 . Since �̄� is a good log
resolution,𝑌 is the compactification of 𝑋 \𝐷 in a toric variety that maps under a proper toric morphism
to P𝑟 , where r is the number of hyperplanes in �̄� + 𝐻; see [44, §4]. Then, by [44, Theorem 1.4] (and
the second to last paragraph of its proof) and [44, Theorem 1.5], 𝐾�̄� + Δ̄ is the pullback under a proper
morphism of a very ample divisor. In particular, 𝐾�̄� + Δ̄ is nef. �

We note that the proof shows moreover that (𝑌,Δ) is a good minimal model over X.

Proof of Theorem 1.14. Since the subsets 𝒳𝑚,𝑖 are irreducible, Proposition 4.3 implies that the set of
contact m-valuations is the set of essential m-valuations, and both consist of the divisorial valuations
corresponding to 𝐸𝑖 with 𝑖 ∈ 𝑆𝑚 as in Definition 1.7 for any good m-separating log resolution. By
Proposition 4.4, every such m-valuation is a dlt valuation of (𝑋, 𝐷). �

5. Examples with rational singularities

If a hypersurface D in a smooth variety X has rational singularities, there are no dlt valuations for
(𝑋, 𝐷, 𝐷𝑠𝑖𝑛𝑔) by Theorem 1.21. We look at some examples.

5.1. Hypersurfaces with isolated maximal-multiplicity rational singularities.

Let D be a hypersurface in C𝑛 with at most rational singularities at the origin O, which is an isolated
singularity, and such that D has multiplicity 𝑛 − 1 at O. In this case, it follows from the proof of
[6, Proposition 3.7] (see also [33] for 𝑛 = 3) that for 𝑚 ≥ 𝑛 − 1, 𝒳𝑚(C

𝑛, 𝐷, 𝑂) has codimension
𝑚 + 1, and all its irreducible components have the same codimension. Hence, for such m, all contact
m-valuations are top contact m-valuations, and lct𝑚(C𝑛, 𝐷, 𝑂) = 1 + 1/𝑚.

5.2. Determinants of generic square matrices.

Let 𝑓 = det(𝑥𝑖 𝑗 ), where (𝑥𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 is a matrix of independent variables. It defines a hypersurface
D in 𝑀 = C𝑛

2 with rational singularities. The jet spaces of D together with their stratifications in
terms of orbits of a certain group action have been determined by Docampo [14]. Using (3.1), this
allows one to conclude that 𝒳𝑚 (𝑀, 𝐷, 𝐷𝑠𝑖𝑛𝑔) is irreducible of codimension 𝑚 + 2 for 𝑚 ≥ 1. To
prove this, one notes that 𝐷 = 𝐷𝑛−1, 𝐷𝑠𝑖𝑛𝑔 = 𝐷𝑛−2, where 𝐷𝑘 is the subvariety of matrices in M
with rank at most k. Then, in the notation from [14], 𝒳𝑚(𝑀, 𝐷, 𝐷𝑠𝑖𝑛𝑔) = C𝜆 \ C𝜇, where 𝜆, 𝜇 ∈

Λ𝑛 are the pre-partitions (𝑚 − 1, 1, 0, . . . , 0), (𝑚, 1, 0, . . . , 0), respectively; C𝜆, C𝜇 are the respective
orbit closures of ℒ(𝐺𝐿𝑛 (C))

×2 on ℒ(𝑀); and (_) denotes the Zariski closure. Then [14, Prop.
5.4] gives the codimension. There are no dlt m-valuations by Theorem 1.21, and the only contact m-
valuation is thus a top m-valuation. It also follows that lct𝑚(𝑀, 𝐷, 𝐷𝑠𝑖𝑛𝑔) = codim 𝒳𝑚(𝑀, 𝐷, 𝐷𝑠𝑖𝑛𝑔)
· 1/𝑚 = (𝑚 + 2)/𝑚.

https://doi.org/10.1017/fmp.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.13


Forum of Mathematics, Pi 17

5.3. Homogeneous polynomials with an isolated singularity.

Let 𝑋 = C𝑛, 𝑛 ≥ 3, and let D be given by a homogeneous polynomial of degree d with an isolated
singularity at the origin O. The blowup 𝜇 : 𝑌 → 𝑋 at O is a minimal d-separating log resolution of
(𝑋, 𝐷,𝑂). Then Δ = (𝜇∗𝐷)𝑟𝑒𝑑 = �̃� + 𝐸 , where 𝐸 � P𝑛−1 is the exceptional divisor and �̃� is the
strict transform of D. Then E gives the only essential d-valuation of (𝑋, 𝐷,𝑂). By (1.1), this is also
the only contact d-valuation of (𝑋, 𝐷,𝑂). If 𝑑 < 𝑛, there are no dlt d-valuations for (𝑋, 𝐷,𝑂), and if
𝑑 ≥ 𝑛, then E gives the only dlt d-valuation. Indeed, we have 𝐾𝑌 + Δ = 𝜇∗(𝐾𝑋 + 𝐷) + (𝑛 − 𝑑)𝐸 , where
𝑎(𝐸, 𝑋, 𝐷) = 𝑛 − 𝑑. If 𝑑 < 𝑛, then (𝑋, 𝐷) is the relative minimal model of (𝑌,Δ) by Proposition 2.9,
and lct𝑑 (𝑋, 𝐷,𝑂) = 𝑛/𝑑. If 𝑑 ≥ 𝑛, then B(𝐾𝑌 +Δ/𝑋) = B((𝑛−𝑑)𝐸/𝑋) = ∅, since −𝐸 is ample over X.
Thus, (𝑌,Δ) is its own minimal model over X by Proposition 2.8.

6. Curves on surfaces: Essential and dlt valuations

Let X be a smooth complex algebraic surface. We give the geometric characterization of the essential
valuations and of the dlt valuations in terms of the resolution graph of (𝑋, 𝐷, Σ).

6.1. Essential valuations.

Proposition 6.2. Let X be a smooth complex algebraic surface, D a nonzero effective divisor on X, and
Σ ≠ ∅ a Zariski closed subset of the support of D. Let 𝑚 > 0 be an integer. Then a minimal (that is,
factoring all other) m-separating log resolution of (𝑋, 𝐷, Σ) exists.
Proof. Let 𝜇 : 𝑌 → 𝑋 be the minimal log resolution of (𝑋, 𝐷, Σ). If 𝐸𝑖 and 𝐸 𝑗 denote two distinct
irreducible components of 𝜇−1(Supp(𝐷)) intersecting in a point P and such that 𝑁𝑖 + 𝑁 𝑗 ≤ 𝑚, then
blowup the point P. The multiplicity of the new exceptional divisor is 𝑁𝑖 + 𝑁 𝑗 . Since 𝑁𝑖 , 𝑁 𝑗 are strictly
positive, 𝑁𝑖 + 𝑁 𝑗 > max{𝑁𝑖 , 𝑁 𝑗 }. We repeat this process until we obtain for the first time an m-
separating log resolution 𝜇0 : 𝑌0 → 𝑋 . To show that the result is a minimal m-separating log resolution,
take 𝜇1 : 𝑌1 → 𝑋 another m-separating log resolution. Let 𝜋 : 𝑌1 → 𝑌 be the morphism through which
𝜇1 factors. Consider 𝜋−1 (𝑃). This is necessarily a divisor in 𝑌1, connecting the strict transforms of 𝐸𝑖
and 𝐸 𝑗 since 𝜇1 is m-separating. Since 𝜋 is a succession of blowups at smooth points and since 𝜋−1(𝑃)
is an exceptional divisor, it follows that 𝜋 factors through the blowup of P. Repeating the argument, it
follows that 𝜇1 factors through 𝜇0. �

Notation 6.3. (Resolution graphs.) We denote by Γ the resolution graph of (𝑋, 𝐷, Σ); see [5]. Recall
that Γ is the dual graph of the divisor (𝜇∗𝐷)𝑟𝑒𝑑 , where 𝜇 is the minimal log resolution of (𝑋, 𝐷, Σ),
together with certain data at each vertex which remembers the resolution process, and in particular, the
orders of vanishing 𝑁𝑖 of each 𝐸𝑖 as in Definition 1.7.

For 𝑚 ≥ 1, we denote by Γ𝑚 the resolution graph obtained from the minimal m-separating log
resolution of (𝑋, 𝐷, Σ).

We say that a resolution graph refines another resolution graph if it is obtained only by inserting
inductively vertices 𝐸𝑘 on edges 𝐸𝑖𝐸 𝑗 with 𝑖 ≠ 𝑗 and such that 𝑁𝑘 = 𝑁𝑖 + 𝑁 𝑗 .

The valence of a vertex in a graph is the number of edges connected to the vertex. A path in a graph
is a connected sequence of edges with distinct end points. We say that a vertex lies on a path if it is any
of the vertices on the path, end points included. A simple path is a path that does not pass twice through
the same vertex.

Proposition 6.2 implies the following elementary statement; see also Lemma 7.2 below:
Proposition 6.4. With the assumptions as in Proposition 6.2:

(i) Γ = Γ1 and for 𝑚 > 1, Γ𝑚 is obtained inductively from Γ𝑚−1 by inserting a vertex 𝐸𝑘 with
multiplicity 𝑁𝑘 = 𝑁𝑖 + 𝑁 𝑗 on each edge 𝐸𝑖𝐸 𝑗 for which 𝑁𝑖 + 𝑁 𝑗 ≤ 𝑚. Thus, Γ𝑚 refines Γ.

(ii) For each edge 𝐸𝑖𝐸 𝑗 of Γ, the set of vertices 𝐸𝑘 lying on the simple path 𝐸𝑖𝐸 𝑗 in Γ𝑚 for some
𝑚 ≥ 1 is in bijection with {(𝑎, 𝑏) ∈ N2 | gcd(𝑎, 𝑏) = 1}. For such a vertex 𝐸𝑘 , 𝑁𝑘 = 𝑎𝑁𝑖 + 𝑏𝑁 𝑗 .
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(iii) The essential m-valuations of (𝑋, 𝐷, Σ) are given by the subset 𝑆𝑚 (from Definition 1.7) of
vertices of Γ𝑚 for the the minimal m-separating log resolution of (𝑋, 𝐷, Σ) – that is, divisors 𝐸𝑘 lying
over Σ in the minimal m-separating log resolution of (𝑋, 𝐷, Σ) such that 𝑁𝑘 divides m.

If (𝐶, 0) is a smooth plane curve germ, 𝒳𝑚 (C
2, 𝐶, 0) = 𝒳𝑚,𝑖 , where 𝑖 ∈ 𝑆𝑚 is the vertex closest to

the strict transform of C since 𝒳𝑚 (C
2, 𝐶, 0) is irreducible of codimension 𝑚 + 1.

6.5. Dlt valuations.

Proposition 6.6. Let X be a smooth complex algebraic surface, D a nonzero reduced effective divisor on
X, and Σ ≠ ∅ a Zariski closed subset of the support of D. Let 𝑚 > 0 be an integer. The dlt m-valuations
of (𝑋, 𝐷, Σ) are given by the vertices 𝐸𝑘 ∈ 𝑆𝑚 ⊂ Γ𝑚 that lie on the refinement of a simple path 𝐸𝑖𝐸 𝑗
of Γ connecting two different vertices 𝐸𝑖 , 𝐸 𝑗 which are strict transforms of irreducible components of
D or have valence ≥ 3 in Γ.

The rest of the section is dedicated to the proof. The proposition will follow from Corollary 6.11.
In the case of curves on smooth surfaces, we have uniqueness of relative minimal models; see

[19, Theorem 3.3 and Proposition 3.9]:

Proposition 6.7. Let 𝜇 : 𝑌 → 𝑋 be a projective birational morphism of surfaces, such that Y is normal.
Let Δ be a boundary divisor on Y. Assume that Y is Q-factorial or (𝑌,Δ) is log canonical. Then an
MMP for (𝑌,Δ) over X terminates and gives a minimal model 𝜙 : (𝑌,Δ) � (𝑌 ′,Δ ′) over X. Such a
minimal model is unique up to isomorphisms over X. Moreover, 𝜙 is a morphism and is a composition
of divisorial contractions.

After we introduce some prerequisites, we characterize which components of Δ do not get contracted
on the relative minimal model in Proposition 6.10.

Definition 6.8. Let B be a reduced Weil divisor on a normal surface Z.
(a) If C is an irreducible component of B, we set 𝛽𝐵 (𝐶) := 𝐶 · (𝐵 − 𝐶).
(b) If C is an irreducible component of B, we say that C is a tip of B if 𝛽𝐵 (𝐶) ≤ 1. We say that a tip

C is admissible if 𝐶 � P1 and 𝐶2 < 0.
(c) Let 𝑇 ≠ 0 be a subchain of B, with irreducible components 𝑇1, . . . , 𝑇𝑛, ordered in such a way that

𝑇𝑖 · 𝑇𝑖+1 = 1, 𝑇𝑖 · 𝑇𝑗 = 0 for |𝑖 − 𝑗 | > 1. Then T is called a twig of B if 𝛽𝐵 (𝑇1) ≤ 1 and 𝛽𝐵 (𝑇𝑖) ≤ 2 for
all 𝑖 ∈ {2, . . . , 𝑛}. Note that the ordering of the 𝑇𝑖 is unique if the twig T is not a connected component
of B, or if 𝑇 = 𝑇1 and 𝛽𝐵 (𝑇) = 0; in the remaining case, the reverse ordering is the only other possible
ordering. A twig T is admissible if 𝑇𝑖 � P1 for all i, and the intersection matrix (𝑇𝑖 · 𝑇𝑗 )1≤𝑖, 𝑗≤𝑛 of T is
negative definite. In this case, 𝑇𝑖 is an admissible tip of 𝐵 −

∑𝑖−1
𝑗=1 𝑇𝑗 , 𝑖 ∈ {1, . . . 𝑛}. An (admissible) tip

of B is thus by definition an (admissible) twig of B, corresponding to the case 𝑛 = 1.
(d) If 𝑍 → 𝑍 ′ is a birational morphism to another normal surface, and 𝐵′ is a reduced divisor on 𝑍 ′,

we say that T is an (admissible) twig of B over 𝐵′ if it is an (admissible) twig of B and has no common
irreducible component with the strict transform of 𝐵′.

(e) If 𝑇 ⊂ 𝐵 is a subdivisor, 𝑑 (𝑇) will denote the determinant of the negative of the intersection
matrix of T, and we set 𝑑 (0) = 1.

Proposition 6.9. Let B be a reduced divisor on a smooth surface Z.
(a) If T is an admissible twig of B, then T can be contracted to a cyclic quotient singularity 𝑍 ′.
(b) If, in addition, 𝑇 =

∑𝑛
𝑖=1 𝑇𝑖 as in Definition 6.8, then the log discrepancy of 𝑇𝑖 on (𝑍 ′, 𝐵′), where

𝐵′ is the divisorial image of B, equals 𝑑 (𝑇 −
∑𝑖
𝑗=1 𝑇𝑗 )/𝑑 (𝑇) if T is not a connected component of B, and

(𝑑 (𝑇 −
∑𝑛
𝑗=𝑖 𝑇𝑗 ) + 𝑑 (𝑇 −

∑𝑖
𝑗=1 𝑇𝑗 ))/𝑑 (𝑇) otherwise.

Proof. (a) This is Grauert’s Contraction Theorem [2, Theorem III.2.1] together with the standard
description of Hirzebruch-Jung singularities; see, for example, [26, Theorem 3.32] or [2, III. 2.(ii) and
Theorem III.5.1]. Note that this description is formulated for chains with no (−1)-curves – that is, for
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minimal resolutions of cyclic singularities. Starting from an arbitrary negative definite chain of P1’s,
contract all (−1)-curves in this chain and its images. Then the image of the chain is either a smooth
point or a chain as in the cited theorems.

(b) This is proved in [27, 3.1.10]. One applies the formula in the cited theorem to the three possible
cases concerning the ordering of the 𝑇𝑖 mentioned in Definition 6.8. For the two cases when T is a
connected component, the outcome reads the same. �

Proposition 6.10. Let X be a smooth complex algebraic surface and D a nonzero reduced divisor on X.
Let 𝜇 : 𝑌 → 𝑋 be a log resolution of (𝑋, 𝐷) that is an isomorphism over 𝑋 \ 𝐷. Let Δ = (𝜇∗𝐷)𝑟𝑒𝑑 . Let
𝜙 : (𝑌,Δ) → (𝑌 ′,Δ ′) be the minimal model over X.

(a) Then 𝜙 = 𝛼 ◦ 𝜐, where

• 𝜐 is the successive contraction of those admissible twigs over D of Δ , and of the divisorial direct
images of Δ , that can be contracted to smooth points, and

• 𝛼 is the contraction of all maximal admissible twigs of 𝜐∗Δ over D.

(b) Let Υ = Ex(𝜐) be the exceptional locus of 𝜐. Then Υ is the sum of all maximal subtrees T of
Δ − 𝜇−1

∗ 𝐷 such that 𝑑 (𝑇) = 1 and T meets Δ − 𝑇 exactly once, in an irreducible component of T of
multiplicity one in the scheme theoretic inverse image 𝜐−1 (𝜐(𝑇)).

(c) An irreducible component E of Δ is not 𝜙-exceptional if and only if 𝐸 � Υ and E satisfies one of
the following:

1. 𝐸 ⊆ 𝜇−1
∗ 𝐷, or

2. 𝛽Δ−Υ (𝐸) ≥ 3, or
3. E is an irreducible component of a subchain T of Δ − Υ with 𝛽Δ−Υ(𝐸) = 2, such that each tip of T

meets an irreducible component of Δ satisfying (1) or (2).

(d) If 𝜇 is a composition of blowups at singular points of the respective reduced preimage of D, then
𝜐 = id and Υ = 0.

Proof. Write 𝜙 = 𝑞 ◦ 𝜎 ◦ 𝑝, where 𝑝 : (𝑌,Δ) → (𝑌, �̄�) is a contraction of some admissible twigs of
Δ over D, q is a birational morphism, and 𝜎 is an extremal ray contraction obtained by contracting a
prime divisor �̄�. Thus, �̄�2 < 0 and �̄� · (𝐾�̄� + �̄�) < 0. Write 𝑎(𝑝) =

∑
𝐸 𝑎(𝐸,𝑌, �̄�)𝐸, where the sum

runs over all irreducible components E of Ex(𝑝), and 𝑎(𝐸,𝑌, �̄�) is the log discrepancy. Put 𝐵 = 𝑝−1
∗ �̄�,

𝐴 = 𝑝−1
∗ �̄�. We have 0 > �̄�2 = 𝐴 · 𝑝∗ �̄� ≥ 𝐴2 and

0 > �̄� · (𝐾�̄� + �̄�) = 𝐴 · (𝐾𝑌 + Δ − 𝑎(𝑝)) = −2 + 2𝑝𝑎 (𝐴) + 𝛽𝐵 (𝐴) + 𝐴 · (Ex(𝑝) − 𝑎(𝑝)).

Note that 𝑝𝑎 (𝐴) ≥ 0, and 𝛽𝐵 (𝐴) ≥ 1 since the connected component of B con-
taining A also contains a component of 𝜇−1

∗ 𝐷. Moreover, by Proposition 6.9, we have
𝐴 · (Ex(𝑝) − 𝑎(𝑝)) =

∑𝑛
𝑖=1 (1 − 1/𝑑 (𝑇𝑖)) ≥ 0, where 𝑇1, . . . , 𝑇𝑛 are the twigs of Δ meeting A and con-

tracted by p. Note that 𝑇𝑖 are also the connected components of Ex(𝑝) meeting A. It follows that
𝑝𝑎 (𝐴) = 0 and 𝛽𝐵 (𝐴) = 1, so A is an admissible tip of B. Also,

∑𝑛
𝑖=1(1 − 1/𝑑 (𝑇𝑖)) < 1. So we can

assume that 𝑑 (𝑇𝑖) = 1 for 𝑖 > 1 – that is, 𝑇2, . . . , 𝑇𝑛 get contracted to smooth points. The image of 𝑇1 + 𝐴
after this contraction must then be an admissible twig of the image of Δ .

It follows that 𝛼 ◦ 𝜐 factors through 𝑝 ◦ 𝜎. Applying this fact inductively, starting from 𝑝 = id, we
see that 𝛼 ◦ 𝜐 factors through 𝜙. Conversely, if A is an irreducible component of Ex(𝛼 ◦ 𝜐) − Ex(𝜙),
then reversing the above computation, we see that �̄� = 𝜙∗𝐴 satisfies �̄�2 < 0, �̄� · (𝐾𝑌 ′ + Δ ′) < 0, which
is impossible. Thus, 𝜙 = 𝛼 ◦ 𝜐. This proves (a). Then (b) and (d) are easy consequences.

For (c), replace (𝑌,Δ) by (𝜐(𝑌 ), 𝜐∗Δ), and assume 𝜐 = id. Let R be the sum of all components of Δ
satisfying (1)–(3). We need to prove that Δ − 𝑅 = 𝐵, where B is the sum of all admissible twigs of Δ
over D. Let E be a component of Δ . Clearly, if E satisfies (1) or (2), then 𝐸 ⊆ Δ − 𝐵. Otherwise, let T
be a maximal subchain in the sense of inclusion of Δ containing E whose irreducible components do
not satisfy (1) or (2). Then either T is as in (3), or one of the tips of T is a tip of Δ , and 𝑇 ⊆ Δ − 𝜇−1

∗ 𝐷.

https://doi.org/10.1017/fmp.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.13


20 N. Budur et al.

Note that all irreducible components C of Δ − 𝜇−1
∗ 𝐷 satisfy𝐶2 < 0,𝐶 � P1. Since Δ − 𝜇−1

∗ 𝐷 is negative
definite, T is an admissible twig over D, so 𝐸 ⊆ 𝐵. �

Corollary 6.11. Let X be a smooth complex algebraic surface, D a nonzero reduced divisor on X, and
Σ ≠ ∅ a Zariski closed subset of the support of D. Let 𝑚 > 0 be an integer.

(a) Every dlt m-valuation of (𝑋, 𝐷, Σ) is an essential m-valuation.
(b) Let 𝜇 : 𝑌 → 𝑋 be the minimal m-separating log resolution of (𝑋, 𝐷, Σ) and Δ = (𝜇∗𝐷)𝑟𝑒𝑑 . If

a prime divisor E of 𝜇 corresponds to a dlt m-valuation of (𝑋, 𝐷, Σ), then E does not get contracted
on the minimal model of (𝑌,Δ) over X. The set of such prime divisors E is given by the conditions that
ord𝐸 (𝐷) divides m, 𝜇(𝐸) ⊂ Σ, and

1. 𝐸 ⊂ 𝜇−1
∗ 𝐷, or

2. 𝛽Δ (𝐸) ≥ 3, or
3. E is an irreducible component of a subchain T of Δ with 𝛽Δ (𝐸) = 2, such that each tip of T meets an

irreducible component of Δ satisfying (1) or (2).

Proof. (a) Suppose that 𝜇1 : 𝑌1 → 𝑋 is another m-separating log resolution of (𝑋, 𝐷, Σ) and that
𝜇1 = 𝜇 ◦ 𝜋 for a morphism 𝜋 : 𝑌1 → 𝑌 . Suppose F is an irreducible component of Δ1 = (𝜇∗1𝐷)𝑟𝑒𝑑
such that 𝜇1 (𝐹) ⊂ Σ, ord𝐹 (𝐷) divides m, and F does not get contracted on the minimal model of
(𝑌1,Δ1) over X. We can assume that 𝜋 is a composition of blowups of singular points of preimages of
D since blowing up smooth points of preimages of D does not introduce exceptional divisors which
survive on the relative minimal model by Proposition 6.10. If F is 𝜋-exceptional, then there must exist
two distinct irreducible components 𝐸1 and 𝐸2 of Δ such that 𝜋(𝐹) = 𝐸1 ∩ 𝐸2. But this implies that
ord𝐹 (𝐷) ≥ 𝑁1 + 𝑁2 > 𝑚 cannot divide m, which is a contradiction. Thus, F is not 𝜋-exceptional.
Hence, F gives an essential m-valuation of (𝑋, 𝐷, Σ).

(b) If 𝐸 ⊂ Δ corresponds to a dlt m-valuation of (𝑋, 𝐷, Σ), then 𝐸 = 𝜋(𝐹) with 𝜋 and F as above.
By Proposition 6.10, F must satisfy one of the conditions (1)–(3) with (𝜇1, 𝑌1,Δ1) replacing (𝜇,𝑌,Δ).
It is easy to see that this is equivalent to E satisfying one of the conditions (1)–(3) for (𝜇,𝑌,Δ). Thus,
𝐸 = 𝜋(𝐹) does not get contracted on the minimal model of (𝑌,Δ) and the conditions (1)–(3) characterize
such E. Alternatively, one also sees that E does not get contracted on the minimal model of (𝑌,Δ) by
applying the more general Lemma 3.5. �

7. Curves on surfaces: Contact valuations

We answer now the embedded Nash problem for irreducible formal plane curve germs.

7.1. Notation.

Let (𝐶, 0) ⊂ (C2, 0) be an irreducible formal plane curve germ with 𝑔 ≥ 1 Puiseux pairs and multiplic-
ity 𝜈. By finite determinacy, we can assume that f is the germ of a polynomial. We take 𝑥, 𝑦 to be the
coordinates on C2.

Let 𝑚 ≥ 1 be an integer. Let 𝜇 : 𝑌 → C2 of (𝐶, 0) be the minimal m-separating log resolution. It
is obtained as a sequence of blowups of points, and we denote by 𝜇𝑖 : 𝑌𝑖 → 𝑌𝑖−1 the i-th blowup and
by 𝐸𝑖 ⊂ 𝑌𝑖 its exceptional divisor. We set 𝑌0 := C2. For every divisor 𝐸𝑖 , we have the corresponding
divisorial valuation 𝑣𝑖 : C(𝑥, 𝑦)× → Z. Then 𝑁𝑖 = 𝑣𝑖 (𝐶) by definition.

The resolution graph of 𝜇, denoted by Γ𝑚 as in Section 6, is as in Figure 1. It is a refinement of the
resolution graph Γ of C. We denote as in the introduction the g rupture components by 𝐸𝑅1 , . . . , 𝐸𝑅𝑔 in
the order of their appearance. For convenience, we set 𝐶0 to be the x-axis and 𝐸𝑅0 = 𝐸0 to be the y-axis.

For a curve or arc G in 𝑌𝑖′ , we denote by 𝐺 (𝑖) the strict transform of G in 𝑌𝑖 with 𝑖 ≥ 𝑖′ ≥ 0. If
it is clear from the context which ambient 𝑌𝑖 is considered, we often write G for 𝐺 (𝑖) in the case of
exceptional divisors.
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For every 1 ≤ 𝑗 ≤ 𝑔, let (𝐶 𝑗 , 0) be the j-th approximate root of (𝐶, 0); see [42]. It is a plane
irreducible curve germ with j Puiseux pairs whose resolution graph coincides with Γ up to the j-th
rupture component. In particular, 𝐶 (𝑅 𝑗 )

𝑗 intersects 𝐸𝑅 𝑗 in 𝑌𝑅 𝑗 transversely at the point of intersection of
𝐸𝑅 𝑗 and 𝐶 (𝑅 𝑗 ) for 0 ≤ 𝑗 ≤ 𝑔.

If 𝐺,𝐺 ′ are two prime divisors in a smooth surface intersecting transversely at one point, the divisors
between G and 𝐺 ′ are the (strict transforms of the) exceptional divisors that result from blowing up the
point and, inductively, further intersection points of (the strict transforms of) 𝐺,𝐺 ′, and of previous
exceptional divisors. The following is elementary and is part of the algorithm to compute resolution
graphs; see [5, p. 524]:

Lemma 7.2. Let 𝐺,𝐺 ′ be two prime divisors intersecting transversely in one point P in a smooth
surface. Set 𝐺 = 𝐸 (1,0) , 𝐺

′ = 𝐸 (0,1) and then inductively set the divisor resulting from blowing up the
intersection of 𝐸 (𝑟 ,𝑠) and 𝐸 (𝑟 ′,𝑠′) to be 𝐸 (𝑟+𝑟 ′,𝑠+𝑠′) . This establishes a bijection between pairs of coprime
nonzero natural numbers (𝑟, 𝑠) and divisors between G and 𝐺 ′. Furthermore, if 𝑥, 𝑦 is a local system of
coordinates at P for which𝐺 = {𝑦 = 0} and𝐺 ′ = {𝑥 = 0}, then the minimal composition of blowups that
makes 𝐸 (𝑟 ,𝑠) appear is given by (𝑥, 𝑦) = (𝑥𝑠 �̃�𝑎, 𝑥𝑟 �̃�𝑏), where (𝑎, 𝑏) ∈ N2 is the unique pair such that
𝑎𝑟 − 𝑏𝑠 = (−1)ℓ , 0 ≤ 𝑎 ≤ 𝑠, 0 ≤ 𝑏 ≤ 𝑟 , where ℓ is the number of divisions in the Euclidean algorithm to
compute gcd(𝑟, 𝑠). In these coordinates, 𝐸 (𝑟 ,𝑠) = {𝑥 = 0} and {�̃� = 0} is the strict transform of 𝐸 (𝑏,𝑎) .

In terms of Figure 1, in Γ𝑚, the divisors between 𝐶
(𝑅 𝑗 )
𝑗 and 𝐸𝑅 𝑗 with 1 ≤ 𝑗 < 𝑔 are those on the

simple path joining 𝐸𝑅 𝑗 with the bottom vertex of the ( 𝑗 + 1)-st vertical group, excluding 𝐸𝑅 𝑗 . The
divisors between 𝐶 (𝑅𝑔) and 𝐸𝑅𝑔 are those to the right of 𝐸𝑅𝑔 , excluding 𝐸𝑅𝑔 and �̃�, and we call them
the divisors after 𝐸𝑅𝑔 . The divisors between 𝐶0 and 𝐸𝑅0 , the original 𝑥, 𝑦 axes in our convention, are
the first vertical group.

We denote in this section the m-contact locus of (C2, 𝐶, 0) by

𝒳𝑚 (𝐶) := 𝒳𝑚 (C
2, 𝐶, 0) = {𝛾 ∈ ℒ(C2, 0) | 𝐶 · 𝛾 = 𝑚}.

The minimal m-separating resolution gives rise to the decomposition 𝒳𝑚 (𝐶) = �𝑖∈𝑆𝑚𝒳𝑚,𝑖 as in (1.1).
We say that an arc 𝛾 ∈ 𝒳𝑚(𝐶) lifts between G and 𝐺 ′ if G and 𝐺 ′ intersect transversally at a point on
some 𝑌𝑖 through which 𝜇 factors, and the lift of 𝛾 to Y intersects a divisor between G and 𝐺 ′.

7.3. Decomposition of the contact loci.

Theorem 7.4. For each 𝑗 = 1, . . . , 𝑔, denote by 𝑍 𝑗 the subset of arcs in the contact locus 𝒳𝑚(𝐶) which
lift to one of the divisors in the j-th vertical group (including 𝐸𝑅 𝑗 if it is an m-divisor) of Γ𝑚 as in
Figure 1. Denote by 𝑆′𝑚 the divisors in 𝑆𝑚 which are not in any vertical group of Γ𝑚. Then

𝒳𝑚 (𝐶) =
𝑔⊔
𝑗=1

𝑍 𝑗 �
⊔
𝑖∈𝑆′𝑚

𝒳𝑚,𝑖 (7.1)

is a disjoint union decomposition into closed sets in the Zariski topology.

Proof. It only remains to show that each of the sets in the decomposition – that is, 𝑍 𝑗 with 𝑗 ∈ {1, . . . , 𝑔}
and 𝒳𝑚,𝑖 with 𝑖 ∈ 𝑆′𝑚 – is closed in the Zariski topology. By [15, Theorem A], each of these subsets is
a cylinder in ℒ(C2, 0). Thus, for 𝑙 � 0, 𝑍 𝑙𝑗 � 𝜋𝑙 (𝑍 𝑗 ) and 𝒳𝑙

𝑚,𝑖 � 𝜋𝑙 (𝒳𝑚,𝑖) are constructible subsets
in ℒ𝑙 (C

2, 0). Moreover, 𝑍 𝑗 (resp. 𝒳𝑚,𝑖) is closed in ℒ(C2, 0) if and only if 𝑍 𝑙𝑗 (resp. 𝒳𝑙
𝑚,𝑖) is closed in

ℒ𝑙 (C
2, 0). Therefore, it is enough to prove that each 𝑍 𝑙𝑗 and 𝒳𝑙

𝑚,𝑖 is closed in the analytic topology of
ℒ𝑙 (C

2, 0).
Arguing by contradiction, we suppose there are divisors 𝐸𝑖 and 𝐸𝑖′ such that 𝒳𝑙

𝑚,𝑖 and 𝒳𝑙
𝑚,𝑖′

are contained in different sets of the decomposition (7.1) and 𝒳𝑙
𝑚,𝑖 ∩ 𝒳𝑙

𝑚,𝑖′ ≠ ∅. Since 𝒳𝑙
𝑚,𝑖 and
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𝒳𝑙
𝑚,𝑖′ are constructible, we may apply the Curve Selection Lemma to obtain a C-analytic map germ

𝛼 : (C, 0) → 𝒳𝑙
𝑚 such that 𝛼(0) ∈ 𝒳𝑙

𝑚,𝑖 and 𝛼(𝑠) ∈ 𝒳𝑙
𝑚,𝑖′ for 𝑠 ≠ 0. Note that since the l-jet space

is finite-dimensional, the classical version of the Curve Selection Lemma is used here, not the more
delicate version that appears often in the context of the infinite-dimensional arc spaces. Using the zero
section of the truncation map ℒ(C2, 0) → ℒ𝑙 (C

2, 0), we may regard 𝛼 as a C-analytic map germ to
ℒ(C2, 0) such that for every s, the entries of the arc 𝛼(𝑠) are all polynomials in t.

Let f be an equation for C. Note that 𝑓 (𝛼(𝑠)) is a C-analytic map germ of polynomials of constant
order m. Therefore, we can find a C-analytic map germ 𝑢 : (C, 0) → ℒ(C, 0) such that for every s, 𝑢(𝑠)
is convergent and 𝑓 (𝛼(𝑠)) = 𝑢(𝑠)𝑚. To see this, we can write 𝑢(𝑠) explicitly by picking a holomorphic
m-th root of the coefficient of 𝑡𝑚 in 𝑓 (𝛼(𝑠)) and using the general formulas relating the coefficients of
both sides of (

∑
𝑘≥0 𝑏𝑘 𝑡

𝑘 )𝑚 =
∑
𝑘≥0 𝑐𝑘 𝑡

𝑘 with 𝑐0 ≠ 0, – namely, 𝑐0 = 𝑏𝑚0 , 𝑐𝑘 = 1
𝑏0

∑𝑘
𝑖=1(𝑖𝑚−𝑘+𝑖)𝑏𝑖𝑐𝑘−𝑖

for 𝑘 ≥ 1. This shows that u is indeed analytic. Also note that ord𝑡 (𝑢(𝑠)) = 1, so we can make the change
of variables (𝑠, 𝑡) = (𝑠, 𝑢(𝑠) (𝑡)), and then 𝑓 (𝛼(𝑠, 𝑡 (𝑠, 𝑡))) = 𝑡𝑚. In summary, after a reparametrization
we can suppose that for every s, 𝛼(𝑠) is a convergent arc with 𝑓 (𝛼(𝑠)) = 𝑡𝑚 and such that 𝛼(0) ∈ 𝒳𝑙

𝑚,𝑖

and 𝛼(𝑠) ∈ 𝒳𝑙
𝑚,𝑖′ for 𝑠 ≠ 0.

We can assume that 𝛼(𝑠) is defined for 𝑠 ∈ [0, 1]. For any non-constant arc 𝛾 ∈ ℒ(C2, 0), denote by
�̃� the lift of 𝛾 to the resolution. Let 𝑝0 ∈ 𝐸◦

𝑖 and 𝑝1 ∈ 𝐸◦
𝑖′ be the centers of �̃�(0) and �̃�(1), respectively,

where 𝐸◦
𝑘 � 𝐸𝑘 \

⋃
𝑘′≠𝑘 𝐸𝑘′ . There exist coordinate charts (𝑈0, 𝜓0) = (𝑧 (0)1 , 𝑧 (0)2 ) and (𝑈1, 𝜓1) =

(𝑧 (1)1 , 𝑧 (1)2 ) at 𝑝0 and 𝑝1, respectively, such that 𝜓0(𝑝0) = (0, 0) and 𝑓 ◦ 𝜇 |𝑈0 (𝑧
(0)
1 , 𝑧 (0)2 ) = (𝑧 (0)1 )𝑁𝑖 – and

analogously for (𝑈1, 𝜓1). After possibly reducing the radius of convergence of the arcs in the family 𝛼,
we may assume that 𝑈0 and 𝑈1 contain the images of �̃�(0) and �̃�(1), respectively.

We write �̃�(0) in the local coordinates of (𝑈0, 𝜓0) as �̃�(0) (𝑡) = (𝑎1 (𝑡), 𝑎2 (𝑡)). Note that 𝑎1 (𝑡)
𝑁𝑖 =

𝑓 (𝛼(0) (𝑡)) = 𝑡𝑚, and therefore 𝑎1 (𝑡) = 𝑡𝑚/𝑁𝑖 , after possibly multiplying the coordinate 𝑧 (0)1 by a root
of unity, which does not affect the properties of 𝜓0. Hence, (𝑎1 (𝑡), 𝜆𝑎2(𝑡)) with 𝜆 ∈ [0, 1] defines
a continuous path in 𝒳𝑚 joining �̃�(0) and the arc which in the coordinates of (𝑈0, 𝜓0) is given by
(𝑡𝑚/𝑁𝑖 , 0). After a similar construction for 𝛼(1) and pushing the paths to C2 via 𝜇, we can concatenate
and obtain a path 𝛽 : [0, 1] → 𝒳𝑚 such that for every s, 𝛽(𝑠) is convergent and 𝑓 (𝛽(𝑠)) = 𝑡𝑚, and
in the local coordinates of (𝑈0, 𝜓0) and (𝑈1, 𝜓1), we have 𝛽(0) = (𝑡𝑚/𝑁𝑖 , 0) and 𝛽(1) = (𝑡𝑚/𝑁𝑖′ , 0),
respectively. From now on, we write 𝛽(𝑠, 𝑡) for 𝛽(𝑠) (𝑡).

Let 0 < 𝛿 � 𝜀 � 1 be Milnor radii for f. Denote by 𝐵𝜀 the open ball in C2 centered at the origin
of radius 𝜀 and by 𝐷 𝛿 the open disk in C centered at the origin of radius 𝛿. We pull-back the Milnor
fibration to Y via 𝜇 – that is, we put 𝑌 ′ � 𝜇−1 (𝐵𝜀 ∩ 𝑓 −1(𝐷 𝛿)) and consider the map 𝑓 ◦ 𝜇 : 𝑌 ′ → 𝐷 𝛿 .
Its restriction over 𝑆1

𝛿 is a locally trivial fibration isomorphic to the Milnor fibration (in the tube).
We now recall a construction of a topological model for this fibration, given by A’Campo in [1,

§2]. Let 𝜏 : 𝑌log → 𝑌 ′ be a real oriented blowup along ( 𝑓 ◦ 𝜇)−1(0). Let 𝜂 : 𝐴 → 𝑌log be a continuous
map which is an identity over

⊔
𝑘 𝜏

−1(𝐸◦
𝑘 ), and for each pair 𝐸𝑘 , 𝐸𝑘′ it replaces 𝜏−1 (𝐸𝑘 ∩ 𝐸𝑘′ ) by

𝜏−1 (𝐸𝑘 ∩ 𝐸𝑘′ ) × [0, 1]; see [1, p. 239]. The resulting topological space A is a manifold with boundary
and corners, equipped with a continuous map 𝜋𝐴 � 𝜏 ◦ 𝜂 : 𝐴 → 𝑌 and a locally trivial fibration
𝑓𝐴 : 𝜕𝐴 → 𝑆1 which is topologically equivalent to the Milnor fibration in the tube (i.e., admits a
homeomorphism ℎ : 𝜇−1(𝐵𝜀∩ 𝑓 −1(𝑆1

𝛿)) → 𝜕𝐴 such that 𝑓𝐴◦ℎ = 1
𝛿 · 𝑓 ◦𝜇). Let (𝜙𝜃 : F1 → F𝑒2𝜋𝚤𝜃 )𝜃 ∈R,

where F𝑧 � 𝑓 −1
𝐴 (𝑧), be the monodromy trivialization of 𝑓𝐴. We now list some useful properties of the

decomposition 𝜕𝐴 =
⊔
𝑘 𝜋

−1
𝐴 (𝐸◦

𝑘 ) �
⊔
𝑘,𝑘′ 𝜋

−1
𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ ); see Figure 2.

For each k, the preimage 𝜋−1
𝐴 (𝐸◦

𝑘 ) is a product 𝐸◦
𝑘 × 𝑆1, and under this identification we have

(𝜋𝐴, 𝑓𝐴) (𝑥, 𝑧) = (𝑥, 𝑧𝑁𝑘 ), so the monodromy 𝜙𝜃 rotates the second coordinate by an angle 2𝜋𝜃
𝑁𝑘

. We
refer to 𝜋−1

𝐴 (𝐸◦
𝑘 ) ∩ F1 as the piece of F1 over 𝐸𝑘 ; in this piece, we have 𝜙𝑁𝑘 = id. Note that if the vertex

of Γ𝑚 corresponding to 𝐸𝑘 has valence 1 (respectively, 2) then each connected component of the piece
of F1 over 𝐸𝑘 is a disk (respectively, a cylinder).

Recall that we have distinguished a point 𝑝0 ∈ 𝐸◦
𝑖 and a chart 𝜓0 : 𝑈0 → C2 around 𝑝0 with

coordinates (𝑧 (0)1 , 𝑧 (0)2 ), such that 𝑓 ◦ 𝜇 ◦ 𝜓−1
0 = (𝑧 (0)1 )𝑁𝑖 . Writing 𝑧 (0)1 in polar coordinates yields a
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Figure 2. A’Campo decomposition of the Milnor fiber using the minimal m-separating log resolution,
see [1, §2]. Note the resemblance with Figure 1.

chart 𝜓 ′
0 : 𝜋−1

𝐴 (𝑈0) → [0,∞) × 𝑆1 × C such that 𝜋𝐴((𝜓 ′
0)

−1(𝑟1, 𝑒
2𝜋𝚤 𝜃1 , 𝑧 (0)2 )) = 𝜓−1

0 (𝑟1 · 𝑒
2𝜋𝚤 𝜃1 , 𝑧 (0)2 ).

Since the homeomorphism h can be defined by locally lifting the radial vector field on the real oriented
blowup of the base 𝐷 𝛿 , shrinking 𝑈0 if needed, we can assume that ℎ|𝑈0∩ 𝑓 −1 (𝑆1

𝛿 )
is a translation in the

𝑟1-direction (i.e., ℎ(𝜓−1
0 (𝛿1/𝑁𝑖 · 𝑒2𝜋𝚤 ·𝜃1 , 𝑧 (0)2 )) = (𝜓 ′

0)
−1(0, 𝑒2𝜋𝚤 ·𝜃1 , 𝑧 (0)2 )). As a consequence,

𝜙𝜃 (ℎ(𝜓
−1
0 (𝑧 (0)1 , 𝑧 (0)2 ))) = ℎ(𝜓−1

0 (𝑧 (0)1 𝑒2𝜋𝚤 𝜃/𝑁𝑖 , 𝑧 (0)2 )), (7.2)

and an analogous formula holds for the chart 𝑈1 around 𝑝1 ∈ 𝐸◦
𝑖′ .

Consider now an intersection point 𝐸𝑘 ∩ 𝐸 ′
𝑘 . Each connected component of 𝜋−1

𝐴 (𝐸𝑘 ∩ 𝐸 ′
𝑘 ) is a

product (𝑆1 × 𝑆1) × [0, 1]. With an additive notation in each 𝑆1 = R/2𝜋Z, the monodromy 𝜙𝜃 reads as
(𝜃1, 𝜃2, 𝜆) ↦→ (𝜃1 + 𝜆 ·

2𝜋𝜃
𝑁𝑘

, 𝜃2 + (1− 𝜆) · 2𝜋𝜃
𝑁𝑘′

, 𝜆); see [1, p. 240]. We call F1 ∩ 𝜋−1
𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ ) the piece

of F1 between 𝐸𝑘 and 𝐸𝑘′ . In the above coordinates, it is given by {𝑁𝑘𝜃1 +𝑁𝑘′𝜃2 = 0}, so it is a disjoint
union of cylinders 𝑆1 × [0, 1]. Putting 𝑁 = lcm(𝑁𝑘 , 𝑁𝑘′ ), we see that this piece is invariant under 𝜙𝑁 ,
and 𝜙𝑁 restricts to a Dehn twist on each cylinder.

Consider a homeomorphism of F1 defined as the above Dehn twist in F1 ∩ 𝜋−1
𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ ) and as the

identity elsewhere. It is isotopic to idF1 if and only if the image of 𝜋1 (F1 ∩ 𝜋−1
𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ )) in 𝜋1 (F1)

is trivial. This happens if 𝐸𝑘 and 𝐸𝑘′ are in the same vertical group of Γ𝑚; see Figure 1. Indeed, in
this case, each connected component of 𝜋−1

𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ ) lies in a disk obtained as follows (see Figure 2):
to a disk over a divisor corresponding to a vertex of valence one, we attach, along the boundary, a
sequence of cylinders lying either between divisors or over ones corresponding to vertices of valence
2. Conversely, if 𝐸𝑘 and 𝐸𝑘′ are not both contained in the same vertical group of Γ𝑚, then the image
of 𝜋1 (F1 ∩ 𝜋−1

𝐴 (𝐸𝑘 ∩ 𝐸𝑘′ )) in 𝜋1 (F1) is nontrivial, so the above Dehn twist is not isotopic to the
identity.

We now return to studying our path 𝛽 : [0, 1] → 𝒳𝑚. We can assume 𝛽(𝑠) is defined for |𝑡 | ≤ 𝛿1/𝑚

for every s. Consider the continuous map

𝜎 : [0, 1] × [0, 1] → F1, (𝑠, 𝜃) ↦→ 𝜙−1
𝑚𝜃 (ℎ(𝛽(𝑠, 𝛿

1/𝑚 · 𝑒2𝜋𝚤 𝜃 ))),

which is well-defined because 𝑓 (𝛽(𝑠, 𝛿1/𝑚𝑒2𝜋𝚤 𝜃 )) = 𝛿𝑒2𝜋𝚤𝑚 𝜃 . This map has the property that 𝜎(0, 𝜃)
and 𝜎(1, 𝜃) are independent of 𝜃. Indeed, using formula (7.2), we get

𝜎(0, 𝜃) = 𝜙−1
𝑚𝜃 (ℎ(𝛽(0, 𝛿

1/𝑚𝑒2𝜋𝚤 𝜃 ))) = 𝜙−1
𝑚𝜃 (ℎ(𝜓

−1
0 (𝛿1/𝑁𝑖 𝑒2𝜋𝚤𝑚 𝜃/𝑁𝑖 , 0))) = ℎ(𝜓−1

0 (𝛿1/𝑁𝑖 , 0)),
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and analogously for 𝜎(1, 𝜃). Therefore, 𝜎 is a homotopy relative to the endpoints between the paths
𝜎0(𝑠) � 𝜎(𝑠, 0) and 𝜎1(𝑠) � 𝜎(𝑠, 1). Moreover, the starting point lies on the piece of F1 over 𝐸𝑖 , and
the endpoint lies on the piece of F1 over 𝐸𝑖′ . Note that by definition, we have 𝜙𝑚 ◦ 𝜎1 = 𝜎0.

As explained before, if N is a common multiple of all 𝑁𝑘 with 𝑘 ≥ 0, then 𝜙𝑁𝑚 is a composition of
Dehn twists. Since 𝜙𝑁𝑚 = 𝜙𝑁𝑚 , it follows that 𝜙𝑁𝑚 ◦ 𝜎1 is homotopic to 𝜎1 relative to the endpoints.
Recall that the Dehn twists that are isotopic to the identity are the ones occurring in the connected
components of the pieces of F1 between two divisors of a vertical group of Γ𝑚. If we denote by 𝜙𝑁𝑚 the
composition of those Dehn twists appearing in 𝜙𝑁𝑚 which are not isotopic to the identity, we have that
𝜙𝑁𝑚 and 𝜙𝑁𝑚 are isotopic. Although it is possible that 𝜎1(0) and 𝜎1(1) are not fixed by this isotopy, we
claim that the path 𝜙𝑁𝑚 ◦ 𝜎1 is homotopic to 𝜎1 relative to the endpoints. Indeed, note that the isotopy
is equal to the identity on the pieces of F1 over the divisors in the horizontal group of Γ𝑚, including
the rupture components. Therefore, if 𝜎1(0) and 𝜎1(1) are contained in pieces of F1 over divisors in
the horizontal group, then it is immediate that 𝜙𝑁𝑚 ◦ 𝜎1 is homotopic to 𝜎1 relative to the endpoints.
If either 𝜎1(0) or 𝜎1(1) lies in a piece of F1 over a divisor in a vertical group of Γ𝑚 distinct from the
rupture divisors, then the homotopy between 𝜙𝑁𝑚 ◦𝜎1 and 𝜙𝑁𝑚 ◦𝜎1 induces a loop contained in a disk
in F1 based at 𝜎1(0) and a loop contained in a disk in F1 based at 𝜎1(1). By Lemma 7.5 below, also in
this case, 𝜙𝑁𝑚 ◦ 𝜎1 is homotopic to 𝜎1 relative to the endpoints.

Moreover, the endpoints 𝜎1(0) and 𝜎1(1) lie in the pieces of F1 over 𝐸𝑖 and 𝐸𝑖′ , which are different
connected components of the fixed point set of 𝜙𝑁𝑚. Indeed, Fix 𝜙𝑁𝑚 consists of all pieces of F1 lying
over divisors – all pieces lying between adjacent divisors in the same vertical group, and possibly some
circles in the interior of pieces between other divisors, where 𝜙𝑁𝑚 is an iterate of a Dehn twists. The
claim follows since by assumption, 𝐸𝑖 and 𝐸𝑖′ do not lie in the same vertical group.

Therefore, the properties of 𝜎1 contradict Lemma 7.6 below, and the proof is concluded. �

In the above proof, we have used the following two elementary lemmas. The second one is a
consequence of [43, Lemma 3 (ii)].

Lemma 7.5. Let T be a topological space and let 𝜂0 and 𝜂1 be paths in T with the same endpoints.
Suppose there exists a homotopy 𝐻 : [0, 1] × [0, 1] → 𝑇 between 𝜂0 and 𝜂1 – that is, 𝐻 (·, 0) = 𝜂0
and 𝐻 (·, 1) = 𝜂1, such that 𝐻 (0, ·) and 𝐻 (1, ·) are contractible loops. Then 𝜂0 and 𝜂1 are homotopic
relative to the endpoints.

Lemma 7.6. Let Σ be a surface and 𝑇 = 𝑇1 ◦ · · · ◦ 𝑇𝑟 be a composition of Dehn twists such that

• no 𝑇𝑖 is isotopic to the identity, and
• if the supports of 𝑇𝑖 and 𝑇𝑗 bound an annulus, then 𝑇𝑖 and 𝑇𝑗 have the same orientation.

If 𝜂 : [0, 1] → Σ is a path whose endpoints are fixed by T and such that 𝑇 ◦ 𝜂 is homotopic to 𝜂 relative
to the endpoints, then 𝜂(0) and 𝜂(1) are in the same connected component of the set of fixed points of T.

7.7. Irreducibility.

We finish now the proof of Theorem 1.22 by showing that the sets 𝒳𝑚,𝑖 , 𝑖 ∈ 𝑆′𝑚 and 𝑍 𝑗 , 𝑗 ∈ {1, . . . , 𝑔}
are all irreducible. The former are already known to be irreducible, so we focus on the sets 𝑍 𝑗 .

We assume first that C has only one Puiseux pair – that is, up to higher order terms it has the form
𝑦𝑝 = 𝑥𝑞 with gcd(𝑝, 𝑞) = 1. The only rupture component is denoted 𝐸𝑅. It will be useful to also
consider smooth curves which are tangent to the y-axis – that is, 𝑞 > 𝑝 = 1. In this case, by minimal
resolution we mean the composition of the q blowups needed to remove the tangency, and the rupture
component is the last of these exceptional divisors.

Lemma 7.8. Assume 𝑔 = 1. Let 𝐸𝑖 , 𝐸𝑖′ be two divisors in the first vertical group in Figure 1, and
suppose 𝑁𝑖 and 𝑁𝑖′ divide m. If 𝑚𝑣𝑖 (𝐺)/𝑁𝑖 ≤ 𝑚𝑣𝑖′ (𝐺)/𝑁𝑖′ for all 𝐺 ∈ C[𝑥, 𝑦], then 𝒳𝑚,𝑖 ⊃ 𝒳𝑚,𝑖′ .

Proof. Since 𝑔 = 1, all exceptional divisors give rise to toric valuations. The claim is then proven by
Ishii [22, Lemma 3.11]. Indeed, in the notation of [22], 𝐶𝑋 (𝑚𝑣𝑖/𝑁𝑖) is the closure of the fat arcs whose
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Figure 3. The graphs of 𝐹𝑥 and 𝐹𝑦 .

associated valuation equals 𝑚𝑣𝑖/𝑁𝑖 . In terms of C-points, those are the arcs that lift to 𝐸𝑖 and intersect
it with multiplicity 𝑚/𝑁𝑖 – that is, 𝐶𝑋 (𝑚𝑣𝑖/𝑁𝑖) = 𝒳𝑚,𝑖 . �

Proposition 7.9. Assume 𝑔 = 1. If 𝑍1 is nonempty, there exists precisely one component 𝐸𝑖0 , such that
𝑍1 = 𝒳𝑚,𝑖0 . If 𝑅 ∈ 𝑆𝑚, then 𝑖0 = 𝑅. Otherwise, there are m-valuations only on one side of the rupture
divisor, and 𝐸𝑖0 is the one among them which lies closest to 𝐸𝑅.

Proof. Using the notation 𝐸 (𝑟 ,𝑠) that we introduced above, note that 𝑣 (𝑟 ,𝑠) (𝐺) = min{𝑟 · 𝛽 + 𝑠 · 𝛼 |
𝑥𝛼𝑦𝛽 is a monomial appearing in 𝐺}. Since all valuations we are interested in are of this form, we only
need to check their values at the two functions x and y since 𝑣𝑖 (𝑥) ≤ 𝑣𝑖′ (𝑥) and 𝑣𝑖 (𝑦) ≤ 𝑣𝑖′ (𝑦) implies
𝑣𝑖 (𝐺) ≤ 𝑣𝑖′ (𝐺) for all 𝐺 ∈ C[𝑥, 𝑦] . Applying this to our curve C, we see that 𝑁 (𝑟 ,𝑠) = min{𝑝𝑟, 𝑞𝑠}. By
Lemma 7.8, to find a divisor that dominates all others, we need to simultaneously minimize the functions

𝐹𝑥 = 𝑚𝑣 (𝑟 ,𝑠) (𝑥)/𝑁 (𝑟 ,𝑠) = 𝑚𝑠/min{𝑝𝑟, 𝑞𝑠} = 𝑚(1 − 𝑡)/min{𝑝𝑡, 𝑞(1 − 𝑡)},

𝐹𝑦 = 𝑚𝑣 (𝑟 ,𝑠) (𝑦)/𝑁 (𝑟 ,𝑠) = 𝑚𝑟/min{𝑝𝑟, 𝑞𝑠} = 𝑚𝑡/min{𝑝𝑡, 𝑞(1 − 𝑡)},

where 𝑡 = 𝑟/(𝑟 + 𝑠) ∈ [0, 1] ∩Q represents all possible pairs of coprime numbers. The graphs are as in
Figure 3. Both functions reach a minimum at 𝑡 = 𝑞/(𝑝 + 𝑞), which corresponds to 𝐸𝑅. However, this
might not be an m-valuation.

For 𝑣 (𝑟 ,𝑠) to be an m-valuation, 𝑁 (𝑟 ,𝑠) must divide m. If 𝑝 � 𝑚 and 𝑞 � 𝑚, then 𝑍1 is empty. If
𝑝 | 𝑚 and 𝑞 | 𝑚, since 𝑁 (𝑞,𝑝) = 𝑝𝑞, 𝐸𝑅 gives an m-valuation and 𝑍1 = 𝒳𝑚,𝑅. If 𝑝 | 𝑚, 𝑞 � 𝑚, and
𝑁 (𝑟 ,𝑠) | 𝑚, then 𝑝𝑟 < 𝑞𝑠. Equivalently, 𝑟/(𝑟 + 𝑠) < 𝑞/(𝑝 + 𝑞) – that is, all m-valuations appear to the
left of the common minimum in the graphs of Figure 3. In particular, one of them is smaller than all
others, so its corresponding component dominates the rest, and 𝑍1 is the closure of the corresponding
𝒳𝑚,𝑖0 . Moreover, the order of the divisors in the resolution graph is the same as the order induced by
their labels (𝑟, 𝑠) when we write them as 𝑟/(𝑟 + 𝑠). Thus, the valuation that dominates all others, the
one closest to the common minimum in the graphs of Figure 3, is also the closest m-valuation to 𝐸𝑅. If
𝑝 � 𝑚 and 𝑞 | 𝑚, the situation is analogous. �

This proves Theorem 1.22 in the case of one Puiseux pair. We return now to the general case where C
has g Puiseux pairs. We denote by 𝜈 the multiplicity of C and by 𝑘1, . . . , 𝑘𝑔 its characteristic exponents.
Let 𝑟1 = 𝜈, 𝑟 𝑗+1 = gcd(𝑘 𝑗 , 𝑟 𝑗 ) for 𝑗 = 1, . . . , 𝑔; and 𝑘0 = 0, 𝜅 𝑗 = 𝑘 𝑗 − 𝑘 𝑗−1 for 𝑗 = 1, . . . , 𝑔, 𝜅𝑔+1 = 1.

Lemma 7.10. Let 1 ≤ 𝑗 < 𝑔. Consider the parametrization at the j-th rupture component
𝐸𝑅 𝑗 = {𝑥 𝑗 = 0} of the strict transform 𝐶 (𝑅 𝑗 ) : 𝑥 𝑗 (𝜏) = 𝜏𝑟 𝑗+1𝑢𝑥 (𝜏), 𝑦 𝑗 (𝜏) = 𝜏𝜅 𝑗+1𝑢𝑦 (𝜏), where 𝑢𝑥 , 𝑢𝑦
are units. Let 𝑐0 = 𝜅 𝑗+1, 𝑐1 = 𝑟 𝑗+1, and consider the steps of the Euclidean algorithm for (𝑐0, 𝑐1):
𝑐𝑖−1 = 𝜂𝑖𝑐𝑖 + 𝑐𝑖+1 with 0 < 𝑐𝑖+1 < 𝑐𝑖 for 𝑖 = 1, . . . , 𝑙 − 1, and 𝑐ℓ−1 = 𝜂ℓ𝑐ℓ . As in [5, p.522], label by
𝐸𝑎,𝑏 with 𝑎 = 1, . . . , ℓ, 𝑏 = 1, . . . , 𝜂𝑎, the exceptional divisors in the minimal log resolution of C that
lie between 𝐶 (𝑅 𝑗 )

𝑗 and 𝐸𝑅 𝑗 by their order of appearance. Let (𝑟, 𝑠) be the pair of coprime numbers such
that 𝐸𝑎,𝑏 = 𝐸 (𝑟 ,𝑠) as in Lemma 7.2. Then

𝑁𝑎,𝑏 =

{
𝑠(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) if 𝑎 is even,
𝑠(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) + (𝜂1𝑐1 + 𝜂3𝑐3 + · · · + 𝜂𝑎−2𝑐𝑎−2 + 𝑏𝑐𝑎 − 𝜅 𝑗+1) if 𝑎 is odd.
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Proof. We do the case where 𝜅 𝑗+1 > 𝑟 𝑗+1, the other case being analogous. This is a straightforward
computation, given the formulas to compute the multiplicities:

𝑣1,1 (𝐶) = 𝑣𝑅 𝑗 (𝐶) + mult(𝐶 (𝑅 𝑗 ) ) = 𝑐1 + 𝑀,

𝑣1,𝑏 (𝐶) = 𝑣1,𝑏−1 (𝐶) + mult(𝐶 (1,𝑏−1) ) = 𝑏𝑐1 + 𝑀, for 𝑏 > 1,

𝑣2,1 (𝐶) = 𝑣1,𝜂1 (𝐶) + mult(𝐶 (1,𝜂1) ) = 𝜂1𝑑1 + 𝑑2 + 𝑀 = 𝜅𝑖+1 + 𝑀,

𝑣2,𝑏 (𝐶) = 𝑣1,𝜂1 (𝐶) + 𝑣2,𝑏−1(𝐶) + mult(𝐶 (2,𝑏−1) ) = 𝑏(𝜅𝑖+1 + 𝑀), for 𝑏 > 1,

𝑣𝑎,1 (𝐶) = 𝑣𝑎−2,𝜂𝑎−2 (𝐶) + 𝑣𝑎−1,𝜂𝑎−1 (𝐶) + mult(𝐶 (𝑎−1,𝜂𝑎−1) ), for 𝑎 > 2,

𝑣𝑎,𝑏 (𝐶) = 𝑣𝑎,𝑏−1 (𝐶) + 𝑣𝑎−1,𝜂𝑎−1 (𝐶) + mult(𝐶 (𝑎,𝑏−1) ), for 𝑎 > 2, 𝑏 > 1.

The factor s in the formulas appears because 𝑠 = 𝑣 (𝑟 ,𝑠) (𝑥 𝑗 ) = 𝑣𝑎,𝑏 (𝐸𝑅 𝑗 ), and this last multiplicity is
computed with the same formulas as above, except that we do not add the multiplicity of C at each step.
As a result, s is the coefficient of M in 𝑣𝑎,𝑏 (𝐶), giving the desired result. �

Lemma 7.11. If 𝛾 ∈ 𝒳𝑚 (𝐶) lifts to a component 𝐸 (𝑟 ,𝑠) between 𝐶
(𝑅 𝑗 )
𝑗 and 𝐸𝑅 𝑗 with 0 < 𝑗 < 𝑔, then

𝛾 (𝑅 𝑗 ) ·𝐸𝑅 𝑗 ≥ 𝑚/(𝜅 𝑗+1 +𝑁𝑅 𝑗 ), with equality if and only if 𝐸 (𝑟 ,𝑠) is in the ( 𝑗 +1)-th vertical group of Γ𝑚.

Proof. We have 𝛾 (𝑅 𝑗 ) · 𝐸𝑅 𝑗 = 𝑣 (𝑟 ,𝑠) (𝐸𝑅 𝑗 ) (𝛾
(𝑟 ,𝑠) · 𝐸 (𝑟 ,𝑠) ) = 𝑠𝑚/𝑁 (𝑟 ,𝑠) . So we need that 𝑁 (𝑟 ,𝑠) ≤

𝑠(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ), with equality if and only if 𝐸 (𝑟 ,𝑠) is in the vertical group. This holds by Lemma
7.10 for divisors in the minimal resolution. In general, we argue by induction. Suppose 𝐸 (𝑟 ′′,𝑠′′) has
been obtained after blowing up 𝐸 (𝑟 ,𝑠) ∩ 𝐸 (𝑟 ′,𝑠′) and that 𝐸 (𝑟 ,𝑠) and 𝐸 (𝑟 ′,𝑠′) satisfy the claim. Then
(𝑟 ′′, 𝑠′′) = (𝑟 + 𝑟 ′, 𝑠 + 𝑠′) and its order of vanishing along C is 𝑁 (𝑟 ′′,𝑠′′) = 𝑁 (𝑟 ,𝑠) + 𝑁 (𝑟 ′,𝑠′) . Hence,

𝑁 (𝑟 ′′,𝑠′′) = 𝑁 (𝑟 ,𝑠) + 𝑁 (𝑟 ′,𝑠′) ≤ 𝑠(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) + 𝑠′(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) = (𝑠 + 𝑠′) (𝜅 𝑗+1 + 𝑁𝑅 𝑗 ).

Equality holds if and only if 𝑁 (𝑟 ,𝑠) = 𝑠(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) and 𝑁 (𝑟 ′,𝑠′) = 𝑠′(𝜅 𝑗+1 + 𝑁𝑅 𝑗 ) (i.e., if both 𝐸 (𝑟 ,𝑠)

and 𝐸 (𝑟 ′,𝑠′) are in the vertical group; i.e., if 𝐸 (𝑟 ′′,𝑠′′) is in the vertical group). �

We say that 𝐸𝑖 ⊂ 𝑌 appears no later than 𝐸𝑅 𝑗 if it is a divisor between 𝐶 (𝑅𝑘 )
𝑘 and 𝐸𝑅𝑘 for some

0 ≤ 𝑘 < 𝑗 ; in Figure 1, these are all the vertices to the left of, under, or equal to 𝐸𝑅 𝑗 .

Lemma 7.12. Let 1 ≤ 𝑗 ≤ 𝑔. For every 𝐸𝑖 no later than 𝐸𝑅 𝑗 , 𝑁𝑖 = 𝑟 𝑗+1𝑣𝑖 (𝐶 𝑗 ). In particular, the
minimal (𝑚/𝑟 𝑗+1)-separating resolution graph of 𝐶 𝑗 coincides with the part no later than 𝐸𝑅 𝑗 of the
minimal m-separating resolution graph of C.

Proof. The second claim follows from the first one. It suffices to prove the first claim when 𝐸𝑖 appears
already in the minimal resolution. Pick an arc �̃� in 𝑌𝑅 𝑗 intersecting 𝐸𝑖 transversally but not intersecting
any other irreducible component of the total transform of C. Let 𝛾 be the image of �̃� in C2. Note that
𝐶 · 𝛾 = (𝐶 (1) + (mult𝐶) · 𝐸1) · 𝛾

(1) = 𝐶 (1) · 𝛾 (1) + (mult𝐶) · (mult 𝛾). Inducting, we get 𝑁𝑖 = 𝐶 · 𝛾 =∑𝑖
𝑘=1(mult𝐶 (𝑘−1) ) · (mult 𝛾 (𝑘−1) ), and similarly, 𝑣𝑖 (𝐶 𝑗 ) = 𝐶 𝑗 · 𝛾 =

∑𝑖
𝑘=1 (mult𝐶 (𝑘−1)

𝑗 ) · (mult 𝛾 (𝑘−1) ).

Thus, it is enough to show that mult𝐶 (𝑘−1) = 𝑟 𝑗+1 · mult𝐶 (𝑘−1)
𝑗 for every 1 ≤ 𝑘 ≤ 𝑅 𝑗 – equivalently,

that 𝐶 (𝑘) · 𝐸𝑘 = 𝑟 𝑗+1𝐶
(𝑘)
𝑗 · 𝐸𝑘 . Let 𝜇𝑅 𝑗 ,𝑘 = 𝜇𝑘+1 ◦ · · · ◦ 𝜇𝑅 𝑗 , where 𝜇𝑖 is the sequence of blowups

forming the minimal resolution. Then 𝐶 (𝑘) ·𝐸𝑘 = 𝐶 (𝑅 𝑗 ) · 𝜇∗𝑅 𝑗 ,𝑘
𝐸𝑘 = 𝑣𝑅 𝑗 (𝐸𝑘 ) (𝐶

(𝑅 𝑗 ) ·𝐸𝑅 𝑗 ), and one has

𝑣𝑅 𝑗 (𝐸𝑘 ) = 𝐶 (𝑘)
𝑗 · 𝐸𝑘 . By [42, Theorem 5.1], an integer n is in the semigroup of C if and only if 𝑟 𝑗+1𝑛

is in the semigroup of 𝐶 𝑗 . The multiplicity of a branch is the least positive number of its semigroup,
so mult𝐶 = 𝑟 𝑗+1 · mult𝐶 𝑗 . From above for 𝑘 = 1, we had mult𝐶 = (𝐶 (𝑅 𝑗 ) · 𝐸𝑅 𝑗 ) · (mult𝐶 𝑗 ); hence,
𝐶 (𝑅 𝑗 ) · 𝐸𝑅 𝑗 = 𝑟 𝑗+1. �
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Proposition 7.13. If 𝑍1 is nonempty, there exists precisely one component 𝐸𝑖0 no later than 𝐸𝑅1 such
that 𝑍1 = 𝒳𝑚,𝑖0 . If 𝑁𝑅1 divides m, then 𝑖0 = 𝑅1. Otherwise, there are m-valuations only on one side of
the rupture divisor 𝐸𝑅1 , and 𝐸𝑖0 is the one among them which lies closest to 𝐸𝑅1 .

Proof. If 𝐸𝑖 in the first vertical group, then 𝑚/𝑁𝑖 = (𝑚/𝑟2)/𝑣𝑖 (𝐶1) by Lemma 7.12. Thus, 𝐶1 is a
curve with one Puiseux pair whose minimal (𝑚/𝑟2)-separating log resolution graph coincides with the
minimal m-separating log resolution graph of C up to the first rupture component 𝐸𝑅1 , and 𝒳𝑚,𝑖 (𝐶) =
𝒳𝑚/𝑟2 ,𝑖 (𝐶1). So the claim follows from Proposition 7.9 for 𝐶1. �

Lemma 7.14. Let 𝜎 : 𝐵 → C2 be the blowup at the origin. Fix 𝑛 ∈ N and let M be the set of arcs in C2

of multiplicity n at the origin. Then 𝜎∞ : 𝜎−1
∞ (𝑀) → 𝑀 is an isomorphism.

Proof. Let E be the exceptional divisor. Then 𝜎∞ : ℒ(𝐵) − ℒ(𝐸) → ℒ(C2) − {0} is a bijective
morphism, so we only need to show 𝜎−1

∞ : 𝑀 → 𝜎−1
∞ (𝑀) is a morphism. We have 𝑀 = 𝑀1 ∪𝑀2, where

𝑀𝑖 = {𝛾 = (𝛾1, 𝛾2) ∈ 𝑀 | ord𝑡𝛾𝑖 = 𝑛} is open in M for 𝑖 = 1, 2. Using charts for B, the restriction of
𝜎−1
∞ to 𝑀1 and 𝑀2 is given by (𝛾1, 𝛾2) ↦→ (𝛾1, 𝛾2/𝛾1) and (𝛾1/𝛾2, 𝛾2), respectively. Computing these

expressions explicitly, one sees they are morphisms, and hence, so is 𝜎−1
∞ . �

Proposition 7.15. If 𝑍𝑔 is nonempty, there exists precisely one divisor 𝐸𝑖0 in the g-th branch such that
𝑍𝑔 = 𝒳𝑚,𝑖0 . This divisor is characterized as the one closest to the rupture component that gives an
m-valuation (it could be the rupture component itself).
Proof. By Lemma 7.11, 𝑍𝑔 =

{
𝛾 ∈ 𝒳𝑚(𝐶)

 𝛾 (𝑅𝑔−1) · 𝐸𝑅𝑔−1 = 𝑚/(𝜅𝑔 + 𝑁𝑅𝑔−1 )
}
. So if 𝛾 ∈ 𝑍𝑔, then

𝑚 = 𝛾 ·𝐶 = 𝛾 (𝑅𝑔−1) ·𝐶 (𝑅𝑔−1) +𝑁𝑅𝑔−1 (𝛾
(𝑅𝑔−1) ·𝐸𝑅𝑔−1 ). Hence,𝑚′ := 𝛾 (𝑅𝑔−1) ·𝐶 (𝑅𝑔−1) = 𝑚−𝑁𝑅𝑔−1𝑚/(𝜅𝑔+

𝑁𝑅𝑔−1 ) is constant for all arcs in 𝑍𝑔. Moreover, fixing 𝛾 (𝑅𝑔−1) · 𝐸𝑅𝑔−1 , one fixes the sequence of
multiplicities of the lifts of 𝛾 up to 𝑌𝑅𝑔−1−1. Applying Lemma 7.14 repeatedly, we see that lifting arcs
establishes an isomorphism between 𝑍𝑔, the arcs of 𝒳𝑚 (𝐶) that lift to the g-th branch, and the arcs of
𝒳𝑚′ (𝐶 (𝑅𝑔−1) ) that lift to the corresponding part of the resolution graph of 𝐶 (𝑅𝑔−1) – that is, one of the
sides of the first rupture component. Since 𝐶 (𝑅𝑔−1) has zero or one Puiseux pair, the result now follows
from Proposition 7.9. �

Proposition 7.16. If 𝑍 𝑗 is nonempty, there exists precisely one divisor 𝐸𝑖0 in the j-th branch such that
𝑍 𝑗 = 𝒳𝑚,𝑖0 . This divisor is characterized as the one closest to the rupture component that gives an
m-valuation (it could be the rupture component itself).
Proof. By Lemma 7.12, we have 𝒳𝑚,𝑖 (𝐶) = 𝒳𝑚/𝑟 𝑗+1 ,𝑖 (𝐶 𝑗 ) for all 𝐸𝑖 no later than 𝐸𝑅 𝑗 . In particular,
since the j-th branch of the resolution graph of C is the j-th (and therefore the last) branch of the
resolution graph of 𝐶 𝑗 , the result follows from Proposition 7.15. �

Proof of Theorem 1.22. (ii) This is true in general, by Proposition 3.5. Parts (i) and (iii) are proved in
Theorem 7.4 and the last three Propositions. �
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