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Abstract. In this paper, we discuss a connection between geometric measure theory and
number theory. This method brings a new point of view for some number-theoretic
problems concerning digit expansions. Among other results, we show that for each
integer k, there is a number M > 0 such that if b1, . . . , bk are multiplicatively independent
integers greater than M, there are infinitely many integers whose base b1, b2, . . . , bk

expansions all do not have any zero digits.
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1. Prime factors of binomial coefficients: Graham’s question
In the 1970s, Erdős, Graham, Ruzsa, and Straus proved that there are infinitely many
integers n such that

(2n
n

)
is coprime with 3 × 5 = 15, see [6]. Later on, Graham asked

the following question.

Question 1.1. (Graham’s binomial coefficients problem) Are there infinitely many integers
n ≥ 1 such that the binomial coefficient

(2n
n

)
is coprime with 105 = 3 × 5 × 7?

Remark 1.2. According to [16], Graham is offering $1000 to the first person with a
solution.

This problem turns out to be related to digit expansions of numbers in different bases.
To be precise, let b1, . . . , bk ≥ 2 be k ≥ 2 different integers. For each i ∈ {1, . . . , k}, let
Bi ⊂ {0, . . . , bi − 1} be a subset of digits in base bi . Let n, b ≥ 2 be integers, we write
Db(n) for the set of digits used in representing n in base b. We define the set of integers

N
B1,...,Bk

b1,...,bk
= {n ∈ N : for all i ∈ {1, . . . , k}, Dbi

(n) ⊂ Bi}.
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Thus, N
B1,...,Bk

b1,...,bk
contains integers with very special digit expansions simultaneously in

many different bases. We will call such numbers to be with restricted digits. The original
motivation of this type of problem is to study prime factors of

(2n
n

)
. The connection

between prime factors of
(2n

n

)
and digit expansions of n was established by Kummer in [13].

THEOREM 1.3. (Kummer) Let p be a prime number. Then p � |(2n
n

)
if and only if the p-ary

expansion of n contains only digits ≤ (p − 1)/2.

Due to Kummer’s theorem, we see that for Graham’s question, one needs to study the
set N

B3,B5,B7
3,5,7 , where

Bp = {0, . . . , (p − 1)/2}.
It is precisely the set of integers n with

(2n
n

)
being coprime with 3, 5, 7. Graham’s question

is open, but there has been some progress. In [4], it was proved that, under Schanuel’s
conjecture (see Conjecture 3.1 below and [3]),

#N
B3,B5,B7
3,5,7 ∩ [1, N] ≤ N0.026

for all sufficiently large N. So we can say that there are not ‘too many’ integers n such that(2n
n

)
is coprime with 3, 5, 7. Unconditionally, at least one of the results listed below holds

for all large enough N:

#N
B3,B5,B7
3,5,7 ∩ [1, N] ≤ N0.026,

#N
B3,B5,B11
3,5,11 ∩ [1, N] ≤ N0.061,

#N
B3,B5,B13
3,5,13 ∩ [1, N] ≤ N0.073.

The results in [4] suggest a more quantitative conjecture as follows.

Conjecture 1.4. Let p1, . . . , pk be k ≥ 2 different odd prime numbers. For each i ∈
{1, . . . , k}, let

Bi = {0, . . . , (pi − 1)/2}.
Consider the number

s =
k∑

i=1

log #Bi

log pi

=
k∑

i=1

log(pi + 1) − log 2
log pi

.

If s ∈ (k − 1, k), then for each ε > 0, there is a constant Cε > 1 such that

C−1
ε Ns−(k−1)−ε ≤ #NB1,...,Bk

p1,...,pk
∩ [1, N] ≤ CεN

s−(k−1)+ε (1)

for all integers N ≥ 2. If s < k − 1, then N
B1,...,Bk
p1,...,pk

is finite.

Remark 1.5. The rightmost inequality of equation (1) was proved in [4] under Schanuel’s
conjecture. Thus the open problem is the leftmost inequality of equation (1) and the
finiteness statement. This is closely related to a Furstenberg’s problem, see [8, 17, 18].
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2. Results in this paper
In this paper, we consider Graham’s question and other problems related to digit
expansions of numbers in different bases. We relate it to projections of fractal sets, a
well-studied topic in geometric measure theory. This connection does not directly provide
us with new results. It merely represents some number-theoretic problems using fractals
(self-similar sets) and translates the problems into geometric properties (intersections,
slices, projections) of those fractals. We will provide a more detailed discussion on this
topic in §§3 and 4. Here, we only need to know that �x for x ∈ Rd stands for the map

y ∈ Rd \ {x} → �x(y) = x − y

|x − y| ∈ Sd−1.

Intuitively speaking, let A ⊂ Rd . Then �x(A) is what an observer can see of A at a certain
position x ∈ Rd . In what follows, we say that a list of numbers a1, . . . , ad are multi-
plicatively independent if they are not 0 or 1, and 1, log a2/ log a1, . . . , log ad/ log a1

are linearly independent over the field of rational numbers. See §3.2 for the definition
of self-similar sets and the open set condition. See [7, Ch. 2] for the definition of the
Hausdorff dimension (dimH).

Conjecture 2.1. Let A ⊂ Rd , d ≥ 2 be a Cartesian product of self-similar sets in R with
the open set condition and uniform contraction ratios. Suppose further that the contraction
ratios are multiplicatively independent. If dimHA > d − 1, then �x(A) has a non-empty
interior for all x ∈ Rd .

In §4, we will provide more details. Conjecture 2.1 turns out to be closely related to
Graham’s question. We do not need the full strength of this conjecture. A special case will
be enough. See Conjecture 4.2.

THEOREM 2.2. Assuming Conjecture 2.1 and Schanuel’s conjecture, there are infinitely
many integers n such that

(2n
n

)
is coprime with 3 × 5 × 7.

Remark 2.3. We do not need the full strength of Schanuel’s conjecture. It is enough only
to assume that

1,
log 3
log 5

,
log 3
log 7

are Q-linearly independent.

Currently, we are not able to prove Conjecture 2.1. Nonetheless, the strategy for proving
Theorem 2.2 can be adapted to prove many other (unconditional) results concerning
numbers with restricted digits.

First, we prove a quantitative version of a result in [6].

THEOREM 2.4. Let p, q be two different odd primes. Consider the set

A =
{
n ∈ N : gcd

(
pq,

(
2n

n

))
= 1

}
.
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Then there is a constant c > 0 depending on p, q such that

A ∩ [1, N] ≥ c log N

holds for all large enough integers N.

Next, we prove a result concerning linear forms of numbers with restricted digits.

THEOREM 2.5. There are infinitely many integer triples (x, y, z) ∈ N
{0,1}
3 × N

{0,1}
4 ×

N
{0,1}
5 with

x + y = z.

Remark 2.6. This result says that there are infinitely many sums of powers of five that can
be written as sums of powers of three and four. We list a few examples:

5 = 4 + 1,

52 = 42 + 32,

53 + 52 = 34 + 43 + 4 + 1,

54 + 52 = 35 + 44 + 34 + 43 + 4 + 1 + 1.

It is perhaps possible that all large enough integers can be written as a sum of form
N

{0,1}
3 + N

{0,1}
4 . If so, this theorem would follow as a direct consequence. We believe

that the conclusion does not hold for general triples (b1, b2, b3) in the place of (3, 4, 5).
For example, we suspect that there are only finitely many integer triples (x, y, z) ∈
N

{0,1}
9 × N

{0,1}
10 × N

{0,1}
11 with x + y = z. A partial result towards this direction is [20,

Theorem 1.5] which says that for each ε > 0 and large enough integer N , the amount
of integer triples in [1, N]3 with the above property is O(Nε).

Another very natural question to consider is whether there are infinite numbers with
missing digits in many different bases at the same time. For example, are there integers
b1 > · · · > b100 > 2 such that there are infinitely many integers whose base b1, . . . , b100

expansions do not have digit zero? Our next result answers this question.

THEOREM 2.7. Let k ≥ 2 be an integer. Then there is an integer M ≥ 1 such that for all
k-tuples of multiplicative independent integers b1, . . . , bk that are at least M, there are
infinitely many integers whose base b1, . . . , bk expansions all omit the digit zero.

Remark 2.8. The missing digit zero is not a special choice. In fact, one can choose an
integer m ≥ 1 and consider digit expansions in different bases with an arbitrary choice of m
missing digits for each base. Of course, this only makes sense if the bases in consideration
are all greater than m.

This brings us closer to Graham’s question. However, we are still far away. Kummer’s
theorem indicates that for considering prime divisors of binomial coefficients, one needs
to consider numbers that miss at least half of the digits in many different prime bases.

To prove the above results, we use Newhouse’s gap lemma. See §3.3. It is possible
to prove Theorems 2.5, 2.7 without having the geometry of self-similar sets in mind.
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In fact, it is possible to prove those results by directly using arithmetic of integers and
some well-known facts of irrational rotations just like the original arguments in [6, Lemma
on p. 84]. For example, [6, Lemma on p. 84] can be viewed as an integer version of
Newhouse’s gap lemma applied to ‘integer self-similar sets’. The point of using the
fractal geometric point of view in this paper is to make the ideas behind the proofs more
transparent. In fact, the core of the proof of Theorem 2.4 essentially uses the same ideas as
in [6, Lemma on p. 84] but expresses them in a more geometric way.

3. Preliminaries
3.1. A remark for Schanuel’s conjecture. We need Schanuel’s conjecture because in
some of the proofs, we will use properties of (irrational) rotations on a torus. Let n ≥ 1 be
an integer. Let Tn = Rn/Zn. Let α = (α1, . . . , αn) ∈ Rn. We define the map Tα : Tn →
Tn to be

x ∈ Tn → Tα(x) = x + α.

We say that Tα is the rotation on Tn with the rotation angle α. If 1, α1, . . . , αn are
Q-linearly independent, then we say that Tα is an irrational rotation. In this case, it is
well known that for each x ∈ Tn,

{T k
α (x)}k≥1 = Tn.

See [5, Corollary 4.15].
Let b1, b2 . . . , bn be n ≥ 2 integers. To study digit expansions with respect to these

integers, it is often useful to consider the rotation on Tn−1 with the rotation angle,

� = (log b1/ log b2, . . . , log b1/ log bn).

To do this, it is useful to know whether the above vector generates an irrational rotation.
This is the case if

�′ =
(∏n

i=1 log bi

log b1
, . . . ,

∏n
i=1 log bi

log bn

)

are Q-linearly independent. If n = 2, then the situation is simple. For n ≥ 3, the problem
becomes challenging. For example, it is not known whether 1, log 2/ log 3, log 2/ log 5
are Q-linearly independent. Problems of this kind are related to Schanuel’s conjecture,
see [3].

Conjecture 3.1. (Schanuel) Let n ≥ 2 be an integer. Let x1, . . . , xn be Q-linearly inde-
pendent complex numbers. Then the transcendence degree of

Q(x1, . . . , xn, ex1 , . . . , exn)

is at least n.

In the case when ex1 , . . . , exn are integers, the conjectures reduce to saying that
x1, . . . , xn are algebraically independent over Q. This implies that �′ is indeed Q-linearly
independent if 1, log b1, . . . , log bn are Q-linearly independent. This is the reason that
whenever we are dealing with digit expansions with more than two bases, Schanuel’s
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conjecture is likely to appear. We are not using the full power of Schanuel’s conjecture
here. However, this conjecture is so difficult that even the homogeneous quadratic case is
not known. The only known result in this direction is Baker’s theory on linear forms of
logarithms, see also [3] and the references therein for more details.

We should nonetheless remark that although we are dealing with digit expansions with
more than two bases in this paper, the Q-linear independence of �′ is not always involved.
In fact, we will only need Schanuel’s conjecture for proving Theorem 2.2. For Theorem 2.5,
the proof would be much simpler by assuming Schanuel’s conjecture. Additional efforts
need to be taken to get rid of it. For Theorem 2.7, we simply do not meet the situation
where Schanuel’s conjecture is needed.

3.2. Self-similar sets and the open set condition. Let F = {fi}i∈� be a finite collection
of linear maps on R. We can write down each linear map explicitly as fi(x) = rix + ai .
We assume that ri ∈ (0, 1) for all i ∈ �. We call such a collection of linear maps to be
a linear iterated function system (IFS). The parameters ri , i ∈ � are called contraction
ratios and ai , i ∈ � are called translations. In the case when all the contraction ratios are
equal to r ∈ (0, 1), we call r to be the uniform contraction ratio.

By [11], there is a unique non-empty compact set F such that

F =
⋃
i∈�

fi(F ).

We call such a set F to be a self-similar set determined by F. We say that F satisfies the
open set condition if there is a bounded open set U ⊂ R such that fi(U) ⊂ U for each
i ∈ � and

fi(U) ∩ fj (U) = ∅
as long as i �= j . The open set condition is a condition on F rather than F . However, we
also say that F satisfies the open set condition if there is an IFS F such that F determines
F and has the open set condition.

Let b > 1 be an integer and B ⊂ {0, . . . , b − 1}. Let AB
b be the set

{x ∈ [0, 1] \ Q : the b-ary expansion of x contains only digits in B}
= {x ∈ [0, 1] : some b-ary expansion of x contains only digits in B}.

Then AB
b is self-similar with � = B, and for z ∈ B, the linear map fz is as follows:

x ∈ R → fz(x) = 1
b
x + z

b
.

To verify that F = {fz}z∈B has the open set condition, we can choose U = (0, 1).
A famous example of this kind is the middle third Cantor set A

{0,2}
3 .

3.3. Thickness, intersection, and sums of Cantor sets. Let A ⊂ R be a compact, totally
disconnected set without isolated points. We shall call A a Cantor set. First, we assume
that A ⊂ [0, 1] and the convex hull of A is [0, 1]. In this case, we see that R \ A is a
countable union of disjoint open intervals {Ii}i≥1. Notice that (−∞, 0), (1, ∞) are the
only unbounded intervals in {Ii}i≥1. We call bounded intervals in {Ii}i≥1 to be bounded
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gaps of A. Thus, A can be constructed by iteratively chopping out open intervals from R.
Let I = (a, b) be one of those bounded open intervals. We find the interval I− ∈ {Ii}i≥0

and I− ⊂ (−∞, a) such that |I−| ≥ |I | and there is no other such interval between I−
and I . Similarly, we can find I+ ⊂ (b, ∞) to the right of I . Suppose that I− = (c, d) and
I+ = (e, f ). We see that

−∞ ≤ c < d < a < b < e < f ≤ ∞.

Let bL = a − d , bR = e − b and

C(I) = min{bL, bR}/|I |.
We define C(A) = infI∈{Ii }i≥1,I bounded C(I). This number C(A) is called the thickness
of A. We also define the normalized thickness of A to be

S(A) = C(A)

C(A) + 1
.

For a general Cantor set A, we can perform a uniquely determined orientation-preserving
affine transformation T which maps the convex hull of A to the unit interval. Then we
define

C(A) = C(T (A)), S(A) = S(T (A)).

We have the following result due to Newhouse. See [14].

THEOREM 3.2. (Newhouse’s gap lemma) Let A, B be two compact, totally disconnected
sets. Suppose that A is not contained in any of the gaps of B and vice versa. If S(A) +
S(B) ≥ 1, then A ∩ B �= ∅.

Newhouse proved the above result with the condition S(A) + S(B) > 1. Astels
[1, Theorem 2.2] showed that the above result holds for S(A) + S(B) = 1 as well.

In the case when we have two very thick Cantor sets, we expect that their intersection
could also be very thick. In this direction, we have [10, Theorem 1, and the discussion at
the beginning of p. 882, and the discussion before Corollary 6].

THEOREM 3.3. Let A, B be two compact, totally disconnected sets. Suppose that A is not
contained in any of the gaps of B and vice versa. For each δ > 0, there is an ε > 0 such
that if S(A), S(B) are greater than 1 − ε, then there is a compact set C ⊂ A ∩ B such that
S(C) is greater than 1 − δ. Moreover, suppose that the convex hulls Conv(A), Conv(B)

are such that Conv(A) ∩ Conv(B) contains neither A nor B. Then by making ε smaller if
necessary, C can be chosen so that |Conv(C)| is at least (1 − δ)|Conv(A) ∩ Conv(B)|.

Recently, there are some further development on the intersecting structures of thick
Cantor sets. See [19].

The following result was proved in [1, Theorem 2.4].

THEOREM 3.4. Let A1, . . . , Ak be k ≥ 2 Cantor sets. Suppose that their convex hulls
are I1, I2, . . . , Ik and the size of their largest bounded gaps are g1, . . . , gk respectively.
Suppose further that

∑k
i=1 S(Ai) ≥ 1 and min{|I1|, . . . , |Ik|} > max{g1, . . . , gk}. Then

A1 + · · · + Ak is an interval.
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For later use, we reformulate the above result in terms of intersections. Let A1, A2, A3

be three Cantor sets satisfying the hypothesis of the above theorem. Consider the Cartesian
product A = A1 × A2 × A3. Let v ∈ S2 be a direction vector of R3 and let Hv be the
plane passing through the origin and normal to v. The family of planes parallel to Hv

can be parameterized by R, more precisely, {Hv(a) = Hv + av}a∈R. Denote Pv : R3 →
Rv to be the corresponding orthogonal projection in direction v. The above theorem says
that P

(1/
√

3,1/
√

3,1/
√

3)
(A) is an interval. Moreover, notice that the normalized thickness

is invariant under affine maps. In addition, there is a non-empty open neighborhood O
of (1/

√
3, 1/

√
3, 1/

√
3) in S2 such that whenever v = (v1, v2, v3) ∈ O, the size of the

minimum convex hull of v1A1, v2A2, v3A3 is larger than the size of their maximum gap.
This implies that Pv(A) is an interval.

Now if �v(A) is an interval, then we see that

{a ∈ R : Hv(a) ∩ A �= ∅}
is an interval. More precisely, if Hv(a) ∩ I1 × I2 × I3 �= ∅, then we have Hv(a) ∩ A �= ∅.
From here, we have the following corollary.

COROLLARY 3.5. Let A1, A2, A3 be 3 Cantor sets with S(A1) + S(A2) + S(A3) ≥ 1.
Suppose that their convex hulls are I1, I2, I3 and the size of their largest gaps are g1, g2, g3

respectively. If

min{|I1|, |I2|, |I3|} > max{g1, g2, g3},
then there is a non-empty open set O ⊂ S2 such that whenever v ∈ O, we have

Hv(a) ∩ I1 × I2 × I3 �= ∅ 
⇒ Hv(a) ∩ A1 × A2 × A3 �= ∅.

We now compute the normalized thickness of some examples of Cantor sets. First, let
b > 2 be an integer and let B = {0, 1, . . . , l} where l < b − 1. We consider the set

AB
b = {x ∈ [0, 1] : some b-ary expansion of x contains only digits in B}.

LEMMA 3.6. Let b, B, AB
b be as above. The normalized thickness of AB

b is

S(AB
b ) = l

b − 1
.

Proof. The convex hull of AB
b is [0, a], where

a =
∞∑
i=1

l

bi
= l

b − 1
.

The largest gaps of AB
b are of size

b − 1 − l

b(b − 1)
.

Those gaps are located in each of the intervals

[0, 1/b], . . . , [(l − 2)/b, (l − 1)/b].
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Let I be one of those gaps. Then we see that

C(I) = l

b − 1 − l
.

From here and the fact that AB
b is self-similar, we see that C(AB

b ) = l/(b − 1 − l) and
S(AB

b ) = l/(b − 1).

Next, we consider the middle third Cantor set C3 = A
{0,2}
3 . Following the above steps,

we see that C(C3) = 1, S(C3) = 1/2. Let k > 1. We consider the image of C3 under the
map x → xk . We write this image as Ck

3 . We record here a simple observation which
illustrates an application of the thickness of the Cantor set.

THEOREM 3.7. For all x ∈ [0, 4], there exist x1, x2, x3, x4 ∈ C3 such that

x = x2
1 + x2

2 + x2
3 + x2

4 .

More generally, for each number k > 1, there is an integer 1 < n(k) ≤ 2k such that all
x ∈ [0, n(k)] can be written as

x =
n(k)∑
i=1

xk
i ,

where x1, . . . , xn(k) ∈ C3.

(We were told by S. Chow that this result (for k = 2) was conjectured in [2, Conjecture
13] and answered in [12]. We thank him for providing the references.)

LEMMA 3.8. Let k, Ck
3 be as above. Then

S(Ck
3 ) = 1

2k
.

Proof. Suppose that I = (a, a + �) is a bounded gap of C3. Then we see that the next
gap on the right of I which is not smaller than I has a left endpoint a + 2�. Similarly, the
next gap on the left of I which is not smaller than I has a right endpoint a − �. For the
middle third Cantor set C3, we always have a ≥ �.

After taking the k-th power map, we have points

(a − �)k , ak , (a + �)k , (a + 2�)k .

The gap I is now transformed into a gap of size

|ak − (a + �)k|.
This length is increasing as a function of a as well as �. Thus we see that the number bL

in the definition of thickness is at least |(a − �)k − ak|. We need to take care of bR . By
the above argument, we see that bR is at most (a + 2�)k − (a + �)k . However, we need
a lower bound for bR . To do this, we need to study how the gaps of C3 in [a + �, a + 2�]
are transformed under the map x → xk . Notice that a gap inside [a + �, a + 2�] might
become larger than |ak − (a + �)k| after taking the k-th power. Note that by the convexity
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of x → xk , there is a δ ∈ (0, �] such that

(a + � + 2δ)k − (a + � + δ)k = (a + �)k − ak .

Let (a + � + α, a + � + α + β) be a bounded gap of C3 ∩ [a + �, a + 2�] with
α, β > 0 and α + β ≤ �. Then we have β ≤ α. This follows by self-similarity, since
[a + �, a + 2�] is a similar copy of C3 with contraction factor �. From here, we see that
to find gaps of Ck

3 on the right side of (a + �)k with length at least |ak − (a + �)k|, one
has to search the gaps of Ck

3 in [(a + � + δ)k , ∞). Thus bR is at least

(a + � + δ)k − (a + �)k .

Observe that for x = δ/(a + �),

bR

(a + �)k − ak
≥ (a + � + δ)k − (a + �)k

(a + � + 2δ)k − (a + � + δ)k
= (1 + x)k − 1

(1 + 2x)k − (1 + x)k
.

Since 0 < δ ≤ � ≤ a, we see that the above is at least (the value when x = 1/2)

ck = 1.5k − 1
2k − 1.5k

.

It follows that bR ≥ ck((a + �)k − ak). We see that

min{bL, bR}/|ak − (a + �)k| ≥ min
{

ak − (a − �)k

(a + �)k − ak
, ck

}
≥ 1

2k − 1
. (2)

For the last inequality, notice that

ak − (a − �)k

(a + �)k − ak
= 1 − (1 − �/a)k

(1 + �/a)k − 1
.

As (a, a + �) is a bounded gap of C3, we see that 0 < � ≤ a. The function

x ∈ [0, 1] → 1 − (1 − x)k

(1 + x)k − 1

takes the minimum at x = 1 with the value 1/(2k − 1). For all k > 1, we have

1
2k − 1

≤ 1.5k − 1
2k − 1.5k

.

From here, we conclude (2). As (2) holds for all bounded gaps of Ck
3 , we see that

C(Ck
3 ) ≥ 1

2k − 1

and

S(Ck
3 ) ≥ 1

2k
.

However, let n ≥ 1 be an integer. Then I = (3−n, 2 × 3−n) is a bounded gap of C3. Now,
in C3, the next gap on the left of I with length at least |I | is an infinite gap, that is, (−∞, 0).
Thus in Ck

3 , the next gap on the left of (3−kn, 2k3−kn) with at least the same length is again
(−∞, 0). This shows that the inequality (2) is sharp and the proof concludes.
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From here, we see that Theorem 3.7 follows.

Proof of Theorem 3.7. By Lemma 3.8 and Theorem 3.4, it is enough to check the gap
conditions stated in Theorem 3.4. As the convex hull of Ck

3 is [0, 1] and the largest gap is
strictly shorter than 1, the result follows.

4. Radial projections of fractal sets: general overview
Let d ≥ 2 be an integer. Let x ∈ Rd be a point. Recall that �x is defined as follows:

�x(y) = y − x

|x − y| ∈ Sd−1

for y �= x. The following result was proved in [15].

THEOREM 4.1. Let d ≥ 2 be an integer. Let A ⊂ Rd be a Borel set with dimHA > d − 1.
Then �x(A) has positive Lebesgue measure for almost all x ∈ Rd .

Intuitively speaking, the above theorem says that if A ⊂ Rd is large enough, then �x(A)

should also be large enough, at least generically. If the set A is a Cartesian product of
self-similar sets with the open set condition, we believe that a much stronger result should
hold. See Conjecture 2.1. In our situation, it is convenient to explicitly state a special case.

Conjecture 4.2. Let d > 1 be an integer. Let b1, . . . , bd > 1 be integers. For each i ∈
{1, . . . , d}, let B1 ∈ {0, . . . , bi − 1} be a choice of digits in base bi and

Ai = {x ∈ [0, 1] : some bi-ary expansion of x contains only digits in Bi}.
Consider the set A = A1 × · · · × Ad . If dimHA > d − 1, then �x(A) has positive
Lebesgue measure for all x ∈ Rd . If moreover b1, . . . , bd are multiplicatively indepen-
dent, then �x(A) contains a non-empty interior for all x ∈ Rd .

As A1, . . . , Ad are self-similar sets with the open set condition, this conjecture
is indeed a special case of Conjecture 2.1 under the multiplicative independence of
b1, . . . , bd . We believe that for the positivity of the Lebesgue measure, it is not necessary
to require the multiplicative independence of b1, . . . , bd . Currently, almost nothing is
known towards Conjectures 2.1, 4.2. For Conjecture 2.1, see [9] or [17] for related results.
Although results in [9, 17] are for linear projections rather than radial projections, it is
possible to use the arguments to prove results for linear projections. For example, let A
be as in Conjecture 2.1 with d = 2. Results in [17] provide estimates of the size lδ ∩ A

(lδ is the δ-neighborhood of l) uniformly across δ > 0 and lines l ⊂ R2 with direction
strictly away from being parallel with the coordinate axes. In particular, for each ε > 0,
for all small enough δ > 0 and all lines l, to cover lδ ∩ A, it is enough to use at most
δ−(dimHA−1+ε) many δ-balls. Using this estimate, we can conclude that �(0,0)A cannot
be small. In fact, suppose that �(0,0)A can be covered by at most 0.0001δ−(1−2ε) many
δ-balls. Then we are forced to have a fiber of �(0,0)(A) which cannot be covered by

δ−dimHA/δ−(1−2ε) = δ−(dimHA−1+2ε)
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many δ-balls. Fibers of �(0,0)(A) are lines passing through the origin. In particular, this
contradicts with the results in [17]. From here, we conclude that dimB�(0,0)A = 1. Here,
dimB�(0,0)A is the box dimension of �(0,0)A. It is possible to upgrade this result to
dimH�(0,0)A = 1 by carefully studying a certain regular measure μ supported on A and
its image under �(0,0). Of course, (0, 0) can be replaced with any other point in R2.

5. Proofs of Theorems 2.2, 2.4, 2.5, and 2.7
Now we prove Theorem 2.2.

Proof of Theorem 2.2. Consider the set N
B3
3 × N

B5
5 × N

B7
7 , where

B3 = {0, 1}, B5 = {0, 1, 2}, B7 = {0, 1, 2, 3}.
Now we construct the sets

A3 = {x ∈ [1, 3] : some 3-ary expansion of x contains only digits in B3},

A5 = {x ∈ [1, 5] : some 5-ary expansion of x contains only digits in B5},

A3 = {x ∈ [1, 7] : some 7-ary expansion of x contains only digits in B7}.
Then we see that [7, §7.1] dimHA3 × A5 × A7 = log 2/ log 3 + log 3/ log 5 + log 4/

log 7 > 2. Let {} be the fractional part symbol, that is, for a real number a, {a} ∈ [0, 1)

is the unique number t in [0, 1) so that t − a ∈ Z. For each integer k ≥ 1, consider the line
lk passing through the origin with direction vector

(1, 5{k log 3/ log 5}, 7{k log 3/ log 7}).

If lk ∩ A3 × A5 × A7 �= ∅, then we take a point (x, y, z) ∈ lk ∩ A3 × A5 × A7. Consider
the point

(x′, y′, z′) = (3kx, 5[k log 3/ log 5]y, 7[k log 3/ log 7]z).

Since y = 5{k log 3/ log 5}x, z = 7{k log 3/ log 7}x, we see that

5[k log 3/ log 5]y = 5k log 3/ log 5x = 3kx, 7[k log 3/ log 7]z = 7k log 3/ log 7x = 3kx.

Thus we see that x′ = y′ = z′. It is straightforward to see that the 3-ary expansion of x ′
contains only digits in B3, the 5-ary expansion of y′ contains only digits in B5, and the
7-ary expansion of z′ contains only digits in B7. Taking the integer part, we see that

[x′] = [y′] = [z′] ∈ N
B3,B5,B7
3,5,7 .

Under Conjecture 2.1, we see that there are infinitely many integers k ≥ 1 such that

lk ∩ A3 × A5 × A7 �= ∅.

Indeed, the direction vector of lk is

(1, 5{k log 3/ log 5}, 7{k log 3/ log 7}).
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Under Schanuel’s conjecture, 1, log 3/ log 5, log 3/ log 7 are linearly independent over Q,
and therefore the sequence

({k log 3/ log 5}, {k log 7/ log 5})k≥0

equidistributes in [0, 1]2. Thus the closure of
⋃

k≥0 lk contains the cone C spanned by the
origin and the set

{1} × [1, 5] × [1, 7].

Now if �(0,0,0)(A3 × A5 × A7 ∩ C) has a non-empty interior, then lk will intersect
A3 × A5 × A7 ∩ C infinitely often. Observe that A3 × A5 × A7 intersects the interior
of C. Thus there is a point a ∈ A3 × A5 × A7 and a r > 0 such that Ba(r) ⊂ C. Since
A3 ∩ [1, 2], A5 ∩ [1, 2], A7 ∩ [1, 2] are self-similar with contraction ratios 1/3, 1/5, 1/7
respectively, it is possible to find linear maps f3, f5, f7 : R → R :

f3(x) = 3−l3x + t3, f5(x) = 5−l5x + t5, f7(x) = 7−l7x + t7

for some positive integers l3, l5, l7 and real numbers t3, t5, t7 such that

f3(A3 ∩ [1, 2]) ⊂ A3, f5(A5 ∩ [1, 2]) ⊂ A5, f7(A7 ∩ [1, 2]) ⊂ A7,

and

f3 × f5 × f7(A3 × A5 × A7 ∩ [1, 2]3) ⊂ Ba(r).

We denote A′
3 = f3(A3 ∩ [1, 2]), A′

5 = f5(A5 ∩ [1, 2]), A′
7 = f7(A7 ∩ [1, 2]). Then we

see that

A′
3 × A′

5 × A′
7 ⊂ A3 × A5 × A7 ∩ C.

Moreover, since f3 × f5 × f7 is linear and invertible and thus bi-Lipschitz, by [7,
Corollary 2.4], we have

dimH(A′
3 × A′

5 × A′
7) = dimH(A3 × A5 × A7 ∩ [1, 2]3).

Next, observe that A3 × A5 × A7 ∩ [1, 2]3 is a translation of K3 × K5 × K7, where

K3 = {x ∈ [0, 1] : some 3-ary expansion of x contains only digits in B3},
K5 = {x ∈ [0, 1] : some 5-ary expansion of x contains only digits in B5},
K7 = {x ∈ [0, 1] : some 7-ary expansion of x contains only digits in B7}.

By [7, §7.1], we see that dimHK3 × K5 × K7 = dimHA3 × A5 × A7. Now Conjecture 2.1
tells us that �(0,0,0)(A

′
3 × A′

5 × A′
7) has a non-empty interior. This proves the result.

Theorem 2.4 follows by using a similar argument.

Proof of Theorem 2.4. The proof is very similar to the previous one. Let p, q be two
distinct odd primes. Then we see that log p/ log q is irrational. Consider the set N

Bp
p ×

N
Bq
q , where

Bp = {0, 1, . . . , (p − 1)/2}, Bq = {0, 1, . . . , (q − 1)/2}.
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We also construct the sets

Ap = {x ∈ [1, p] : some p-ary expansion of x contains only digits in Bp},
Aq = {x ∈ [1, q] : some q-ary expansion of x contains only digits in Bq}.

Now by Lemma 3.6 (applied to suitable affine copies of Ap, Aq ), we see that S(Ap) =
S(Aq) = 1/2. We now use Theorem 3.4. Since S(Ap) + S(Aq) = 1, we see that the
difference set Ap − Aq is an interval (for the gap condition, observe that the largest gaps
of Ap, Aq are shorter than the unit interval). This says that P

(−1/
√

2,1/
√

2)
(Ap ∩ Aq) is

an interval. The convex hull of Ap ∩ Aq is a rectangle not contained on only one side of
the line {x = y}. This implies that P

(−1/
√

2,1/
√

2)
(Ap ∩ Aq) contains (0, 0) as an interior

point. Since the gap condition is preserved under linear perturbations close to the identity,
as a result, we see that there is a non-trivial open set O ⊂ S1 containing (−1/

√
2, 1/

√
2)

such that if v ∈ O, the linear projection Pv(Ap × Aq) ⊂ Rv is an interval containing
(0, 0). This implies that lv⊥ ∩ Ap ∩ Aq �= ∅. Thus we see that �(0,0)(Ap × Aq) contains
a non-empty interior around (1/

√
2), 1/

√
2). We can now apply the same argument as in

the proof of Theorem 2.2. For each integer k ≥ 1, consider the line lk passing through the
origin with direction vector (1, q{k log p/ log q}). If lk ∩ Ap × Aq �= ∅, then we find a point
(x, y) ∈ lk ∩ Ap × Aq . Next, consider the point

(x′, y′) = (pkx, q[k log p/ log q]y).

As before, we see that

[x′] = [y′] ∈ N
Bp ,Bq
p,q .

After replacing Ap × Aq with a suitable affine copy A′
p × A′

q if necessary, as in the
previous proof, we see that there is an interval I ⊂ [0, 1] such that whenever {k log p/

log q} ∈ I , there is a number n ∈ N
Bp ,Bq
p,q ∩ [pk , pk+1]. Since {k log p/ log q} ∈ I hap-

pens for k inside a subset of integers with positive density, we see that there is a c > 0 and
for all large enough integers N , there are at least cN many intervals among

[1, p), [p, p2), . . . , [pN−1, pN)

intersecting N
Bp ,Bq
p,q . Thus the result follows by applying Kummer’s theorem (Theorem

1.3).

At this stage, Theorem 2.5 seems to be clear, at least under Schanuel’s conjecture.
We will first prove this theorem under Schanuel’s conjecture and then explain how to get
rid of it.

Proof of Theorem 2.5. Consider the set N
B3
3 × N

B4
4 × N

B5
5 , where

B3 = {0, 1}, B4 = {0, 1}, B5 = {0, 1}.
Now we construct the self-similar sets

A3 = {x ∈ [1/3, 2/3] : some 3-ary expansion of x contains only digits in B3},
A4 = {x ∈ [1/4, 1/2] : some 4-ary expansion of x contains only digits in B4},
A5 = {x ∈ [1/5, 2/5] : some 5-ary expansion of x contains only digits in B5}.
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By Lemma 3.6 (applied to suitable affine copies of A3, A4, A5), we see that S(A3) =
1/2, S(A4) = 1/3, and S(A5) = 1/4. Thus we see that

S(A3) + S(A4) + S(A5) = 13
12

> 1. (3)

The convex hulls of A3, A4, A5 are [1/3, 1/2], [1/4, 1/3], [1/5, 1/4]. Let j1, j2 be
integers. For the time being, we treat j1, j2 as being general. Later on, we will see that
for the proof of this theorem, it is enough to choose j1 = j2 = 1. Let k ≥ 1 be an integer
and let Hj1,j2,k be the plane

{x + 4−{k log 3/ log 4}+j1y − 5−{k log 3/ log 5}+j2z = 0}.
Suppose that Hj1,j2,k ∩ A3 × A4 × A5 �= ∅. We take a point (x, y, z) in this intersection.
Consider the point

(x′, y′, z′) = (3kx, 4[k log 3/ log 4]+j1y, 5[k log 3/ log 5]+j2z).

Since we have

x + 4−{k log 3/ log 4}+j1y − 5−{k log 3/ log 5}+j2z = 0,

we see that

3−kx′ + 4−{k log 3/ log 4}−[k log 3/ log 4]y′ − 5−{k log 3/ log 5}−[k log 3/ log 5]z′ = 0.

Thus we have

x′ + y′ − z′ = 0.

We assume Schanuel’s conjecture for the time being. Later on, we will remove this
dependence.

From (3) and the discussion above Corollary 3.5, we claim that there exist j1, j2 so that
Hj1,j2,k intersects A3 × A4 × A5 for infinitely many integers k. More precisely, consider
the plane

H = {x + k1y − k2z = 0},
where k1 ∈ [4j1−1, 4j1 ], k2 ∈ [5j2−1, 5j2 ]. It’s normal vector is (1, k1, −k2). Then, as
long as

1/2 + k1/3 − k2/5 ≥ 0 ≥ 1/3 + k1/4 − k2/4, (4)

the Cartesian product of the convex hulls of A3, A4, A5 intersects the plane H . In this
case, we see that H ∩ A3 × A4 × A5 is not empty if the minimal hull/maximal gap
condition in Corollary 3.5 is satisfied. The lengths of the convex hulls of A3, A4, A5

are 1/6, 1/12, 1/20. The lengths of the largest gaps are 1/18, 1/24, 3/100. The minimal
hull/maximal gap condition can be now written as

min{1/6, k1/12, k2/20} ≥ max{1/18, k1/24, 3k2/100}. (5)

This is equivalent to the conditions

k1 ∈ [2/3, 4], k2 ∈ [10/9, 50/9], k1/k2 ∈ [9/25, 6/5]. (6)
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FIGURE 1. Conditions (4), (6) (shaded region), and the set D (covered with vertical lines).

The region determined by (4), (6) is illustrated in Figure 1. From Figure 1, it is possible
to see that j1 = j2 = 1 will satisfy the claim. For later use, we write D for the set of pairs
(k1, k2) with conditions (4), (6), and k1 ∈ [1, 4], k2 ∈ [1, 5]. See the shaded region covered
by vertical lines in Figure 2. Next, observe that the normal vector of H1,1,k is

(1, 41−{k log 3/ log 4}}, −51−{k log 3/ log 5}}),

namely, in terms of k1, k2 above,

k1(k) = 41−{k log 3/ log 4}}, k2(k) = 51−{k log 3/ log 5}}.

By Schanuel’s conjecture, we see that the set

{(k log 3/ log 4, k log 3/ log 5) mod Z2}k≥1 ⊂ [0, 1]2

is the orbit of an irrational rotation. Therefore, it is dense in [0, 1]2. From here, we see that
there are infinitely many k such that (k1(k), k2(k)) ∈ D. For such a k, we have H1,1,k ∩
A3 × A4 × A5 �= ∅. This proves the claim with j1 = j2 = 1.

Now we know that there are infinitely many integers k so that H1,1,k ∩ A3 × A4 ×
A5 �= ∅. Now x′, y′, z′ contains only {0, 1} in their 3, 4, 5-ary expansions respectively.
However, they might not be integers. If we take the integer parts, we see that [x ′], [y′], [z′]
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FIGURE 2. The region Log(D).

contains only {0, 1} in their 3, 4, 5-ary expansions respectively and

[x′] + [y′] = [z′] + {z′} − {x′} − {y′}.
The above equation tells us that

{z′} − {x′} − {y′}
is an integer. Observe that {x′}, {y′}, {z′} are positive numbers whose 3, 4, 5-ary expan-
sions (respectively) contain only digits 0 and 1. Thus we see that

{x′} ∈ (0, 1/2], {y′} ∈ (0, 1/3], {z′} ∈ (0, 1/4].

This implies that

− 5
6 < {z′} − {x′} − {y′} ≤ 1

4 .

The only integer in this range is 0. Thus, we see that

{z′} − {x′} − {y′} = 0

and

[x′] + [y′] = [z′].

From here, the result follows from Schanuel’s conjecture.
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Now, although we strongly do not believe it, it can be the case that 1, log 3/ log 4,
log 3/ log 5 are Q-dependent. Then the rotation on T2 generated by the translation vector
(log 3/ log 4, log 3/ log 5) degenerates to an irrational rotation on a subtorus of dimension
one. To be more precise, suppose that there are integers k1, k2, k3 such that

k1
log 3
log 4

+ k2
log 3
log 5

+ k3 = 0.

Neither k1 nor k2 is zero. For example, suppose that k1 = 0, then this implies that
1, log 3, log 5 are not Q-linearly independent, which is not possible. For convenience, we
write a = log 3/ log 4, b = log 3/ log 5. We see that

k1a + k2b = −k3.

We can find non-zero coprime integers l1, l2 such that

l1a + l2b = c ∈ Q. (7)

Here, c �= 0 since otherwise log 5/ log 4 = a/b ∈ Q, which is not the case. Since
gcd(l1, l2) = 1, it is possible to find S ∈ SL2(Z) with entries

S =
(

l1 l2

l′1 l′2

)
.

Thus, S is a well-defined invertible map T2 → T2. Let k be an integer and consider the
point (ka, kb) ∈ T2. Now, we see that

S(ka, kb) = (l1ka + l2kb, l′1ka + l′2kb) mod Z2

= (kc, k(l′1a + l′2b)) mod Z2.

It is simple to check that l′1a + l′2b /∈ Q for otherwise, both a, b are rational, which is
impossible.

We identify T2 with [0, 1]2 by letting

(x, y) mod Z2

be the unique point (x′, y′) ∈ [0, 1)2 such that (x′, y′) − (x, y) ∈ Z2. Under this identifica-
tion, the closure {S(ka, kb)}k≥0 is a union of vertical line segments in [0, 1]2. In particular,
it contains the vertical line {x = 0} ∩ [0, 1]2. Performing S−1, we see that {(ka, kb)}k≥0

contains the line

L0 = S−1({x = 0}) = {(x, y) ∈ T2 : l1x + l2y = 0}.
Although, in general, L0 is a union of line segments in [0, 1]2, we will call it to be a line. In
fact, it is actually a line in T2. Since c �= 0, we write c = p/q or c = −p/q with positive
integers p, q so that gcd(p, q) = 1. Then, with similar arguments as above, we see that
{(ka, kb)}k≥0 also contains

Lt = {(x, y) ∈ [0, 1]2 : l1x + l2y ∈ Z + t}
for t ∈ {1/q, 2/q, . . . , (q − 1)/q}.
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Next, we use our knowledge of the set D in Figure 1. We want to choose an integer k
such that

Vk = (4−{k log 3/ log 4}+1, 5−{k log 3/ log 5}+1) ∈ D.

The closure of Vk , k ≥ 1 is a union of curves. After performing the logarithmic map Log :
(x, y) → (1 − log x/ log 4, 1 − log y/ log 5), those curves become line segments. As we
discussed above, {Vk}k≥1 contains the line L0.

Recall that neither l1 nor l2 is zero. To find Vk ∈ D, it is enough to find k so that

({k log 3/ log 4}, {k log 3/ log 5}) ∈ Log(D).

To do this, it is enough to show that at least one of the lines

Lt , t ∈ {0, 1/q, 2/q, . . . , (q − 1)/q}
intersect the interior of Log(D). If this is done, then we can find infinitely many k so that
Vk ∈ D. The region Log(D) is illustrated in Figure 2.

In order that the line L0 avoids Log(D), both l1, l2 cannot be too large. First, Log(D) ∩
{y = 0} has length bigger than 0.5. Since L0 contains points (0, 1), (1/|l1|, 1), . . . ,
((|l1| − 1)/|l1|, 1), (1, 1), we see that |l1| < 2. Therefore, l1 = ±1. Without loss of
generality, we can assume that l1 = 1. Then we can consider possible values for l2. We
see that l2 < 0. Otherwise if l2 > 0, L0 must contain a line segment starting from (1, 0) to
the boundary {x = 0} and this line segment must intersect the interior of Log(D) unless
it is horizontal, which is not possible. Similarly, as long as l2 ≤ −3, L0 contains a line
segment starting from a point (1, r), r ∈ [0, 1/3] to the boundary {x = 0} and this line
segment must intersect the interior of Log(D). Thus we see that all possible values for l2

are −1, −2.
Now, we consider all possible values for c = p/q. We see that (t , 0) ∈ Lt for t ∈

{1/q, . . . , (q − 1)/q}. Then with a similar argument as above, we see that q < 2.
Therefore, q = 1. This implies that c ∈ Z.

In conclusion, in order that Vk ∈ D for at most finitely many integers k, we must have

l1a + l2b ∈ Z

for l1 = 1, l2 = −1 or − 2. It can be checked directly that

log 3
log 4

− log 3
log 5

= 0.109875 + e1,

log 3
log 4

− 2
log 3
log 5

= −0.572731 + e2,

where |e1|, |e2| < 0.001. Thus, the numbers on the left-hand side above are not integers.
From here, the proof is finished.

We discuss more on Theorem 2.5. First, we remark that with the same proof, one
can also show that the conclusion holds with (3, 4, 5) being replaced with (3, 4, 7).
More generally, let l ≥ 1 be an integer. Let D = {0, . . . , l}. We want to consider the set
(ND

b1
+ ND

b2
) ∩ ND

b3
for b1, b2, b3 ≥ l + 1. In this case, under Schanuel’s conjecture, it is
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possible to show that

(ND
b1

+ ND
b2

) ∩ ND
b3

is infinite as long as

l

b1 − 1
+ l

b2 − 1
+ l

b3 − 1
≥ 1,

and 1, log b1, log b2, log b3 are Q-linearly independent. Again, for specific cases,
Schanuel’s conjecture may not be required. For example, when l = 2, it is possible to
check that the above statement holds for (b1, b2, b3) = (4, 5, 6).

Lastly, we are going to prove Theorem 2.7. Before that, we first show the following
results.

LEMMA 5.1. Let b ≥ 3 be an integer and let B = {1, 2, . . . , b − 1}. Consider the set

AB
b = {x ∈ [0, 1] : some b-ary expansion of x contains only digits in B}.

Then we have S(AB
b ) = (b − 2)/(b − 1). Moreover, let k ∈ {0, 1, . . . , b − 2}. Consider

the set

ÃB
b = AB

b ∩ [0, (b − k)/b].

Then, S(ÃB
b ) = S(AB

b ).

Remark 5.2. The second conclusion is special for our self-similar set AB
b . We need to cut

AB
b at the ‘right places’. For general Cantor sets, cutting out a small portion may decrease

the thickness dramatically.

Proof. The first conclusion follows from Lemma 3.6. Indeed, by applying the symmetry
x ∈ R → −x ∈ R to the set AB

b , we obtain a set for which Lemma 3.6 can be used.
For the second conclusion, we can use the self-similarity of AB

b . First, let [a, 1] be
the convex hull of AB

b (this determines the value for a ∈ (0, 1/b)). Then we see that
[a, (b − k)/b] is the convex hull of ÃB

b . Observe that AB
b ∩ [1/b, 2/b], . . . , AB

b ∩ [(b −
k − 1)/b, (b − k)/b] are translated copies of each other. The largest gaps of ÃB

b are located
inside each of those copies. From here, we see that

S(ÃB
b ) = (b − 2)/(b − 1).

LEMMA 5.3. Let δ1, δ2 ∈ (0, 1) numbers so that δ1 < δ2. Let C ⊂ [0, 1] be a Cantor set
with Conv(C) �= [0, 1], S(C) > 1 − δ1, and |Conv(C)| > 1 − δ1. Consider the set AB

b as
in Lemma 5.1. Then for each δ2 ∈ (0, 1), as long as δ1 is small enough, for all sufficiently
large b > 1, there is a compact set C′ ⊂ C ∩ AB

b satisfying

|Conv(C′)| > 1 − δ2,

S(C′) > 1 − δ2.

Moreover, there is a number c > 0 such that for linear maps T : x → rx + t , T ′ : x →
r ′x + t ′ with r , r ′ ∈ (1 − c, 1 + c) and t , t ′ ∈ (−c, c), there is a compact set C′ ⊂ T (C) ∩
T ′(AB

b ) ∩ [0, 1] satisfying the above properties as well.
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Proof. We want to use Theorem 3.3. The issue is that Conv(C) ∩ Conv(AB
b ) may

contain C or AB
b . Observe that Conv(AB

b ) = [ab, 1] with limb→∞ ab → 0, and that
limb→∞ S(AB

b ) → 1. So as long as b is large enough, C, AB
b are not contained in each

other’s gaps. Let Conv(C) = [c, d] ⊂ [0, 1].
If c = 0, then d < 1 and we see that Conv(C) ∩ Conv(AB

b ) contains neither C nor AB
b .

Using Theorem 3.3, we conclude that as long as δ1 is small enough and b is large enough,
there is a compact set C′ ⊂ C ∩ AB

b such that

S(C′), |Conv(C′)|
are both greater than 1 − δ2.

If c > 0, by making b sufficiently large, we can then assume that ab < c. As
|Conv(C)| > 1 − δ1, we see that d > 1 − δ1. Let k be the smallest integer with
(b − k)/b < d. Consider the set ÃB

b as in Lemma 5.1. We see that

|Conv(ÃB
b )| = b − k

b
− ab > 1 − δ1 − 1

b
− ab.

This number can be made arbitrarily close to 1 − δ1 by making b sufficiently large (in a
manner that depends on δ1). Now since Conv(C) ∩ Conv(ÃB

b ) contains neither C nor ÃB
b ,

by Theorem 3.3, we see that (for small enough δ1 and large enough b) there is a compact
set C′ ⊂ C ∩ ÃB

b ⊂ C ∩ AB
b such that

S(C′), |Conv(C′)|
are both greater than 1 − δ2.

For the second conclusion, notice that if Conv(C) ∩ Conv(AB
b ) does not contain

C, AB
b , then as long as c is small enough, Conv(T(C)) ∩ Conv(T′(AB

b )) does not contain
T (C), T ′(AB

b ). The same conclusion holds with AB
b being replaced with ÃB

b . Thus it is
possible to find a compact subset C′ ⊂ T (C) ∩ T ′(AB

b ) satisfying the desired properties.
However, later on, it is more convenient to consider T (C) ∩ T ′(AB

b ) ∩ [0, 1]. We cannot
simply take C′ ∩ [0, 1] as the thickness can decrease significantly. Instead, we consider
the set T ′(AB

b ) ∩ [0, 1]. The set T ′(AB
b ) is a self-similar set. The scaling ratio is still 1/b.

The first level branches are intervals of length r ′/b. It can happen that some of the first
level branches are not contained in [0, 1]. If this is the case, we simply ignore them. We
can choose c to be so small that we only need to ignore at most one first level branch.

As a result, as long as c is small enough, we obtain a subset ˜̃
AB

b ⊂ T ′(AB
b ) ∩ [0, 1] whose

thickness is the same as AB
b and whose diameter is at least 1 − 3r ′/b. We can then consider

the intersection between T (C) and ˜̃
AB

b as in the case when T , T ′ are the identity map. From
here, the result follows.

Proof of Theorem 2.7. Let 3 ≤ b1 ≤ · · · ≤ bk be (not necessarily distinct) integers. We
need them to be sufficiently large in a manner that will be discussed later in the proof.

For each i ∈ {1, . . . , k}, we construct the set

Ai = {x ∈ (0, ∞) : some bi-ary expansion of x does not contain digit 0}.
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If x has two possible bi-ary expansions, we will take the finite expansion. Thus the bi-ary
expansion for x > 0 is well defined. It is sufficient to consider the set

A = A1 ∩ A2 · · · ∩ Ak .

We claim that it is enough to prove that A is unbounded. Indeed, if A is unbounded, then we
can find arbitrarily large x whose base b1, . . . , bk expansions do not have digit zero. We
simply take the integer part of x to obtain an integer [x] whose base b1, . . . , bk expansions
do not have digit zero. Since A is unbounded, the proof finishes.

Now it is enough to prove that A is unbounded. We define the integer sequence

aj = (a1,j , . . . , ak,j ), j ≥ 0

by starting with

a0 = (1, . . . , 1).

For j ≥ 1, define a1,j = b1a1,j−1. For i ∈ {2, . . . , k}, we define ai,j = biai,j−1 if
ai,j−1/a1,j < b−1

i and ai,j = ai,j−1 otherwise. In this way, we have

aj = (b
j

1 , b
[j logb2

b1]
2 , . . . , b

[j logbk
b1]

k ) = b
j

1(1, b
−{j log b2b1}
2 , . . . , b

−{j log bk
b1}

k ).

The rotation on Tk−1 with the rotation angle

v =
(

log b1

log b2
, . . . ,

log b1

log bk

)

may not be an irrational rotation on Tk−1. Nonetheless, we claim that the orbit

nv mod Zk−1, n ≥ 0

can be close to the origin, that is, d(nv, Zk−1) can be arbitrarily small. In fact,
{nv mod Zk−1}k≥0 is a set of form T ′ + P , where T ′ is a (possibly trivial) subtorus
and P is a finite set of rational points containing (0, . . . , 0). It is possible that T ′ is a
singleton in which case, nv mod Zk−1 is periodic. In any case, T ′ contains the origin and
this proves the claim.

Let δ′ ∈ (0, 1/2). Let ε > 0 be a small number such that

b−ε
i > 1 − δ′, i ∈ {1, 2, . . . , k}. (8)

Notice that there are infinitely many n such that d(nv, Zk−1) < ε. Let n be such an integer.
Then we see that

an = bn
1(1, v2, v3, . . . , vk),

where vi ∈ (1 − δ′, 1]. For each i ∈ {1, 2, . . . , k}, let

Bi,n = Ai ∩ [ai,j , biai,j ].

We claim that if b1, b2, . . . , bk are sufficiently large, then B1,n ∩ B2,n ∩ · · · ∩ Bk,n �= ∅.
The most convenient way to look at this is to rescale the whole situation by a factor of b−n

1 .
After doing this, B1,n fits to the interval [1, b1] while B2,n, . . . , Bk,n fit to the intervals
[v2, b2v2], . . . , [vk , bkvk]. As one can choose δ′ to be arbitrarily small, v1, v2, . . . , vk
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can be arbitrarily close to one. It is enough to consider the situation with 1 = v1 = v2 =
v3 = · · · = vk . Indeed, both the thickness and the gap conditions in Theorems 3.2, 3.3
are preserved if one rescales and translates each Cantor set slightly. We will come back to
this point shortly. If v1, v2, . . . , vk are exactly 1, we see that it is enough to consider the
intersection

C1 ∩ C2 · · · ∩ Ck ,

where Ci = Ai ∩ [1, bi]. The idea is to use Theorem 3.3 and Lemma 5.3 inductively.
We find large (in diameter) and thick (in normalized thickness) Cantor sets contained in
C1 ∩ C2, C1 ∩ C2 ∩ C3, . . . , C1 ∩ · · · ∩ Ck . After that, we show that this procedure still
goes through if one changes C1, . . . , Ck by applying affine maps. This helps us to restore
the information when v1, . . . , vk are almost but not exactly one.

Now, Ci is a self-similar set with contraction ratio 1/bi . Indeed,

Ci ∩ [1, 2], Ci ∩ [2, 3], . . . , Ci ∩ [bi − 1, bi]

are all scaled copies of Ci . The largest bounded gaps of Ci are of length 1/(bi − 1) and
S(Ci) = (bi − 2)/(bi − 1).

We now start to show the base step for the inductive argument. It is simple to check that
C1 ∩ [1, 2], C2 ∩ [1, 2] satisfy the gap condition of Theorem 3.3. Thus for each δ > 0, we
can find a compact subset C1,2 ⊂ C1 ∩ C2 ∩ [1, 2] with S(C1,2) > 1 − δ as long as b1, b2

are sufficiently large.
We now show that the diameter of C1,2 can be arbitrarily close to one at the cost of

making b1, b2 sufficiently large. By Lemma 5.3, we see that as long as b1, b2 are large
enough, there is a compact set C1,2 ⊂ C1 ∩ C2 ∩ [1, 2] with thickness and diameter both
at least 1 − δ.

We can apply the same argument inside the intervals [2, 3], [3, 4], . . . , [b1 − 1, b1].
We now replace C1,2 with the union of all such compact sets (in [1, 2], [2, 3], . . .).

To summarize, for each δ > 0, as long as b1, b2 are large enough, we can
find a compact set C1,2 ⊂ C1 ∩ C2 so that for each l ∈ {1, . . . , b1 − 1}, S(C1,2 ∩
[l, l + 1]), |Conv(C1,2 ∩ [l, l + 1])| are at least 1 − δ.

From the second part of Lemma 5.3, we conclude that for each δ > 0, as long
as b1, b2 are large enough, there is a number c > 0 such that for all affine maps
T1, T2 with scaling ratios c-close to one and translations c-close to zero, there is a
compact set C1,2 ⊂ T1(C1) ∩ T2(C2) such that for each l ∈ {1, . . . , b1 − 1}, S(C1,2 ∩
[l, l + 1]) and |Conv(C1,2 ∩ [l, l + 1])| are both larger than 1 − δ. Moreover, it is possible
to see that Conv(C1,2 ∩ [l, l + 1]) �= [l, l + 1]. This is because if c is small enough,
then Conv(T1(C1) ∩ [l, l + 1]) �= [l, l + 1], Conv(T2(C2) ∩ [l, l + 1]) �= [l, l + 1]. This
finishes the base step.

We now perform the induction. Let j ∈ {2, 3 . . . , k − 1}. Suppose that for each δ > 0,
as long as b1, . . . , bj are large enough, there is a number c > 0 such that as long as
r1, . . . , rj ∈ (1 − c, 1 + c), t1, . . . , tj ∈ (−c, c), we can find a compact set

C1,2,...,j ⊂
j⋂

i=1

Ti(Ci)
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such that for each l ∈ {1, . . . , b1 − 1}, we have that Conv(C1,2...,j ∩ [l, l + 1]) �=
[l, l + 1], and that

S(C1,2,...,j ∩ [l, l + 1]), |Conv(C1,2,...,j ∩ [l, l + 1])|
are greater than 1 − δ, where Ti , i ∈ {1, . . . , j} are linear maps x → rix + t1. We call this
statement to be ST (j). Under ST (j), inside each interval [l, l + 1], l ∈ {1, . . . , b1 − 1},
it is possible to use Lemma 5.3 for C1,2...,j and Cj+1. From here, we see that ST (j + 1)

holds.
Finally, by induction, we see that ST (k) holds. Thus there is a small number c > 0 such

that as long as r1, r2, . . . , rk ∈ (1 − c, 1 + c) and t1, t2, . . . , tk ∈ (−c, c), we can find a
compact set

C1,2,...,k ⊂
k⋂

i=1

Ti(Ci)

such that for each l ∈ {1, . . . , b1 − 1}, C1,2,...,k ∩ [l, l + 1] has thickness at least
1 − δ and diameter at least 1 − δ, where Ti : x → rix + ti . In particular, we see that⋂k

i=1 Ti(Ci) �= ∅. Now we can choose δ′ in equation (8) to be small enough according
to c. We can then rescale this situation by bn

1 and conclude that

B1,n ∩ B2,n ∩ · · · ∩ Bk,n �= ∅.

We proved that for sufficiently large b1, . . . , bk , there are infinitely many n ≥ 0 such that

B1,n ∩ B2,n ∩ · · · ∩ Bk,n �= ∅.

This implies that A = A1 ∩ A2 ∩ · · · ∩ Ak is unbounded, and the proof of the theorem is
finished.
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