PRINCIPALLY ORDERED REGULAR SEMIGROUPS
by T. S. BLYTH and G. A. PINTO
(Received 30 May, 1989)

An ordered semigroup S will be called principally ordered if, for every x € S, there exists
x*=max{y e S;xyx <x}.

Here we shall be concerned with the case where S is regular. We begin by.listing some
basic properties that arise from the above definition. As usual, we shall denote by V(x)
the set of inverses of x € S.

x'eV(x)>x' =x*. (§))
This follows immediately from the fact that xx'x = x.
x =xx*x. (3]
By (1), if x" € V(x) then x = xx'x =< xx*x, whence we have equality.
x°=x*xx* is the greatest inverse of x. 3)

In fact, by (2), we have x*xx* € V(x). If now x’' € V(x) then, by (1), x' =x'xx' <x*xx*.
Thus x°=x*xx* is the greatest inverse of x.

xx°=xx* is the greatest idempotent in R,. 4)

It is clear from (3) and (2) that xx° = xx*. Also, by (2), x and xx* are R-related. If now e
is an idempotent that is R-related to x then we have e =xy and x = ez for some y, z € S. It
follows that xyx =ex = ez =x and so y =x™ whence e = xy <xx*.

x°x =Xx*x is the greatest idempotent in L,. 5)
This is similar to (4)
x=x** and x=x (6)

By (3) and (1), x*xx* =x°<x* and so x <x**. The second inequality follows from (3)
and the fact that x is an inverse of x°. »
xo* - x** (7)

This follows from the observation that
y=x*oxyx°=x°

S x*xx*yx*xx* = x*xx*

SOxx*yx*x =x

Oxtyx*=x*

Sy =x*~

g = R (8)

By (6) we have x* =x***. To obtain the reverse inequality, observe that

xyx <x**x*xyxx*=x*>xyx=x
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and hence that
Xyx =x**Sxyx <x.
Now, by (6) and (2), we have

% %k % dok g kkkkk kK
=X y

XX Tx=x""x X

and therefore, by the above observation,

***x =x

xx
and so x*** = x*.
U )
We have
X0 = xFEp g
— x**x** % by (8)
=x** by (2).
xP=x** (10)
This follows from the observation that
X% =x*x % by (3)
= x*rpOx by (7)

=x**x*x**  by(1)

=x**x***x** by (8)
=x** by (2).
x°=x"° (11)

In fact,

x°=x*xx* =x*x**xFax*x**x*

=x*x"*x°x**x* by (7)

=x*x"x*

= x*HEgprs by ()
= x %% x Px* by (7)
=x°.

ExampLe 1. A perfect Dubreil-Jacotin semigroup is characterised in [2] as an
ordered regular semigroup § in which

(@) x* =max{y € S;xyx <x} exists for every x € §;

(B) &=max{xeS;x*>=<x} exists;

(y) &x*=x*=x*& for every x € S.
Every perfect Dubreil-Jacotin semigroup is therefore principally ordered.
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ExampLE 2. On the cartesian ordered set
S={(x,y,2)eZ’;0=y=x}
define a multiplication by
(x,y, 2)(a, b, ¢) = (sup{x, a}, y, z + ¢).
Then clearly S is an ordered semigroup. It is regular since
(x, y, 2)(x, x, —2)(x, y, 2) = (x, 3, 0)(x, y, 2) = (x, y, 2)-
The idempotents are the elements of the form (x, y, 0), and as they form a subsemigroup
§ is orthodox. Since
(x, y, 2)(a, b, c)(x, y, )= (sup{x, a}, y, 2z +c)=(x, y, z)
Sa=sx,c=—2
&(a, b, c)=(x,x, —2),
we see that (x, y, z)* = (x, x, —z) and so S is principally ordered.
ExampLE 3 [The boot-lace]. Let G be an ordered group and let x € G be such that

1<x. Let M=M(G; 1, A; P) be the regular Rees matrix semigroup over G with
I=A={1, 2} and sandwich matrix

With {1, 2} ordered by 1 <2, we can regard P as an isotone mapping from the cartesian
ordered set {1,2} x {1,2} to G. Recall that the multiplication in M is given by

(i’ a, }.)(], b: I‘) = (i’ apljb’ “)-

The set of idempotents of M is

E={1,x1),(01,1,2),21,1),2,1,2)}

Let E=|J E" be the subsemigroup generated by the idempotents. Then, with the

nzl

convention that x° =1, we have
E={Gx" A);i,Ae{l,2},neZ}.

By a result of Fitz-Gerald [5], the set V(E") of inverse of elements in E" is E™' It
follows that E is regular. )
Consider the relation < defined on E by

n=m,i<i',A<A’;
orn+l=m,i<i,
orn+l=m A=<},
orn+1<m.

Gx, =30, x"A)e
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It is readily verified that this is an order on E which gives the boot-lace Hasse diagram

A y
efef =(1, x*, 2) | (2, x%, 1) = fefe
efe=(1, x* 1) (2, x, 2) = fef
ef =(1, x,2) 2,x, 1)=fe
eg=he=e=(1,x,1) 2,1,2)=f=fh=gf
eh=hf =h=(1,1,2) 2, 1,)Y=g=ge=fg

hg=(1,1,1) ¢ (2, x™",2)=gh
hgh=(1,x""2) b (2, x7", 1) =ghg
hghg =(1,x7", 1) ¢ b (2, x72,2) =ghgh

To see that E is thus an ordered semigroup, suppose that we have (i, x", A) =< (i’, x™, ')
and compare

(i) xn’ A)(]’ xkr u) = (i’ xnpljxkr .u) = (ir «, “)’
(i,) xm, A’,)(.’! xk’ ”) = (i,’ xmpl’jxkr ‘Ll) = (i'r Br ,Lt)

If n=m,i<i’"and A=A’ then clearly e« =f and (i, o, u) = (', B, u). If n+1=m and
i=<i' then a=p when p;=1 and p,;=x"', in which case (i, &, u)=<(’, B, u);
otherwise, @ =x* <x® =B with a + 1 =<b in which case (i, o, p) < (i", B, p). If n+1=m
and A<A', or if n+1<m, then again we have a =x° <x” =B with a + 1 <b in which
case (i, &, u) =< (i’, B, u). Thus we see that the multiplication in E is compatible on the
right with the order; similarly, it is compatible on the left.

The ordered regular semigroup E is principally ordered. In fact, for every n e Z we
have

(1, x", 1)*=(1,x""*2, 1),
(1, x"2)*=(2,x"*, 1),
2, x", D*=(1,x"*, 2);
2, x",2)*=(2,x7"2).
To see the first of these, for example, observe that
(1, x", (L x"2 1), %", 1) =(1, %%, 1)

whereas for the element (2, x™"*!, 2), which is directly opposite (1, x™"*2, 1) in the Hasse
diagram, we have

@, x*, DE, x~* 2)(, x%, D) =(1, x"*, 1) > (1, x", 1).
It follows from this that
1, x", D)*=(,x""*21).

Similarly, we have the other formulae. Note that in this example we have a =a** for
everyaeE.
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Simple calculations show that in both Examples 2 and 3 we have x° = x* for every x.
It is easy to construct further examples in which this identity does not hold.

ExampLE 4. Consider the smallest non-orthodox naturally ordered regular semigroup
with a greatest idempotent (see, for example, [3]). This is the semigroup N; described by
the following Hasse diagram and Cayley table:

u ue f a b

e<?f ulu u f f b
a

b ele e a a b

flu b f b b

ale b a b b

bib b b b b

It is readily seen that xux = x for every x € N5 and so N; is principally ordered with x* = u
for every x. In fact, N; is perfect Dubreil-Jacotin.

With E as in Example 3, define a multiplication on the cartesian ordered set Ns X E
by

(P, x)(q, y) = (pq, xy)-
Then Ns X E is a principally ordered regular semigroup in which
(p, x)* = (u, x*).
In this semigroup, we have
(p, x)°=(p, x)*(p, X)(p, x)* = (upu, x°) = (upu, x*).
It follows that, for example,
(b, x)°= (b, x*) < (u, x*) = (b, x)*.

Note also that

(p, x)**=(u, x),  (p,x)* = (upu, x)

and so in N5 X E we have x #x** and x # x* in general.

Bearing in mind Example 1 above, we recall from [2] that if S is a perfect
Dubreil-Jacotin semigroup then two particular features of S are, on the one hand, that S
has a greatest idempotent and, on the other, that the assignment x — x* is antitone. In a
general principally ordered regular semigroup, these two properties are independent.

To see this, we refer first to Example 3. Here we have a principally ordered regular
semigroup in which the idempotents form the 4-element crown

e [ ]f

h 8
and so there is no greatest idempotent. But, as is readily verified, the assignment x > x*
is antitone on E.
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To obtain an example of a principally ordered regular semigroup that has a greatest
idempotent and in which x —x™* is not antitone, we consider a subsemigroup of that of
Example 2.

ExamrLE 5. Let k be a fixed positive integer and consider the subset 7, of the
semigroup S of Example 2 given by

T,={(x,y,2) e 2% 0=y =x=<k}).

Then it is readily seen that T, is a principally ordered regular semigroup in which
(x,y,2)*=(x,x, —z). Clearly, T, has a greatest idempotent, namely the element
(k, k, 0), and x> x* is not antitone.

Our main objective now is to show that for a principally ordered regular semigroup §
the conditions (a) S has a greatest idempotent, and (b) the mapping x — x* is antitone,
are necessary and sufficient for S to be a perfect Dubreil-Jacotin semigroup. For this
purpose, we first establish the following result.

THEOREM 1. Let S be a principally ordered regular semigroup in which x —x* is
antitone. Then S is naturally ordered.

Proof. Let < denote the natural order on the idempotents, so that
es<foef=fe=e.

Suppose that e <f. Then these equalities give fef =e and efe =e¢. From the latter we
obtain f = e* whence, by (6) and the fact that x —x* is antitone, we have e =e** < f* It
follows that e =fef <ff*f =f. Thus the order on S extends the natural order on the
idempotents and so S is naturally ordered.

CoroLLARY. Let S be a principally ordered regular semigroup in which x> x* is
antitone. Then § is locally inverse.

Proof. This follows immediately from [6, Proposition 1.4].

We recall now that if E is the set of idempotents of S and if e, f € E then the
sandwich set S(e, f) is defined by

S(e,f)=1{geE;g=ge=fg, egf =ef}.

A characteristic property of locally inverse semigroups is that sandwich sets are
singletons. We identify them in the present situation as follows.

THEOREM 2. Let S be a principally ordered regular semigroup in which x> x* is
antitone, and let e, f € E. Then S(e, f) = {f(ef)%}.

Proof. Observe that if g = f(ef)°e then g* =g = ge = fg and egf = ef.

Since the structure of naturally ordered regular semigroups with a greatest
idempotent has been completely determined in [3], we shall focus our attention on
principally ordered regular semigroups in which x+x* is antitone. Unless otherwise
specified, S will henceforth denote such a semigroup. For such a semigroup, we now list
properties that will lead us to our goal.

(Ve€E) e ENV(e) (12)
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In fact, this was shown by Saito [7, Proposition 2.2] to hold in any naturally ordered
regular semigroup in which greatest inverses exist, and therefore holds in the present
situation by Theorem 1 and property (3) above.

(Vx,yeS) xy(xy)’=xx°,  (xy)xy=y°y. (13)
From y(xy)°xy(xy)° = y(xy)° we deduce that
x=[y(y)T,
and so, by (6) and the fact that x> x* is antitone,
y(ey)® =[yCey) ™ =x*.
It follows that xy(xy)° =< xx* = xx°. Similarly, we can show that (xy)°xy < y°y.
(Vx, y €S)  (xy)° = (xxy)°x° = y°(xyy°)". (14)

Since, by (5), x and x°x are Z-related, and since £ is right compatible with multiplication,
we have that xy and x°xy are ¥-related, whence

(@) (xy)°xy = (x°xy)°x°xy.
It follows that
xy . (x°xy)°x°. xy = xy(xy)°xy = xy
and so
(x°xy)°x° = (xy)*.
Using this, we see that
xy(xy)° = xy(xy)°xy(xy)°

= xy(x°xy)’x°xy(xy)° by (a)
= xy(x°xy)°x°xx° by (13)

= xy(x°xy)°x°
=xy(xy)*
=xy(xy)’,
whence we have
(b)  xy(xy)® =xy(x°xy)°x°.
It now follows that
(xy)° = (xy)°xy(xy)°
= (x°xy)°x°xy(xy)° by (a)
= (x°xy)x°xy (x°xy)x° by (b)
= (x°xy)°x°.
Similarly, we can show that (xy)° = y°(xyy°)°.
(VxeS8) (xx°)°=x"x° (x°x)° = x°x. 15)

Take y = x° in the first equality of (14), and x = y° in the second.
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Remark. Note that (13) and (14) were established by Saito [7] in the case of a
naturally ordered regular semigroup with greatest inverses and in which Green’s relations
R and X are regular, in the sense that

x=y>xx°=yy° and x=y=xx=<y°%.

Later, we shall see the significance of the regularity of Green’s relations ® and £ in the
present context of a principally ordered regular semigroup in which the mapping x —x* is
antitone.

IfeeEand f<fthene<f=>e=efe (16)
This follows from the observation that
e<f=> fefef <f=f
Sefesf*r=e*
Sefe<ee*e=e
>esf=e*
>e=sefesee*e=¢
>e=¢fe.
(VeeE) eceEse*eE. 17
For every e € E we have
e E&Se’e=¢°
Se*ee* . e*ee* =e*ee*
See*e*e=e.
Thus e° € E implies that e*e* <e*. But e° € E also implies, by (5), (7) and (1), that
0 < %6° = %% ° = p**p® < ** ot
whence, by (16),
ettt < o = o*t <ot
the last inequality following from the fact that e =e*. It follows that
e* =e*e**e* =e*e*,

Thus e° € E implies that e* € E. Conversely, if e* € E then ee*e*e =ee*e =e and, from
the above, we deduce that e°€ E.
For every x € § we now consider the elements

o, =xx°€eE, B:=xx* €E.
(VxeS) a,=ai=<ajeE, B.=B.<BieE. (18)
Using (15) and (11), we observe that

ax < axa; =x00x0(x00x0)0 =x00x0x00x0 = xOOxO = ax’

https://doi.org/10.1017/50017089500009435 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009435

PRINCIPALLY ORDERED REGULAR SEMIGROUPS 357

and so a, = a,a}. Similarly, we have «, = aja,. It follows that
@, = a0 = e = ay,
and so a2 € E. It now follows by (17) that a} € E.
ay = (xx*)* is the greatest idempotent above xx*, and
* * * > b * (19)
Bt = (x*x)* is the greatest idempotent above x*x.

Clearly, xx* =xx°=x*x°= @, = a} where, by (18), a} € E. Suppose now that g € E is
such that xx* <g. Then we have, using (7) and (15),

g** = (xx*)** = ()™ = (x*x°)* = o} = a,

and so g =g* = }. Thus a] is the greatest idempotent above xx*.
The maximality of the idempotent a7 implies that

ar=ajart=ar*al,
and so
a*=atarat*=alart=al

It follows by (7), (8), and (15) that
a,: — (l’:* — (xooxo)** = (xx0)o** — (xx°)*** = (xxO)* = (xx*)*.

The statement concerning B} is proved similarly.

(Ve,feE) S(e f)*=max{x € S; exf = (ef)**}. 20)
By Theorem 2, S(e, f) = {f(ef)°e} = {g}, say. Then
x=grogxg=<g

> flef)e. x. f(ef)’e <f(ef)%e
>ef(ef)* . exf. (ef)ef =ef
> (ef ) exf(ef)* = (ef)*
> exf = (ef)**.

Conversely, suppose that exf < (ef)** = (ef)°*. Then

gxg =flef)ye. x. flef)°e
=f(ef)(ef)**(ef )e
=flef)e
=g,
and hence x <g*.
Using the above results, we can now establish the following:

THEOREM 3. Let S be a principally ordered regular semigroup in which xv—x* is
antitotone. Then the following statements are equivalent:
(i) (VeeE) e*=e**
(i) (Vee E) e*€E;
(iii) S has a greatest idempotent;
(iv) S is a perfect Dubreil~Jacotin semigroup.
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Proof. (i)= (ii): If e*=e** then e*e*e*=e*. But, by (16), e<e*e** gives
e*e** =e*, so we have e* =e*e™*e* <e*e* and so

e*<eg*e* <e*e*e* <e*,

whence e* = e*e*.

(&) = (iii): If (i) holds then it is clear from (16) that, for every e € E, e* is the greatest
idempotent above e. Suppose now that e, f € E. Then, by (ii), we have e*, f* € E.
Observe now from (20) and (ii) that e*=S(e*, f*)*€ E and f*=S(e*, f*)* € E. The
maximiality of e*, f* now gives e* = S(e*, f*)* = f*. Since this holds for all ¢, f € E, it
follows that § has a greatest idempotent.

(iii) = (iv): Suppose now that & is the greatest idempotent in S. Then if x € § is such
that x> < x we have

xxx*x = xx <x,
which gives xx* <x* and hence
x=xx*x=x*x=<E.

Thus & = max{x € §; x>*=<x}.
Now since & is the greatest idempotent of S it follows from (19) that £ = a;} for every
x € §. Thus we have

x*E=x*ay = x*(xx*)*
and hence
xx*Exx* = xx*(xx*)*xx* = xx*
and consequently
xx*Ex =x.

This gives on the one hand x*& <x*. But, on the other hand, we have x* =x*x**x* <
x*E. Hence we see that x*& =x* for all x € S, and similarly &x* = x*.

Thus we see that conditions (B), (y) of [2, Theorem 1] hold and therefore S is a
perfect Dubreil-Jacotin semigroup.

(ilv)=>(i): This is immediate from the fact that in a perfect Dubreil-Jacotin
semigroup we have x* = & : x and, for every idempotent e, e* = e** (see [2, (8), (9)]).

THEOREM 4. Let S be a principally ordered regular semigroup in which x —x* is
antitone. Then S°= {x°, x € S} is a subsemigroup of S with the same properties.

Proof. Let a,beS°® so that, by (11), a=a* and b=5b>. By (13), we have
ab(ab)° =aa® and so, by (19),

a; = (aa®)* < [ab(ab)°’])* = [ab(ab)*]* = a},.
By the maximality of &}, it follows that

(aa®)* = [ab(ab)°]*.
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Consequently, we have
(ab)>(ab)°ab = [ab(ab)°]°ab by (15)
= [ab(ab)°|°ab(ab)ab
= [ab(ab)°)*ab(ab)°ab
= (aa®)*ab
= (aa®)*aa’ab
= (aa®)°aa®ab
= (aa®)°ab
=a“a’ab by (15)
=ab since a=a*,
and similarly ab = ab(ab)°(ab)>. It follows that
ab = (ab)*(ab)°ab(ab)°(ab)*° = (ab)>,
and so ab € $°. Thus §° is a subsemigroup. It is principally ordered with x — x* antitone
since for every x° e S° we have, by (7) and (9), x°* =x**=x*° € §°.

THEOREM 5. Let S be a principally ordered regular semigroup in which x—x* is
antitone. Then the following statements are equivalent:

(1) S°is orthodox;

(2) S° is inverse;

(3) S° has a greatest idempotent;

(4) S is perfect Dubreil-Jacotin.

Proof. (1)=> (4): Suppose that S° is orthodox and let e € E. Then, observing that
e°¢” e EN S° and e@e® e E N S°, we have, using (12),

e’ =¢e% e’ =e% . e’ c E. )
It follows by (17) that e* € E and then by Theorem 3 that S is a perfect Dubreil-Jacotin
semigroup.

(4)>(2): In a perfect Dubreil-Jacotin semigroup we have x*=&:x and x°=
(E:x)x(E:x). If ec E then £:e=§ and so e°= Ee&. Since, as shown in [2], we have
e =ee*e = e&e, it follows that ¢° € E N S° and that e*° = ¢°. Now if f is an idempotent in S°
then clearly f =f°=f° and so every idempotent f € S° is of the form g° for some
idempotent g(=f°) € S. Now since &S is inverse we have e°f°=f°e° for all e, f € E.
Consequently, the idempotents of $° commute and so S° is inverse.

(2)=>(1): this is clear.

(3)=> (4): For every e E we have e <e* e E, by (12). Thus, if $° has a greatest
idempotent then so must S, whence S is perfect Dubreil-Jacotin by Theorem 3.

(4)= (3): If S is perfect Dubreil-Jacotin then, by [2], § = £° € §° and is the greatest
idempotent.

ExampLE 6. In the semigroup Ns X E of Example 4 we have (p, x)° = (upu, x*). It
follows that

(Nsx E)°={(b, x*), (u, x*);x e E} = {b, u} X E,

which is not orthodox.
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For every idempotent e € S we know that e <e°=e*. We now investigate some
consequences of equality occurring.

An idempotent e is maximal if and only if e = e*. (21)

If e is a maximal idempotent then clearly e = ee® = ¢°¢ and so e°=e°ce° =ee°=e € E. It
follows by (17) that e* € E and hence that e = e* by the maximality of e in E. Conversely,
if e=e* then e = ee* and so

e=e*=(ee*) =
whence, by (19), e is a maximal idempotent.
If e, f € E are such that e = e° and f = f° then 22)
(ef)°’=S(e, f)€E.
Two applications of (14) give
(ef)° = fo(e®eff°)°e® = f(ef )°e = S(e, f) € E.

If e, f are maximal idempotents then we have the Hasse diagram (23)

S(e, f)* = (ef)**

ef =(ef)”

(ef)ef

S(e. f)=(ef)’

By (21), we have e =e°=¢™* and f =f°= f*. Now since the idempotent S(e, f) absorbs e
on the right we have e. S(e, f) € E, and indeed e. S(e, f) <e whence e. S(e, f) <e by
Theorem 1. Thus e. S(e, f). e <e and so S(e, f) <e* =e. Similarly, we have S(e, f)<f.
As S(e,f)e E, we deduce that S(e,f)=<ef. By Theorem 4, ef =e°f°€S° and so
ef =(ef)”. Now, by (22) we have S(e, f) = (ef)°<e, which gives e=e*=<S(e, f)* =
(ef )°* = (ef)** by (7), and then (ef)* =e* =e. Similarly, (ef)* =f. Consider now the
idempotent (ef )*ef. We have
(@) (ef)*ef <e.ef =¢f,
and, by (13),
(b) (ef)ef =f*f=f.
Similarly, ef (ef)* < ef and ef (ef)* <e. Finally, since (ef)°=S(e, f) € E we have
(ef)° = (ef )°(ef ) = (ef )°ef = (ef )*ef
and likewise (ef)° <ef(ef)*. The diagram now follows by (1) and (10).
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THEOREM 6. Let S be a principally ordered regular semigroup in which x —x* is
antitone. If S is not a perfect Dubreil-Jacotin semigroup then S necessarily contains a
crown of idempotents of the form

e [ If
S(f. e) S(e, f)
in which e, f are maximal.

Moreover, if these are the only idempotents in S then they generate the boot-lace
semigroup.

Proof. If § is not perfect Dubreil-Jacotin then, by (19) and Theorem 3, § must
contain at least two maximal idempotents e, f. Now for these idempotents we must have
S(e, f) incomparable to S(f, e). For example, if we had

S(e, f)=(efy°’=(fe)’=S(f, e)
then it would follow by (13) that

fe(ef ) = fe(fe)°<ff*=f

and consequently

fef =feS(e, f)f = fe(efY'f =1,

which gives the contradiction e =f*=f. It now follows by (23) and the corresponding
diagram involving the product fe that S contains a 4-element crown of idempotents as
described.

Suppose now that these are the only idempotents in S. Writing S(e, f) = (ef)° =g and
S(f, e)=(fe)°=h, we clearly have g =fg =ge and h=hf =eh. Now the idempotent
(ef)’ef cannot be equal to g = (ef )°, for if this were so we would have

ef =ef(ef)’ef =efg =ef(ef )€ E

whence ef < (ef )° = g =e which gives efe <e and the contradiction f =e* =¢. It follows
that we must have (ef )°ef = f and therefore

gf = (ef)°f =(efy’ef =f.
Likewise, fe(fe)° = f and

fh=f(fe)°=fe(fe)*=f.

In a similar way we can show that eg = he =e.

Observe now that fe =he =e, fe=fh = f and ef =eg = e, ef = gf =f. Moreover, e, f,
ef, fe are distinct since otherwise ef € E and this implies, by the maximality of e and f, the
contradiction e =f. Next, observe that efe =ef, fe and fef =ef, fe with ef, fe, efe, fef
distinct (since otherwise we have that efe € E whence the contradiction e = f). Continuing
this argument, and doing so similarly with the minimal idempotents g and 4, we see that
the semigroup generated by the idempotents is the boot-lace semigroup as described in
Example 3.
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CoroLLARY. Let PA denote the class of principally ordered regular semigroups in
which x+—>x* is antitone and let PDJ denote the class of perfect Dubreil-Jacotin
semigroups. Then the boot-lace is the semigroup in PA\PDJ with the least number of
idempotents.

Further properties concerning the subsemigroup E generated by the set E of
idempotents are the following. Note that if x € E then x° € E; this follows by [5].

THEOREM 7. Let S be a principally ordered regular semigroup in which x —x* is
antitone. Then S is a perfect Dubreil-Jacotin semigroup if and only if E is periodic.

Proof. =: If § is perfect Dubreil-Jacotin then for every e € E we have §:e=§. It
follows by [1, Theorem 25.5] that & : x = & for every x € E. Thus, for every x € E, we have

x=x(§:x)x =x&x,

and so £ is a medial idempotent in the sense of [4], by Theorem 1.1 of which it follows
that E is periodic.

&: Let E be periodic and let e, f be maximal idempotents of S. Observe that by (a)
of (23) we have

ef =ef (ef)"ef = (ef )"
As E is periodic, it follows that for some positive integer n we have
ef <(ef)’<...=(ef)"€E.
Consequently, by (a), (b) of (23), by (16), and by the maximality of f, we see that
ef =(ef)" =[(ef)ef]* =f* =1,
and similarly ef =e. By (a) again, we then have (ef)*ef <e whence
e=e*=[(ef)*ef]* =f* =

The maximality of e now gives e =f. Since this holds for all maximal idempotents e, f it
follows that S has a greatest idempotent and so, by Theorem 3, is perfect Dubreil-
Jacotin.

CoroLLARY. If E is finite then S is perfect Dubreil~Jacotin.
Proof. If E is finite then it is necessarily periodic.

Finally, we turn our attention to the regularity of Green’s relations £ and ®. Here
we have the following characterisation.

TueoreM 8. Let S be a principally ordered regular semigroup in which x—x* is
antitone. Then the following statements are equivalent:

(1) & is regular on E;

(2) R is regular on E;

(3) S is a perfect Dubreil-Jacotin semigroup.

Proof. (1)=(3): Suppose that £ is regular on E. If ¢, f € E are such that e <f then
€% = f°f and so

Br = (ff) = (e%)" = Bz,
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where f < f°f < 7 < B2. Consequently, B; is the greatest idempotent above e. It follows
that o) < B} whence, by the maximality of a), we have

* __ QA%
@, "ﬁe = Ye, SQAY.

Now e=<y7y, gives, by (16), e=ey.e and so (ey.)>=ey.Re. But ee° is the greatest
idempotent in the R-class of e, and ee°=ey,. Hence ee®°=ey,, whence e°=ce’ey,.
Similarly, we have e°e = y.e and so e° = y.ee®. It now follows that

e%e® =eey, . y.ee°=e°. ey.e. e’ =¢eee’ =¢°

and so e°€ E. By (17) we deduce that e* € E and then, by Theorem 3, that S is perfect
Dubreil-Jacotin.

(3)=>(1): If S is perfect Dubreil-Jacotin then, denoting the elements of E by %, we
have

esf>ee=ere=Ee<if =f7
so that £ is regular on E.
The proof of (1)< (2) is similar.
We remark here that although, in a perfect Dubreil-Jacotin semigroup S, Green’s

relations & and £ are regular on the subsemigroup generated by the idempotents, they
are not in general regular on S. This is illustrated in the following example.

ExampLE 7. Consider a fixed integer k > 1. For every n € Z let n, denote the largest
multiple of k that is less than or equal to n, so that we have

n,=tk=n<(+1)k.

It is readily seen that Z, under the usual order and the law of composition described by
(m, n)y—~m +n,, is a principally ordered regular semigroup in which n* = —n, + k — 1.
The mapping x — x* is then antitone. Since the idempotents are 0,1, ...,k — 1 it follows
that this semigroup is perfect Dubreil-Jacotin.

Consider now the cartesian ordered semigroup Ns X Z where Ns is as in Example 4.
This is clearly non-orthodox and perfect Dubreil-Jacotin. By Theorem 8, # and £ are
regular on the subsemigroup generated by the idempotents. Now for every (x, n) e Ns X Z
we have

(x, n)(x, n)* = (x, n)(u, =ny +k — 1) = (xu, n — ny);
(x, n)*(x, n) = (u, —n, + k = 1)(x, n) = (ux, k - 1).

It is clear from these equalities that £ is regular on N5 X Z, whereas 2 is not.
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