
J. Appl. Probab. 60, 1069–1078 (2023)
doi:10.1017/jpr.2022.111

AN EFFICIENT METHOD FOR GENERATING A DISCRETE UNIFORM
DISTRIBUTION USING A BIASED RANDOM SOURCE

XIAOYU LEI,∗ The University of Chicago

Abstract

We present an efficient algorithm to generate a discrete uniform distribution on a set of
p elements using a biased random source for p prime. The algorithm generalizes Von
Neumann’s method and improves the computational efficiency of Dijkstra’s method. In
addition, the algorithm is extended to generate a discrete uniform distribution on any
finite set based on the prime factorization of integers. The average running time of the
proposed algorithm is overall sublinear: O(n/ log n).

Keywords: Random numbers; probability theory

2020 Mathematics Subject Classification: Primary 68W20
Secondary 68Q87

1. Background

Sampling a target distribution from a random physical source has many applications.
However, the random physical sources are often biased with unknown distribution, while we
need a specific target distribution in applications. Therefore, an efficient algorithm to generate
a target distribution from a random source is of great value. A simple method to generate a
fair binary distribution from an unfair binary source with an unknown bias was first proposed
in [7], and this method has served as a precursor of a series of algorithms to generate a target
distribution from an unknown random source.

Von Neumann’s method was improved in [3, 6] to generate a fair binary distribution from
a biased random source. From the point of view of probability theory, [2] formally defined the
kind of random procedure that can generate a target distribution. Elias also designed an infinite
sequence of sampling schemes, with computational efficiency decreasing to the theoretical
lower bound, though without providing an executable algorithm for the method. Elias’ method
needs to generate Elias’ function first; such a preprocessing step needs an exponential space
cost and at least a polynomial time cost [5], and thus Elias’ method is computationally costly
and inefficient.

Another method, for generating a uniform distribution on a set of p elements for p prime,
was provided in [1], though Dijkstra’s method is computationally inefficient. Indeed, in real-
izing this method we need a preprocessing step to generate and store a function which maps
outcomes from the random source to some target values. However, such a preprocessing step
needs an exponential time and space cost.

In this article we propose a new algorithm based on the idea of Dijkstra’s method. The
proposed algorithm does not need a preprocessing step, and is thus computationally efficient.

Received 2 May 2022; revision received 29 September 2022.
∗ Postal address: 5747 South Ellis Avenue, Chicago, Illinois, USA. Email: leixy@uchicago.edu

© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust.

1069

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.111&domain=pdf
https://doi.org/10.1017/jpr.2022.111

1070 X. LEI

Algorithm 1 A1: Von Neumann’s algorithm generating a fair binary random variable.

Input: A sequence of flips from a biased coin X
Output: Integer 0 or 1
1: Flip the coin twice.
2: If the result is either HH or TT, then discard the two coin flips and return to step 1.
3: If the result is HT, return A1 = 0. If the result is TH, return A1 = 1

The article is organized as follows: In Section 2, we briefly recast Von Neumann’s method
as a starting point, as well as a special case of our algorithm. In Section 3, we heuristically
construct and explain our algorithm. In Sections 4 and 5 we formally propose our algorithms
and verify them theoretically. In Section 5, we prove that our algorithm has overall sublinear
average running time. Another novel proof of Theorem 1 is given in Appendix A.

2. Introduction to Von Neumann’s method

Let X ∈ {H, T} denote the outcome of a biased coin flip with probability
a= P(X =H) ∈ (0, 1) of getting a head and probability b= P(X = T)= 1− a of get-
ting a tail. Let {Xi : i≥ 0} be independent and identically distributed (i.i.d.) copies of X. Von
Neumann proposed an algorithm A1 to generate a fair binary random variable with distribution
P(A1 = 0)= P(A1 = 1)= 1

2 as shown in Algorithm 1 [7].
Let {Yi = (X2i, X2i+1) : i≥ 0} be i.i.d. outcomes of pairs of flips, and τ be the first time that

Yi ∈ {HT, TH}; then

P(A1 = 0)= P(Yτ =HT)= P(Y0 =HT)

P(Y0 ∈ {HT, TH}) =
P((X0, X1)=HT)

P((X0, X1) ∈ {HT, TH}) =
1

2
.

This derivation shows that A1 generates a fair binary distribution. Below, we propose an effi-
cient algorithm to generate a uniform distribution on p elements for p prime. At each cycle we
flip a coin p times; the algorithm returns a number in {0, . . . , p− 1} except when the p flips
are all heads or all tails, analogous to Von Neumann’s method.

3. Heuristic explanation for the main idea

Let the random vector Xn = (X0, . . . , Xn−1) ∈ {H, T}n be the outcome of n flips. Let
Nhead(Xn) denote the head count in Xn, and Shead(Xn) denote the rank sum of heads in Xn,
with rank beginning from 0:

Nhead(Xn)=
n−1∑
i=0

1{Xi=H}, Shead(Xn)=
n−1∑
i=0

i · 1{Xi=H}. (1)

For example, when X5 = (H, H, T, H, T), we have Nhead(X5)= 3 and Shead(X5)= 4.
For a specific sequence of n flips xn = (x0, . . . , xn−1) ∈ {H, T}n as an observation of Xn,

if Nhead(xn)=∑n−1
i=0 1{xi=H} = k, then the probability of getting xn in n flips is P(Xn = xn)=∏n−1

i=0 P(Xi = xi)= akbn−k, which only depends on the head count k. As a result, for 0≤ k≤ n,
there are exactly

(n
k

)
outcomes of n flips containing k heads, each with the same probability

akbn−k. Let
Sk = {A⊂ {0, 1, . . . , n−1} : |A| = k}, (2)

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

Generating a discrete uniform distribution using a biased random source 1071

Algorithm 2 A: Generating a discrete distribution on the set {0, . . . , n−1}.
Input: A number n; a sequence of flips from a biased coin X
Output: Integer in {0, . . . , n−1}
1: Flip the coin n times; denote the outcome by Xn ∈ {H, T}n.
2: If the result is either all heads or all tails, discard the outcome and return to step 1.
3: Else return m when Xn ∈ Am.

where |A| means the cardinality of set A. Thus, Sk is the set of all subsets of {0, . . . , n−1}
containing k elements. Note that |Sk| =

(n
k

)
, and each element in Sk corresponds to one and

only one outcome of n flips with k heads in the following way:

{i1, . . . , ik} ∈ Sk ←→ · · ·H · · ·H · · ·H · · ·
i1 i2 ··· ik

, (3)

where each it corresponds to the rank of an appearance of a head in the itth flip of n, i1 < i2 <

· · ·< ik. As a result, we have the one-to-one correspondence

Sk ←→ {xn ∈ {H, T}n : Nhead(xn)= k}, (4)

and we also have P(Xn = xn)= akbn−k for all xn ∈ Sk. Note that in the correspondences
(3) and (4) we do not distinguish the left- and right-hand sides in the derivation below. And the
equivalences are frequently used in the following proof.

Inspired by Von Neumann’s algorithm, we consider an algorithm generating a distribution
on the set {0, . . . , n−1}. At each cycle we flip the coin n times, then the algorithm returns
a number in {0, . . . , n−1} except when the outcome is all heads or all tails. Define the sets
{Am : 0≤m≤ n−1} to be a disjoint partition of

⊔
1≤k≤n−1 Sk,

n−1⊔
k=1

Sk =
n−1⊔
m=0

Am,

where
⊔

means disjoint union. The algorithm, A, is formally stated in Algorithm 2.
Let {Yi = (Xin, . . . , Xin+n−1) : i≥ 0} be i.i.d. outcomes of n flips, and τ be the first time Yi

is neither all heads nor all tails. Then, for 0≤m≤ n−1, we have

P(A=m)= P(Yτ ∈ Am)

= P(Xn ∈ Am)

P(Xn ∈ Sk for some 1≤ k≤ n−1)

=
∑n−1

k=1 P(Xn ∈ Am ∩ Sk)∑n−1
k=1 P(Xn ∈ Sk)

=
∑n−1

k=1 |Am ∩ Sk|akbn−k∑n−1
k=1 |Sk|akbn−k

. (5)

Let us consider a special case of algorithm A where n is a prime, p. The reason for focusing
on prime p comes from the fact in number theory that p | (pk)= |Sk| for all 1≤ k≤ p− 1, where
the symbol |means ‘divides’. Then, for each k, we can partition Sk into disjoint p parts of equal
size. For 1≤ k≤ p− 1, assume that the choice of sets {Am : 0≤m≤ p− 1} satisfies

|A0 ∩ Sk| = · · · = |Ap−1 ∩ Sk| = 1

p
|Sk|, (6)

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

1072 X. LEI

Algorithm 3 A2(p): Generating a discrete uniform distribution on {0, . . . , p− 1}.
Input: A prime number p; a sequence of flips from a biased coin X
Output: Integer in {0, . . . , p− 1}
1: Flip the coin p times, denote the outcome by Xp ∈ {H, T}p.
2: If the result is either all heads or all tails, discard the outcome and return to step 1.
3: Else return Shead(Xp) (mod p).

where the disjoint {Am ∩ Sk : 0≤m≤ p− 1} partition Sk into p subsets of equal size. Based on
(5) and (6), for 0≤m≤ p− 1 we have

P(A=m)=
∑p−1

k=1 |Am ∩ Sk|akbn−k∑p−1
k=1 |Sk|akbn−k

=
∑p−1

k=1
1
p |Sk|akbn−k∑p−1

k=1 |Sk|akbn−k
= 1

p
,

which means algorithm A returns a uniform distribution on {0, . . . , p− 1}.
What remains is to find {Am : 0≤m≤ p− 1} satisfying (6). We can always first partition

Sk into p subsets of equal size, and then define {Am ∩ Sk : 0≤m≤ p− 1} to be these subsets,
like the proposed method in [1]. However, this method has two disadvantages. First, there
are many ways of partitioning Sk into subsets of equal size, and there is no widely accepted
standard. Second, partitioning {Sk : 1≤ k≤ p− 1} and designing {Am : 0≤m≤ p− 1} need
excessive time and storage cost, because there are 2p different outcomes of p flips we need
to handle, which grows exponentially as p increases. A preprocessing step of exponential time
is unacceptable for an efficient algorithm.

With the help of the modulo p function, there is an ingenious way of designing {Am : 0≤
m≤ p− 1} to satisfy (6). Based on the correspondence in (3), for 0≤m≤ p− 1 we can indeed
choose

Am = {Xp : Shead(Xp)=m (mod p)}, (7)

as we show in the next section.

4. Generating a uniform distribution on p (prime) elements

We provide an algorithm, A2(p), that generates a discrete uniform distribution on the set
{0, . . . , p− 1}, where p is a prime, as listed in Algorithm 3.

We need the following lemma before proving the main theory.

Lemma 1. Let p be a prime number, and let {Sk : 1≤ k≤ p− 1} consist of all subsets of
{0, . . . , p− 1} having k elements. For fixed k, let {Sm

k : 0≤m≤ p− 1} be defined by

Sm
k =

{
{i1, . . . , ik} ∈ Sk :

k∑
j=1

ij =m (mod p)

}
. (8)

Note that Sm
k = Am ∩ Sk, where Am is defined in (7).

Then we have∣∣Sm
k

∣∣= 1

p

(
p

k

)
for all 1≤ k≤ p− 1 and 0≤m≤ p− 1.

Proof. For fixed 1≤ k≤ p− 1, consider a permutation on Sk defined by

f ({i1, . . . , ik})= {(i1 + 1) (mod p), . . . , (ik + 1) (mod p)}.

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

Generating a discrete uniform distribution using a biased random source 1073

Denote by f 0 the identity function id. Let 〈f 〉 be the subgroup generated by f . We need to show
that 〈f 〉 = {f 0 = id, f 1, . . . , f p−1}. Since we know that f p = id, we need to show f s �= id for
1≤ s≤ p− 1.

If f s = id for some 1≤ s≤ p− 1, then we have

f s({i1, . . . , ik})= {(i1 + s) (mod p), . . . , (ik + s) (mod p)} = {i1, . . . , ik},
from which we have

∑k
j=1 (ij + s)=∑k

j=1 ij (mod p). The equality above shows p | ks, which
implies p | k or p | s, leading to a contradiction since 1≤ k, s≤ p− 1.

Let the group 〈f 〉 act on Sk. For {i1, . . . , ik} ∈ Sk, let O{i1,...,ik} denote the orbit of {i1, . . . , ik}
under group action,

O{i1,...,ik} = {{is1, . . . , isk} := f s({i1, . . . , ik}) for 0≤ s≤ p− 1}.
The theory of group action tells us that Sk can be divided to disjoint orbits with equal size p.
In addition, for any {i1, . . . , ik} ∈ Sk, when s varies from 0 to p− 1,

∑k
j=1 isj (mod p) takes all

values in {0, . . . , p− 1}.
If the claim above were not true, then there would exist 0≤ s1 < s2 ≤ p− 1 such that

k∑
j=1

is1
j =

k∑
j=1

is2
j (mod p) ⇒

k∑
j=1

(ij + s1)=
k∑

j=1

(ij + s2) (mod p).

The equality above shows that p | k(s2 − s1), which implies p | k or p | (s2 − s1), leading to a
contradiction since 1≤ k, s2 − s1 ≤ p− 1.

The argument above shows that Sk is a union of disjoint orbits of equal size p. And in
each orbit, for 0≤m≤ p− 1, there exists one and only one element belonging to Sm

k , which
means the {Sm

k : 0≤m≤ p− 1} partition Sk into p subsets with equal size, and the proof is
complete. �

Figure 1 presents a special case to show the idea of the proof, with p= 7 and k= 3; the
proof proceeds as shown.

Next, we prove the main theorem on algorithm A2(p).

Theorem 1. Let X denote a biased coin with probability a ∈ (0, 1) of getting a head, and
probability b= 1− a of getting a tail. For a prime p, A2(p) has the following properties:

(i) A2(p) terminates in a finite number of flips with probability 1. The algorithm returns a
uniform distribution on {0, . . . , p− 1} : P(A2(p)=m)= 1/p for all 0≤m≤ p− 1.

(ii) The expected number of flips terminating A2(p) is p/(1− ap − bp), which means that
when p is large, the average running time approximates to the linear O(p).

(iii) By letting p= 2, A2(2) is exactly Von Neumann’s algorithm A1.

Proof. Let Xp = (X0, . . . , Xp−1) be the outcome of p flips of a biased coin, a random vari-
able taking values in {H, T}p. Based on the correspondences in (3) and (4), and the definition
of Sm

k in (8), each xp ∈ {H, T}p corresponds to one and only one element in Sm
k by Nhead(xp)= k

and Shead(xp)=m (mod p) for some k and m, where Nhead(xp) and Shead(xp) in (1) are the count
and rank sum of heads respectively. Recall the definition of Sk in (2); then, by Lemma 1, the
{Sm

k : 0≤m≤ p− 1} partition Sk into p subsets with equal size.

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

1074 X. LEI

FIGURE 1. An example of the method in the proof.

Let {Yi = (Xip, . . . , Xip+p−1) : i≥ 0} be i.i.d. outcomes of p flips, and τ be the first time Yi

is neither all heads nor all tails. Then, for 0≤m≤ p− 1, we have

P(A2(p)=m)= P(Shead(Yτ)=m (mod p))

= P(Shead(Xp)=m (mod p) |Xp is neither all heads nor all tails)

= P(Shead(Xp)=m (mod p), Nhead(Xp)= k for some 1≤ k≤ p− 1)

P(Nhead(Xp)= k for some 1≤ k≤ p− 1)

=
∑p−1

k=1 P(Shead(Xp)=m (mod p), Nhead(Xp)= k)∑p−1
k=1 P(Nhead(Xp)= k)

=
∑p−1

k=1 |Sm
k |akbp−k∑p−1

k=1 |Sk|akbp−k
= 1

p
,

where the last identity is implied by the fact that |Sm
k | = 1

p

(p
k

)= 1
p |Sk|.

Let E denote the expected number of flips terminating A2(p). Hence, E satisfies

E= pP(Nhead(Xp)= k for some 1≤ k≤ p− 1)+ (p+ E)P(Xp is all heads or all tails),

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

Generating a discrete uniform distribution using a biased random source 1075

Algorithm 4 A3(n): Generating a discrete uniform distribution on the set {0, . . . , n−1}.
Input: A sequence of flips; an integer n; a set M containing all prime factors of n, where
each prime repeats as many times as its multiplicity in the decomposition of n
Output: Integer in {0, . . . , n−1}
1: Set r= 0.
2: while M �= ∅ do
3: Take a prime p′ out of M.
4: n= n/p′.
5: Run A2(p′), and let t denote the return value.
6: r= r+ t · n.
7: return r.

from which we have

E= p

1− P(Xp is all heads or all tails)
= p

1− ap − bp
.

�

We have also come up with a creative and short proof for Theorem 1(i) using random
variables in the residue class Zp; see Appendix A.

5. Generating a uniform distribution on n elements

Let n be any positive integer with prime factorization n=∏s
i=1 pti

i . Let M be the set of
all prime factors of n considering multiplicity, which means pi appears ti times in M. The
algorithm A3(n) shown in Algorithm 4 generates a discrete uniform distribution on the set
{0, . . . , n−1} in an iterative way.

The following theorem shows the validity of algorithm A3(n).

Theorem 2. For any integer n, A3(n) has the following properties:

(i) A3(n) terminates in a finite number of flips with probability 1. It returns a uniform
distribution on {0, . . . , n−1} : P(A3(n)=m)= 1/n for all 0≤m≤ n−1.

(ii) When n has prime factorization
∏s

i=1 pti
i , the expected number of flips terminating

A3(n) is
s∑

i=1

tipi

1− api − bpi
.

Therefore, the average running time is approximately
∑s

i=1 tipi for large n.

(iii) The overall order of the average running time is O(n/ log(n)).

Proof. To show (i), note that each outcome of A3(n) corresponds to one and only one
sequence of outcomes of A2(pi). For this fact, first we consider a simplified case where
n= p1p2 is a product of two prime numbers p1 and p2, and p1 may equal p2.

Given n= p1p2, then M= {p1, p2}. Suppose we first get p1 from M and then p2. Then
the outcomes A2(p1)=m1 and A2(p2)=m2 correspond to the outcome A3(n)=m1p2 +m2.
Since 0≤m1 ≤ p1 − 1 and 0≤m2 ≤ p2 − 1, we have the range for A3(n):

0≤A3(n)≤ (p1 − 1)p2 + p2 − 1= n−1,

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

1076 X. LEI

which shows that A3(n) ∈ {0, . . . , n−1}. Note that, for 0≤m≤ n−1, there exists one and only
one pair of (m1, m2) as (⌊

m

p2

⌋
, m−

⌊
m

p2

⌋
p2

)

satisfying the equation m=m1p2 +m2 (0≤m1 ≤ p1 − 1, 0≤m2 ≤ p2 − 1). So, the outcome
A3(n)=m corresponds to the outcomes A2(p1)=m1 and A2(p2)=m2.

For the general case n=∏s
i=1 pti

i , based on the same method as above, we conclude that, for
each m, there exists a unique set {mp′ : p′ ∈M} such that the outcome A3(n)=m corresponds
to the outcomes A2(p′)=mp′ (p′ ∈M). Therefore, the probability of A3(n)=m is

P(A3(n)=m)=
∏

p′∈M
P(A2(p′)=mp′)=

s∏
i=1

(
1

pi

)ti
= 1

n
for all 0≤m≤ n−1.

To prove (ii), note that, for n=∏s
i=1 pti

i , the set M contains each prime factor pi ti times.
By the iterative construction of A3(n), we need to run A3(pi) once every time we pick pi from
M. Based on Theorem 1(ii), the expected number of flips for A2(pi) is pi/(1− api − bpi), from
which we conclude that the expected number of flips terminating A3(n) is

s∑
i=1

tipi

1− api − bpi
.

To analyze the average running time of the algorithm A3(n), define the function c(n)=∑s
i=1 tipi to be the sum of prime factors of n multiplied by their multiplicity, which is a good

approximation to the average running time of A3(n) according to Theorem 2(ii). We see that,
for prime numbers, the complexity is linear. For composite numbers, the complexity is sub-
linear. For n= pt1

1 , since c(n)= t1p1, the average running time is almost log(n). We have the
following theorem from number theory [4, Corollary 2.11]:

lim
N→∞

∣∣∣∣
{

2≤ n≤N : c(n) <
n

log1−ε (n)

}∣∣∣∣ / N = 1 for all 0 < ε < 1.

So, we have an overall sublinear O(n/ log(n)) complexity for the algorithm A3(n). �

Remark 1. In [2], another method for generating a discrete uniform distribution on the set
{0, . . . , n− 1} was proposed. Elias’ method needs Elias’ function mapping outcomes of the
random source to target values. However, unlike Theorem 2(iii), the efficiency of Elias’ method
is defined by complicated mathematical formulas without analytic and concise form, and is thus
hard to analyze theoretically. Besides, Elias’ method suffers the same problem as Dijkstra’s
method mentioned in Section 3. The computation of Elias’ function, an essential preprocessing
step of Elias’ method, is computationally inefficient, and the storage of Elias’ function is also
an excessive space cost.

Appendix A. A new proof for Theorem 1(i)

Consider random variables taking values in Zp = {0̄, . . . , p− 1}, where i represents the
residual class of i modulo p. Regard 0̄ as a tail and 1̄ as a head. Let X denote the outcome
of a flip satisfying P(X = 0)= a and P(X = 1)= b. Let X0, . . . , Xp−1 be independent copies

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

Generating a discrete uniform distribution using a biased random source 1077

of X. Define Xp = (X0, . . . , Xp−1) to be the outcome of p flips. We then have the following
equivalences:

Xp is all heads or all tails⇐⇒ Xi = 0̄ for all 0≤ i≤ p− 1

or Xi = 1̄ for all 0≤ i≤ p− 1

⇐⇒
p−1∑
i=0

Xi = 0̄,

Shead(Xp)=m(mod p)⇐⇒
p−1∑
i=0

i · Xi =m.

Also note that, for any permutation σ , we have (X0, . . . , Xp−1)
d= (Xσ (0), . . . , Xσ (p−1)),

since all the Xi are i.i.d. In the following, we let σ denote the special permutation

σ =
(

0 1 · · · p− 2 p− 1

1 2 · · · p− 1 0

)
.

For fixed t �= 0̄ ∈Zp, we have

P

(p−1∑
i=0

i · Xi = 0̄,

p−1∑
i=0

Xi = t

)
= P

(p−1∑
i=0

i · Xi +
p−1∑
i=0

Xi = t,
p−1∑
i=0

Xi = t

)

= P

(p−1∑
i=0

i+ 1 · Xi = t,
p−1∑
i=0

Xi = t

)

= P

(p−1∑
i=0

i+ 1 · Xσ (i) = t,
p−1∑
i=0

Xσ (i) = t

)

= P

⎛
⎝p−1∑

i=0

i · Xi = t,
p−1∑
i=0

Xi = t

⎞
⎠ .

Note that any t �= 0̄ can generate Zp. By iterating the derivation above, we have

P

(p−1∑
i=0

i · Xi = k,
p−1∑
i=0

Xi = t

)
= P

(p−1∑
i=0

i · Xi = s,
p−1∑
i=0

Xi = t

)
for all k, s ∈Zp.

Summing over t �= 0̄ on both sides of the above equation, we have, for k, s ∈Zp,

P

(p−1∑
i=0

i · Xi = k,
p−1∑
i=0

Xi �= 0̄

)
=
∑
t �=0̄

P

(p−1∑
i=0

i · Xi = k,
p−1∑
i=0

Xi = t

)

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

1078 X. LEI

=
∑
t �=0̄

P

(p−1∑
i=0

i · Xi = s,
p−1∑
i=0

Xi = t

)

= P

(p−1∑
i=0

i · Xi = s,
p−1∑
i=0

Xi �= 0̄

)
,

which implies, for k, s ∈Zp,

P

(p−1∑
i=0

i · Xi = k
∣∣∣ p−1∑

i=0

Xi �= 0̄

)
= P

(p−1∑
i=0

i · Xi = s
∣∣∣ p−1∑

i=0

Xi �= 0̄

)
.

This equality is equivalent to the statement

P(Shead(Xp)= k(mod p) |Xp is neither all heads nor all tails)

= P(Shead(Xp)= s(mod p) |Xp is neither all heads nor all tails)

for all 0≤ k, s≤ p− 1, as desired.

Acknowledgements

The author acknowledges Prof. Mei Wang at UChicago for helpful discussions and advice,
and thanks PhD candidate Haoyu Wei at UCSD for useful suggestions and kind support. The
author also acknowledges the editor of Journal of Applied Probability and the two anonymous
referees for their valuable comments and remarks.

Funding information

There are no funding bodies to thank relating to the creation of this article.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] DIJKSTRA, E. W. (1990). Making a fair roulette from a possibly biased coin. Inf. Process. Lett. 36, 193.
[2] ELIAS, P. (1972). The efficient construction of an unbiased random sequence. Ann. Math. Statist. 43, 865–870.
[3] HOEFFDING, W. AND SIMONS, G. (1994). Unbiased coin tossing with a biased coin. Ann. Math. Statist. 41,

341–352.
[4] JAKIMCZUK, R. (2012). Sum of prime factors in the prime factorization of an integer. Int. Math. Forum 7,

2617–2621.
[5] PAE, S. (2005). Random number generation using a biased source. Doctoral thesis, University of Illinois Urbana-

Champaign.
[6] STOUT, Q. F. AND WARREN, B. (1984). Tree algorithms for unbiased coin tossing with a biased coin. Ann. Prob.

12, 212–222.
[7] VON NEUMANN, J. (1951). Various techniques used in connection with random digits. J. Res. Nat. Bureau

Standards Appl. Math. 12, 36–38.

https://doi.org/10.1017/jpr.2022.111 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.111

	Background
	Introduction to Von Neumann"2019`s method
	Heuristic explanation for the main idea
	Generating a uniform distribution on p (prime) elements
	Generating a uniform distribution on n elements
	A new proof for Theorem 1(i)
	Acknowledgements
	Funding information
	Competing interests
	References

