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Abstract

Two sets A, B of positive integers are called exact additive complements if A + B contains all sufficiently
large integers and A(x)B(x)/x — 1. For A = {a) < ay < ---}, let A(x) denote the counting function of A and
let a*(x) denote the largest element in A ([1,x]. Following the work of Ruzsa [‘Exact additive comple-
ments’, Quart. J. Math. 68 (2017) 227-235] and Chen and Fang [ ‘Additive complements with Narkiewicz’s
condition’, Combinatorica 39 (2019), 813-823], we prove that, for exact additive complements A, B with
Qpy1/na, — o,

AX)B(x) —x >

ar(x) ( a*(x)
+ ol

A(x) Axy?

We also construct exact additive complements A, B with a,,,| /na, — oo such that

a*(x) ( a*(x) )

A(X)Bx) - x < A0 + (1 +o(1)) A2

) as x — +oo.

for infinitely many positive integers x.
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Keywords and phrases: exact additive complements, counting functions.

1. Introduction

Two sets A, B of positive integers are called additive complements, if A + B contains all
sufficiently large integers. Let A = {a; < a» < ---} be a set of positive integers. Denote
by A(x) the counting function of A and by a*(x) the largest element in A [1,x]. If
additive complements A, B satisfy

A(x)B(x) N
X

then we call such A, B exact additive complements. In 2001, Ruzsa [2] introduced
the following notation which is powerful for the proof of additive complements.
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Let m > a; be an integer and let k = A(m). Denote by L(m) the smallest number / for
which there are integers by, ..., b; such that the numbers a; + b;,1 <i<k,1 <j</,
contain every residue modulo m. Obviously, L(m) > m/k.

THEOREM 1.1 (Ruzsa [2]). If

Gl _, o, (1.1)
na,

then A has an exact complement.
THEOREM 1.2 (Ruzsa [2]). Let A be a set satisfying A(2x)/A(x) — 1. The following
are equivalent.

(a) A has an exact complement.

(b) A(m)L(m)/m — 1.

(c) Thereis a sequence m| <my < --- of positive integers such that A(m;1)/A(m;) — 1
and A(m;)L(m;)/m; — 1.

THEOREM 1.3 (Ruzsa [3]). For exact additive complements A, B with A(2x)/A(x) — 1,

a’(x)
A(x)

AX)Bx) —x = (1 +0(1)) as x — +oo.

In 2019, Chen and Fang [1] improved Theorem 1.3 by removing the exact condition.
Chen and Fang also showed in [1] that Theorem 1.3 is the best possible.

THEOREM 1.4 (Chen and Fang [1]). There exist exact additive complements A, B with
A(2x)/A(x) — 1 such that
a*(x)

A®BX) —x < (1 + 0(1)) e

for infinitely many positive integers x.
In this paper, under condition (1.1) from [2], we obtain the following result.

THEOREM 1.5. For exact additive complements A, B with (1.1),

A(X)B(x) —x >

a®) 0( a’(x)

A0 A(x)z) as x — +oo, (1.2)

Moreover, we also show that a*(x)/A(x)? is the best possible.

THEOREM 1.6. There exist exact additive complements A, B with (1.1) such that

()
A(X)B(x) —x — ‘2(;

lim inf
X—00 a*(x)
A(x)?

<L (1.3)
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2. Proofs of the main results

Let
ox,n)={@a,b):a+b=n,a,b<x,acA,be B}
and
o(x,n)={(a,b):b—a=n,a,b<x,acA,beB}.

The ideas used in the proofs of the main results come from [1-3]. We use the
following lemma of Ruzsa in the proof of Theorem 1.5.

LEMMA 2.1 [3, Lemma 2.1]. Let U and V be finite sets of integers and let
on)={wu,v):ueU,veV,u+v =n}
and
on) ={(u,v) :uelU,veV,v—u=nj.
Then
> em-1> % PRCOESH
o(n)>1 6(n)>1

PROOF OF THEOREM 1.5. Assume the contrary. Suppose that (1.2) does not hold.
Then there exist a positive number dyp(< 1) and a sequence x| < xp < -+ < Xp < ---
such that

a(x) o at(x)

AQ)BOx) — xp < A0 A

2.1)

We know that

2k
ACOBG) —xc= >0 T=xp= > o(u,n) - x
n=1

as<xy,b<xy

a€A,beB
Xk 2xk

= D @aen -+ Y o)
n=1 n=x;+1
o(x.n)>1 o (xe,m)>1
2xx 2x

= D wawen -+ Y 1
n=1 n=xi+1
o(x,n)=1 o(xpn)=1
2xy 2xx

= D @wn-H+ Y L
n=1 n=x;+1
o (xg,n)>1 o(xg,n)>1
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Since a*(x;) € A and a*(x;) + b > x; for all b € B with x; — a*(x;) < b < xy,

2x, k

D, 1> Blw)—Blu—a' ().
n=x;+1
o (xg,n)=1

Thus,

AQ)B(x) — xi = Z (o(xg, n) = 1) + B(xy) — B(xx — a™(xp)).
o‘(xkfln)>l

From Ruzsa’s Lemma 2.1,

1
Ax)B(xp) = x> A0 Zn: (6(xk, n) = 1) + B(x) — Blxy — a” (xi)). (2.2)

S(xg,n)>1

Let
D={ab):acAbeBa<b<x—a ()
Then
D@m= = > @em) -1 IDl-w-a' @)+ 1. (23)

n n
O(xg,n)>1 6(xx,n)=1

Now we need a lower bound for |D|. We consider the following two cases.

Case 1: a*(xi) > %xkfor infinitely many k. By (1.1),

6 *
A(_O a (x")) =A(x;) — 1 for all sufficiently large integers k.
5 Alxe)
Thus, in this case, by Theorem 1.3 and A(x)B(x)/x — 1,
80 " (xe) 0o a”(xt)
D| > A >A(_ )(B -a _B(_ ))
LD Y S Erny GBI VR C vy
2 ‘;((fk")) <b<xg—a*(xy)
beB
o a@* () \ of S0 @ (i)
= (A(x) - DBy — a* —4— H_ )
(ACq) — DB — a” (xt)) 5 AGg) ) \5 A(xg)

= A(x)B(xp) + ACq) (B — a” (xz)) — B(xx)) — B(xi — a*(xx))
0o a*(xx)\ [ 00 a*(xx)
A5 5 )

5 AGw )\ 5 AG)
1) * ) do a*

> x+ (1 - ZO)Z ((jf)) +AGOBO = 0" () = Bw) - B@ () = 55 ((;f))
6 k

>+ (1- %) ((j:)) + AG) By — d*(5)) — B)
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do\a*(xx) S0 a*(x)
- (1 * _)A(xk) "7 A
360 a*(xx)

== A0 + AQa)(B(xy — a*(x)) — B(xy))

for sufficiently large k. It follows from (2.2) and (2.3) that

X 380 a*(xy) . X —a') + 1
AC)B(x) — x> A(xkk) - TOA(xkl;z + B(xx —a”(xx)) — B(xy) — k A(XkI;
+ B(xx) — B(xi — a* (xx))
a*(xy) a*(xx)

Ao AG?
for sufficiently large k, which is in contradiction with (2.1).

Case 2: a*(x;) < %xkfor infinitely many k. By (1.1),

A( 8o a”(xx)

) = A(x;) — 1 for all sufficiently large integers k.
4 A(xk)

Thus, in this case, by Theorem 1.3 and A(x)B(x)/x — 1,

0o a*(xx)
DI > Z (b B ZO Zx(;zc) )

S5 a*(xg
%0 20 p e vi—ar (i)

2 Aly)

beB
6o a*(xx) 0o a*(xy)
T e 2, A(b 3 Amk))+ Z A~ A(xf))
2 A <b<;‘e;;k)+ T ATy a’(x)+ A(zéngq a*(x)
= (s - DB w0 + P4 - ()
+ A B — "))~ B{a" ) + ‘Z)‘;((;f))))

= afeeo el §500) s 50)

8o a* (X)) (6o a* (xz) .
- A(? A(x) )3(3 A(x) ) +AC)B(E) + A By — @ (x)) — B(x))
S0 @ () o a”(xx)
( R2hiniyve ))( @ (x) + 4A(x))
B
= ApBw) + B0y — a” () = B(xy) - B(“( 0+ Z((jk; )

AR )
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6 *
>n+@—iaigg+A@MMm—f@m—Bmﬁ
_O+§wf@w+%%$_§%f@w
10 A(xy) 5 A(x)
96y a*
/m—igigg+A@w@@rﬁﬂmﬁ—B@w,

for sufficiently large k. It follows from (2.2) and (2.3) that

xXe 960 a*(x) . X —a (o) + 1
AQ)B(x) = x> Ao 10 Ay T B(xi — a”(xi)) — Bxy) — T
+ B(x) — B(xi — a” (xp))
a(x) o a(x)

AV AGk)?

for sufficiently large k, which is in contradiction with (2.1).
This completes the proof of Theorem 1.5. ]

PROOF OF THEOREM 1.6. Leta; = 1 and a; = 4. We construct the sequence a3, ay, . . .
with

aps1 > n'a, 2.4

and a sequence ny,ny,... such that aj,a,...,a, form a complete residue system
modulo ny and ny | a,,. We get such a sequence by a greedy algorithm: let n; =2,
and if ny,ny,...,n; are already defined, then let ny, = a,,. Since ay,...,a,, are
distinct residues modulo a,,, we can choose a1, ...,ay,,, such that g, > m*a,,
for m =ny,...,my1 — 1, ay, |aank and ay,...,a,,, form a complete residue system
modulo 74 1.

For every positive integer k, we further take

Ay,
b] = Ny, b2=2nk,...,bank/nk = n—-nk.
k

Then a; + bj for 1 <i < p,1<j < a,/ng, form a complete residue system modulo ay,.
From the definition of L(a,, ),

Clnk
Llan) = % (2.5)

For the set A = {a},?, and every positive integer k, define g by

qdk = \‘ngl J, that iS, gk k4ak < gy < (qk + 1) X k4ak. (26)
k
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Define the same sets A,B as in [2, Theorem 3] (replacing my by a;) and write
Ay = AN, ar]. Take Uy C [1,ax] so that |Uy| = L(ax) and Ay + Uy contains every
residue module a;. Let

Vi=U;+ {(qk - l)ak, qrak, (qk + Day,..., {MJ@} and B = U Vi.
o k=1

Let grax < x < gr+1ax+1- The sequence {g},” | defined in (2.6) is increasing to infinity
by (2.4) and A(grayr) ~ A(ay). (Infact, A(gray) = k = A(ar) by (2.6).) By the same proof
as in [2, Theorem 3], A, B are additive complements and A(x)B(x) ~ x. Thus, the set A
with (2.4) has an exact complement B. Obviously, such an A with (2.4) satisfies (1.1).

Finally, we prove that (1.3) holds for infinitely many x;. For x with gza; < x <
(Qk+1 - 1)ak+1, we have k < A(.X') <k+1and

a1

k
X qia;
Bx)<||—|- 2L — | —qi-1 +2|L(a;_1). 2.7
@< 2]-a+ )(ak>+;({ | - @i+ 2)ean 2.7)
By Theorem 1.2(b), L(ay-1) < 2ax-1/(k — 1) for large k. From (2.6),

Zk: ({%J —qgi-1 + 2)L(aH) < (k- 1)iqfalk = O(qrax) = O((kafi)‘* )

It is easy to see that, for large k,

qiar Qi+ 1
(- DL < 25K _oQk+UJ.

It follows from (2.7) that

X Ai+1
B(x) < ~L +4 ) 2.8
0 < L)+ 0\ s 2.8)

Choose x; = ay,, +1, where ny is the index satisfying (2.5). Then by (2.8),
a*(xy) Xk Xk ( Xk )
A )B(xy) —x — —— < +1)— —x; — + O
() B(xi) — xi AC) (nk )nk S et 1
Xk Xk
= + 0( )

A(x)? A(x)3

This completes the proof of Theorem 1.6. ]
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