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Abstract. For integers a and b ≥ 2, let Ta and Tb be multiplication by a and b on T = R/Z.
The action on T by Ta and Tb is called ×a, ×b action and it is known that, if a and b are
multiplicatively independent, then the only ×a, ×b invariant and ergodic measure with
positive entropy of Ta or Tb is the Lebesgue measure. However, it is not known whether
there exists a non-trivial ×a, ×b invariant and ergodic measure. In this paper, we study
the empirical measures of x ∈ T with respect to the ×a, ×b action and show that the set
of x such that the empirical measures of x do not converge to any measure has Hausdorff
dimension one and the set of x such that the empirical measures can approach a non-trivial
×a, ×b invariant measure has Hausdorff dimension zero. Furthermore, we obtain some
equidistribution result about the ×a, ×b orbit of x in the complement of a set of Hausdorff
dimension zero.
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1. Introduction and main theorems
In this paper, we write Z≥0 for the set of integers equal to or larger than zero and N for the
set of positive integers. Let T = R/Z and, for a ∈ Z with a ≥ 2, define Ta : T → T by

Ta(x) = ax, x ∈ T.

We take a, b ∈ Z such that a, b ≥ 2. Since Ta and Tb are commutative, they define the
Z2≥0-action on T and we call it the ×a, ×b action. Here we notice that, if log a/ log b ∈ Q,
then a = ck and b = cl for some c ≥ 2, k, l ∈ N, and the ×a, ×b action derives from the
×c action by the single map Tc. Therefore, we are interested in the case when a and b are
multiplicatively independent, that is, log a/ log b /∈ Q.
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There is a distinction between the ×a action by the single map Ta and the ×a, ×b
action about the closed invariant subsets. It is well known that the ×a action has many
invariant closed subsets of T. However, H. Furstenberg showed that ×a, ×b invariant (that
is, invariant under Ta and Tb) closed subsets are very restricted.

PROPOSITION 1.1. [6, Theorem IV.1] Suppose a and b are multiplicatively independent,
that is, log a/ log b /∈ Q. Let X ⊂ T be a non-empty, closed and ×a, ×b invariant subset.
Then X = T or X is a finite set in Q/Z.

He also conjectured the measure-theoretic version of Proposition 1.1. We write M(T)
for the set of Borel probability measures on T and M×a,×b(T) for the set of ×a, ×b
invariant Borel probability measures on T, that is, the set of μ ∈ M(T) such that μ
is invariant under Ta and Tb. Furthermore, we write E×a,×b(T) for the set of ×a, ×b
invariant and ergodic probability measures on T, that is, the set of μ ∈ M×a,×b(T) such
that μ is ergodic with respect to the Z2≥0-action by Ta and Tb. The Lebesgue measure on
T is denoted by mT. We notice that mT ∈ E×a,×b(T).

Conjecture 1.2. Suppose a and b are multiplicatively independent. Let μ ∈ E×a,×b(T).
Then μ = mT or μ is an atomic measure equidistributed on a ×a, ×b periodic orbit on
Q/Z.

This problem has been open for a long time. However, the following theorem was shown
by Rudolph in [11] when a and b are relatively prime and by Johnson in [9] when a and b
are multiplicatively independent. For a T-invariant probability measure μ (T = Ta or Tb),
we write hμ(T ) for the measure-theoretic entropy of T with respect to μ.

THEOREM 1.3. (The Rudolph–Johnson Theorem) Suppose a and b are multiplicatively
independent. Let μ ∈ E×a,×b(T) such that hμ(Ta) > 0 or hμ(Tb) > 0. Then μ = mT.

By Theorem 1.3, if there exists some non-trivial ×a, ×b invariant and ergodic
probability measure μ, then hμ(Ta) = hμ(Tb) = 0. There are distinct proofs of Theorem
1.3 and stronger results in [4, 7, 8], although the positive entropy assumption is crucial in
all of them.

For x ∈ T, let δx be the probability measure supported on the one point set {x}. For
each N ∈ N, we write δN×a,×b,x ∈ M(T) for the N-empirical measure of x (with respect to
the ×a, ×b action), that is,

δN×a,×b,x = 1
N2

N−1∑
m,n=0

δT ma T
n
b x

.

If we give M(T) the weak* topology, then M(T) is a compact and metrizable space. It is
easily seen that any accumulation point in M(T) of δN×a,×b,x (N ∈ N), that is, μ ∈ M(T)
such that δNk×a,×b,x → μ in M(T) as k → ∞ for some divergent subsequence {Nk}∞k=1 in
N, is ×a, ×b invariant. If μ ∈ E×a,×b(T), then, by Birkhoff’s ergodic theorem,

δN×a,×b,x −−−−→
N→∞ μ for μ-almost every x.
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We refer the reader to [10] for Birkhoff’s ergodic theorem for Z2≥0-actions. In this paper,
we study two types of subsets of T about the behavior of δN×a,×b,x as N → ∞: the set
of x such that δN×a,×b,x does not converge to any invariant measure, which is called the
irregular set for the empirical measure, and the set of x such that δN×a,×b,x accumulates to
some invariant probability measure that has the given upper bound of entropy. Our main
results give an estimate of the Hausdorff dimension of these sets.

We give the first main result in this paper about the irregular set. We write J for
the irregular set. We notice that, by Birkhoff’s ergodic theorem, μ(J ) = 0 for any
μ ∈ M×a,×b(T). However, in general, the irregular set can be either small or large. For
example, it is clear that, if an action on a compact metric space is uniquely ergodic,
then its irregular set is empty. On the other hand, the following fact holds for the ×a
action by the single map Ta . For a Hölder continuous function ϕ : T → R, we write
Jϕ for the irregular set for ϕ, that is, the set of x ∈ T such that the Birkhoff average
N−1 ∑N−1

n=0 ϕ(T
n
a x) (N ∈ N) does not converge as N → ∞. If ϕ is not cohomologous

to a constant, then dimH Jϕ = 1 and hence the irregular set for the empirical measure has
Hausdorff dimension one. We remark that this fact holds under more general situations (see
[1]). Under these situations, there exist many distinct invariant and ergodic measures which
have sufficiently large dimension, and hence many subsets with large Hausdorff dimension
on which the Birkhoff average converges to distinct values. Since ×a, ×b invariant and
ergodic measures on T are restricted by Theorem 1.3, the situation of the ×a, ×b action
is different from what we mentioned above. However, it is shown that the irregular set is a
subset of T with large Hausdorff dimension. In [3], it is shown that the set of x ∈ T such
that the ×2, ×3 empirical measures by another way of taking averages do not converge to
mT has positive Hausdorff dimension. Our theorem below is a stronger result.

THEOREM 1.4. Let J be the set of x ∈ T such that δN×a,×b,x (N ∈ N) does not converge to
any ×a, ×b invariant probability measure as N → ∞. Then

dimH J = 1.

We notice that Theorem 1.4 is shown without the hypothesis that a and b are
multiplicatively independent. It is remarkable that Theorem 1.4 immediately leads to
the following result that is stronger than itself, which is about the irregular sets for
Fourier basis functions. For k ∈ Z, we write ek(x) = e2kπix (x ∈ T) and, as above, Jek
for the irregular set for ek , that is, the set of x ∈ T such that the Birkhoff average
N−2 ∑N−1

m,n=0 ek(T
m
a T

n
b x) (N ∈ N) does not converge as N → ∞.

COROLLARY 1.5. For k ∈ Z \ {0},
dimH Jek = 1.

We prove Theorem 1.4 and Corollary 1.5 in §2.
Next we give the second main result. As we said above, if a and b are multiplicatively

independent, it is conjectured that there exist no non-trivial ×a, ×b invariant and
ergodic measures (Conjecture 1.2). This problem seems to be very difficult; however, by
Theorem 1.3, those non-trivial invariant measures have entropy zero. We expect that the
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set of x ∈ T such that δN×a,×b,x approaches a non-trivial measure as N → ∞ is a small
subset of T. The following theorem and corollary answer this expectation.

THEOREM 1.6. Let 0 < t < min{log b, (log a)2/ log b} and let Kt be the set of x ∈ T

such that δN×a,×b,x (N ∈ N) accumulates to some μ ∈ M×a,×b(T) such that hμ(Ta) ≤ t .
Then

dimH Kt ≤ 2
√

log b
√
t

log a + √
log b

√
t
.

We notice that Theorem 1.6 is shown without the hypothesis that a and b are
multiplicatively independent. By taking

⋂
t>0 Kt and applying Theorem 1.3, we obtain

the following corollary.

COROLLARY 1.7. Suppose a and b are multiplicatively independent. Let K be the set of
x ∈ T such that δN×a,×b,x (N ∈ N) accumulates to some μ ∈ E×a,×b(T) such that μ 	= mT.
Then

dimH K = 0.

If a and b are multiplicatively independent, Theorems 1.6 and 1.3 lead to the result about
the distributions of the ×a, ×b orbits. For 0 < t ≤ 1 and x ∈ T, we say that the ×a, ×b
orbit {ambnx}m,n∈Z≥0 of x is t-semiequidistributed if

lim inf
N→∞

1
N2

N−1∑
m,n=0

f (ambnx) ≥ t

∫
T

f dmT

for any f ∈ C(T) such that f ≥ 0 on T and

lim inf
N→∞

1
N2 |{(m, n) ∈ Z2 | 0 ≤ m, n < N , ambnx ∈ U}| ≥ t ·mT(U)

for any open subset U ⊂ T. It is easy to see that the latter statement follows from the
former. This property says that the orbit {ambnx}m,n∈Z≥0 includes an equidistributed
portion of the ratio that is at least t. Then we have the following theorem.

THEOREM 1.8. Suppose a and b are multiplicatively independent. Let 0 < t <

min{log b, (log a)2/ log b} and let Kt ⊂ T be as above. Then, for each x ∈ T \Kt , the
orbit {ambnx}m,n∈Z≥0 is t/ log a-semiequidistributed.

If t > 0 is small, by Theorem 1.6, we have that dimH Kt ≤ O(
√
t) and Theorem 1.8

implies that, for x ∈ T, the orbit {ambnx}m,n∈Z≥0 is t/ log a-semiequidistributed if x is in
the complement of the set of small Hausdorff dimension about

√
t . In particular, by taking

X = ⋃
t>0(T \Kt), we have the following corollary.

COROLLARY 1.9. Suppose a and b are multiplicatively independent. Then there exists
X ⊂ T such that dimH (T \X) = 0 and, for any x ∈ X, the ×a, ×b orbit {ambnx}m,n∈Z≥0

of x is s-semiequidistributed for some s = s(x) > 0.
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We notice that the ×a action on T by the single Ta does not exhibit this property, since
there exists a ×a invariant Cantor set C ⊂ T such that 0 < dimH C < 1. We will prove
Theorems 1.6 and 1.8 in §3.

2. Proof of Theorem 1.4 and Corollary 1.5
In this section, we prove Theorem 1.4 and Corollary 1.5. First, we see that Theorem 1.4
leads immediately to Corollary 1.5.

Proof of Corollary 1.5. We assume that Theorem 1.4 holds. Since the linear space spanned
by {ek}k∈Z over C is dense in the Banach space of C-valued continuous functions on T

with the supremum norm and Je0 = ∅, it can be seen that J = ⋃
k∈Z\{0} Jek . Hence, using

Theorem 1.4,

1 = dimH J = sup
k∈Z\{0}

dimH Jek (2.1)

For k ∈ Z \ {0}, Tk : T � x �→ kx ∈ T is commutative with Ta and Tb and ek = e1 ◦ Tk .
Therefore, we have Jek = T −1

k Je1 . Moreover, it can be seen that dimH T
−1
k Je1 =

dimH Je1 . From these and equation (2.1), it follows that

1 = dimH Je1 = dimH Jek ,

which completes the proof.

Next, we prove Theorem 1.4. We develop the method in [3] and construct subsets of J
which have Hausdorff dimension arbitrarily near one. We need the notion of homogeneous
Moran sets. We refer the reader to [5] for the definition and the results about homogeneous
Moran sets. We remark that we change the definition a little from [5] for our use. It can be
seen that the same results hold.

Let {nk}∞k=1 be a sequence of positive integers and let {ck}∞k=1 be a sequence of
positive numbers satisfying that nkck ≤ 1 (k = 1, 2, . . .) and ck < c (k = 1, 2, . . .) for
some 0 < c < 1. LetD0 = {∅},Dk = {(i1, . . . , ik) | 1 ≤ ij ≤ nj , j = 1, . . . , k} for each
k = 1, 2, . . . andD = ⋃

k≥0 Dk . If σ = (σ1, . . . , σk) ∈ Dk and τ = (τ1, . . . , τm) ∈ Dm,
we write σ ∗ τ = (σ1, . . . , σk , τ1, . . . , τm) ∈ Dk+m.

Definition 2.1. A collection F = {Jσ }σ∈D of closed intervals of T has homogeneous
Moran structure about {nk}∞k=1 and {ck}∞k=1 if it satisfies the following.

(i) J∅ = T.
(ii) For each k = 0, 1, . . . and σ ∈ Dk , Jσ∗i (i = 1, . . . , nk+1) are subintervals of Jσ

and J̊σ∗i (i = 1, . . . , nk+1) are pairwise disjoint (where Å denotes the interior of A
with respect to the usual topology of T).

(iii) For each k = 1, 2, . . . , σ ∈ Dk−1 and 1 ≤ i ≤ nk ,

ck = |Jσ∗i |
|Jσ |

(where |A| denotes the length of a interval A of T).
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FIGURE 1. Homogeneous Moran structure.

We illustrate homogeneous Moran structure in Figure 1. If F is a collection of closed
intervals having homogeneous Moran structure, we write

E(F ) =
⋂
k≥0

⋃
σ∈Dk

Jσ

and call E(F ) the homogeneous Moran set determined by F .

We write M ({nk}, {ck}) for the set of homogeneous Moran sets determined by some
collection F of closed intervals having homogeneous Moran structure about {nk}∞k=1 and
{ck}∞k=1. Then we have the following estimate of Hausdorff dimension of homogeneous
Moran sets.

THEOREM 2.1. [5, Theorem 2.1] Let

s1 = lim inf
k→∞

log n1 · · · nk
− log c1 · · · ck , s2 = lim inf

k→∞
log n1 · · · nk

− log c1 · · · ckck+1nk+1
.

Then, for any E ∈ M ({nk}, {ck}),
s2 ≤ dimH E ≤ s1.

We begin the proof of Theorem 1.4. We take arbitrary 0 < r < 1 near 1. It is sufficient
to construct a subset E of J with Hausdorff dimension ≥ r .

We first construct divergent subsequences {Nk}∞k=1 and {Lk}∞k=1 in N by induction.
We take a countable subset {ψi}∞i=1 ⊂ C(T) so that 0 < ψi ≤ 1 on T for each i and,
for a sequence {μn}∞n=1 ⊂ M(T) and μ ∈ M(T), μn → μ as n → ∞ is equivalent to∫
T
ψi dμn → ∫

T
ψi dμ as n → ∞ for any i. For each d ∈ N, we write Id,j = [j/d,

(j + 1)/d] mod Z for j = 0, . . . , d − 1 and Id = {Id,j | j = 0, . . . , d − 1}. We remark
that Iab is a common Markov partition of T with respect to Ta , Tb and Tab. We put
N0 = L0 = 0. Let k > 0 and suppose that Ni , Li are determined for i = 0, . . . , k − 1
so that Li−1 < Ni < �rLi� < Li for 1 ≤ i < k. For N ∈ N, we define

Xk,N =
{
x ∈ T

∣∣∣∣
∣∣∣∣ 1
N2

N−1∑
m,n=0

ψi(T
m
a T

n
b x)−

∫
T

ψi dmT

∣∣∣∣ < 1
3k

, 1 ≤ i ≤ k

}
. (2.2)

Then, by Birkhoff’s ergodic theorem for mT ∈ E×a,×b(T),

mT(Xk,N) > r
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for sufficiently large N ∈ N. We take lk ∈ N so that

|ψi(x)− ψi(y)| < 1
3k

, i = 1, . . . , k (2.3)

for any x, y ∈ T such that |x − y| ≤ (ab)−lk . We take Nk ∈ N such that Nk > Lk−1 + lk ,
mT(Xk,Nk ) > r ,

N2
k − (Nk − Lk−1 − lk)

2

N2
k

<
1

6k
, (2.4)

and ∑k−1
i=0 (Ni + Li)

Nk
<

1
k

.

Let x ∈ Xk,Nk . For y ∈ T, suppose that T Lk−1
ab x and T Lk−1

ab y are contained in the same
element of I

(ab)Nk−Lk−1 . Then, for any Lk−1 ≤ m, n < Nk − lk , T ma T
n
b x and T ma T

n
b y are

contained in the same element of I(ab)lk . From the definition ofXk,Nk (2.2) and inequalities
(2.3) and (2.4), we have, for 1 ≤ i ≤ k,

∣∣∣∣ 1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b y)−

∫
T

ψi dmT

∣∣∣∣
≤

∣∣∣∣ 1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b y)− 1

N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b x)

∣∣∣∣
+

∣∣∣∣ 1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b x)−

∫
T

ψi dmT

∣∣∣∣
≤

∣∣∣∣ 1
N2
k

Nk−lk−1∑
m,n=Lk−1

ψi(T
m
a T

n
b y)− 1

N2
k

Nk−lk−1∑
m,n=Lk−1

ψi(T
m
a T

n
b x)

∣∣∣∣
+ 2 · N

2
k − (Nk − Lk−1 − lk)

2

N2
k

+ 1
3k

<
1
k

.

We take Lk ∈ N so that �rLk� > Nk and∑k−1
i=0 (Ni + Li)+Nk

Lk
<

1
k

.

As a result, we obtain divergent subsequences {Nk}∞k=1 and {Lk}∞k=1 in N such that:
(i)

Lk−1 < Nk < �rLk� < Lk , k = 1, 2, . . . ,

where we write L0 = 0;
(ii) for k = 1, 2, . . . , mT(Xk,Nk ) > r;
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(iii) for k = 1, 2, . . . , if x ∈ Xk,Nk and y ∈ T satisfies that T Lk−1
ab x and T Lk−1

ab y are
contained in the same element of I

(ab)Nk−Lk−1 , then

∣∣∣∣ 1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b y)−

∫
T

ψi dmT

∣∣∣∣ < 1
k

for 1 ≤ i ≤ k; and
(iv)

lim
k→∞

∑k−1
i=1 (Ni + Li)

Nk
= 0, lim

k→∞

∑k−1
i=1 (Ni + Li)+Nk

Lk
= 0.

Next, we construct a subset E, as mentioned above. We write � = {0, 1, . . . , ab −
1}Z≥0 and π : � → T for the coding map about the Markov partition Iab with respect
to Tab, that is, for ω = (ω0, ω1, . . .) ∈ �, x = π(ω) ∈ T is the element such that
{x} = ⋂∞

i=0 T
−i
ab Iab,ωi . For k = 1, 2, . . . , we define


k = {ω ∈ � | ωi = ω′
i , Lk−1 ≤ i < Nk for some ω′ ∈ π−1Xk,Nk }.

For L ≤ N ∈ Z≥0, we call a subset C ⊂ � a cylinder set on [L, N] if C = CL,N(ω
′) =

{ω ∈ � | ωi = ω′
i , L ≤ i ≤ N} for some ω′ ∈ �. Then 
k can be written as the finite and

disjoint union of cylinder sets on [Lk−1, Nk − 1], that is,


k =
⊔
C∈Ck

C,

where Ck = {CLk−1,Nk−1(ω
′) | ω′ ∈ π−1Xk,Nk }. We have π(
k) = ⋃

C∈Ck
π(C) ⊃

Xk,Nk , mT(π(C)) = (ab)Lk−1−Nk for each C ∈ Ck and π(C) and π(C′) intersect only
on Q/Z ⊂ T if C, C′ ∈ Ck and C 	= C′. Hence, by property (ii) of {Nk}∞k=1,

r < mT(Xk,Nk ) ≤ mT(π(
k)) =
∑
C⊂Ck

mT(π(C)) = |Ck|(ab)Lk−1−Nk

and

|Ck| > r(ab)Nk−Lk−1 . (2.5)

We define


 = {ω ∈ � | ω ∈ 
k and ωi = 0, �rLk� ≤ i < Lk for any k = 1, 2, . . .}
and

E = π(
).

We show that this E is a subset of J such that dimH E ≥ r .

PROPOSITION 2.2. We have

E ⊂ J .

Proof. Let x ∈ E and take ω ∈ 
 such that x = π(ω). For each k ≥ 1, since ω ∈ 
k , we
can take ω′ ∈ � such that x′ = π(ω′) ∈ Xk,Nk and ωi = ω′

i for Lk−1 ≤ i < Nk . Then it
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follows that T Lk−1
ab x′ and T Lk−1

ab x are contained in the same element of I
(ab)Nk−Lk−1 and,

from property (iii) of {Nk}∞k=1,

∣∣∣∣ 1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b x)−

∫
T

ψi dmT

∣∣∣∣ < 1
k

for 1 ≤ i ≤ k. Hence,

1
N2
k

Nk−1∑
m,n=0

ψi(T
m
a T

n
b x) −−−→

k→∞

∫
T

ψi dmT

for any i. This fact implies that

δ
Nk×a,×b,x −−−→

k→∞ mT. (2.6)

Next, we show that δLk×a,×b,x does not converge to mT as k → ∞. We take l ∈ N such
that (ab)−l < 2−1(1 − r)2 and ϕ ∈ C(T) such that 0 ≤ ϕ ≤ 1 on T, ϕ = 1 on [0, (ab)−l]
mod Z and (ab)−l ≤ ∫

T
ϕ dmT < 2−1(1 − r)2. For sufficiently large k,

�rLk� ≤ rLk < Lk − l,
2(1 − r)lLk − l2

L2
k

<
1
2
(1 − r)2.

Furthermore, since ω ∈ 
, it follows that T iabx ∈ [0, (ab)−1] mod Z for any �rLk� ≤ i <

Lk , and hence T ma T
n
b x ∈ [0, (ab)−l] mod Z for any �rLk� ≤ m, n < Lk − l. Then

1
L2
k

Lk−1∑
m,n=0

ϕ(T ma T
n
b x) ≥ 1

L2
k

Lk−l−1∑
m,n=�rLk�

ϕ(T ma T
n
b x)

= (Lk − l − �rLk�)2
L2
k

≥ ((1 − r)Lk − l)2

L2
k

= (1 − r)2 − 2(1 − r)lLk − l2

L2
k

>
1
2
(1 − r)2.

Hence,

lim inf
k→∞

1
L2
k

Lk−1∑
m,n=0

ϕ(T ma T
n
b x) ≥ 1

2
(1 − r)2

>

∫
T

ϕ dmT.

This implies that δLk×a,×b,x does not converge to mT as k → ∞. This and (2.6) imply that
x ∈ J , and this completes the proof.
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PROPOSITION 2.3. We have

dimH E ≥ r .

Proof. We show that E is a homogeneous Moran set and use Theorem 2.1. Let
k = 1, 2, . . . . First, we notice that, for ω ∈ 
, ω ∈ C for some C ∈ Ck: the subfamily
of cylinder sets on [Lk−1, Nk − 1]. We define

nk,1 = |Ck|, ck,1 = (ab)−(Nk−Lk−1).

Second, we notice that, for ω ∈ 
, ωi is arbitrary for Nk ≤ i < �rLk�. For each Nk ≤ i <

�rLk�, we define

nk,2,i = ab, ck,2,i = (ab)−1.

And finally, we notice that, for ω ∈ 
, ωi = 0 for �rLk� ≤ i < Lk . We define

nk,3 = 1, ck,3 = (ab)−(Lk−�rLk�).

We write

{nl}∞l=1 = {n1,1, . . . , nk−1,3, nk,1, nk,2,Nk , . . . , nk,2,�rLk�−1, nk,3, nk+1,1, . . .},
{cl}∞l=1 = {c1,1, . . . , ck−1,3, ck,1, ck,2,Nk , . . . , ck,2,�rLk�−1, ck,3, ck+1,1, . . .}.

Then, by the definition of E, it is seen that E ∈ M ({nl}, {cl}). Hence, by Theorem 2.1,

dimH E ≥ s2 = lim inf
l→∞

log n1 · · · nl
− log c1 · · · clcl+1nl+1

. (2.7)

We estimate the right-hand side of (2.7).
Suppose nl = nk,1 and cl = ck,1. Then nl+1 = nk,2,Nk = ab and cl+1 = ck,2,Nk =

(ab)−1. From inequality (2.5), it follows that

n1 · · · nl =
k−1∏
j=1

(nj ,1nj ,2,Nj · · · nj ,2,�rLj �−1nj ,3) · nk,1

=
k−1∏
j=1

(|Cj |(ab)�rLj �−Nj ) · |Ck|

>

k−1∏
j=1

(r(ab)�rLj �−Lj−1) · r(ab)Nk−Lk−1 ,

and

c1 · · · cl =
k−1∏
j=1

(cj ,1cj ,2,Nj · · · cj ,2,�rLj �−1cj ,3) · ck,1

=
k−1∏
j=1

((ab)−(Lj−Lj−1)) · (ab)−(Nk−Lk−1)

= (ab)−Nk .
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Hence,

log n1 · · · nl
− log c1 · · · clcl+1nl+1

≥ log{∏k−1
j=1(r(ab)

�rLj �−Lj−1) · r(ab)Nk−Lk−1}
− log{(ab)−Nk }

=
∑k−1
j=1{log r + (�rLj � − Lj−1) log(ab)} + log r + (Nk − Lk−1) log(ab)

Nk log(ab)

= k log r
Nk log(ab)

+
∑k−1
j=1(�rLj � − Lj−1)

Nk
+ Nk − Lk−1

Nk
. (2.8)

From property (iv) of {Nk}∞k=1 and {Lk}∞k=1, the right-hand side converges to 1 as k → ∞.
Suppose nl = nk,2,i and cl = ck,2,i for some Nk ≤ i < �rLk�. Then,

nl+1 =
{
nk,2,i+1 =ab, i 	= �rLk�−1,

n3,k = 1, i = �rLk�−1,
cl+1 =

{
ck,2,i+1 = (ab)−1, i 	= �rLk�−1,

c3,k= (ab)−(Lk−�rLk�), i=�rLk�−1.

From inequality (2.5), it follows that

n1 · · · nl =
k−1∏
j=1

(nj ,1nj ,2,Nj · · · nj ,2,�rLj �−1nj ,3) · nk,1nk,2,Nk · · · nk,2,i

>

k−1∏
j=1

(r(ab)�rLj �−Lj−1) · r(ab)Nk−Lk−1 · (ab)i−Nk+1

=
k−1∏
j=1

(r(ab)�rLj �−Lj−1) · r(ab)i−Lk−1+1,

and

c1 · · · cl =
k−1∏
j=1

(cj ,1cj ,2,Nj · · · cj ,2,�rLj �−1cj ,3) · ck,1ck,2,Nk · · · ck,2,i

= (ab)−Nk · (ab)−(i−Nk+1)

= (ab)−(i+1).

Hence,

log n1 · · · nl
− log c1 · · · clcl+1nl+1

≥ log{∏k−1
j=1(r(ab)

�rLj �−Lj−1) · r(ab)i−Lk−1+1}
− log{(ab)−(i+1) · cl+1nl+1}

=
∑k−1
j=1{log r + (�rLj � − Lj−1) log(ab)} + log r + (i − Lk−1 + 1) log(ab)

(i + 1) log(ab)− log(cl+1nl+1)
. (2.9)
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If i < �rLk� − 1, then cl+1nl+1 = 1 and the right-hand side of (2.9) is∑k−1
j=1{log r + (�rLj � − Lj−1) log(ab)} + log r + (i − Lk−1 + 1) log(ab)

(i + 1) log(ab)

≥ k log r
Nk log(ab)

+
∑k−1
j=1(�rLj � − Lj−1)

�rLk� − Lk−1

Nk
+ 1. (2.10)

From property (iv) of {Nk}∞k=1 and {Lk}∞k=1, the right-hand side converges to 1 as k → ∞.
If i = �rLk� − 1, then cl+1nl+1 = (ab)−(Lk−�rLk�) and the right-hand side of (2.9) is∑k−1

j=1{log r + (�rLj � − Lj−1) log(ab)} + log r + (�rLk� − Lk−1) log(ab)

Lk log(ab)

≥ k log r
Lk log(ab)

+
∑k−1
j=1(�rLj � − Lj−1)

Lk
+ �rLk� − Lk−1

Lk
. (2.11)

From property (iv) of {Nk}∞k=1 and {Lk}∞k=1, the right-hand side converges to r as k → ∞.
Suppose nl = nk,3 and cl = ck,3. Then nl+1 = nk+1,1 = |Ck+1|, cl+1 = ck+1,1 =

(ab)−(Nk+1−Lk) and, from inequality (2.5),

cl+1nl+1 > r .

From (2.5) again, it follows that

n1 · · · nl =
k∏
j=1

(nj ,1nj ,2,Nj · · · nj ,2,�rLj �−1nj ,3)

>

k∏
j=1

(r(ab)�rLj �−Lj−1),

and

c1 · · · cl =
k∏
j=1

(cj ,1cj ,2,Nj · · · cj ,2,�rLj �−1cj ,3)

= (ab)−Lk .

Hence,
log n1 · · · nl

− log c1 · · · clcl+1nl+1

≥ log{∏k
j=1(r(ab)

�rLj �−Lj−1)}
− log{(ab)−Lk · cl+1nl+1}

≥
∑k
j=1{log r + (�rLj � − Lj−1) log(ab)}

Lk log(ab)− log r

= k log r
Lk log(ab)− log r

+
∑k−1
j=1(�rLj � − Lj−1) log(ab)

Lk log(ab)− log r
+ (�rLk� − Lk−1) log(ab)

Lk log(ab)− log r
.

(2.12)

From property (iv) of {Nk}∞k=1 and {Lk}∞k=1, the right-hand side converges to r as k → ∞.
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From inequalities (2.8), (2.9), (2.10), (2.11) and (2.12),

s2 = lim inf
l→∞

log n1 · · · nl
− log c1 · · · clcl+1nl+1

≥ r

and, using inequality (2.7), we complete the proof.

By Propositions 2.2 and 2.3, we have 1 ≥ dimH J ≥ dimH E ≥ r and 0 < r < 1 is
arbitrary. Hence, we have dimH J = 1 and this completes the proof of Theorem 1.4.

3. Proof of Theorems 1.6 and 1.8
In this section, we prove Theorems 1.6 and 1.8. First, we prove Theorem 1.8 as the proof is
more elementary than that of Theorem 1.6.

Proof of Theorem 1.8. Suppose a and b are multiplicatively independent. Let 0 < t <

min{log b, (log a)2/ log b} and let x ∈ T \Kt . Assume that there exists f ∈ C(T) such
that f ≥ 0 on T and

lim inf
N→∞

1
N2

N−1∑
m,n=0

f (ambnx) <
t

log a

∫
T

f dmT.

We can take 0 < ε < 1 and some divergent subsequence {Nk}∞k=1 in N such that

1
N2
k

Nk−1∑
m,n=0

f (ambnx) <
t

log a

∫
T

f dmT − ε (3.1)

for each k. Furthermore, since M(T) is compact with respect to the weak* topology,
we can take {Nk}∞k=1 so that δNk×a,×b,x converges to some μ ∈ M(T) as k → ∞. Then
μ ∈ M×a,×b(T) andμ is an accumulation point of δN×a,×b,x (N ∈ N). Since x ∈ T \Kt , we
have hμ(Ta) > t . Here, we decompose μ into ×a, ×b ergodic components. There exists
a Borel probability measure τ on the compact and metrizable space M×a,×b(T) such that
τ(E×a,×b(T)) = 1 and ∫

T

ϕ dμ =
∫
E×a,×b(T)

∫
T

ϕ dνdτ(ν)

for any ϕ ∈ C(T). By the upper semicontinuity of hν(Ta), it can be seen that

hμ(Ta) =
∫
E×a,×b(T)

hν(Ta) dτ(ν)

and, by Theorem 1.3, hν(Ta) = 0 for any ν ∈ E×a,×b(T) \ {mT}. Hence,

t < hμ(Ta) = τ({mT})hmT
(Ta) = τ({mT}) log a. (3.2)

Letting k → ∞ in inequality (3.1), it follows from (3.2) that

t

log a

∫
T

f dmT − ε ≥
∫
T

f dμ

=
∫
E×a,×b(T)

∫
T

f dνdτ(ν)
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≥ τ({mT})
∫
T

f dmT

≥ t

log a

∫
T

f dmT

and this is a contradiction. Hence,

lim inf
N→∞

1
N2

N−1∑
m,n=0

f (ambnx) ≥ t

log a

∫
T

f dmT

for any f ∈ C(T) such that f ≥ 0 on T.
Let U ⊂ T be an open subset. For any 0 < ε < 1, there exists f ∈ C(T) such that

0 ≤ f ≤ 1 on T, f = 0 on T \ U and
∫
T
f dmT ≥ mT(U)− ε. Then, by the statement

above, it follows that

lim inf
N→∞

1
N2 |{(m, n) ∈ Z2 | 0 ≤ m, n < N , ambnx ∈ U}| ≥ lim inf

N→∞
1
N2

N−1∑
m,n=0

f (ambnx)

≥ t

log a

∫
T

f dmT

≥ t

log a
(mT(U)− ε).

By letting ε → 0, we get

lim inf
N→∞

1
N2 |{(m, n) ∈ Z2 | 0 ≤ m, n < N , ambnx ∈ U}| ≥ t

log a
·mT(U),

and this completes the proof.

Next, we prove Theorem 1.6. The following argument can be thought of as an
extension of that in [2] for the Z2≥0-action by Ta and Tb. Let k ∈ N. We have that
p = (p1, . . . , pk) ∈ Rk is a k-distribution if

∑k
i=1 pi = 1 and pi ≥ 0. For such a p, we

write H(p) = − ∑k
i=1 pi log pi for the entropy of p. If N ∈ N and c = (c1, . . . , cN) ∈

{1, . . . , k}N , we define the k-distribution dist(c) = (p1, . . . , pk), where pi = N−1|{n ∈
{1, . . . , N} | cn = i}|.
LEMMA 3.1. For k, N ∈ N and t > 0, let

R(k, N , t) = {c ∈ {1, . . . , k}N | H(dist(c)) ≤ t}.
Then, fixing k and t,

lim sup
N→∞

1
N

log |R(k, N , t)| ≤ t .

Proof. See [2, Lemma 4].

Suppose that β = {β1, . . . , βk} is a finite cover of T. For x ∈ T and N ∈ N, we say
that (βi0 , . . . , βiN−1) ∈ βN is an N-choice for x with respect to Ta and β if T na x ∈ βin
for 0 ≤ n < N . Then (βi0 , . . . , βiN−1) gives a k-distribution q(βi0 , . . . , βiN−1) =
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dist(i0, . . . , iN−1). We write Distβ(x, N) for the set of such k-distributions obtained
for all N-choices for x.

Suppose that B = {Bi} is a finite cover of T. For E ⊂ T, we write E ≺ B if E ⊂ Bi for
someBi ∈ B and, for a family of subsetsE = {Ej },E ≺ B ifEj ≺ B for anyEj ∈ E. For
a map T : T → T, l ∈ N and a family of subsets E = {Ej }, we define T −lE = {T −lEj }.

LEMMA 3.2. Let B = {Bi} be a finite open cover of T such that every Bi ∈ B is an open
interval on T such that |Bi | < 1/(1 + a) and, for each M ∈ N, let βM be a finite cover
of T such that βM ≺ T −l

a B for 0 ≤ l < M . For 0 < t < log a, we define Q(t , {βM}M∈N)
as the set of x ∈ T satisfying the following: for any 0 < ε < 1 and M0 ∈ N, there exists
M ≥ M0 such that,

for infinitely many N ∈ N,
1
M
H(q) ≤ t + ε for some q ∈

⋃
0≤n<tN/ log b

DistβM (T
n
b x, N).

Then,

dimH Q(t , {βM}M∈N) ≤ 2t
log a + t

.

Proof. For each M ∈ N, let βM = {βM ,1, . . . , βM ,kM }, kM = |βM |. We take 0 < ε <

3−1(log a − t). By Lemma 3.1, there exists Nε,M ∈ N such that

|R(kM , N , M(t + ε))| ≤ eNM(t+2ε) (3.3)

for any N ≥ Nε,M . We take M0 ∈ N such that M0 ≥ t−1 log b. Since H(p) is uniformly
continuous in a kM -distribution p, we can see that, for any x ∈ Q(t , {βM}M∈N), there exists
M ≥ M0 such that

for infinitely many N ∈ N,
1
M
H(q) ≤ t + ε

for some q ∈
⋃

0≤n<tMN/ log b

DistβM (T
n
b x, MN).

Indeed, we obtain this by adding some 0 ≤ l < M to N in the definition ofQ(t , {βM}M∈N)
for ε/2. For each M ∈ N, we take N ′

ε,M ∈ N such that

N ′
ε,M ≥ Nε,M , M2(kM)

M
∑

N≥N ′
ε,M

Ne−εMN < 1
2M

. (3.4)

For each M , N ∈ N and x ∈ T, we take an MN-choice (βM ,i0(x), . . . , βM ,iMN−1(x)) for
x with respect to Ta and βM such that

H(q(βM ,i0(x), . . . , βM ,iMN−1(x))) = min
q∈DistβM (x,MN)

H(q). (3.5)

For 0 ≤ l < M , we define a kM -distribution

qM ,l(x, N) = dist(il(x), iM+l(x), . . . , iM(N−1)+l ).
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Then q(βM ,i0(x), . . . , βM ,iMN−1(x)) = M−1 ∑M−1
l=0 qM ,l(x, N). Hence, by the concavity

ofH(p) in a kM -distribution p, we haveH(qM ,l (x, N))≤H(q(βM ,i0(x), . . . , βM ,iMN−1(x)))

for some 0 ≤ l < M , depending on M , N and x.
For M ≥ M0, N ≥ N ′

ε,M and n ∈ Z with 0 ≤ n < tMN/ log b and 0 ≤ l < M , we
define

S(M , N , n, l) = {x ∈ T | H(qM ,l (T
n
b x, N)) ≤ M(t + ε)}.

Then

Q(t , {βM}M∈N) ⊂
⋃

M≥M0,N≥N ′
ε,M

0≤n<tMN/ log b,0≤l<M

S(M , N , n, l).

Let M ≥ M0, N ≥ N ′
ε,M , 0 ≤ n < tMN/ log b, 0 ≤ l < M and x ∈ S(M , N , n, l). For

the MN-choice (βM ,i0(T nb x), . . . , βM ,iMN−1(T
n
b x)
) for T nb x with respect to Ta and βM as

in (3.5),

(il(T
n
b x), iM+l(T nb x), . . . , iM(N−1)+l (T nb x)) ∈ R(kM , N , M(t + ε)).

We define

AM ,l(T
n
b x, N) = {y ∈ T | T ja y ∈ βM ,ij (T nb x) for 0 ≤ j < l,

T Mr+la y ∈ βM ,iMr+l (T nb (x)) for 0 ≤ r < N}.

Then, by the assumption of B and βM , AM ,l(T
n
b x, N) ≺ T

−j
a B for 0 ≤ j < MN . Hence,

by the assumption that |Bi | < 1/(a + 1) for each Bi ∈ B, we have diamAM ,l(T
n
b x, N) <

a−MN+1, where diamA denotes the diameter supx,y∈A |x − y| of A ⊂ T with
respect to the standard metric of T. We divide AM ,l (T

n
b x, N) into AM ,l(T

n
b x, N) =⊔b−1

s=0 A
s
M ,l (T

n
b x, N), whereAsM ,l (T

n
b x, N)=AM ,l(T

n
b x, N) ∩ ([s/b, (s + 1)/b)mod Z).

Then x ∈ T −n
b AM ,l(T

n
b x, N) = ⊔b−1

s=0 T
−n
b AsM ,l(T

n
b x, N). For each s = 0, . . . , b − 1,

we get the bn components of T −n
b AsM ,l(T

n
b x, N), which we write as Es,uM ,l(x, N , n),

u = 1, . . . , bn, satisfying

diamEs,uM ,l(x, N , n) < b−na−MN+1. (3.6)

We define

E(M0) = {Es,uM ,l (x, N , n) | M ≥ M0, N ≥ N ′
ε,M , 0 ≤ n < tMN/ log b, 0 ≤ l < M ,

x ∈ S(M , N , n, l), s = 0, . . . , b − 1, u = 1, . . . , bn}.
Then E(M0) is a cover of Q(t , {βM}M∈N) such that diamE(M0) ≤ a−M0+1. Fix
M ≥ M0, N ≥ N ′

ε,M , 0 ≤ n < tMN/ log b and 0≤ l<M . The number of AM ,l (T
n
b x, N)

(x ∈ S(M , N , n, l)) is bounded by |βM |l |R(kM , N , M(t + ε))| = (kM)
l |R(kM , N ,

M(t + ε))|. Hence, the number of Es,uM ,l(x, N , n) (x ∈ S(M , N , n, l), s = 0, . . . , b − 1,
u = 1, . . . , bn) is bounded by bn+1(kM)

l |R(kM , N , M(t + ε))|. We put λ = (log a −
t − 3ε)/(log a + t). Since log a − t > 3ε, we have λ > 0. We also have 1 − λ =
((1 + λ)t + 3ε)/ log a > 0. Using inequalities (3.3) and (3.6),
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∑
E∈E(M0)

(diamE)1−λ

≤
∑

M≥M0,N≥N ′
ε,M ,

0≤n<tMN/ log b,0≤l<M

bn+1(kM)
l |R(kM , N , M(t + ε))|(b−na−MN+1)1−λ

≤ b
∑
M≥M0

M(kM)
M

∑
N≥N ′

ε,M ,
0≤n<tMN/ log b

bλn|R(kM , N , M(t + ε))|a(−MN+1)((1+λ)t+3ε)/ log a

≤ b
∑
M≥M0

M(kM)
M

∑
N≥N ′

ε,M ,
0≤n<tMN/ log b

bλneMN(t+2ε)e(−MN+1)((1+λ)t+3ε)

= e(1+λ)t+3εb
∑
M≥M0

M(kM)
M

∑
N≥N ′

ε,M ,
0≤n<tMN/ log b

bλne−MN(λt+ε)

≤ e(1+λ)t+3εb
∑
M≥M0

M(kM)
M

∑
N≥N ′

ε,M

(
tMN

log b
+ 1

)
btMNλ/ log be−MN(λt+ε)

≤ 2te(1+λ)t+3εb

log b

∑
M≥M0

M2(kM)
M

∑
N≥N ′

ε,M

Ne−MNε

≤ 2te(1+λ)t+3εb

log b

∑
M≥M0

1
2M

.

The last inequality is due to (3.4). When M0 → ∞, the right-hand side converges to zero.
This implies that dimH Q(t , {βM}M∈N) ≤ 1 − λ = (2t + 3ε)/(log a + t). By ε → 0, we
obtain the lemma.

Before starting a proof of Theorem 1.6, we prepare a notion. Suppose that
β = {β1, . . . , βk} is a finite cover of T. For x ∈ T and N ∈ N, we say that
(βim,n)0≤m,n<N ∈ β{(m,n)|0≤m,n<N} is an N-choice for x with respect to Ta , Tb and
β if T ma T

n
b x ∈ βim,n for 0 ≤ m, n < N . Then (βim,n)0≤m,n<N gives a k-distribution

q((βim,n)0≤m,n<N) = dist((im,n)0≤m,n<N). We notice that, if β = (βim,n)0≤m,n<N is an
N-choice for x with respect to Ta , Tb and β, then, for 0 ≤ n < N , β

n
= (βi0,n , . . . , βiN−1,n)

is an N-choice for T nb x with respect to β and Ta , and q(β) = N−1 ∑N−1
n=0 q(βn

).

Proof of Theorem 1.6. Let B be a finite open cover of T as in Lemma 3.2 and let α
be a finite Borel partition of T such that αi ≺ B for each αi ∈ α. For each M ∈ N, we
write αM = ∨M−1

i=0 T −i
a α = {αM ,1, . . . , αM ,kM }, kM = |αM | and take a finite open cover

βM = {βM ,1, . . . , βM ,kM } of T such that αM ,i ⊂ βM ,i and βM ,i ≺ T −l
a B (0 ≤ l < M)

for each i = 1, . . . , kM . Let 0 < t < min{log a, log b}. If we show that Kt2/ log b ⊂
Q(t , {βM}M∈N), then, by Lemma 3.2, we have dimH Kt2/ log b ≤ dimH Q(t , {βM}M∈N) ≤
2t/(log a + t) and, by putting t ′ = t2/ log b, we obtain the theorem. We show that
Kt2/ log b ⊂ Q(t , {βM}M∈N).
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Let x ∈ Kt2/ log b and take μ ∈ M×a,×b(T) such that hμ(Ta) ≤ t2/ log b and
δN×a,×b,x(N ∈ N) accumulates to μ. We take a divergent subsequence {Nj }∞j=1 in

N such that δ
Nj
×a,×b,x → μ as j → ∞. We take 0 < ε < 1. Since hμ(Ta , α) =

limM→∞ M−1Hμ(αM) ≤ hμ(Ta) ≤ t2/ log b,

1
M
Hμ(αM) <

t2

log b
+ tε

log b

for sufficiently large M ∈ N. We fix such an M.
We write q(μ, αM) = (μ(αM ,1), . . . , μ(αM ,kM )): a kM -distribution and notice that

H(q(μ, αM)) = Hμ(αM) < M(t2/ log b + tε/ log b). We take a sufficiently small η > 0
so that, for a kM -distribution q,

|q − q(μ, αM)| < η implies that H(q) < M

(
t2

log b
+ tε

log b

)
, (3.7)

where | · | denotes the Euclidean norm on RkM . For each i = 1, . . . , kM , we take a
compact subset Ci such that Ci ⊂ αM ,i and μ(αM ,i \ Ci) < η/2

√
kMkM . Then we take

an open subset Vi such that Ci ⊂ Vi ⊂ βM ,i and Vi (i = 1, . . . , kM) are pairwise disjoint.
Since δ

Nj
×a,×b,x → μ as j → ∞ with respect to the weak* topology,

δ
Nj
×a,×b,x(Vi) > μ(Ci)− η

2
√
kMkM

, i = 1, . . . , kM ,

and hence

δ
Nj
×a,×b,x(Vi) > μ(αM ,i )− η√

kMkM
, i = 1, . . . , kM

for sufficiently large j.
For j as above, we take an Nj -choice βM = (βim,n)0≤m,n<Nj for x with respect to

Ta , Tb and βM such that im,n = i whenever T ma T
n
b x ∈ Vi . Then, when we write q(βM) =

(q1, . . . , qkM ), we get

qi ≥ δ
Nj
×a,×b,x(Vi) > μ(αM ,i )− η√

kMkM
, i = 1, . . . , kM .

Since q(βM) and q(μ, αM) = (μ(αM ,1), . . . , μ(αM ,kM )) are kM -distributions, this
implies that

|qi − μ(αM ,i )| < η√
kM

, i = 1, . . . , kM .

Hence, by (3.7),

H(q(βM)) < M

(
t2

log b
+ tε

log b

)
. (3.8)
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Now, since 0 < t < log b,

q(βM) = 1
Nj

Nj−1∑
n=0

q(βMn
)

= �tNj / log b� + 1
Nj

{
1

�tNj / log b� + 1

∑
0≤n<tNj / log b

q(βMn
)

}

+ Nj − �tNj / log b� − 1
Nj

{
1

Nj − �tNj / log b� − 1

∑
tNj / log b≤n<Nj

q(βMn
)

}
.

Hence, by the concavity of H(p) in a kM -distribution p and (3.8),

t

log b
H

(
1

�tNj / log b� + 1

∑
0≤n<tNj / log b

q(βMn
)

)

≤ �tNj / log b� + 1
Nj

H

(
1

�tNj / log b� + 1

∑
0≤n<tNj / log b

q(βMn
)

)

+ Nj − �tNj / log b� − 1
Nj

H

(
1

Nj − �tNj / log b� − 1

∑
tNj / log b≤n<Nj

q(βMn
)

)

≤ H(q(βM))

< M

(
t2

log b
+ tε

log b

)
and

H

(
1

�tNj / log b� + 1

∑
0≤n<tNj / log b

q(βMn
)

)
< M(t + ε).

Using the concavity of H(p) again,

H(q(βMn
)) < M(t + ε)

for some 0 ≤ n < tNj/ log b. Since q(βMn) ∈ DistβM (T
n
b x, Nj), this shows that x sat-

isfies the condition in Lemma 3.2 for Nj and M. Since this is satisfied for infinitely
many Nj (j ∈ N), for sufficiently large M ∈ N and for arbitrary 0 < ε < 1, we have
x ∈ Q(t , {βM}M∈N). Then we have Kt2/ log b ⊂ Q(t , {βM}M∈N) and this completes the
proof.
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