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Abstract. Forintegers a and b > 2, let T;, and T}, be multiplication by aand bon T = R/Z.
The action on T by 7, and T} is called xa, xb action and it is known that, if a and b are
multiplicatively independent, then the only xa, xb invariant and ergodic measure with
positive entropy of T, or T} is the Lebesgue measure. However, it is not known whether
there exists a non-trivial xa, xb invariant and ergodic measure. In this paper, we study
the empirical measures of x € T with respect to the xa, xb action and show that the set
of x such that the empirical measures of x do not converge to any measure has Hausdorff
dimension one and the set of x such that the empirical measures can approach a non-trivial
xa, xb invariant measure has Hausdorff dimension zero. Furthermore, we obtain some
equidistribution result about the xa, xb orbit of x in the complement of a set of Hausdorff
dimension zero.
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1. Introduction and main theorems
In this paper, we write Zx for the set of integers equal to or larger than zero and N for the
set of positive integers. Let T = R/Z and, for a € Z witha > 2, define T, : T — T by

T,(x) =ax, xeT.

We take a, b € Z such that a, b > 2. Since T, and T are commutative, they define the
Zio—action on T and we call it the xa, xb action. Here we notice that, if log a/ log b € Q,
then a = ¢* and b = ¢! for some ¢ > 2,k,l € N, and the xa, xb action derives from the
x ¢ action by the single map T.. Therefore, we are interested in the case when a and b are
multiplicatively independent, that is, log a/ log b ¢ Q.

Check f
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1674 S. Usuki

There is a distinction between the xa action by the single map 7, and the xa, xb
action about the closed invariant subsets. It is well known that the xa action has many
invariant closed subsets of T. However, H. Furstenberg showed that xa, xb invariant (that
is, invariant under T, and Tj) closed subsets are very restricted.

PROPOSITION 1.1. [6, Theorem IV.1] Suppose a and b are multiplicatively independent,
that is, log a/ log b ¢ Q. Let X C T be a non-empty, closed and xa, xb invariant subset.
Then X = T or X is a finite set in Q/Z.

He also conjectured the measure-theoretic version of Proposition 1.1. We write M (T)
for the set of Borel probability measures on T and My, «»(T) for the set of xa, xb
invariant Borel probability measures on T, that is, the set of u € M(T) such that u
is invariant under 7, and Tj. Furthermore, we write Ey, x;»(T) for the set of xa, xb
invariant and ergodic probability measures on T, that is, the set of u € My, xp»(T) such
that p is ergodic with respect to the Zio-action by T, and Tp. The Lebesgue measure on
T is denoted by mT. We notice that mq{e Evaxp(T).

Conjecture 1.2. Suppose a and b are multiplicatively independent. Let p € Ex 4 xp(T).
Then = mT or u is an atomic measure equidistributed on a xa, xb periodic orbit on

Q/Z.

This problem has been open for a long time. However, the following theorem was shown
by Rudolph in [11] when a and b are relatively prime and by Johnson in [9] when a and b
are multiplicatively independent. For a T-invariant probability measure u (T = T, or Tp),
we write h;, (T) for the measure-theoretic entropy of 7" with respect to p.

THEOREM 1.3. (The Rudolph—Johnson Theorem) Suppose a and b are multiplicatively
independent. Let |1 € Eyx 4 xp(T) such that h, (T,) > 0 or h, (Tp) > 0. Then p = mr.

By Theorem 1.3, if there exists some non-trivial xa, xb invariant and ergodic
probability measure p, then hy, (T,) = h,, (Tp) = 0. There are distinct proofs of Theorem
1.3 and stronger results in [4, 7, 8], although the positive entropy assumption is crucial in
all of them.

For x € T, let §, be the probability measure supported on the one point set {x}. For
each N € N, we write 8V

xa,xb,x
the xa, xb action), that is,

€ M (T) for the N-empirical measure of x (with respect to

Nl
N
S xaxbx = N2 Z 5le”Tb”x~
m,n=0
If we give M (T) the weak* topology, then M (T) is a compact and metrizable space. It is
easily seen that any accumulation point in M (T) of 81;' axbye (N €N), thatis, u € M(T)
such that SQZ,X b M in M(T) as k — oo for some divergent subsequence {N;}72, in

N, is xa, xb invariant. If u € Ex4 x5(T), then, by Birkhoff’s ergodic theorem,

N
8% axbx oM for p-almost every x.
— 00
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We refer the reader to [10] for Birkhoff’s ergodic theorem for Zio-actions. In this paper,

N

wa.xbx a8 N — oo the set

we study two types of subsets of T about the behavior of §
of x such that 850’ «b.x does not converge to any invariant measure, which is called the
irregular set for the empirical measure, and the set of x such that 81XV a.xbox
some invariant probability measure that has the given upper bound of entropy. Our main
results give an estimate of the Hausdorff dimension of these sets.

We give the first main result in this paper about the irregular set. We write J for
the irregular set. We notice that, by Birkhoff’s ergodic theorem, pu(J) =0 for any
n € Myq xp(T). However, in general, the irregular set can be either small or large. For
example, it is clear that, if an action on a compact metric space is uniquely ergodic,
then its irregular set is empty. On the other hand, the following fact holds for the xa
action by the single map T,. For a Holder continuous function ¢ : T — R, we write
Jy for the irregular set for ¢, that is, the set of x € T such that the Birkhoff average
N~ Z,]:/;Ol o(T}'x) (N € N) does not converge as N — oo. If ¢ is not cohomologous
to a constant, then dimy J, = 1 and hence the irregular set for the empirical measure has
Hausdorff dimension one. We remark that this fact holds under more general situations (see
[1]). Under these situations, there exist many distinct invariant and ergodic measures which
have sufficiently large dimension, and hence many subsets with large Hausdorff dimension
on which the Birkhoff average converges to distinct values. Since xa, xb invariant and
ergodic measures on T are restricted by Theorem 1.3, the situation of the xa, xb action
is different from what we mentioned above. However, it is shown that the irregular set is a
subset of T with large Hausdorff dimension. In [3], it is shown that the set of x € T such
that the x2, x3 empirical measures by another way of taking averages do not converge to
mT has positive Hausdorff dimension. Our theorem below is a stronger result.

accumulates to

THEOREM 1.4. Let J be the set of x € T such that sN (N € N) does not converge to

xa,xb,x
any xa, xb invariant probability measure as N — 00. Then

dimH J=1.

We notice that Theorem 1.4 is shown without the hypothesis that a and b are
multiplicatively independent. It is remarkable that Theorem 1.4 immediately leads to
the following result that is stronger than itself, which is about the irregular sets for
Fourier basis functions. For k € Z, we write ex(x) = ¢27* (x € T) and, as above, Jeo,
for the irregular set for e, that is, the set of x € T such that the Birkhoff average
N2 ZZ;LO ex(T)"T)'x) (N € N) does not converge as N — oo.

COROLLARY 1.5. Fork € Z \ {0},
dimy Jo, = 1.

We prove Theorem 1.4 and Corollary 1.5 in §2.

Next we give the second main result. As we said above, if a and b are multiplicatively
independent, it is conjectured that there exist no non-trivial xa, xb invariant and
ergodic measures (Conjecture 1.2). This problem seems to be very difficult; however, by
Theorem 1.3, those non-trivial invariant measures have entropy zero. We expect that the
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set of x € T such that 85 2.xb approaches a non-trivial measure as N — oo is a small
subset of T. The following theorem and corollary answer this expectation.

THEOREM 1.6. Let 0 < t < min{log b, (log @)?/ log b} and let K; be the set of x € T
such that (SIX\Ia’Xb’X (N € N) accumulates to some p € My, xp(T) such that h,(T,) < t.
Then

2/log b/t
dimy K, < ogbvi
log a + /log b/t

We notice that Theorem 1.6 is shown without the hypothesis that @ and b are
multiplicatively independent. By taking (1), K; and applying Theorem 1.3, we obtain
the following corollary.

COROLLARY 1.7. Suppose a and b are multiplicatively independent. Let K be the set of
x € T such that(S]XVa,X&x (N € N) accumulates to some u € E x4 xp(T) such that  # mr.
Then

dimg K = 0.

If a and b are multiplicatively independent, Theorems 1.6 and 1.3 lead to the result about
the distributions of the xa, xb orbits. For 0 < ¢t < 1 and x € T, we say that the xa, xb
orbit {@"b" x}m nez., of x is t-semiequidistributed if

N-1
1
lim inf o Z f@"b'x) >t fT f dmT
m,n=0
for any f € C(T) such that f > Oon T and

1
lim inf —|{(m,n) € Z* |0 <m,n < N,a"b"x € U}| > 1 - m7(U)
N—oco N2
for any open subset U C T. It is easy to see that the latter statement follows from the
former. This property says that the orbit {a"b"x}; nez., includes an equidistributed

portion of the ratio that is at least z. Then we have the following theorem.

THEOREM 1.8. Suppose a and b are multiplicatively independent. Let 0 <t <
min{log b, (log a)?/ log b} and let K; C T be as above. Then, for each x € T\ K;, the
orbit {a" D" x}y nez.. is t/ log a-semiequidistributed.

If t > 0 is small, by Theorem 1.6, we have that dimy K; < O (/1) and Theorem 1.8
implies that, for x € T, the orbit {a”b" X}, nez., is t/ log a-semiequidistributed if x is in
the complement of the set of small Hausdorff dimension about /1. In particular, by taking
X = U,-o(T \ K;), we have the following corollary.

COROLLARY 1.9. Suppose a and b are multiplicatively independent. Then there exists
X C T such that dimp (T \ X) = 0 and, for any x € X, the xa, xb orbit {a"b" x}y nez.,
of x is s-semiequidistributed for some s = s(x) > 0.
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We notice that the xa action on T by the single 7;, does not exhibit this property, since
there exists a xa invariant Cantor set C C T such that 0 < dimy C < 1. We will prove
Theorems 1.6 and 1.8 in §3.

2. Proof of Theorem 1.4 and Corollary 1.5
In this section, we prove Theorem 1.4 and Corollary 1.5. First, we see that Theorem 1.4
leads immediately to Corollary 1.5.

Proof of Corollary 1.5. We assume that Theorem 1.4 holds. Since the linear space spanned
by {ex}xez over C is dense in the Banach space of C-valued continuous functions on T
with the supremum norm and J,, = #, it can be seen that J = Uycz, oy Jer- Hence, using
Theorem 1.4,

1 =dimy J = sup dimpy Jg, 2.1
keZ\{0}

Fork € Z\ {0}, T}, : T > x — kx € T is commutative with T, and T} and e¢; = e o T.
Therefore, we have J, = Tk_ljel. Moreover, it can be seen that dimgpy Tk_l.le1 =
dimy J.,. From these and equation (2.1), it follows that

1 = dimy Jo, = dimpy J,,

which completes the proof. O

Next, we prove Theorem 1.4. We develop the method in [3] and construct subsets of J
which have Hausdorff dimension arbitrarily near one. We need the notion of homogeneous
Moran sets. We refer the reader to [5] for the definition and the results about homogeneous
Moran sets. We remark that we change the definition a little from [5] for our use. It can be
seen that the same results hold.

Let {ni};2, be a sequence of positive integers and let {cx}72, be a sequence of
positive numbers satisfying that nycy <1 (k=1,2,..)and ¢y <c (k=1,2,...) for

some0 < ¢ < 1.Let Dg = {0}, Dy = {(i1,....ix) |1 <ij <nj, j=1,..., k}foreach
k=1,2,...andD=UkZoDk.Ifo=(01,...,ak)eDkandrz(rl,...,tm)eDm,
wewrite 0 xT = (01, ...,0k, T1y -+ 5 Tm) € Ditm-

Definition 2.1. A collection F = {J;}sep of closed intervals of T has homogeneous
Moran structure about {n;}p2, and {c;}7 , if it satisfies the following.

G Jy=T.
(ii)) Foreachk =0,1,...ando € Dy, Jy4i (i =1, ..., ng41) are subintervals of J,
and jg*i (i=1,...,ngy1) are pairwise disjoint (where A denotes the interior of A
with respect to the usual topology of T).
(iii) Foreachk =1,2,...,0 € Dy_1and 1 <i < ny,
o = Mol
[Jo|

(where | A| denotes the length of a interval A of T).
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J(U*Q)*l J(U*Z)*Q J((]‘*Q)*nk+2

FIGURE 1. Homogeneous Moran structure.

We illustrate homogeneous Moran structure in Figure 1. If .% is a collection of closed
intervals having homogeneous Moran structure, we write

EP = U %
k>0 oceDy,

and call E (%) the homogeneous Moran set determined by ..

We write .# ({ny}, {ct}) for the set of homogeneous Moran sets determined by some
collection .# of closed intervals having homogeneous Moran structure about {n}2 , and
{ck}i2,- Then we have the following estimate of Hausdorff dimension of homogeneous
Moran sets.

THEOREM 2.1. [5, Theorem 2.1] Let

L. logny - - - ng L. logny - - - ng
s =liminf ————— s, = liminf .
k—oo —logcy---ck k—oo —logcy - - - CkCk41Mk+1

Then, for any E € .# ({ni}, {ck)),
sy <dimg E <.

We begin the proof of Theorem 1.4. We take arbitrary 0 < r < 1 near 1. It is sufficient
to construct a subset E of J with Hausdorff dimension > r.

We first construct divergent subsequences {Ng}p2, and {L;}72; in N by induction.
We take a countable subset {y;}7°, C C(T) so that 0 < ¢; <1 on T for each i and,
for a sequence {u,};>, C M(T) and u € M(T), w, — pu as n — oo is equivalent to
fT Vi du, —> fT Y du as n — oo for any i. For each d € N, we write 1y ; = [j/d,
(j+1D/dlmod Zfor j=0,...,d—1land Iy ={ls;|j=0,...,d— 1}. We remark
that I, is a common Markov partition of T with respect to T,, T, and T,;. We put
No=Lo=0. Let k > 0 and suppose that N;, L; are determined for i =0,...,k—1
sothat L; | < N; < |rL;] < L;for1 <i < k.For N € N, we define

N—-1
1
Xk,N = {x GT‘ ‘m Z w,(Tamfo)—Aw, qur

m,n=0

1
—,1<i<ky. 2.2
=3k —l—} 22

Then, by Birkhoff’s ergodic theorem for mT € Ex 4 x5(T),

mr(XgN) > 1
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for sufficiently large N € N. We take /; € N so that
1 :

Vi) =¥l < 50 i=1....k (2.3)

for any x, y € T such that |x — y| < (ab) "' . We take Ny € N such that Ny > Ly_; + Iz,
mT(Xg,n) > 7,

NE = (N = L1 = 1% 1
< —_—

: (2.4)
N? 6k

and

SEN + L) 5
Nk

| =

Let x € Xy, For y € T, suppose that TaLbk*Ix and TaLbk*Iy are contained in the same
element of I(ab)Nkak,l. Then, for any Ly_1 <m,n < Ny — I, T)'"T)'x and T'T;'y are
contained in the same element of / (ab)lk - From the definition of Xy y, (2.2) and inequalities
(2.3) and (2.4), we have, for 1 <i <k,

Ni—1
1
— . llfi(TfTb"Y)—/ Yi dmt
Nk m,n=0 T
1 Ni—1 1 Ni—1
= | > Vi) = <5 > (I T x)
k m,n=0 k m.n=0
1 Ni—1
s O @t = [
Nk m,n=0 T
1 Ni—l—1 1 Ni—Il—1
=l 2 WY -5 ) wTT)
k mn=Li_, k mpn=Ly_;
NZ — (N — L1 — ) 1
1o Nl L L
N; 3k
1
< -.
k
We take L, € N sothat [rLy| > Ny and
SisoNi + L)+ Ne 1
Ly k

As aresult, we obtain divergent subsequences {Ni}2, and {Lx}Z2, in N such that:
(1)
L1 <Np<|rLy]l <Ly, k=1,2,...,

where we write Lo = 0;
(i) fork=1,2,...,mp(Xpn,) > 7;
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(i) for k=1,2,...,if x € Xxn, and y € T satisfies that TaLb"’lx and TuLb"’ly are
contained in the same element of I(a byNe—Lk—1 > then

Ni—1

1 mon
_2 Z wi(Ta Tby)_f 1/fidm']1* < —
Nk m,n=0 T k
for 1 <i < k;and
(iv)
o TN L) o S N L)+ N
Next, we construct a subset E, as mentioned above. We write Q = {0, 1,...,ab —

1}%20 and 7 : @ — T for the coding map about the Markov partition I, with respect
to T,p, that is, for w = (wg, w1, ...) € 2, x =7 (w) € T is the element such that
{x} =M T,p labw;- Fork = 1,2, ..., we define

Ar={weQ|w =aw, L1 <i < Niforsomew €7 ' X;n,).

For L < N € Z>, we call a subset C C €2 a cylinder set on [L, N] if C = Cp y(0') =
{w e Q| w =w], L <i< N}forsomew € Q. Then Ay can be written as the finite and
disjoint union of cylinder sets on [Ly_1, Ny — 1], that is,

Ay = |_| C,
Ce%r

where 6 = {Cp,_, N —1(@) | € 7' Xiw ). We have 7(Ar) = Uceq, 7(C) D
XN, mT(m(C)) = (ab)l+—1=Nk for each C € %; and 7 (C) and 7 (C’) intersect only
on Q/Z C Tif C,C’ € 6; and C # C'. Hence, by property (ii) of {Ni}72 |,

r<mr(Xew) <mr@(Ap) = Y mr(w(C)) = [%i|(ab)t— N

CC%x
and
il > r(ab)M e, 2.5)
We define
A={weQ|weArandw; =0, |[rLy| <i < Liforanyk =1,2,...}
and

E =n(A).
‘We show that this E is a subset of J such that dimyg E > r.

PROPOSITION 2.2. We have

EcCJ.

Proof. Let x € E and take w € A such that x = w(w). For each k > 1, since w € Ay, we
can take o’ € Q such that x’ = 7(0') € Xy n, and w; = ] for Ly_1 <i < Ni. Then it
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follows that TuLb""x/ and TaLbk’lx are contained in the same element of 1, n.-1,_; and,
from property (iii) of {N¢}2 .

LS e [ v <L
N o= srath A
for 1 <i < k. Hence,
L NkZ? Ui (T"T'x) —— / Y dm
N? oo Ha b s Jp T
for any i. This fact implies that
O T T 2.6)

k— 00

Next, we show that (Slx"; b does not converge to mT as k — 0o. We take [ € N such

that (ab)™' <2 '(1 —r)? and ¢ € C(T) such that0 <9 < lonT, ¢ = 1 on [0, (ab) ]
mod Z and (ab)~! < fT @ dmt <271 — r)%. For sufficiently large k,

2(1 =MLy — 12

lrLig| <rLp < Lp—1, 2
k

1
—(1—=r)%
<2( r)

Furthermore, since w € A, it follows that T;bx € [0, (@b)11 mod Z for any |[rLg| <i <
Ly, and hence T T}'x € [0, (ab) "1 mod Z for any [rLy| < m,n < Ly — 1. Then

Lip—1 Lp—I1—1

1
= 2 Iz Y eI T
k m,n=0 k mp=|rLy|
_ L=l = L))
Li
_ N2
L @ =nLe=D
L
2(1 = r)ILy — 12
=(1-rf-"=—"
Lk
1
—(1-r)%
>5=r

Hence,

R 1
.. 2
lim inf o E o(T" Ty x) > 5(1 —7)

k— 00
>/(pqu1~.
T
Lg

This implies that 6, , . does not converge to mT as k — o0o. This and (2.6) imply that
x € J, and this completes the proof. O

k m,n=0
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PROPOSITION 2.3. We have
dimyg E >r.
Proof. We show that E is a homogeneous Moran set and use Theorem 2.1. Let

k=1,2,.... First, we notice that, for v € A, w € C for some C € %%: the subfamily

of cylinder sets on [L_1, Ny — 1]. We define
ni1 =%, cxg = (ab)” ML),

Second, we notice that, for w € A, w; is arbitrary for Ny <i < |rLg]. Foreach Ny <i <
lr Ly ]|, we define

i =ab, cxoi = (ab)~.
And finally, we notice that, for w € A, w; = 0for [rL;| <i < Lj. We define
niy =1, 3= (ab)” T,
We write
()2 ={nit, oo 13, 1 R NG - - - MR 2,1 L ) =15 B3 Mt 115 - - )
{end2) =fctn, - ooy Ck—135 Ch 1y CR2Ngs - « 5 Ck2,[rLg—1s Ck 35 Ck41,15 - - -}

Then, by the definition of E, it is seen that E € .# ({n;}, {c;}). Hence, by Theorem 2.1,

logny---m

dimy E > s, = lim inf 2.7)

I—o0 —logcy---ceipiniyn

We estimate the right-hand side of (2.7).
Suppose n; =ng,1 and ¢; = cg1. Then njp =ngon, =ab and ¢y = cko N, =
(ab)~!. From inequality (2.5), it follows that

k-1
ny--onp= H(nj,lnj,Z,Nj S M2 rLj]—-11j3) Mk
j=1

k—1
=[] l@b) 217Ny - |4
Jj=1
k—1
> [ [ @@l Bl =timty - r(ab)Me b,
j=1

and
k—1
cr--rc = H(Cj,le,z,N_,- C G lrL)—1€j3) " Ch
j=1
k—1
— H((ab)—(Lj—Lj—l)) . (ab)—(Nk—Lk—l)

j=1
= (ab)™ M.
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Hence,

logny---n

—logcy - - - crepiiniyy
- log{]_[’;;} (r(ab)lrLil=Li-1y .y (ab)Ne—Li-1}
- — log{(ab)~)
Sillog r+ (L) = L) log(ah)) +log r + (N — Li1) log(ab)
Ni log(ab)
klogr Y5 i(IrLjl—Ljy) ML e
Ny log(ab) Ny Ny . )

From property (iv) of {N;}72, and {L;}72 , the right-hand side converges to 1 as k — oo.
Suppose n; = ng2,; and ¢; = cx2,; for some Ny <i < |rLg]. Then,

ngoiv1=ab, i # |rLi|—1, ck2i+1=(ab)7!, i #|rlg] -1,
4] = . Cl+1= —(Li—rLe)) ;
nax =1, i=|rLi]—1, cp=(ab) " HTUHD i=|rLi| —1.

From inequality (2.5), it follows that

k-1
ny---np= n(n,;,lnj,z,zvj SRR rL -1 3) C MEIE2N, Tkl
Jj=1

k—1

> [[r@@p) Bl =Limy p(ab)Me et (ab) = Nit!
j=1
k—1

= [[¢-@p)lHil=timty - r(aby = Ha T,
j=1

and

k—1
cl---C = l_[(Cj,lcj,z,N,- s Cj,2,|_rLjJ—1Cj,3) CCkACK2,N, " Ck2,0
j=1
— (ab)_Nk . (ab)—(i—Nk-‘rl)
— (ab)_(i-H).
Hence,

logny---n

—logecy - - creryiniy
log{]_[l;;i(r(ab) lrLjJ=Lj-1y . p(ab)i—Lr-1+1}
> .
B — log{(ab)=0+D - ¢y inq1}
ZI;;} {logr + (lrL;] — Lj—1) log(ab)} +logr + (i — Lx—1 + 1) log(ab)
(i + 1) log(ab) — log(ci+1n1+1) '

2.9
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Ifi < |rLg] — 1, then ¢; 411741 = 1 and the right-hand side of (2.9) is
Zl;;i{log r+(lrL;] — L;j_1)log(ab)} +1logr + (i — Lx_1 + 1) log(ab)
(i +1)log(ab)

k—
YLy = Lj-1) I (2.10)
N

- klogr
~ Ny log(ab) [rLy]

From property (iv) of {N¢}72,; and {L}72 |, the right-hand side converges to 1 as k — oo.
Ifi = [rLi] — 1, then ¢jy 11741 = (ab)~L~LLk)) and the right-hand side of (2.9) is

YhZilog r 4 (LrL;] — Lj-1) log(ab)} +log r + (LrLi| — Li—1) log(ab)

Ly log(ab)
k—1
1 i—1(LrLjl —Lj-1) Li| — Ly_
> klogr 2 j v Lr L] k=1 @11
Ly log(ab) Ly Ly

From property (iv) of {Ny}2, and {L;};2,, the right-hand side converges to r as k — oo.
Suppose n; =ng3 and c¢; = cx3. Then njp1 = ngs11 = Grr1l, Ci+1 = k11 =

(ab)~We+1=L1) and, from inequality (2.5),

Cl+1nj+1 > T.
From (2.5) again, it follows that

k
npe--np= n(”j,lnj,z,Nj S M2IrL|-1)3)
j=1

k
> n(r(ab) LrLjl=Lj-1y,

j=1
and
k
SRERETES H(Cj,lcj,Z,Nj C 2L -1€j3)
j=1
= (ab) k.
Hence,

10g ny---nj
—_ IOg Cl - ClCl41N]+1
log{[T5_; (r(ab) il =Li-1)}
— log{(ab)=L* - ¢y 1ni41}
_ Yk llogr + (IrL;] — Lj—y) log(ab)}
- Ly log(ab) — log r
YAINrL) — Li—) logab)  (|rLy — Liy) log(ab)

Ly log(ab) —logr Ly log(ab) —log r
(2.12)

_ klogr
Ly log(ab) —log r

From property (iv) of {Ny}2, and {L};2,, the right-hand side converges to r as k — oo.
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From inequalities (2.8), (2.9), (2.10), (2.11) and (2.12),

L. logny---n
sp = lim inf £ >r
l—»o00 — log Cl *** CICl+1N]+1

and, using inequality (2.7), we complete the proof. O

By Propositions 2.2 and 2.3, we have 1 > dimg J > dimg E>r and 0 <r < 1 is
arbitrary. Hence, we have dimg J = 1 and this completes the proof of Theorem 1.4.

3. Proof of Theorems 1.6 and 1.8
In this section, we prove Theorems 1.6 and 1.8. First, we prove Theorem 1.8 as the proof is
more elementary than that of Theorem 1.6.

Proof of Theorem 1.8. Suppose a and b are multiplicatively independent. Let 0 < 7 <
min{log b, (log a)?/ log b} and let x € T \ K;. Assume that there exists f € C(T) such
that f > O on T and

N-1
N !
ljlvnl)lollfm E f(amb"x) < @ /]; fdm’[[‘

m,n=0
We can take 0 < ¢ < 1 and some divergent subsequence {N¢}p2 | in N such that

Ni—1
1 k

2 @) < @/dem—s 3.1

k mmn=0
for each k. Furthermore, since M (T) is compact with respect to the weak* topology,

we can take {Ni}p2, so that (SZXVZ < converges to some u € M(T) as k — oo. Then

® € My4 xp(T) and p is an accumulation point of 8V (N € N).Sincex € T\ K;, we

Xa,xb,x
have h, (T,) > t. Here, we decompose p into xa, xb ergodic components. There exists

a Borel probability measure v on the compact and metrizable space M, x»(T) such that

T(Exu,xb(T)) = 1and
[ odu :/ / ¢ dvdt(v)
T Exa,xh(T) T

for any ¢ € C(T). By the upper semicontinuity of 4, (7,), it can be seen that

hy(Ty) = / hy(Ty) dT(v)
Exa,xb(T)

and, by Theorem 1.3, 1, (T,) = O for any v € E, x»(T) \ {mT}. Hence,
t < hy(Ty) = t({mrHhm (Ta) = t({m}) log a. (3.2)

Letting k — oo in inequality (3.1), it follows from (3.2) that
t

/fqur—sszdu
loga T T

=/ / fdvdt(v)
Exa,xh(T) T
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ZIGmm)f;fme

t
> /fme
loga Jr

and this is a contradiction. Hence,

N-1
1Iivrgi£f% 3 f@"' = @ /T £ dmy
m,n=0
forany f € C(T) such that f > 0 on T.
Let U C T be an open subset. For any 0 < ¢ < 1, there exists f € C(T) such that
0<f<l1lonT, f=00onT\U and fT f dmT > m7(U) — ¢. Then, by the statement
above, it follows that

N—1
1 1
l}vnl)ig})f m|{(m, neZ>|0<mn<N,a"b'x e U}| > llivriio%fm ZO f@"b"x)
m,n=

v

t
[ s ams
loga Jr

L mr(U) — ).
loga

v

By letting ¢ — 0, we get
CR 1 2 miyn !
liminf —|{(m,n) €e Z- 10 <m,n < N,a"b"x e U}| = —— - m7(U),
N—oo N2 log a
and this completes the proof. [

Next, we prove Theorem 1.6. The following argument can be thought of as an
extension of that in [2] for the Zio-action by T, and Tp. Let k € N. We have that

p=(pi,...,pr) € R is a k-distribution if Zi'(:l pi = 1 and p; > 0. For such a p, we
write H(p) = — Zle pi log p; for the entropy of p. f N e Nand ¢ = (cy,...,cn) €
{1, ..., k}N, we define the k-distribution dist(c) = (p1, . . ., px), where p; = N~!|{n €
{1,..., N} |c, =i}l

LEMMA 3.1. Fork, N e Nandt > 0, let
Rk,N,t)={ce{l,...,k}" | H(dist(c)) < 1}.
Then, fixing k and t,

1

lim sup — log |R(k, N, t)| <t.
N—o0 N

Proof. See [2, Lemma 4]. O]

Suppose that 8 = {8y, ..., Bk} is a finite cover of T. For x € T and N € N, we say

that (B,, ..., Biy_,) € ﬂN is an N-choice for x with respect to T, and B if T)'x € B;,
for 0 <n < N. Then (Bi,...,Biy;) gives a k-distribution g(B;iy, ..., Biy_,) =
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dist(ip, . . ., in—1). We write Distg(x, N) for the set of such k-distributions obtained
for all N-choices for x.

Suppose that B = {B;} is a finite cover of T. For E C T, we write E < B if E C B; for
some B; € B and, for a family of subsets £ = {E;}, E < Bif E; < Bforany E; € E. For
amap T : T — T,! € N and a family of subsets E = {E;}, we define T~'E = {T'E;}.

LEMMA 3.2. Let B = {B;} be a finite open cover of T such that every B; € B is an open
interval on T such that |B;| < 1/(1 + a) and, for each M € N, let By be a finite cover
of T such that By < TaleforO <l < M. For0 <t < loga, we define Q(t, {By}meN)
as the set of x € T satisfying the following: for any 0 < & < 1 and My € N, there exists
M > My such that,

1
for infinitely many N € N, MH(q) <t+e forsomeq € U Distg,, (T}'x, N).
0<n<tN/logb

Then,
dimy O, Buhuar) < ——
im , < —.
H MiMeN loga+1
Proof. For each M e N, let By = {Bm1s-- > Bmiy ) km = |Bul. We take 0 < ¢ <

3_1(10g a —t). By Lemma 3.1, there exists N¢ s € N such that
|R(ky, N, M(t + £))] < eMM0+20) (3.3)

for any N > N, p. We take My € N such that My > i1 log b. Since H(p) is uniformly
continuous in a ks-distribution p, we can see that, for any x € Q(¢, {8y} men), there exists
M > M such that

1
for infinitely many N € N, MH((]) <t+e¢

for some g € U Distg,, (T} x, MN).
0<n<tMN/logb

Indeed, we obtain this by adding some 0 < < M to N in the definition of Q (¢, {Ba}yen)
for /2. For each M € N, we take Né’M € N such that

_ 1
Niw = Newts MPGa)™ 30 Ne™MV <~ (3.4)
N=N[
Foreach M, N € Nand x € T, we take an M N-choice (Bum,ig(x)s - - - » BM,ipyn_1(x)) fOr
x with respect to T, and S such that
H i(x)s - - s ; = min H(g). 3.5
(g (Bum.ig(x) BMivin-1))) qeDit M) (q) (3.9
For 0 <l < M, we define a kj;-distribution
gm(x, N) = dist(iy(x), ipg+1(X)s - -« 5 IM(N=1)+1)-
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Then q(Buigex)s - - - » BMLiyy_1(x)) = M Zzﬁial qm.(x, N). Hence, by the concavity
of H(p) inaky-distribution p, we have H (qp(x, N)) < H(q(Bm.ig(x)s - - - » BMLign_1(x)))
for some 0 </ < M, depending on M, N and x.

For M > M, NzNé’M and n € Z with 0 <n <tMN/logh and 0 <[ < M, we
define

SM,N,n, 1) ={x €T | H(gu(Tyx, N)) < M(t +¢&)}.
Then

O, {Butmen) C U S(M, N, n,1).
MzMo,NzNé’M
0<n<tMN/log b,0<l<M

LetMzMo,NzNé’M,OSn<tMN/logb,0§l<M and x € S(M, N, n, ). For

the M N-choice (ﬂM!,-O(Tbnx), cee ﬁMJMN—l(Tbnx)) for T;'x with respect to T, and By as
in (3.5),

(T x), im(Tyx), .. igv—1)+1(Ty x)) € R(kpr, N, M(t + ).
We define

Amy(Tfx, N) ={y € T| T]y € Bup;czpr) for0 < j <1,

TaMr+ly c :BM,iMr+1(T,,'l(x)) for O <r< N}
Then, by the assumption of B and Sy, AMJ(Tb"x, N) < Ta_jB for 0 < j < MN. Hence,
by the assumption that |B;| < 1/(a + 1) for each B; € B, we have diamAMJ(TIfx, N) <
a MN+1" where diamA denotes the diameter SUPy yea Ix —y| of ACT with
respect to the standard metric of T. We divide Ay (Ty'x, N) into Ay (T)'x, N) =
L2y A3, (Tfx, N), where A%, (T)'x, N)= Ay (Tf'x, N) 0 ([s/b, (s + 1)/b) mod Z).
Then x € T, " Apry(T)'x, N) = | )23 T, A, (T{'x, N). For each s =0,....b—1,
we get the b" components of Tb_"A‘,YW(T}fx, N), which we write as E,S‘,’,'fl(x, N,n),
u=1,...,0b" satisfying

diamE};", (x, N, n) < b™"a" "N+, (3.6)
We define

E(Mo) = {E};(x, N,n) | M = Mo, N > N ,,0 <n <tMN/logh,0 <1 < M,
xeSWM,N,n1),s=0,....,.b—1u=1,...,b"}.

Then E(My) is a cover of Q(f, {Bumlmen) such that diamE(My) < a Mo+l Fix
M > My, N > N;’M, 0<n <tMN/logb and 0<I<M. The number of Ay ;(T/'x, N)
(x € S(M, N,n, 1)) is bounded by |Bu|'|R(kp, N, M(t+¢€))| = (kp)'|R(kps, N,
M(t + ¢))|. Hence, the number of E;,’Iu’l(x, N,n) (x e S(IM,N,n,1),s=0,...,b—1,
u=1,...,b" is bounded by b (ky)!|R(ky, N, M(t + €))|. We put A = (loga —
t —3¢e)/(loga+1t). Since loga —t > 3¢, we have A > 0. We also have 1 — X1 =
(1 4+ A)t 4+ 3e)/ log a > 0. Using inequalities (3.3) and (3.6),
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Z (diamE)'

EcE(Mp)

< > b (ka) IR Kkpa, N, M (& + )| (0™ "a™MNHH =4
MzMo,NzN;_M,
0<n<tMN/log b,0<I<M
S b Z M(kM)M Z b}»n|R(kM’ N, M(t +8))|a(—MN+1)((1+)L)I+38)/ loga

M= Mo N=N s

0<n<tMN/ log b

<b Z MM Z P MN (1428) (= MN+1)((14+2)1+32)
M=>My N>N! .
0<n<tMN/ log b

— e(l+)\)t+3£b Z M(kM)M Z b)hne_MN(A.t+8)
M=My NN oy
0<n<tMN/logb

tMN

(]+A)t+3sb M k M et 1 thNA/ logb ,—MN (At+¢)

e Y M"Y (log,, + e
M=My N=N/,,

2te(1HM1+3e
< € Z M2(kM)M Z Ne—MNe

log b
J M>My N=N/

IA

2te(1+M1+3ey, 1

_M.
log b Moty 2

The last inequality is due to (3.4). When My — oo, the right-hand side converges to zero.
This implies that dimy Q(t, {Bmuimen) <1 —X1 = (2t +3¢)/(loga +t). By e — 0, we
obtain the lemma. O

Before starting a proof of Theorem 1.6, we prepare a notion. Suppose that
B={B1,...,PBr} is a finite cover of T. For x € T and N €N, we say that
(Bipn)o<mn<N € plenmi0=mn<N} js an N-choice for x with respect to T,, T, and
g if T'T)'x Bin, for 0 <m,n < N. Then (B;,,)o<mn<n gives a k-distribution
Q((,Bim,,,)0§m,n<N) = diSt((im,n)Ogm,n<N)- We notice that, if é: (IBim,n)OSm,n<N is an
N-choice for x with respect to T, T and 8, then, forO <n < N, én = (ﬂio,n’ R ﬂiN—],n)

is an N-choice for 7' x with respect to 8 and 7, and ¢ (B) = N1 Z;i\:o] q(én).

Proof of Theorem 1.6. Let B be a finite open cover of T as in Lemma 3.2 and let «
be a finite Borel partition of T such that &; < B for each «; € «. For each M € N, we

write oy = \/f‘igl Ta_ioe ={om1, ..., %Mky), kv = loy| and take a finite open cover
Bu = {,BMJ, e, ,BM,kM} of T such that ap,; C ,BM,i and /3M,i < Ta_lB O<l<M)
for each i =1,...,kpy. Let 0 <t < min{log a, log b}. If we show that Kﬂ/logb C

Q(t, {Bm}men), then, by Lemma 3.2, we have dimy K2/ 1005, < dimpy Q(1, {Buimen) <
2t/(log a +t) and, by putting ' =%/ log b, we obtain the theorem. We show that

K2 109 C Q@ {Buimen).
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Let x € K2/ 1005 and take @ € My, xp(T) such that hM(Ta)ftz/logb and
SIXVG’X,M(N € N) accumulates to p. We take a divergent subsequence {N j}?‘;l in
N such that Sfi’xb,xau as j—>oo. We take 0 <e < 1. Since h,(Ty, o) =

limy— oo M~ Hy (apr) < hy(To) <12/ log b,

for sufficiently large M € N. We fix such an M.

We write g(u, ay) = (ulap,1), ..., (@pky)): a ky-distribution and notice that
H(g(n, apm)) = Hy(ay) < M(t?/ log b + te/ log b). We take a sufficiently small > 0
so that, for a kj,-distribution g,

2
t te
lg —q(u, ap)| <n impliesthat H(g) < M| —— + , (3.7
logb logh
where |- | denotes the Euclidean norm on R, For each i =1, ..., kyr, we take a
compact subset C; such that C; C opy; and p(opr; \ Ci) < 1n/24/kpkpy. Then we take
an open subset V; suchthat C; C V; C By ;and V; (i =1, ..., ky) are pairwise disjoint.
Since 8}:2,X px — M as j — oo with respect to the weak™ topology,
5N e (Vi) > (C) = = i =1, ks
b 2Rk
and hence
Nj Ui .
5.7 Vi) > w(oy;) — , i=1,...,k
><a,><b,x( i) /L( M,l) \/WkM M

for sufficiently large j.
For j as above, we take an N;-choice ,B_M = (,Bimyn)ofm,,KNj for x with respect to
T4, Tj and By such that i), ,, = i whenever T Tg’x € V;. Then, when we write q(,B_M) =

(q1, - -5 Gry), We get
gi =8N (V) > ) — ———, i=1,.. . k.

T Nkvky
Since g(Bm) and g(w, om) = (nlam,1), .- ., w(@dm ) are kpy-distributions, this
implies that

i — mam )l < ——=, i=1,... k.

Vky
Hence, by (3.7),
12 te
H(g(Bm) < M| —— + . (3.8)
— logb logb
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Now, since 0 < ¢t < log b,

Nj—l
1B = 7, 2 albu,)
_ LtN;/logb] 41 1
a Nj {I_th/long +1 Z Q(ﬂ_Mn)}

0<n<tN;/logb

+Nj—Lth/1ong—1{ 1 5

Nj N; —[tN;/logh] — 1 CI('B_Mn)}'

[Nj/ lOg b§n<Nj
Hence, by the concavity of H(p) in a kps-distribution p and (3.8),

¢ 1
long<Lth/long +1 2 Q(ﬂ—Mn)>

0<n<tNj/logb

[tN;/logb] + 1 < 1 )
< H
= N [(N;/Togb] +1 OSM%:/ . 9(Pu,)
Nj—Lth/IOng—l 1
* N; H(Nj —1tN;/logh] — 1 2 q(’g—Mn)>

tNj/logb<n<Nj;
< H(q(Bu)

Y t? Lt
<
logb logh

H —1 Mt +
(UNj/longl 3 q(ﬂ_Mn>)< (i +e.

0<n<tN;/logb

and

Using the concavity of H(p) again,

H(g(Bm,)) < M(t +¢)

for some 0 <n < tN;/logb. Since q(ﬂ_Mn) € Dist;;M(Tg’x, N;), this shows that x sat-
isfies the condition in Lemma 3.2 for N; and M. Since this is satisfied for infinitely
many N; (j € N), for sufficiently large M € N and for arbitrary 0 < & < 1, we have
x € Q(t, {Bu}men). Then we have Ky, logh C O(t, {Bm}men) and this completes the
proof. O
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