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Abstract

Spot prices in energy markets exhibit special features, such as price spikes, mean
reversion, stochastic volatility, inverse leverage effect, and dependencies between the
commodities. In this paper a multivariate stochastic volatility model is introduced which
captures these features. The second-order structure and stationarity of the model are
analyzed in detail. A simulation method for Monte Carlo generation of price paths is
introduced and a numerical example is presented.
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1. Introduction

Energy markets worldwide have been liberalized over the last decades to create liquid trading
arenas for power commodities like electricity, gas, and coal. The markets are continuously
developing, and in recent years gradually becoming more and more connected. For instance,
new cables and pipelines between the UK, Scandinavia, and continental Europe integrate the
energy markets. The integration between markets calls for sophisticated multivariate pricing
models for power. This includes cross-commodity models for gas and electricity, say, but also
models for electricity traded in different but integrated markets. In this paper we propose and
analyse a multivariate spot price model for power.

Power spot prices have several distinct characteristics. The market prices move with the
season, with high prices in winter due to heating, or in summer due to air-conditioning cooling.
Prices also naturally mean revert due to demand and supply forces. Typically, spot prices spike
occasionally when there is an imbalance in supply and demand, since the demand curve is
inelastic. Partly because of these spikes, the prices observed in gas and electricity markets are
to a large extent leptokurtic. In fact, power prices may rise by several magnitudes compared to
their expected mean levels within short time intervals. A discussion of the features of power
spot prices can be found in [18] and [19]. There exist many models for spot price dynamics in
power markets, and we refer the reader to [13] for an overview and analysis.

In energy markets there is evidence of a so-called inverse leverage effect. The volatility
tends to increase with the level of power prices, since there is a negative relationship between
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inventory and prices (see, for instance, [17]). Little available inventory means higher and more
volatile prices. This is reflected in gas markets where storage facilities play an important role
in price determination. There is also evidence for dependence between different commodities.
For instance, it is unlikely that the price of gas and electricity in the UK market, say, will drive
too far apart, since gas is the dominating fuel for power production. Likewise, since gas can be
transported as liquid natural gas (LNG), different gas markets cannot have prices which become
increasingly different.

In recent years there has been an interest in stochastic volatility models for commodities,
and in particular energies. In Hikspoors and Jaimungal [20] we find an analysis of forward
pricing in commodity markets in the presence of stochastic volatility. Several popular models
are treated. More recently, Trolle and Schwartz [32] introduced the notion of unspanned
volatility, and analyzed this in power markets. Their statistical analysis confirms the presence
of stochastic volatility in commodity markets. Benth [8] applied the Barndorff-Nielsen and
Shephard stochastic volatility model in commodity markets, and derived forward prices based
on this. An empirical study on UK gas prices was performed.

In this paper we propose stochastic dynamics for cross-commodity spot price modeling,
generalizing the univariate dynamics studied in [8]. The model is flexible enough to capture
spikes, mean reversion, and stochastic volatility. Moreover, it includes the possibility to model
inverse leverage. Our proposed dynamics can model co- and independent jump behavior
(spikes) in cross-commodity markets.

The spot price dynamics we propose are based on Ornstein–Uhlenbeck processes driven
by multivariate subordinators. The logarithmic price dynamics are defined by multifactor
processes and seasonal functions to account for deterministic variability over a year. The
stochastic volatility processes are multivariate as well, so that we can incorporate second-
order dependencies between commodities. The volatility model is adopted from the so-called
Barndorff-Nielsen and Shephard model (BNS model for short), extended to a multivariate
setting (see [4] and [7]). As for the multidimensional extension, the volatility is modeled
with a matrix-valued Ornstein–Uhlenbeck process driven by a positive definite matrix-valued
subordinator (see [2]). We prove that the spot price converges to a stationary dynamic, and
compute the characteristic function of the limiting distribution. Several other probabilistic
features of the model are presented and discussed, demonstrating its flexibility in modeling
prices and its analytical tractability. From a more practical point of view, a method for simulating
the prices is presented. We provide an empirical example where the algorithm is applied. Our
approach is influenced by the work of Stelzer [31].

One of the main features of our spot price model is its explicit characteristics. We are able to
derive reasonably analytic cumulant (logarithmic characteristic) functions for the spot model
and its factors. These cumulants are important ingredients in many different applications of
the model, as well as crucial for the study of the probabilistic properties of the price dynamics.
From the cumulants we can show that the spot price converges to a stationary dynamic, and,
moreover, characterize the limiting distribution. In this respect, our proposed model is a true
multivariate non-Gaussian extension of the classical univariate Ornstein–Uhlenbeck process
suggested by Schwartz [29] for commodity prices. The first- and second-order moments are
analytically expressible in terms of the parameters of the model. From this we recover a
rather flexible autocovariance structure of the price dynamics, being asymptotically a linear
combination of exponentially decaying functions. One may apply this analytic autocovariance
structure to calibrate data, as several studies show that energy prices have a decaying empirical
autocovariance function which may be represented as a series of exponential functions.
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Frequently, one associates the different exponentials in the autocovariance function to different
factors in the spot dynamics. This is indeed the case of our model, where, for example, spike
factors enter the autocovariance explicitly. We also obtain the covariance structure for the
factors in the multivariate spot price dynamics.

In a companion paper [11], we derive the implied forward and futures price dynamics from
our spot price model. Forward and futures contracts are liquidly traded in most energy markets,
like oil, gas, and power. Moreover, derivatives written on these contracts are traded in many
markets. For example, the German power market EEX organizes standard European call and
put options with forward and futures contracts as underlying. At the NYMEX market in New
York, options written on the spread between refined oil futures of different qualities are traded
(so-called crack spreads). In the markets, there also exist options of various kinds written on the
spread between power and gas futures (spark spreads), or power and coal futures (dark spread).
Without a reasonably explicit dynamic for the futures price, the analysis of such derivatives
becomes very complicated. However, within our class of spot price models, we can derive
expressions for the forward and futures price dynamics which allow for efficient pricing of
derivatives based on Fourier methods. These methods make explicit use of the characteristic
functions of the factors in the spot dynamics.

The cumulant functions of the spot dynamics can also be the basis for developing estimation
techniques for the model in the Fourier (frequency) domain. For a rather general class of affine
models, this has been thoroughly analyzed by Singleton [30]. Here, moment estimators are
proposed based on the empirical cumulants, as well as different time-domain estimators based
on Fourier inversion of the cumulants. In future studies it would be interesting to adapt these
methods for the particular class of spot price dynamics proposed in our paper, and apply them
to estimation on energy data.

Our assumptions on the parameters in the proposed spot price dynamics are rather strong. We
model the logarithmic deseasonalized spot prices and the stochastic volatility as multivariate and
matrix-valued Ornstein–Uhlenbeck processes. In such models, we model the mean reversion
as well as the mixing between the marginals, opening up for a functional dependence between
the factors, and thereby the marginal spot dynamics. However, as it turns out, this flexibility is
rather narrow, as the involved matrices for some of the factors must commute and be invertible.
This constraint on the parameters comes from the fact that we model both the logarithmic
deseasonalized spot prices and the stochastic volatility as Ornstein–Uhlenbeck processes in
multiple dimensions. The issue of invertibility is natural, as it corresponds to a similar
assumption for the univariate model considered in [8]. There a Schwartz model with stochastic
volatility of the Barndorff-Nielsen and Shephard class was analyzed based on the inequality of
the speed of mean reversion of the volatility process and the logarithmic spot. As it turns out,
the additional commutativity condition enters into play when we consider multidimensional
models. Dispensing with these conditions leads to rather complicated expressions for the
cumulants, say.

Our model explicitly accounts for spikes behavior and possible (inverse) leverage effects.
As the commutativity condition does not enter into this part of the model, we may have a direct
relationship between spikes in different markets, for example, co-spikes in gas and electricity,
or co-spikes in two connected power markets.

Recently, Muhle-Karbe et al. [23] proposed and analyzed multivariate geometric Brownian
motion dynamics with a stochastic volatility model of Barndorff-Nielsen and Shephard type.
Our spot price dynamics share some similarities with their asset price process, in particular
the stochastic volatility part. However, our model has some features significantly extending
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their dynamics. Firstly, we assume the logarithmic prices to be a multivariate Ornstein–
Uhlenbeck process. This turns out to complicate the calculation of the cumulant functions,
as well as giving some additional hypothesis on the parameters. Secondly, our additional spike
and (inverse leverage) components are of a different form. As our model is aimed at energy
markets, it will naturally be different from the asset price model suggested in [23].

The paper is organized as follows. In Section 2 we introduce the spot model, thereafter the
stationary distribution and the probabilistic properties of the various factors of the model are
deduced in Section 3. In Section 4 we deal with the same properties of the spot price model.
Section 5 gives an empirical example and a method to perform Monte Carlo simulation of the
model. Finally, in Section 6 we conclude.

1.1. Notation

For the convenience of the reader, we have collected some frequently used notation. We
adopt the notation used by Pirgorsch and Stelzer [24]. Throughout this paper, we write R+ for
the positive real numbers and we denote the set of real n × n matrices by Mn(R). We denote
the group of invertible matrices by GLn(R), the linear subspace of symmetric matrices by Sn,
the positive definite cone of symmetric matrices by S

+
n . We denote by In the n × n identity

matrix, by Jn(v) the operator R
n → Mn(R) which creates a diagonal matrix with the vector

v ∈ R
n on the diagonal, by diag(A) the vector in R

n consisting of the diagonal of the matrix
A ∈ Mn(R), and by σ(A) the spectrum (the set of all eigenvalues) of a matrix A ∈ Mn(R).
The tensor (Kronecker) product of two matrices A, B is written as A ⊗ B. We denote by vec
the well-known vectorization operator that maps the n × n matrices to R

n2
by stacking the

columns of the matrices below one another. Furthermore, tr(A) denotes the trace of the matrix
A ∈ Mn(R), which is the sum of the elements on the diagonal. The transpose of the matrix
A ∈ Mn(R) is denoted A�, while Aij is the element of A in the ith row and j th column. The
unit vector with a 1 in the ith coordinate and 0s elsewhere is denoted by ei . For A ∈ Mn(R),
we denote the operator A associated with the matrix A as A : X �→ AX + XA�. This operator
can be represented as vec−1 ◦ ((A ⊗ In) + (In ⊗ A)) ◦ vec. Its inverse is denoted by A−1,
which exists whenever I ⊗ A + A ⊗ I is invertible. In this case, we can represent A−1 by
vec−1 ◦ ((A ⊗ In) + (In ⊗ A))−1 ◦ vec. Note that A ⊗ In + In ⊗ A is equal to the Kronecker
sum of the matrix A with itself.

2. The cross-commodity spot price model

Suppose that we are given a complete filtered probability space (�, F , P) equipped with
the filtration {Ft }t≥0 satisfying the usual conditions (see, e.g. [26]). Assume that m, n ∈ N with
0 ≤ m < n. Let {L̃j (t)}t∈R+ ∈ S

+
d , j = 1, . . . , n, be n independent matrix-valued

subordinators, as introduced in [2]. Furthermore, let Li, i = 1, . . . , m, be R
d -valued

subordinators. A multivariate subordinator is a Lévy process which is increasing in each of its
coordinates; see [6]. For i = 1, . . . , m, the vector-valued subordinators Li are formed by taking
the diagonal of the matrix-valued subordinators L̃i(t). This implies that Li will jump whenever
L̃i does. If one of the off-diagonal elements jumps, the diagonal element also has to jump in
order to keep the volatility process L̃i in the positive definite cone S

+
d . The subordinators are

assumed to be driftless, and we choose to work with the versions which are right continuous
with left limits (RCLL for short). Moreover, let W be a standard R

d -valued Brownian motion
independent of the subordinators.
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We define the spot price dynamics of d commodities as follows: let

S(t) = �(t) ◦ exp

(
X(t) +

m∑
i=1

Yi(t)

)
, (1)

where � : [0, T ] �→ R
d+ is a vector of measurable seasonality functions, ‘◦’ denotes the

Hadamard product (that is, coordinatewise multiplication), and

dX(t) = AX(t) dt + �(t)1/2 dW(t), (2)

dYi(t) = (µi + BiYi(t)) dt + ηi dLi(t) (3)

for i = 1, . . . , m. The matrices A and Bi are supposed to be elements of GLd(R), while ηi

belongs to Md(R) and µi is a vector in R
d . To ensure the existence of stationary solutions,

we assume that the eigenvalues of the matrices A and Bi have negative real parts. In order to
have the Itô integral in (2) well defined, we suppose that �(t) is an Ft -adapted, matrix-valued
stochastic process such that

P

(∫ T

0
tr(�(t)) dt < ∞

)
= 1.

Here, T < ∞ is some terminal time for our energy markets. The entries of ηi can be negative.
So, although Li is an R

d -valued subordinator, there can be negative jumps in the spot price
process.

The stochastic volatility process �(t) is a superposition of the positive-definite matrix-valued
Ornstein–Uhlenbeck process as introduced in [7], i.e.

�(t) =
n∑

j=1

ωjZj (t), (4)

with
dZj (t) = (CjZj (t) + Zj (t)C

�
j ) dt + dL̃j (t),

where the ωj s are weights summing to 1. Moreover, {Cj }1≤j≤n ∈ GLd(R). To ensure that
Zj has a limiting distribution (stationary distribution) when t → ∞, we will assume that the
eigenvalues of Cj have negative real parts. This stochastic volatility model is a multivariate
extension of the so-called BNS SV model introduced by Barndorff-Nielsen and Shephard [4]
for general asset price processes. The commodity spot price dynamics with the BNS SV model
as the stochastic volatility structure is a generalization to cross-commodity markets of the
univariate spot model analyzed in [8].

Note that Yi and �i for i = 1, . . . , m have related subordinators L and L̃ driving the noise.
Thus, when the volatility component � jumps, we observe simultaneously a change in the
spot price. Hence, we can have an inverse leverage effect since increasing prices follow from
increasing volatility, and vice versa (see [18] and [19] for a discussion on inverse leverage
in power markets). We also have n − m independent stochastic volatility components Zj ,

j = m+1, . . . , n, that do not directly influence the price process paths but have a second-order
effect. The processes Yi can be interpreted as modeling the spikes, whereas X models the
normal variations in the market. The latter is also sometimes referred to as the base component
of the price variations.

https://doi.org/10.1239/aap/1370870129 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870129


550 F. E. BENTH AND L. VOS

By turning off the influence from the processes Yi (choose m = 0), we obtain a multivariate
extension of the Schwartz model with stochastic volatility and spot price dynamics

S(t) = �(t) ◦ exp(X(t)),

where X(t) is defined in (2). The Schwartz model with constant volatility is a mean-reversion
process proposed by Schwartz [29] for the spot price dynamics in commodity markets like oil.
In order to have spikes being independent of the volatility process �(t) in the general model
(1), we can switch off some of the ωj s in (4), that is, choose some ωj = 0. Then the Lis from
the corresponding L̃j s will give rise to independent spike components.

In electricity markets one observes spikes in the spot price dynamics (see, e.g. [13]). These
spikes often occur seasonally. In the Nordic electricity market Nord-Pool, price spikes occur
in the winter time when demand is high. We may therefore wish the jump frequency of the
subordinators Li, i = 1, . . . , m, to be time dependent. This is not possible when working with
Lévy processes, but we can generalize to independent increment processes instead (see [22]).
Independent increment processes can be thought of as time-inhomogeneous Lévy processes.
Our modeling and analysis to come are easily modified to include such processes. To keep
matters slightly more simplified, we restrict attention to the time-homogeneous case here. The
interested reader is referred to [13] for applications of independent increment processes in
energy markets.

We assume the following integrability conditions for the subordinators. It holds that

E[log+ ‖L̃j (1)‖] < ∞, (5)

where log+(x) is defined as max(log(x), 0), j = 1, . . . , n, and ‖A‖2 = tr(A�A) is the
Frobenius norm of the matrix A ∈ Md(R). Note that this condition implies that

E[log+ |Li(1)|] < ∞
for i = 1, . . . , m, where | · | is the Euclidean 2-norm on R

d .
In the next section we study the probabilistic properties of the factor processes X and Yi . As

we will see, the analysis of the spot price model will depend crucially on the properties of certain
operators, which will reflect the conditions on the matrices A, Bi , and Cj for i = 1, . . . , m and
j = 1, . . . , n. Throughout the rest of the paper, we suppose that A, Bi , and Cj are invertible
for i = 1, . . . , m and j = 1, . . . , n. Furthermore, the matrices A and Cj are commuting for
each j = 1, . . . , n. Finally, the operators A − Cj are invertible for j = 1, . . . , n.

3. Stationarity and probabilistic properties of the factor processes

The processes Yi are Ornstein–Uhlenbeck processes, while X is a volatility-modulated
Ornstein–Uhlenbeck process. Applying the multidimensional Itô formula (see [21]) to the
stochastic differential equations yields the following solutions: for 0 ≤ s ≤ t ,

X(t) = eA(t−s)X(s) +
∫ t

s

eA(t−u)�(u)1/2 dW(u), (6)

Yi(t) = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηi dLi(u) (7)

for i = 1, . . . , m. The matrix exponentials are defined as usual as eA := I +∑∞
k=1 Ak/k!.
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According to Barndorff-Nielsen and Stelzer [7, Section 4], the solution of Zj (t), j =
1, . . . , n, is given by

Zj (t) = eCj (t−s)Zj (s)e
C�

j (t−s) +
∫ t

s

eCj (t−u) dL̃j (u)eC�
j (t−u)

. (8)

The matrix-valued stochastic integral in the second term of Zj (t) is understood as follows. For
two Md(R)-valued, bounded, and measurable functions E(u) and F(u) on [t, s], the notation∫ t

s
E(u) dL̃(u)F (u) means the matrix G(s, t) ∈ Md(R) with coordinates defined by

Gij (s, t) =
d∑

k=1

d∑
l=1

∫ t

s

Eik(u)Flj (u) dL̃kl(u).

Here, L̃ is the generic notation for some L̃j . We note that, since the L̃j are supposed to be
RCLL, the processes Zj also are RCLL.

Let us first look at the expected values of X and Yi . For this, we apply a slight generalization
of the standard compensation formula for Lévy processes, stated and proven here for the
convenience of the reader.

Lemma 1. Let L be an integrable Lévy process in R
d , and let f be a bounded measurable

function from [s, t] into Md(R) being of bounded variation. Then it holds that

E

[∫ t

s

f (u) dL(u)

]
=
∫ t

s

f (u) duE[L(1)]. (9)

Proof. Define the Lévy process L̂(u) := L(u) − E[L(1)]u, which has expectation zero.
From integration by parts (use the multidimensional Itô formula for jump processes in [21]), it
holds that ∫ t

s

f (u) dL̂(u) = f (t)L̂(t) − f (s)L̂(s) −
∫ t

s

L̂(u) df (u).

Now, choosing the RCLL version of L (as we always can do for Lévy processes), we can apply
the Fubini–Tonelli theorem to conclude that

E

[∫ t

s

f (u) dL̂(u)

]
= 0,

and hence the lemma follows.

We find the following conditional expectations for the factor processes.

Lemma 2. Suppose that L̃j (1) is integrable for j = 1, . . . , n. Then it holds that

E[X(t) | Fs] = eA(t−s)X(s),

E[Yi(t) | Fs] = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))µi + B−1

i (ηi − eBi(t−s)ηi)E[Li(1)]
for i = 1, . . . , m.

Proof. By integrability of the subordinators L̃j , � becomes integrable. The conditional
expectation of X(t) is thus given by

E[X(t) | Fs] = eA(t−s)X(s) + E

[∫ t

s

eA(t−u)�(u)1/2 dW(u)

]
= eA(t−s)X(s),

since the Itô integral has zero expectation.
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For Yi, i = 1, . . . , m, we obtain

E[Yi(t) | Fs] = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))µi + E

[∫ t

s

eBi(t−u)ηi dLi(u)

∣∣∣∣ Fs

]
= eBi(t−s)Yi(s) + B−1

i (I − eBi(t−s))µi +
∫ t

s

eBi(t−u)ηi duE[Li(1)]
= eBi(t−s)Yi(s) + B−1

i (I − eBi(t−s))µi + B−1
i (ηi − eBi(t−s)ηi)E[Li(1)],

where we have used Lemma 1 to obtain the last equality.

Since A and Bi have eigenvalues with negative real part, letting t tend to ∞ yields

lim
t→∞ E[X(t) | Fs] = 0,

lim
t→∞ E[Yi(t) | Fs] = B−1

i (µi + ηiE[Li(1)])
for i = 1, . . . , m. Hence, in the limit, the ‘base term’ X(t) will contribute zero in expectation,
whereas the ‘leverage terms’ Yi will give a drift imposed from the subordinators and the
coefficients µi .

Let us analyse the second-order properties of the factor processes. We have the following
result for the variance of the ‘base component’ X(t).

Lemma 3. Assume that L̃j (1) is integrable for j = 1, . . . , n. Then it holds that

var[X(t) | Fs] =
n∑

j=1

ωj (A − Cj )
−1{eA(t−s)Zj (s)e

A�(t−s) − eCj (t−s)Zj (s)e
C�

j (t−s)}

+
n∑

j=1

ωjC
−1
j {(A − Cj )

−1{eA(t−s)
E[L̃j (1)]eA�(t−s)

− eCj (t−s)
E[L̃j (1)]eC�

j (t−s)}}

−
n∑

j=1

ωjA
−1{C−1

j {eA(t−s)
E[L̃j (1)]eA�(t−s) − E[L̃j (1)]}}

for 0 ≤ s ≤ t .

Proof. We compute the conditional variance for the process X by appealing to the tower
property of conditional expectations and the independent increment property of Brownian
motion. Letting Gs,t be the σ -algebra generated by Fs and the paths �(u), s ≤ u ≤ t ,
we find that

var[X(t) | Fs] = E

[(
eA(t−s)X(s) +

∫ t

s

eA(s−u)�(u)1/2 dW(u)

)2 ∣∣∣∣ Fs

]
− E[X(t) | Fs]2

= E

[
E

[(∫ t

s

eA(s−u)�(u)1/2 dW(u)

)2 ∣∣∣∣ Gs,t

] ∣∣∣∣ Fs

]
= E

[∫ t

s

eA(t−u)�(u)eA�(t−u) du

∣∣∣∣ Fs

]
=

n∑
j=1

ωj

∫ t

s

eA(t−u)
E[Zj (u) | Fs]eA�(t−u) du,
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after appealing to Fubini’s theorem. From the explicit representation of Zj (t) in (8), we find
that

E[Zj (u) | Fs] = eCj (u−s)Zj (s)e
C�

j (u−s) +
∫ u

s

eCj (u−v)
E[L̃j (1)]eC�

j (u−v) dv

= eCj (u−s)Zj (s)e
C�

j (u−s) +
∫ u−s

0
eCj z

E[L̃j (1)]eC�
j z dz

= eCj (u−s)Zj (s)e
C�

j (u−s) + C−1
j {eCj (t−s)

E[L̃j (1)]eC�
j (t−s) − E[L̃j (1)]},

after appealing to Lemma 1. Hence, using the fact that A and Cj are commuting for each
j = 1, . . . , n, we find that

var[X(t) | Fs] =
n∑

j=1

ωj

∫ t

s

eA(t−u)eCj (u−s)Zj (s)e
C�

j (u−s)eA�(t−u) du

+
n∑

j=1

ωjCj

{∫ t

s

eA(t−u)eCj (u−s)
E[L̃j (1)]eC�

j (u−s)eA�(t−u) du

}

−
∑
j=1

ωjC
−1
j

∫ t

s

eA(t−u)
E[L̃j (1)]eA�(t−u) du

=
n∑

j=1

ωj (A − Cj )
−1{eA(t−s)Zj (s)e

A�(t−s) − eCj (t−s)Zj (s)e
C�

j (t−s)}

+
n∑

j=1

ωjC
−1
j {(A − Cj )

−1{eA(t−s)
E[L̃j (1)]eA�(t−s)

− eCj (t−s)
E[L̃j (1)]eC�

j (t−s)}}

−
n∑

j=1

ωjA
−1{C−1

j {eA(t−s)
E[L̃j (1)]eA�(t−s) − E[L̃j (1)]}}.

The lemma follows.

Note that the explicit expression for the variance of the base component is computed under
the condition that the matrices A and Cj are commutable. Moreover, we observe that, for
Lemma 3 to hold, we must have the imposed conditions of invertibility of the operators A, Cj ,
and A−Cj . Recalling that the matrices A and Cj have eigenvalues with negative real part, we
pass to the limit t → ∞ to find that

lim
t→∞ var[X(t)] =

n∑
j=1

ωjA
−1C−1

j E[L̃j (1)].

Observe that the limit of the variance depends explicitly on the mean-reversion coefficient
matrices A and Cj . In fact, from Barndorff-Nielsen and Stelzer [7] we know that the stationary
expected value of Zj (s) is C−1

j E[L̃j (1)], so we can write

lim
t→∞ var[X(t) | Fs] = A−1 lim

t→∞ E[�(t)] (10)

for the limiting variance of the base component. This is in direct analogy with the univariate
case (see [8]).
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We move on and find the variance of Yi(t).

Lemma 4. Suppose that Li(1) is square integrable for i = 1, . . . , m. Then it holds that

var[Yi(t) | Fs] = B−1
i (ηiE[Li(1)L�

i (1)]η�
i − eBi(t−s)ηiE[Li(1)L�

i (1)]η�
i eB�

i (t−s))

− B−1
i (I − eBi(t−s))ηiE[Li(1)]E[L�

i (1)]η�
i (I − eB�

i (t−s))(B−1
i )�

for i = 1, . . . , m and 0 ≤ s ≤ t .

Proof. Fix an i = 1, . . . , n. By (7) we find that the conditional variance of Yi(t) given Fs is

var[Yi(t) | Fs] = var

[∫ t

s

eBi(t−u)ηi dLi(u)

∣∣∣∣ Fs

]
.

Moreover, by the independent increment property of Lévy processes, it holds that

var[Yi(t) | Fs] = var

[∫ t

s

eBi(t−u)ηi dLi(u)

]
.

But, by the Itô isometry for Lévy process integrals,

E

[∫ t

s

eBi(t−u)ηi dLi(u)

∫ t

s

eBi(t−u)ηi dLi(u)�
]

=
∫ t

s

eBi(t−u)ηiE[Li(1)L�
i (1)]η�

i eB�
i (t−u) du

= B−1
i (ηiE[Li(1)L�

i (1)]η�
i − eBi(t−s)ηiE[Li(1)L�

i (1)]η�
i eB�

i (t−s)).

On the other hand, following from Lemma 1,

E

[∫ t

s

eBi(t−u)ηi dLi(u)

]
=
∫ t

s

eBi(t−u) duηiE[Li(1)] = B−1
i (I − eBi(t−s))ηiE[Li(1)].

This completes the proof.

Note that we have used the standing condition of invertibility of the operators Bi in Lemma 4.
ForYi(t), we can also compute an explicit limit for the variance using the fact that the eigenvalues
of Bi have negative real parts:

lim
t→∞ var[Yi(t) | Fs] = B−1

i ηiE[Li(1)L�
i (1)]η�

i − B−1
i ηiE[Li(1)]E[L�

i (1)]η�
i (B−1

i )�.

(11)
This holds for every i = 1, . . . , m.

From an empirical point of view, the covariance structures between factors and in the
temporal direction are useful. We compute this in the next lemma.

Lemma 5. Suppose that L̃j (1) is integrable for j = 1, . . . , n and that Li(1) is square
integrable for i = 1, . . . , m. Then, for 0 ≤ s ≤ t ,

cov[X(t), Yi(t) | Fs] = 0 = cov[Yi(t), Yj (t) | Fs]
for i �= j and i, j = 1, . . . , m. Furthermore, the conditional autocovariance functions of X

and Yi are given by

acovX(s, t, h) := cov[X(t + h), X(t) | Fs] = eAh var[X(t) | Fs],
acovYi

(s, t, h) := cov[Yi(t + h), Yi(t) | Fs] = eBih var[Yi(t) | Fs]
for i = 1, . . . , m, 0 ≤ s ≤ t , and h ≥ 0 a constant (the lag of the autocovariance).
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Proof. First, from (7) we find that

cov[Yi(t), Yj (t) | Fs] = cov

[∫ t

s

eBi(t−u)ηi dLi(u),

∫ t

s

eBj (t−u)ηj dLj (u)

]
= 0

for i �= j , since in that case Li and Lj are independent.
Next, from (6) and (7) we find that, for given i = 1, . . . , m,

cov[X(t), Yi(t) | Fs] = cov

[∫ t

s

eA(t−u)�(u)1/2 dW(u),

∫ t

s

eBi(t−u)ηi dLi(u)

∣∣∣∣ Fs

]
.

We recall that �(t) and W(t) are independent. Using the tower property of conditional
expectations, where we condition on the σ -algebra Gt,s generated by all paths of L̃j (u),

0 ≤ u ≤ t , and Fs , for j = 1, . . . , n, we find that

E

[(∫ t

s

eA(t−u)�(u)1/2 dW(u)

)(∫ t

s

eBi(t−u)ηi dLi(u)

)� ∣∣∣∣ Fs

]
= E

[
E

[(∫ t

s

eA(t−u)�(u)1/2 dW(u)

)(∫ t

s

eBi(t−u)ηi dLi(u)

)� ∣∣∣∣ Gt,s

] ∣∣∣∣ Fs

]
= E

[
E

[(∫ t

s

eA(t−u)�(u)1/2 dW(u)

) ∣∣∣∣ Gt,s

](∫ t

s

eBi(t−u)ηi dLi(u)

)� ∣∣∣∣ Fs

]
= 0.

In the second equality we have used the fact that the Li(u) for i = 1, . . . , m are the diagonals
of L̃i(u), and, thus, measurable with respect to Gt,s , while the last equality follows since the
expectation of an Itô integral is 0.

Next, let us derive the autocovariance function for X. From (6), we find that, for h ≥ 0,

X(t + h) = eAhX(t) +
∫ t+h

t

eA(t+h−u)�(u)1/2 dW(u).

Hence,

acovX(s, t, h) = eAh var[X(t) | Fs] + cov

[∫ t+h

t

eA(t+h−u)�(u)1/2 dW(u), X(t)

∣∣∣∣ Fs

]
.

By using the same double conditioning argument as above, we see that the second term is
equal to 0 since Brownian motion has independent increments. This yields the autocovariance
function of X. For the case Yi , we apply the same argument using (7) and the independent
increment property of Lévy processes to reach the result. This completes the proof.

From an empirical point of view, the limit of the autocovariance functions as t → ∞ are
particularly interesting. From (10) and (11), we have

lim
t→∞ acovX(s, t, h) = eAh

n∑
j=1

ωjA
−1C−1

j E[L̃j (1)],

lim
t→∞ acovY (s, t, h) = eBih{B−1

i ηiE[Li(1)L�
i (1)]η�

i − B−1
i ηiE[Li(1)]E[L�

i (1)]η�
i }.

As A and Bi have eigenvalues with negative real parts, we see that the deseasonalized log-spot
prices ln Sk(t) − ln �k(t) of commodity k = 1, . . . , d will in the limit have an autocorrelation
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function being a sum of exponential functions, with decay rates given by the real parts of the
eigenvalues of A and Bi, i = 1, . . . , m. This is an empirical feature we often see with energy
prices (see, for example, [12]).

3.1. Cumulants and stationary distributions

Under the log-integrability conditions (5), the processes Yi and Zj converge to a stationary
dynamic (see [28, Theorem 5.2]). In the next proposition the conditional characteristic function
of the processes X, Yi , and Zj for i = 1, . . . , m and j = 1, . . . , n are calculated in terms of
the characteristic function of the matrix-valued processes L̃j .

Let us first investigate the cumulants of Zj and Yi, i = 1, . . . , m, j = 1, . . . , n. To this
end, we denote the conditional cumulant functions of Yi for s ≤ t by

φ
(s,t)
Yi

(z) = ln E[eiz�Yi(t) | Fs], z ∈ R
d ,

for i = 1, . . . , m. The conditional cumulant functions for Zj are

φ
(s,t)
Zj

(V ) = ln E[eitr(V Zj (t)) | Fs], V ∈ Md(R),

for j = 1, . . . , n. We have the following proposition for these conditional cumulants.

Proposition 1. For t ≥ s, the conditional cumulant functions of Yi and Zj are respectively

φ
(s,t)
Yi

(z) = i(eBi(t−s)Yi(s) + iB−1
i (I − eBi(t−s))µi)

�z +
∫ t−s

0
φL̃i

(Jd(η�
i eB�

i uz)) du, (12)

φ
(s,t)
Zj

(V ) = itr(V eCj (t−s)Zj (s)e
C�

j (t−s)
) +

∫ t−s

0
φL̃j

(eCj (t−s)V eC�
j (t−s)

) du,

for i = 1, . . . , m and j = 1, . . . , n.

Proof. For the cumulants of Yi, i = 1, . . . , m, we have, from (7),

Yi(t) = eBi(t−s)Y i(s) + B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηi dLi(u)

for t ≥ s. Hence, by the key formula (see [28]), the conditional cumulant function of Yi(t)

given Fs is

φ
(s,t)
Yi

(z) = i(eBi(t−s)Y i(s) + iB−1
i (I − eBi(t−s))µi)�z +

∫ t

s

φLi
(η�

i eB�
i (t−u)z) du

= i(eBi(t−s)Yi(s) + iB−1
i (I − eBi(t−s))µi)

�z +
∫ t−s

0
φL̃i

(Jd(η�
i eB�

i uz)) du.

The cumulant functions of the Zj s are computed in [25] (see also Theorem 2.5 of [23]).
We include the derivation here for the convenience of the reader. By (8) and the independent
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increment property of Lévy processes,

ln E[eitr(V Zj (t)) | Fs] = itr(V eCj (t−s)Zj (s)e
C�

j (t−s)
)

+ ln E

[
exp

(
itr

(
V

∫ t

s

eCj (t−u) dL̃j (u)eC�
j (t−u)

)) ∣∣∣∣ Fs

]
= itr(V eCj (t−s)Zj (s)e

C�
j (t−s)

)

+ ln E

[
exp

(
itr

(
V

∫ t

s

eCj (t−u) dL̃j (u)eC�
j (t−u)

))]
= itr(V eCj (t−s)Zj (s)e

C�
j (t−s)

) +
∫ t

s

φL̃j
(eCj (t−u)V eC�

j (t−u)
) du.

This completes the proof.

Since L(t) has finite log moments and σ(Bi) ⊆ (−∞, 0) + iR+, the limit of φ
(s,t)
Yi

for
t → ∞ is well defined (see [28]) and given by

lim
t→∞ φ

(s,t)
Yi

(z) := φYi
(z) = iµ�

i (B�
i )−1z +

∫ ∞

0
φL̃i

(Jd(η�
i eB�

i uz)) du, z ∈ R
d ,

for i = 1, . . . , m. This is the cumulant function of the stationary distribution of Yi . Similarly,
we find the cumulant function of the stationary distribution of the Zj s to be

lim
t→∞ φ

(s,t)
Zj

(V ) := φZj
(V ) =

∫ ∞

0
φL̃j

(eC�
j s

V eCj s) ds, V ∈ Md(R),

for j = 1, . . . , n.
Let us continue our analysis by deriving the cumulant function and characterizing the

stationary distribution of the base component X. To this end, we define the family of linear
operators Cj (t):

Cj (t) : X �→ ωj [(Cj − A)−1(eCj tXeC�
j t − eAtXeA�t )]. (13)

We note that a similar operator is defined in [25] (see also [23]). The following auxiliary result
is useful.

Lemma 6. Define f (s, t) := ∫ t

s
eA(t−u)�(u)eA�(t−u) du. Then it holds that

f (s, t) =
n∑

j=1

Cj (t − s)Zj (s) +
∫ t

s

Cj (t − v) dL̃j (v)

for 0 ≤ s ≤ t .

Proof. Using (8) and the assumption that A and Cj commute for j = 1, . . . , n, it holds that

f (s, t) =
∫ t

s

eA(t−u)
n∑

j=1

ωj

(
eCj (u−s)Zj (s)e

C�
j (u−s) +

∫ u

s

eCj (u−v) dL̃j (v)eC�
j (u−v)

)
× eA�(t−u) du
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=
n∑

j=1

ωj

∫ t

s

e(Cj −A)ueAt−Cj s

(
Zj (s) +

∫ u

s

e−Cj v dL̃j (v)e−C�
j v

)
× eA�t−C�

j se(Cj −A)�u du

=
n∑

j=1

ωj (Cj − A)−1(eCj (t−s)Zj (s)e
C�

j (t−s) − eA(t−s)Zj (s)e
A�(t−s))

+
∫ t

s

∫ u

s

{e(Cj −A)ueAte−Cj v dL̃j (v)e−C�
j veA�te(Cj −A)�u} du.

The last integral is interpreted as first integrating with respect to dL̃j (v), and then integrating the
obtained expression with respect to du. But, by spelling out the integrals in terms of sums, using
the definition of the dL̃j (v) integrals, and invoking the stochastic Fubini theorem (see [26]),
we obtain ∫ t

s

∫ u

s

{e(Cj −A)ueAte−Cj v dL̃j (v)e−C�
j veA�te(Cj −A)�u} du

=
∫ t

s

∫ t

v

{e(Cj −A)ueAte−Cj v dL̃j (v)e−C�
j veA�te(Cj −A)�u} du.

Here, the right-hand side is interpreted as first integrating with respect to du, and then integrating
with respect to dL̃j (v). This is done by computing the matrix in the brackets, and then in each
coordinate performing an integration first with respect to du and then with respect to the relevant
coordinates of dL̃j (v). Hence, we find that

f (s, t) =
n∑

j=1

Cj (t − s)Zj (s)

+ (Cj − A)−1
(∫ t

s

eCj (t−v) dL̃j (v)eC�
j (t−v) −

∫ t

s

eA(t−v) dL̃j (v)eA�(t−v)

)
.

This completes the proof.

With this result at hand, we can derive the conditional cumulant function of X(t) defined by

φ
(s,t)
X (z) = ln E[eiz�X(t) | Fs], z ∈ R

d ,

for s ≤ t . This is done in the next proposition.

Proposition 2. The conditional cumulant function of the process X(t) given Fs is

φ
(s,t)
X (z) = iX�(s)eA�(t−s)z − 1

2

n∑
j=1

z�Cj (t − s)Zj (s)z

+
n∑

j=1

∫ t−s

0
φL̃j

(
1

2
iC∗

j (u)zz�
)

du

for every 0 ≤ s ≤ t and z ∈ R
d , where C∗

j is the adjoint operator of Cj defined in (13).
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Proof. Let Gt,s denote the filtration generated by Fs and the paths �(u), 0 ≤ u ≤ t . By the
independence of W and L̃j for j = 1, . . . , n, and the tower property of conditional expectations,
we have

φ
(s,t)
X (z) = ln E[E[eiz�X(t) | Gt,s] | Fs]

= iX�(s)eA�(t−s)z

+ ln E

[
E

[
exp

(
i

(∫ t

s

�(u)1/2eA(t−u) dW(u)

)�
z

) ∣∣∣∣ Gt,s

] ∣∣∣∣ Fs

]
= iX�(s)eA�(t−s)z + ln E

[
exp

(
−1

2
z�
∫ t

s

eA(t−u)�(u)eA�(t−u) duz

) ∣∣∣∣ Fs

]
.

In the second equality we used (6) and in the third equality we used the Gaussianity of a
Wiener integral (note that the integrand is a deterministic function after conditioning on Gt,s).
Appealing to Lemma 6, we find that

φ
(s,t)
X (z) = iX�(s)eA�(t−s)z − 1

2

n∑
j=1

z�Cj (t − s)Zj (s)z

+
n∑

j=1

ln E

[
exp

(
−1

2
z�
∫ t

s

Cj (t − u) dL̃j (u)z

) ∣∣∣∣ Fs

]

= iX�(s)eA�(t−s)z − 1

2

n∑
j=1

z�Cj (t − s)Zj (s)z

+
n∑

j=1

ln E

[
exp

(
i tr

(
1

2
izz�

∫ t

s

Cj (t − u) dL̃j (u)

))]
.

In the last step, we used the fundamental relation z�Uz = tr(zz�U) for a quadratic matrix U

together with the independent increment property of Lévy processes. Now, observe that the
stochastic integral can be expressed as∫ t

s

Cj (t − u) dL̃j (u) = lim|�i |→0

n−1∑
i=0

Cj (t − ui)�L̃j (ui)

for partitions s = u0 < · · · < un = t with

�L̃j (ui) := L̃j (ui+1) − L̃j (ui) and �i := ui+1 − ui.

By the independence of increments of a Lévy process, and continuity of the exponential function
together with Fubini–Tonelli’s theorem, we obtain

ln E

[
exp

(
i tr

(
1

2
izz�

∫ t

s

Cj (t − u) dL̃j (u)

))]
= lim|�i |→0

n−1∑
i=0

ln E

[
exp

(
i tr

(
1

2
izz�Cj (t − ui)�L̃j (ui)

))]
.

Now, the linear operators Cj (t−ui) can be represented as vec−1◦K◦vec for a matrix K ∈ R
d2

.
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Hence, since for quadratic matrices V it holds that tr(V X) = vec(V )�vec(X), we find that

tr(V Cj (t − ui)�L̃j (ui)) = vec(V )�vec(Cj (t − ui)�L̃j (ui))

= vec(V )�vec(vec−1 ◦ K ◦ vec(�L̃j (ui)))

= vec(V )�Kvec(�L̃j (ui))

= (K�vec(V ))�vec(�L̃j (ui)).

Thus,

ln E[exp(i tr(V Cj (t − ui)�L̃j (ui)))] = ln E[exp(i(K�vec(V ))�vec(�L̃j (ui)))]
= ln E[exp(i tr(vec−1(K�vec(V ))�L̃j (ui)))]
= φL̃j

(vec−1 ◦ K� ◦ vec(V ))�i

= φL̃j
(C∗

j (t − ui)V )�i.

Letting V = 1
2 izz�, we conclude that

lim|�i |→0

n−1∑
i=0

ln E

[
exp

(
i tr

(
1

2
izz�Cj (t − ui)�L̃j (ui)

))]
=
∫ t

s

φL̃j

(
1

2
iC∗

j (t − u)zz�
)

du

=
∫ t−s

0
φL̃j

(
1

2
iC∗

j (u)zz�
)

du.

This completes the proof.

We can prove that X(t) converges to a stationary dynamic, and derive the cumulant function
for the limiting distribution.

Proposition 3. The process X(t) converges to a stationary dynamic, and the cumulant function
of the limiting distribution is given by

lim
t→∞ φ

(s,t)
X (z) := φX(z) =

n∑
j=1

∫ ∞

0
φL̃j

(
1

2
iC∗

j (s)zz�
)

ds,

where z ∈ R
d and the linear operator Cj (t) is defined in (13).

Proof. By the definition of Cj (t) and the fact that A and Cj , j = 1, . . . , n, have eigenvalues
with negative real parts, it is straightforward to see that

lim
t→∞ iX�(s)eA�(t−s)z − 1

2

n∑
j=1

z�Cj (t − s)Zj (s)z = 0.

Hence, we must prove that the integral∫ t

0
φL̃j

(
1

2
iC∗

j (s)zz�
)

ds

converges when t → ∞ for every j = 1, . . . , n. To prove this, it is sufficient to show that∫ t

s

Cj (t − u) dL̃j (u)
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converges in distribution for each j = 1, . . . , n as t → ∞. Let us fix j = 1, . . . , n, and
observe that, by the definition of Cj (t) and the linearity of the Cj − A operator, we have∫ t

s

Cj (t − u) dL̃j (u)

= ωj (Cj − A)−1
{∫ t

s

eCj (t−u) dL̃j (u)eCj (t−u) −
∫ t

s

eA(t−u) dL̃j (u)eA(t−u)

}
.

But, the two stochastic integrals converge in distribution when t → ∞ for fixed s by [28,
Theorem 5.2], since A and Cj have eigenvalues with negative real parts. This completes the
proof.

We observe that the limiting distribution of X when t → ∞ is centered and symmetric since
its cumulant function satisfies φX(z) = φX(−z). We discuss the stationary distribution of X in
more detail.

As we now argue, the stationary distribution of X can be viewed as the convolution of a
centered normal and a leptokurtic distribution whenever L̃j (1) is integrable for j = 1, . . . , n.
To this end, introduce the zero-mean matrix-valued Lévy process L̂j (t) := L̃k(t) − E[L̃j (1)]t ,
and denote by φL̂j

(V ) its cumulant defined by

φL̂j
(V ) = φL̃j

(V ) − i tr(V E[L̃j (1)]).

The cumulant function of the stationary distribution of X(t) can henceforth be expressed as

φX(z) =
n∑

j=1

{∫ ∞

0
φL̂j

(
1

2
iC∗

j (s)zz�
)

ds + i
∫ ∞

0
tr

(
1

2
iC∗

j (s)zz�
E[L̃j (1)]

)
ds

}

=
n∑

j=1

{∫ ∞

0
φL̂j

(
1

2
iC∗

j (s)zz�
)

ds − 1

2

∫ ∞

0
tr(C∗

j (s)zz�
E[L̃j (1)]) ds

}
.

By the properties of the trace operator, we have

tr((C∗
j (s)zz�)E[L̃j (1)]) = vec(C∗

j (s)zz�)�vec(E[L̃j (1)])
= vec(vec−1(K�vec(zz�)))�vec(E[L̃j (1)])
= (K�vec(zz�))�vec(E[L̃j (1)])
= vec(zz�)Kvec(E[L̃j (1)])
= tr(zz�vec−1(Kvec(E[L̃j (1)])))
= tr(zz�Cj (s)E[L̃j (1)])
= z�Cj (s)E[L̃j (1)]z.

Here, we have used the fact that the operator Cj (s) can be represented by the R
d2×d2

-matrix
K as Cj (s) = vec−1 ◦ K ◦ vec. Using Lemma 3, we conclude that

φX(z) =
n∑

j=1

∫ ∞

0
φL̂j

(
1

2
iC∗

j (s)zz�
)

ds − 1

2
z�( lim

t→∞ var[X(t)]
)
z.
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The last term is the characteristic function of a centered multivariate normal distribution with
variance equal to limt→∞ var[X(t)]. We note that this coincides with the stationary distribution
obtained from the multivariate Schwartz model having constant volatility � ∈ Md(R) given
by

� := lim
t→∞ var[X(t)].

The first term in φX(z) will be the characteristic function of a non-Gaussian distribution.

4. Analysis of the spot dynamics

Let us look at the dynamics of S̃(t) := S(t)/�(t), the deseasonalized spot price, where the
division is done elementwise.

Proposition 4. It holds that

d ln S̃(t) = (M(t) + A ln S̃(t)) dt + �(t)1/2 dW(t) +
m∑

i=1

ηi dLi(t),

where

M(t) =
m∑

i=1

µi + (−A + Bj )Yj (t).

Proof. The proof follows from rewriting (2) and (3).

We see from this result that the dynamics can be interpreted as a mean-reverting process
towards a stochastic mean. The mean will be described by the multivariate process M(t),
which will consist of linear combinations of the different ‘spike’ components Yj . The matrix
A describes the ‘speed’ of mean reversion, as well as how the different commodities are
functionally dependent on each other. Moreover, the stochastic volatility term and the spike
contributions are clearly evident in the two last terms of the dynamics.

We move onto analyzing the limiting distribution of ln S̃(t). From Lemma 2, we find that

lim
t→∞ E[ln S̃(t)] = lim

t→∞ E[X(t)] +
m∑

i=1

E[Yi(t)] =
m∑

i=1

B−1
i (µi + ηiE[Li(1)]).

Furthermore, from Lemma 5, after passing to the limit as t → ∞, the autocovariance function
of ln S̃(t) becomes

acovln S̃ (h) = acovX(h) + acov∑Yi
(h) (14)

= eA|h|
n∑

j=1

ωjA
−1C−1

j E[L̃j (1)]

+
m∑

i=1

eBi |h|(B−1
i ηiE[Li(1)L�

i (1)](ηi)
� − B−1

i ηiE[Li(1)]E[L�
i (1)]η�

i ).

Hence, asymptotically, the autocovariance function of ln S̃(t) will be a linear combination
of exponentially decaying functions due to eigenvalues having a negative real part. Real
eigenvalues will give pure exponentially decaying functions, while nonreal eigenvalues include
a sinusoidal behavior. Furthermore, when the matrices are nondiagonalisable, we have a
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polynomial behavior to the exponential decay. In power markets, the empirical autocovariance
functions seem to be well-represented as linear combinations of exponential functions (see,
e.g. [12]).

By combining the results of the cumulant functions for the different factors in the dynamics
of ln S̃(t) derived in the previous section, we can compute the cumulant of the deseasonalized
log-spot prices. This is presented in the next proposition.

Proposition 5. The logarithmic deseasonalized spot price ln S̃(t) converges to a stationary
dynamic with a limiting distribution having cumulant function given by

φln S̃ (z) =
m∑

i=1

iµ�
i (B�

i )−1z +
n∑

j=1

∫ ∞

0
φL̃j

(
1

2
iC∗

j (u)zz�
)

du

+
m∑

i=1

∫ ∞

0

[
φL̃i

(
1

2
iC∗

i (u)zz� + Jd(η�
i eB�

i uz)

)
− φL̃i

(
1

2
iC∗

i (u)zz�
)]

du

for z ∈ R
d .

Proof. By combining Proposition 2 and (12), the conditional cumulant function of ln S̃ given
Fs is

φ
(s,t)

ln S̃
(z) = iX�(s)eA�(t−s)z − 1

2

n∑
j=1

z�Cj (t − s)Zj (s)z

+
m∑

i=1

iY�(s)eB�
i (t−s)z + i(B−1

i (I − eBi(t−s))µi)
�z

+
m∑

i=1

∫ t−s

0
φL̃i

(
1

2
iC∗

i (u)zz� + Jd(η�
i eB�

i uz)

)
du

+
n∑

j=m+1

∫ t−s

0
φL̃j

(
1

2
iC∗

j (u)zz�
)

du.

Since a stationary limit exists for X and all Yis, there also exists a stationary limit for ln S̃.
Proposition 5 follows by taking limits for t → ∞ using the fact that the real parts of the
eigenvalues of the involved matrices are negative.

Note that the sum over j in the expression for φln S̃ stems from the stationary cumulant of X,
and, therefore, is from a symmetric centered random variable. Stationarity is a desirable feature
in commodity markets, being a reflection of supply and demand-driven prices. However, many
researchers argue for nonstationary effects (as, for example, Burger et al. [15], who studied
German electricity spot prices). We can easily extend our model to include nonstationary
factors, by, for instance, choosing one or more of the Y s to be drifted Brownian motions rather
than Ornstein–Uhlenbeck processes. We will not discuss these modeling issues further here,
but leave the analysis of this to the interested reader.

In the special case of a multivariate stochastic volatility Schwartz model (i.e. m = 0) the
‘reversion-adjusted’ logreturns are approximately distributed according to a multivariate mean-
variance mixture model. Considering the ‘reversion-adjusted’ logreturns over the time interval
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[t, t + τ ], we find that

ln S̃(t + τ) − eAτ ln S̃(t) = X(t + τ) − eAτX(t)

=
∫ t+τ

t

eA(t+τ−s)�1/2(s) dW(s)

≈ eAτ�1/2(t)�τW(t).

Here, �τW(t) := W(t + τ)−W(t) and τ is supposed to be sufficiently small in order to make
the approximation above reasonable. Hence, we have ‘reversion-adjusted’ logreturns that are
approximately distributed according to the multivariate mean-variance mixture model

eAτ�1/2(t)�τW(t)

∣∣∣
�(t)

∼ N (0, eAτ�(t)eA�τ ).

In [8] this was discussed in the univariate case, showing that we can choose stochastic volatility
models yielding, for instance, normal inverse Gaussian distributed ‘reversion-adjusted’ returns.
We refer the reader to [9] for a study of gas and oil prices where the normal inverse Gaussian
distribution has been applied to model ‘reversion-adjusted’ returns. We further note that the
conditional Gaussian structure of the ‘reversion-adjusted’ returns implies that the covariance
determines the cross-commodity dependency. In this case it is given explicitly by the stochastic
volatility model �(t), introducing a time dependency in the covariance between commodities.
In addition, the common factors Yi(t), i = 1, . . . , m, will give codependent paths determined
by common jump paths. Hence, we can mix rather complex dependency into the modeling. The
autocovariance function of the deseasonalized logarithmic spot (14) gives explicit formulation
to this dependence in terms of a second-order structure. For h = 0, the autocovariance of
deseasonalized logarithmic spots gives the covariance matrix of the deseasonalized logarithmic
spots.

Let us discuss possible specifications of our spot price model satisfying the fundamental
conditions on the operators and matrices in question. First of all, it is easily seen that if both
of the matrices A and Cj are diagonal, then they will commute. In fact, supposing that A is a
diagonal matrix could be natural in view of interpreting the speed of mean reversion of each
commodity modeled separately (as the corresponding entry on the diagonal), and not imposing
any functional cross dependencies between the commodities. In such a model, dependencies
will enter via the spike terms and in the stochastic volatility. When A is diagonal, then all
the diagonal elements must be negative in order to have negative eigenvalues (eigenvalues are
equal to the diagonal elements in this case, of course). It is simple to see that the determinant
of A ⊗ I + I ⊗ A becomes

det(A ⊗ I + I ⊗ A) = 2d
d∏

i=1

ai

d∏
i �=j

(ai + aj )
2,

which is different from 0 since all the diagonal elements are strictly less than 0. This means
that A is invertible. In fact, when Cj is also diagonal, we find that A − Cj is invertible if and
only if ai + aj �= ci + cj for i, j = 1, . . . , d. Note also that stationarity of the volatility holds
only if all the diagonals of Cj are strictly negative. But, this also implies that Cj is invertible.

When A and Cj are not diagonal matrices, rather strict conditions are imposed on the range
of possible parameter choices to fulfill the commutativity condition. To investigate this in more
detail, let us focus on d = 2, that is, when A and Cj are elements in M2(R). Denoting the
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coordinates of A and Cj by {akl}k,l=1,2 and {cj
kl}k,l=1,2, respectively, we find from matrix

multiplication that ACj = CjA if and only if

a12c
j
21 = a21c

j
12,

(a11 − a22)c
j
12 = (c

j
11 − c

j
22)a12,

(a11 − a22)c
j
21 = (c

j
11 − c

j
22)a21.

For example, if a12 = 0 then the first equation immediately yields either c
j
12 = 0 or a21 = 0,

or both. If c
j
12 �= 0 then the second equation gives a11 = a22. In other words, in this particular

situation the speed of mean reversion of each commodity must be the same. This is a severe
modeling restriction. Of course, if Cj is diagonal, we do not have such a restriction on
the equality of the diagonal elements. In the situation where neither of the two matrices
A and Cj are diagonal, the ratios a12/c

j
12 and a21/c

j
21 must be equal. Moreover, the ratio

(a11 − a22)/(c
j
11 − c

j
22) must be equal to a12/c

j
12. These conditions must be satisfied in an

estimation of the full model. Note that the determinant of A ⊗ I + I ⊗ A becomes

det(A ⊗ I + I ⊗ A) = 4tr(A)2det(A),

and, hence, A is invertible if and only if det(A) �= 0 and a11 �= −a22. But, A is supposed to be
invertible, so det(A) �= 0. Furthermore, as the eigenvalues of A are

λ1,2 = 1
2 tr(A) ± 1

2

√
tr(A)2 − 4det(A),

we see that the real parts are negative if and only if tr(A) = a11 + a22 < 0. As long as we
consider stationary models, A is assumed to have eigenvalues with real part being less than 0.
Hence, in this case we find that A is invertible without any further conditions. The same holds
for Cj . However, we must have tr(A) �= tr(Cj ) and det(A − Cj ) in order for A − Cj to be
invertible. This puts additional conditions on A and Cj . We note that going to the case d = 3
significantly complicates the conditions of invertibility. We do not consider this or higher-order
cases here.

Note that the matrices Bi do not need to commute with A and Cj . Hence, we do not have
to place severe restrictions on the mixing of dependencies in the mean-reverting part of the Yi

dynamics. If, for example, we want to model spikes using one or more factors Yi , we can easily
incorporate a direct functional dependency between spikes in different markets. For example,
we may model co-jump behavior by letting power spikes also arise as a result of a spike in
gas, and vice versa. In a model where we assume that the matrices A and Cj are diagonal
(so that they commute), we can think of X(t) as governing the price variations in ‘nonspike’
periods, where a dependency arises probabilistically via the stochastic volatility being driven by
matrix-valued subordinators and the mixing of the Brownian motions in the dynamics of X(t).
When spikes occur, we may model a direct effect on the marginal spot prices. If, for instance,
the gas prices spike, this will lead to spikes in electricity. This causal effect can be modeled by
off-diagonal elements being nonzero in the matrix Bi .

5. Simulation of matrix-valued subordinators

In this section we discuss simulation of our spot price dynamics, which essentially means
discussing the simulation of matrix-valued subordinators.

Limited literature is available on the simulation of matrix-valued subordinators. One possible
approach could be to apply existing methods to sample multivariate Lévy processes based on
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their Lévy measures by iterative sampling from the conditional marginals (see, e.g. [16]).
However, the marginal distribution functions are required, which are not always available
in a simple form. Moreover, in case of matrix-valued subordinators, the restriction of the
domain to the positive definite cone makes matters even more complicated. We introduce
a simple approximative algorithm, kindly proposed to us by Robert Stelzer, to simulate from
matrix-valued compound Poisson, stable, and tempered stable processes with stable or constant
jump size distribution.

For any U ∈ S
+
d , we can make a polar decomposition in a ray r = ‖U‖ = tr(U�U)1/2 and

angle � = U/r , so that U = r�. Moreover, � is situated on the unit sphere S of R
d×d

intersected with the positive definite cone, i.e. � ∈ SS
+
d := vec−1S ∩ S

+
d .

Suppose that ν is a Lévy measure on S
+
d of the subordinator L, such that it can be decomposed

into
ν(dU) = 
(d�)̃ν(�, dr), U ∈ S

+
d ,

where ν̃(�, dr) is a Lévy measure on R+ and 
 is a spectral measure on SS
+
d concentrated on

a finite number of points {�i}1≤i≤p. Note in passing that any measure can be approximated
by a measure concentrated on finitely many points. Since L is a pure jump subordinator, its
cumulant function is given by

φL(1)(V ) =
∫

S
+
d \{0}

(ei tr(V U) − 1)ν(dU)

=
∫

SS
+
d

∫ ∞

0
(eir tr(V �) − 1)̃ν(�, dr)
(d�)

=
p∑

i=1


(�i)

∫ ∞

0
(eir tr(V �i) − 1)̃ν(�i, dr).

One recognizes this as the cumulant of a weighted sum of p independent, real-valued
subordinator processes. This leads to the following simple algorithm to sample L according to
its cumulant function.

• Find the finite set of points {�}1≤i≤n where 
 is concentrated.

• Simulate p independent subordinators Ri(t) with cumulant function

φRi(1)(tr(V �i)) =
∫ ∞

0
(eirtr(V �i) − 1)̃ν(�i, dr).

• Set L(t) = ∑p
i=1 Ri(t)�i .

To make this algorithm operationable, we must be able to sample the Ris, which we now discuss
in particular cases which are of interest in energy markets.

First, let us consider a matrix-valued compound process (mCP) with only positive jumps L.
This becomes a multivariate compound Poisson process restricted to values in the symmetric
positive definite cone. Its cumulant function is

φL(1)(V ) = λ

∫
S

+
d

(eitr(V U) − 1)ν(dU),

where ν is the jump size distribution and λ is the intensity. Supposing that ν(dU) = ν̃(�, dr)


(�) with ν̃(�, dr) being a probability distribution on R+ and 
(d�) for a spectral measure
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 on SS
+
d , concentrated on finitely many points, it holds that

φL(1)(V ) = λ

p∑
i=1


(�i)

∫ ∞

0
(eir tr(V �i) − 1)̃ν(�i, dr).

Hence, Ri for i = 1, . . . , p will follow a one-dimensional compound Poisson process with jump
intensity λ
(�i) and jump size distribution ν̃(�i, dr). The mCP(λ) process L is represented
as a linear combination of angles �i and radius processes being one-dimensional compound
Poisson processes Ri , i.e. L(t) = ∑p

i=1 Ri(t)�i .
By exponential tilting of matrix-valued α-stable laws, a multivariate extension of tempered

stable laws can be made. The inverse Gaussian distribution is a special case of this class
of functions. The polar decomposition of the Lévy measure ν of a matrix-valued tempered
α/2-stable law is given by (see [1])

ν(dU) = e−r tr(��)

r1+α/2 dr
(d�).

In the case α = 1, ν is a Lévy measure of a matrix extension of the inverse Gaussian distribution
(mIG), where � ∈ S

+
d and 
, a finite measure on SS

+
d , are parameters. As in the univariate

case, the inverse Gaussian process is a pure jump process; hence, the cumulant function is given
by

φL(1)(V ) =
∫

SS
+
d

∫ ∞

0
(eir tr(V �) − 1)e−r tr(��) dr

r3/2 
(d�) + i tr(V µ0)

for L(1) ∼ mIG(�, 
, µ0), where µ0 ∈ S
+
d is a parameter. Choosing 
 such that it is

concentrated on finitely many points and decomposing µ0 in an angle �0 ∈ SS
+
d and a radius

r0 ∈ R leads to

φL(1)(V ) =
p∑

i=1


(�i)

∫ ∞

0
(eir tr(V �i) − 1)e−r tr(��i)

dr

r3/2 + ir0 tr(��0).

One can compare this with the characteristic function of a one-dimensional inverse Gaussian
random variable G, for which the cumulant function is given by

φG(ζ ) = i
δ

γ
(2N (γ ) − 1)ζ + δ√

2π

∫ ∞

0
(eiζx − 1)e−1/2γ 2x dx

x3/2 , ζ ∈ R,

where N denotes the cumulative normal distribution. We recognize L as a matrix of linear
combinations of a finite number of angles �i, i = 1, . . . , p, with coefficients given by
one-dimensional inverse Gaussian subordinator processes Ri(t), where Ri(1) is distributed
according to the inverse Gaussian distribution IG(δi, γi), where δi = √

2π
(�i) and γi =
2
√

tr(��i). Moreover, the drift parameter µ0 of the multivariate inverse Gaussian distribution
is by default chosen such that the drift term of the mIG distribution equals the drift term of∑p

i=1 Ri(t)�i .
As an example, consider the case of two spot prices S1(t) and S2(t) modeled by our dynamics.

We have in mind the spot price of electricity in two interconnected markets, or the spot price of
gas and electricity. We suppose that the prices are driven by two M2(R)-valued subordinator
processes L̃1(t) and L̃2(t). The first process defines the spike component, while the second part
determines the stochastic volatility. We assume that there is one spike component Y (t) ∈ R

2,
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while the stochastic volatility process �(t) is an equally weighted sum of two processes Z1(t)

and Z2(t), whose dynamics are driven by L̃1 and L̃2, respectively. The dynamics of the spike
process Y (t) are driven by the diagonal of L̃1(t). In order to make simulations from the model,
we must specify the parameters. To simplify, we set the seasonality function identically equal
to 1, that is, �i(t) = 1 for i = 1, 2. Moreover, we choose

A =
(−1.4 −0.3

−0.3 −1.4

)
, B =

(−2 1
1 −2

)
, η =

(
1 0.5

0.5 1

)
,

C1 =
(−0.4 0.3

0.3 −0.4

)
, C2 =

(−0.045 0.03
0.03 −0.045

)
.

We let the levels of the spike component Y (t) be 0, µ1 = µ2 = 0.
We see that the A matrix has rather high values on the diagonal, meaning that logarithmic

deseasonalized prices are reverting fast. Such a feature has been observed in several
empirical studies of electricity spot prices quoted on the German power market EEX (see, for
example, [12]). By letting the off-diagonal coordinates be nonzero, we incorporate a functional
dependency between the two prices. Here it is assumed that X1 is negatively reacting to changes
in X2 and vice versa. Similarly, the spike component Y is mean reverting quickly, naturally
at a faster speed than the logarithmic prices themselves. This is in accordance with how one
observes the spike behavior in electricity prices (see [12] again). If one thinks of gas being a fuel
for electricity generation, it is natural to have spikes occurring in electricity prices whenever
they happen in gas. Moreover, as demand for electricity increases with cold weather, it also
naturally impacts the demand for gas. Here we mimic such spike dependency by letting the B

matrix have positive values on the off-diagonal. Moreover, we have also supposed a statistical
dependency in the spike processes by letting the η matrix have off-diagonals being nonzero
(and positive). The matrices C1 and C2 for the stochastic volatility process � have considerably
slower speeds of mean reversion. The parameters for the stochastic volatility part were inspired
by the empirical study in [33]. Vos [33] fitted a two-factor BNS stochastic volatility model to
Dutch stock price data. We have applied these numbers here simply for illustration, and do not
intend to claim that they are necessarily relevant for energy markets.

Note that all the defined matrices are invertible and have two negative real eigenvalues.
Moreover, for j = 1, 2, A and Cj commute. Finally, as det(A − Cj ) > 0, we find that A − Cj

is invertible. Hence, our specified model satisfies the main assumptions in this paper.
Next, let us define the two subordinator processes L̃1(t) and L̃2(t). To mimic spikes in the

market, we consider a simple Poisson process for L̃1(t). To have a stochastic volatility process
which can generate adjusted returns being close to NIG distributed, we suppose that L̃2(t) is
mIG. The NIG distribution has been shown to fit electricity prices in several empirical studies
(see [5], [9], [10], and [14]). In order to be able to simulate these two processes, we apply the
idea above, and define a simple discrete spectral measure on SS

+
2 . It is easy to see that

� =
(

θ ±√θ (1 − θ)

±√θ (1 − θ) 1 − θ

)
or

(
θ 0
0

√
1 − θ2

)
for θ ∈ (0, 1) are three valid choices of � ∈ SS

+
2 . To this end, we discretize the unit interval

with step size 0.1, and choose θj = j ×0.1 for j = 1, . . . , 9. We choose either one of the three
possible matrix structures for � with given θi , making up a total of 27 matrices �i . For the
Poisson process, we choose the intensity such that λ
(�i) = 3

100 and the jump size distribution
fixed to be 1.7, that is, if Ri(t) is jumping at time t , then �Ri(t) = 1.7. This will correspond to
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Figure 1: Simulated spot prices of the two commodities.

a change in the spot price by a factor exp(1.7) = 5.47, which is a rather dramatic price change.
As a measure for the mIG part, we set 
(�i) = 1/324

√
2π uniformly for all 1 ≤ i ≤ 27.

Finally, we suppose that the parameter � of the mIG part is

� =
(

50 45
45 50

)
.

In Figure 1 the spot price series resulting from our two-dimensional example is shown, where
we have used an Euler scheme to discretize the dynamics in time and standard schemes for the
sampling of an inverse Gaussian distributions (see [27]). One can clearly see the dependency
between the two spot prices, in particular, how the spikes follow each other in the two series.
The high speed of mean reversion in the Y process is recognized in the rapid decay of the
spikes. We also observe that the price series possesses idiosyncratic risk and large variations
in ‘nonspike’ periods.

6. Conclusions

We have proposed a model to describe the spot price dynamics for cross-commodity markets
in a multivariate setting. The model captures features such as mean reversion, spikes, stochastic
volatility, and inverse leverage effect. The dynamics are a multidimensional extension of the
Barndorff-Nielsen and Shephard stochastic volatility model embedded into mean-reversion
dynamics relevant for commodity price series. The choice of the multidimensional extension
is influenced by the work of Stelzer [31]. The multivariate spot model is analytically tractable
and probabilistic properties can to a large degree be explicitly computed. We have derived
various characteristics, such as stationary distributions and covariance functions. The model is
a multivariate extension of the one-dimensional spot price dynamics analyzed by Benth [8].

A simple approximative algorithm to simulate from matrix-valued subordinators was
introduced. The method was demonstrated on an empirical example. However, further research
has to be done to generate matrix-valued Lévy processes in a more general setting; a study we
leave for the future.

As far as we know, there exists no methods to estimate the model based on spot price data.
It is obviously of crucial interest for the applicability of the model to understand how to fit the
parameters to data. Methods are available to estimate the model in the diffusion case on the
quadratic covariation [3]. However, these methods require high frequency data, which does
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not exist in the energy market. Another alternative is to adopt the methods already available
for filtering spike data from price series into a multidimensional setting. If this is possible
then the estimation of the spike process can be treated separately from the diffusion part, and
the diffusion part can be estimated conditionally on the spike parameters. Before this can
be implemented, further research has to be done on the validity of these methods. Another
possibility is to estimate directly on the characteristic function in the frequency domain.
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