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A classic lift decomposition (Von Kármán & Sears, J. Aeronaut. Sci., vol. 5, 1938,
pp. 379–390) is conducted on potential flow simulations of a near-ground pitching
hydrofoil. It is discovered that previously observed stable and unstable equilibrium
altitudes are generated by a balance between positive wake-induced lift and negative
quasi-steady lift while the added mass lift does not play a role. Using both simulations
and experiments, detailed analyses of each lift component’s near-ground behaviour
provide further physical insights. When applied to three-dimensional pitching hydrofoils
the lift decomposition reveals that the disappearance of equilibrium altitudes for
A (aspect ratio) < 1.5 occurs due to the magnitude of the quasi-steady lift outweighing
the magnitude of the wake-induced lift at all ground distances. Scaling laws for the
quasi-steady lift, wake-induced lift and the stable equilibrium altitude are discovered.
A simple scaling law for the lift of a steady foil in ground effect is derived. This scaling
shows that both circulation enhancement and the velocity induced at a foil’s leading edge
by the bound vortex of its ground image foil are the essential physics to understand steady
ground effect. The scaling laws for unsteady pitching foils can predict the equilibrium
altitude to within 20 % of its value when St (Strouhal number) < 0.45. For St ≥ 0.45 there
is a wake instability effect, not accounted for in the scaling relations, that significantly
alters the wake-induced lift. These results not only provide key physical insights and
scaling laws for steady and unsteady ground effects, but also for two schooling hydrofoils
in a side-by-side formation with an out-of-phase synchronization.
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1. Introduction

Many animals improve their locomotion energetics or increase their range by swimming
or flying near the seafloor or water surface, thereby taking advantage of ground effect
(Baudinette & Schmidt-Nielsen 1974; Blake 1979; Hainsworth 1988; Webb 1993, 2002;
Park & Choi 2010). When wings/fins move steadily near a boundary, such as those
of gliding animals or fixed-wing aircraft, it is well-known that a steady ground effect
increases their lift and reduces their induced drag (Widnall & Barrows 1970; Yang, Yang &
Li 2009; Boschetti et al. 2010; Yang, Lin & Yang 2010; Lee & Lee 2011; He, Qu & Agarwal
2015; Qu et al. 2015; Tremblay Dionne & Lee 2018; Baddoo et al. 2020). However, when
swimmers or flyers oscillate their appendages near a boundary, like flatfish swimming near
the ocean floor, they experience an unsteady ground effect.

Unsteady ground effect produces a host of hydrodynamic phenomena. For example,
foils oscillating near a boundary experience a thrust or cruising speed enhancement
with no penalty to their propulsive efficiency (Tandida 2001; Iosilevskii 2008; Quinn,
Lauder & Smits 2014a; Wu et al. 2014; Fernández-Prats et al. 2015; Dai, He & Zhang
2016; Park, Kim & Sunga 2017), and vortex wakes are deflected near boundaries due
to their image vortices (Quinn et al. 2014b; Kurt et al. 2019; Zhong et al. 2019).
Moreover, stable equilibrium altitudes arise where an increase/decrease in a swimmer’s
altitude causes a negative/positive lift force, pulling the swimmer back to a stable altitude
(Quinn et al. 2014b; Mivehchi, Dahl & Licht 2016). Kurt et al. (2019) showed that
pitching foils swimming freely in the cross-stream direction do indeed settle into a stable
near-ground equilibrium altitude under no control. By showing good agreement between
the equilibrium altitudes calculated through inviscid potential flow simulations and those
measured in viscous water channel experiments, they determined that stable equilibrium
altitudes are an inviscid phenomenon (Kurt et al. 2019). Zhong et al. (2019) broadened
our understanding of these equilibrium altitudes by studying hydrofoils of varying aspect
ratio. They discovered that near-ground equilibrium altitudes can be stable, unstable or
absent, depending upon the aspect ratio and Strouhal number.

The equilibrium altitude can determine the relative spacing between the swimmer
and the boundary, which can significantly affect the hydrodynamics and propulsive
performance of near-ground swimmers. To better design and control the equilibrium
altitude, now, it is essential to understand the underlying physics that give rise to
equilibrium altitudes. In this study, we uncover the fundamental forces that balance to
generate equilibrium altitudes. Following the classic force decomposition of von Kármán
& Sears (1938) and Mccune & Tavares (1993), we advance our understanding in two
important ways: (i) we reveal the mechanism behind equilibrium altitudes and (ii) we
leverage this understanding to develop scaling laws to predict equilibrium altitudes from
only the input kinematics. Previously, Kurt et al. (2019) proposed that stable equilibrium
altitudes are generated by a balance of the added mass lift, wake-induced lift and
quasi-steady lift. However, their force decomposition approach implicitly assumed that
the local effective flow velocity acting on a foil was unaltered due to the presence of the
ground. In this study, we no longer make this assumption and, in fact, we determine that
this effect is integral to our understanding of the mechanism behind equilibrium altitudes.
We will show that, upon deeper investigation, equilibrium altitudes exist due to a balance
between the positive wake-induced lift and negative quasi-steady lift, with added mass lift
playing precisely zero role – effectively a scallop theorem result (Purcell 1977) for the
time-averaged lift. In this way, our new understanding of the stable equilibrium altitude
mechanism supersedes that which was proposed in Kurt et al. (2019).
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Figure 1. Illustration of a hydrofoil pitching near the ground. An inertial frame of reference fixed to the
undisturbed fluid is denoted by (X, Z) while a body-fixed frame of reference is denoted by (x, z). An image
system enforces a no-flux boundary condition at the ground plane (Z = 0).

2. Methods

2.1. Problem formulation
In this study, a simple model of a pitching hydrofoil is used to represent a swimmer
propelling itself in an unsteady ground effect (figure 1). The foil is a 7 % thick
teardrop-shaped cross-section (Godoy-Diana, Aider & Wesfreid 2008; Quinn et al. 2014b;
Kurt et al. 2019) with a chord length of c = 0.095 m. The foil undergoes sinusoidal
pitching about its leading edge

θ(t) = θ0 sin(2πft), (2.1)

where θ(t) is the instantaneous pitching angle, θ0 is the pitching amplitude, f is the pitching
frequency and t is time. The pitching angle is considered positive for clockwise pitching
rotations about the leading edge. The trailing-edge peak-to-peak amplitude A is defined by

A = 2c sin θ0, (2.2)

and its dimensionless counterpart is A∗ = A/c. The reduced frequency and the Strouhal
number are defined as

k = fc
U∞

, St = fA
U∞

, (2.3a,b)

where U∞ is the swimming speed of the foil. The ground proximity, D, is considered as the
distance from the foil’s leading edge to the ground plane (figure 1) and its dimensionless
form is D∗ = D/c. Finally, the lift force L is normalized by the dynamic pressure to give
lift coefficient,

CL = L
1/2ρcsU2∞

, (2.4)

where ρ is the fluid density while the span length s is set to unity for two-dimensional
simulations, and s =Ac for three-dimensional simulations, with A being the aspect
ratio. Its time-averaged form is given as

C̄L = L̄
1/2ρcsU2∞

, (2.5)

where L̄ is the time-averaged lift.
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2.2. Numerical methods
The simulations model a potential flow that is assumed to be irrotational, incompressible
and inviscid. This flow is governed by Laplace’s equation, ∇2Φ∗ = 0, where Φ∗ is the
perturbation velocity potential in an inertial frame fixed to the undisturbed fluid. A no-flux
boundary condition, ∇Φ∗ · n = 0, where n is the surface normal vector, must be satisfied
on the body surface and the ground plane at Z = 0, and a far-field boundary condition
such that flow perturbations decay far away from the body and its wake surfaces must be
satisfied.

Following previous studies (Katz 1985; Quinn et al. 2014b; Moored 2018; Kurt et al.
2019; Zhong et al. 2019; Mivehchi et al. 2021), this potential flow problem is solved
numerically using an unsteady boundary element method with the method of images
used to enforce the ground plane boundary condition. In this method, the foil, its wake
surfaces and their images are discretized into a finite number of boundary elements. The
general solution to the potential flow problem is then reduced to finding a distribution
of constant-strength doublet and source elements that satisfy the body and ground
plane boundary conditions. The boundary elements also implicitly satisfy the far-field
boundary condition. The body boundary condition is imposed using a Dirichlet condition
at collocation points centred on each body element, but pushed within the body along the
element’s surface normal. Also, an explicit Kutta condition is applied where the vorticity
at the trailing edge is zero by tuning the strength of a wake boundary element at the
trailing edge. At each time step, the trailing-edge element is shed with a strength that
satisfies Kelvin’s circulation theorem and it remains constant thereafter. A wake roll-up
algorithm is implemented to advect the wake elements with the local velocity calculated
by the desingularized Biot–Savart law (Krasny 1986; Zhu et al. 2002; Moored 2018; Akoz,
Mivehchi & Moored 2021). Therefore, a matrix representation of the boundary condition
is formed and solved for the body doublet strengths at each time step. The perturbation
velocity over the surface of the body is then determined by a local differentiation of the
perturbation potential.

Following the work of Moored (2018), the pressure exerted on the body is calculated by
the unsteady Bernoulli equation as

P(x, z, t) = −ρ
∂Φ∗

∂t
+ ρ(urel + U∞) · ∇Φ∗ − ρ

(∇Φ∗)2

2
, (2.6)

where urel is the local surface velocity of the pitching foil relative to the body-fixed frame
of reference. The inviscid instantaneous resultant force is then simply an integration of
the instantaneous pressure field acting over the body surface. Finally, the resultant force is
decomposed into its lift and drag directions. For more details see Moored (2018).

2.3. Force decomposition approach
Following the classic force decomposition of von Kármán & Sears (1938) and Mccune
& Tavares (1993), the lift force can be decomposed as the sum of the added mass
lift, quasi-steady lift and wake-induced lift, which are denoted by (·)a, (·)q and (·)w,
respectively. We apply this decomposition approach directly to the pressure field defined
by the unsteady Bernoulli equation.

To calculate the added mass pressure, Pa, potential flow simulations are employed where
there are no wake elements shed and no Kutta condition enforced. Under these conditions,
the first term in (2.6) is known as the added mass pressure. To calculate the quasi-steady
pressure, Pq, potential flow simulations are employed where there are no wake elements
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shed, but there is a Kutta condition enforced (modelled in the boundary element method
with a trailing-edge panel that extends far from the foil, effectively to infinity). Then the
combined second and third terms in (2.6) provide the quasi-steady pressure. The combined
added mass and quasi-steady pressures are

Pa(x, z, t) + Pq(x, z, t) =

⎡
⎢⎢⎣−ρ

∂Φ∗

∂t︸ ︷︷ ︸
added mass

+ ρ(urel + U∞) · ∇Φ∗ − ρ
(∇Φ∗)2

2︸ ︷︷ ︸
quasi-steady

⎤
⎥⎥⎦

NO WAKE

.

(2.7)

The wake-induced pressure, Pw, is calculated as the difference between the total pressure,
P (calculated from the full simulations described in § 2 by (2.6)), and the combined added
mass and quasi-steady pressures

Pw(x, z, t) = P(x, z, t) − [Pa(x, z, t) + Pq(x, z, t)
]
. (2.8)

Finally, each force component is acquired by integrating its corresponding pressure field
over the body. Then the added mass, quasi-steady and wake-induced lift coefficients can
be defined and they sum to the total lift coefficient

CL = CLa + CLq + CLw . (2.9)

2.4. Force decomposition validation
Before applying the force decomposition approach to simulations of a pitching foil in
ground effect, we first validated it against Theodorsen’s solution, which provides a test
case where the added mass, quasi-steady and wake-induced terms are readily identified
(Bisplinghoff, Ashley & Halfman 2013). In Theodorsen (1935), the lift force generated by
a foil pitching about its leading edge is

L = ρπ
c2

4

(
U∞θ̇ + c

2
θ̈
)

︸ ︷︷ ︸
added mass

+ ρπU∞c
(

U∞θ + 3c
4

θ̇

)
︸ ︷︷ ︸

quasi-steady

+ [C(k) − 1] ρπU∞c
(

U∞θ + 3c
4

θ̇

)
︸ ︷︷ ︸

wake-induced

, (2.10)

where C(k) is the lift deficiency function. Full boundary element simulations and their
decomposition counterparts were performed as described in §§ 2.2 and 2.3 on a thin
airfoil (1 % thick teardrop shape), undergoing small pitching amplitudes of motion about
its leading edge (A∗ = 0.002), with a frozen wake (no wake roll-up algorithm applied),
and across a wide reduced frequency range of k = 0.1, 1 and 10. Figure 2 shows that all
three lift components precisely match the Theodorsen solution across a wide range of k.
Even though Theodorsen’s solution makes several assumptions, it is worth noting that the
force decomposition approach itself is generic and has no underlying assumptions.

2.5. Experimental methods
We conducted four groups of experiments to facilitate the force decomposition analysis,
including a two-dimensional (2-D) static ground effect test, a 2-D unsteady high-frequency
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Figure 2. Validation of the force decomposition approach against Theodorsen’s solution across a wide reduced
frequency range of 0.1 ≤ k ≤ 10. The panel rows show: (a) added mass lift, (b) wake-induced lift and
(c) quasi-steady lift.

test (for wake deflection analysis) and a 2-D and a 3-D unsteady ground effect
test. All hydrofoils had a teardrop cross-section with a chord length of 0.095 m to
ensure consistency with simulations, and were 3D-printed with solid ABS (Acrylonitrile
Butadiene Styrene). A stainless steel driveshaft with a diameter of 6.35 mm was used
to pitch the hydrofoil at its leading edge, with the pitch angle θ being prescribed as
θ0 sin(2πft). The driveshaft was driven by a high-torque digital servo motor (Dynamixel
MX64), while an absolute encoder (US Digital A2K 4096 CPR) was utilized to verify
the angle of the actual motion. The forces and moments generated were measured using a
six-axis force-torque sensor (ATI-Mini 40: SI-40-2). The lateral forces were time averaged
over 30 seconds or 20 oscillation cycles to determine the mean lift force for static and
unsteady tests. The incoming flow speed was set to 143 mm s−1 using an ultrasonic
flowmeter (Dynasonics Series TFXB), resulting in a chord-based Reynolds number of
13 500. For ground effect tests, an additional splitter plate was used instead of a tunnel
sidewall to control the boundary layer thickness (figure 3). A boundary layer thickness of
δ99 % ≈ 7.5 mm (δ99 %/c = 0.08) was measured using particle image velocimetry at the
position aligned with the leading edge of the hydrofoil.

For all 2-D tests, we used a hydrofoil of aspect ratio 3 in a nominally 2-D flow condition,
which was achieved by installing a horizontal splitter plate and a surface plate near the tips
of the hydrofoil. The gap between the hydrofoil tips and the surface/splitter plate was less
than 5 mm and surface waves were also minimized by the presence of the surface plate.
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Figure 3. Schematic of experiment set-up equipped with removable splitter plate.

Varying k Varying St

k 0.55–1 1
St 0.3 0.25–0.55
D∗ 0.25–1.5 0.25–1.5

Table 1. Simulation variables investigated in the current study.

To validate the 3-D force decomposition, we repurposed the 3-D unsteady ground effect
data that were previously published in Zhong et al. (2019). We tested hydrofoils with four
aspect ratios: 1, 1.5, 2 and 2.5, and assessed their performance over a range of ground
proximities. Each trial was repeated three times.

3. Force decomposition results

A pitching foil in ground effect and constrained to fixed ground distances was simulated
across a wide range of dimensionless ground proximities, reduced frequencies and
Strouhal numbers, and force decomposition was applied as described in § 2.3. The
simulation variables are detailed in table 1.

3.1. Mechanism behind the generation of stable and unstable equilibria
The pitching foil examined in this study is effectively out of ground effect by D∗ = 1.5 for
cases with St < 0.45, and by D∗ = 2 for cases with higher St. In fact, a typical reverse von
Kármán vortex street, indicative of thrust production in an infinite domain, is observed
when D∗ = 1.5, k = 1 and St = 0.3 (figure 4a). As the foil approaches the ground to
a distance of D∗ = 0.4 (k = 1 and St = 0.3), the wake vortices deflect away from the
ground (figure 4b), an effect that has been attributed to the image vortex system (Quinn
et al. 2014b).

The total lift for all of the simulations is presented for varying reduced frequency
and ground distance (St = 0.3; figure 4c), and for varying Strouhal number and ground
distance (k = 1; figure 4d,e). A common trend emerges in all of the in-ground effect
data except when St > 0.475: the lift is positive close to the ground (pushing a foil away
from the ground) and negative far from the ground (pulling a foil towards the ground),
crossing zero (stable equilibrium altitude; solid lines in figure 4) between these two
regimes. As observed previously, the stable equilibrium altitude increases with increasing
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0

–5

0

1

–1

5

Total lift CL

(a) (b)

(c) (d) (e)

( f ) (g) (h)

(i) ( j) (k)

Added mass CLa Wake-induced CLw
Quasi-steady CLq

Figure 4. Both the stable and unstable equilibrium altitudes are generated by a balance between the positive
wake-induced lift and negative quasi-steady lift. (a) Wake plots for an out-of-ground effect foil. (b) Wake
plots for a near-ground foil. (c) Total lift for varying k with St = 0.3. (e) Total lift for varying St with k = 1.
(d) Zoom-in plot highlighting the unstable equilibrium altitude. ( f,i) Added mass lift. (g, j) Wake-induced lift.
(h,k) Quasi-steady lift. Note that the stable equilibrium altitude is marked by a solid line, the stable equilibrium
altitude for a foil unconstrained in the cross-stream direction (mass of the foil is chosen to be m = 2.68ρsc2) is
marked by the dashed line and the unstable equilibrium altitude is marked by the dotted line.

St and decreasing k (Kurt et al. 2019), and an unstable equilibrium altitude emerges
when St > 0.475 (dotted line in figure 4d), which increases slightly with increasing St
in a narrow near-ground region (Zhong et al. 2019). Altitudes below/above the unstable
equilibria produce a negative/positive lift, demonstrating that it is indeed unstable. For the
first time, this unstable equilibrium altitude is observed in simulation, which corroborates
previous experimental findings (Zhong et al. 2019).

The dashed lines in figures 4(c) and 4(e) show the unconstrained simulation results from
Kurt et al. (2019). As discovered in Cochran-Carney (2018), the observed difference in the
equilibrium altitudes of the constrained and unconstrained cases is ultimately caused by a
difference in the unconstrained simulation’s dimensionless mass (m∗ ≡ m/(ρsc2) = 2.68)
compared with that of the constrained simulations (m∗ = ∞). The finite mass foils of
the unconstrained simulations have a finite heaving recoil while the effectively infinite
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Figure 5. Force decomposition for k = 1: (a) St = 0.25 and (b) St = 0.55.

mass foils of the constrained simulations have zero heaving recoil, thereby altering the
force production between the two cases and, consequently, their equilibrium altitudes.
Despite these differences, the constrained equilibria show all of the same trends as the
unconstrained equilibria with only a small shift in their D∗ location. Moreover, this study
will focus on constrained simulations by design since these allow us to investigate the
forces outside of equilibrium conditions, which is essential to fully understand the stability
properties of the equilibria.

The decomposition of the lift coefficient into its added mass, wake-induced and
quasi-steady components (figure 4 f –k) shows clear trends in the components for all ground
proximities and kinematics. The added mass lift is always precisely zero and therefore does
not play a role in generating equilibrium altitudes (figure 4 f,i). For in-ground effect data,
the wake-induced lift is always positive (figure 4g, j) while the quasi-steady lift is always
negative (figure 4h,k), revealing that both unstable and stable equilibria are generated by a
balance between positive wake-induced lift and negative quasi-steady lift. The magnitudes
of the wake-induced and quasi-steady lift increase with increasing St and decreasing k.

The data contours in figure 4 reveal the basic mechanism behind the existence of
equilibria, but they do not provide a clear picture as to why there can be both a stable
and an unstable equilibria for a given St and k. To better understand this feature of the
data, the lowest and highest St cases with k = 1, St = 0.25 and St = 0.55, respectively,
are presented in figure 5. For low St (figure 5a), the total lift only crosses zero at one
D∗, producing a stable equilibrium. This equilibrium altitude is stable since, for altitudes
above equilibrium, the magnitude of the quasi-steady lift is greater than the wake-induced
lift, leading to a net negative total lift force, and for altitudes below equilibrium the
magnitude of the wake-induced lift is greater than the quasi-steady lift, leading to net
positive total lift. For high St (figure 5b), the total lift is seen to cross through two
equilibrium altitudes. Now, it becomes clear that the wake-induced lift magnitude curve
crosses through the quasi-steady lift magnitude curve at two ground distances because
the wake-induced lift has a nearly linear increase with decreasing ground distance while
the quasi-steady lift has an exponential growth for D∗ < 1.1. In fact, the slopes of the
lift components at the equilibrium points determine their stability: when |dC̄Lq/dD∗| <

|dC̄Lw/dD∗| the equilibrium altitude is stable and when |dC̄Lq/dD∗| > |dC̄Lw/dD∗| the
equilibrium altitude is unstable.

Although this analysis has revealed the basic mechanism behind the generation of stable
and unstable equilibrium altitudes, it also raises several questions. How does added mass
lift integrate precisely to zero when we expect peak negative added mass lift to be larger in
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Figure 6. The added mass lift as a function of time for varying ground distance with k = 1 and St = 0.3.
Out-of-ground effect data are represented by D∗ = ∞.

magnitude than the peak positive added mass lift since the foil will get closer and further
from the ground throughout an oscillation cycle? Why is the wake-induced lift positive for
a wake deflected away from a ground plane when, based on momentum flux arguments,
we would expect the opposite? Why is the quasi-steady lift negative in nature? To address
these questions, the following sections will examine each force component more deeply.

3.2. Added mass lift
As shown in the previous section, the time-averaged added mass lift is precisely zero for all
of the simulation cases. This is expected for solutions to the linear potential flow equations
with harmonic boundary conditions – a ‘scallop theorem’ result (Purcell 1977). However,
for the in-ground effect data it is well-known that, as the ground distance decreases, there
is an increase in the added mass of a foil (Brennen 1982; Mivehchi et al. 2021). This effect
should amplify both the positive and negative peaks in the added mass lift, but should more
greatly amplify the negative peak, which occurs at the bottom of the down stroke when the
foil is closest to the ground. Considering only these peak forces, one would imagine that
the time-averaged added mass lift would be negative, yet we know that it is zero from
the data in § 3.1, so how does the added mass lift integrate precisely to zero and satisfy a
scallop theorem?

Figure 6 presents the time-varying added mass lift at four ground distances when k = 1
and St = 0.3. Indeed, as the ground distance decreases, both the positive and negative
peaks grow in magnitude, and it is true that the negative peak is amplified more than
the positive peak, creating a net negative lift in the peak forces. However, it is now clear
that the negative peak becomes sharper while the positive peak becomes broader. When
integrating the lift over a full cycle, this effect counteracts the net imbalance in the positive
and negative peak forces, leading to a precisely zero time-averaged force.

Although our simulations were for potential flow, the phenomenon of the time-averaged
added mass lift being precisely zero is also valid in viscous flow. According to Graham,
Pitt Ford & Babinsky (2017), in viscous flow, the added mass lift of a foil is the time
derivative of the quasi-steady vortex impulse in the cross-stream direction, which is

La = −ρ
dIz

dt
, and Iz = −

∫
xγ0 dS, (3.1a,b)

where x is the coordinate of the body-fixed frame of reference, γ0 is the bound quasi-steady
vortex sheet, S is the body surface and Iz is the vortex impulse. These equations suggest
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that, since the quasi-steady bound circulation is a periodic signal for a foil periodically
pitching near the ground, then the vortex impulse is also a periodic signal. When the
added mass lift is then time averaged over a period of motion, it is necessarily zero since
it is the time derivative of the vortex impulse.

3.3. Wake-induced lift
In § 3.1, the wake-induced lift was found to be positive for in-ground effect foils regardless
of their ground distance and kinematics. This is surprising, since the wake vortices deflect
away from the ground and in the time average they also produce a momentum jet deflected
away from the ground (Quinn et al. 2014b). If one imagines a control volume around a
foil and considers only the momentum flux term, the deflection of the jet away from the
ground should have an associated negative lift force, that is, a force pushing the swimmer
toward the ground (Kurt et al. 2019), and yet the data from § 3.1 show otherwise.

To understand this phenomenon more deeply we employ a control volume analysis. To
begin, we will consider a simple out-of-ground effect case where a deflected wake is also
generated very much akin to the deflected wake of in-ground effect foils. This case is
useful since it will help unambiguously show the connection among the wake-induced lift,
the pressure field and the momentum flux, and it presents an opportunity to experimentally
verify the trends in the wake-induced lift. With this basic knowledge in mind, we will then
proceed to the in-ground effect case.

When a 2-D pitching foil oscillates at sufficiently high Strouhal number, it is well
documented (Marais et al. 2012; Das, Shukla & Govardhan 2016) that there is a wake
instability that causes the wake vortices to form vortex dipoles and, in turn, deflect the
wake. Figure 7(a) shows an example of this, where a pitching foil is operated at St = 0.55
and A∗ = 0.3. Since this pitching foil is out of ground effect and has a symmetric motion,
then the time-averaged added mass and quasi-steady lift must both necessarily be zero.
However, due to the wake deflection the time-averaged wake-induced lift will be non-zero
and, in fact, it will be the only component thus making it equivalent to the total lift in this
specific case.

Following the work of Cleaver, Wang & Gursul (2012), a time-averaged control volume
analysis can be applied to the control volume (dashed box) defined in figure 7(a)

L̄w =
∫

UL
�PUL dA︸ ︷︷ ︸

Pressure difference

−
∫

CS
ρv(V · n) dA︸ ︷︷ ︸

Momentum flux

, (3.2)

where the total time-averaged lift is precisely equal to the time-averaged wake-induced lift,
L̄w, the pressure difference between the upper and lower (UL) control surfaces is �PUL,
the velocity field is V , the vector normal to the control surfaces (CS) is n and the horizontal
and vertical components of the velocity field are u and v, respectively. In this sense, the
wake-induced lift consists of a momentum flux term and a pressure difference term. The
left bottom corner of the control volume is c from the foil’s leading edge vertically and
0.25c horizontally. The vertical and horizontal dimensions of the volume, Cz and Cx, are
fixed at 2c and 4c, respectively.

Just like the in-ground effect data from § 3.1, both simulations and experiments show
that the wake-induced lift is in fact positive for an upward deflected wake (figure 7c)
which, in the case of this out-of-ground effect foil, is consistent with previous findings
(Emblemsvåg, Suzukiy & Candlerz 2002; Liang et al. 2011; Cleaver et al. 2012; Yu, Hu &
Wang 2012). Using the simulation data, figure 7(c) further shows that the wake-induced lift
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Figure 7. Time-averaged lift control volume analysis. The control volume is represented by a dashed box,
where Cz and Cx are the vertical and horizontal dimensions of the volume, respectively. Here, Cz is fixed at
2c and Cx is fixed at 4c in (c,d), but varied in (e, f ). (a) Upward deflected wake generated by an out-of-ground
effect foil pitching at St = 0.55 and A∗ = 0.3. (b) Upward deflected wake generated by an in-ground effect foil
pitching at St = 0.3 and A∗ = 0.3. (c) Control volume analysis for the out-of-ground effect case. (d) Control
volume analysis for the in-ground effect case. (e) Size effect of the control volume for the in-ground effect
case. ( f ) Size effect of the control volume for the out-of-ground effect case. The time-averaged wake-induced
lift coefficient from simulations and experiments are denoted by the blue lines and blue circles, respectively.
Contributions to simulations’ wake-induced lift from the pressure difference term and the momentum flux term
in the control volume analysis are shown as green and yellow lines, respectively.

from the net momentum flux term is indeed negative, as expected, while the contribution
from the pressure difference term is positive and, surprisingly, is larger in magnitude than
the momentum flux term, thereby making the wake-induced lift positive for an upward
deflected wake. In light of this analysis, momentum flux considerations alone do not
accurately discern the direction of forces generated by an asymmetric wake; the pressure
field must also be considered.

Moreover, the same control volume analysis was applied to an in-ground effect pitching
foil in figure 7(b), which was calculated by (3.3) and (3.4). The left bottom corner of
the control volume is D from the foil’s leading edge vertically and 0.25c horizontally.
The vertical and horizontal dimensions of the volume, Cz and Cx, are fixed at 2c and 4c,
respectively. Since the time-averaged added mass lift is zero (§ 3.2), the time-averaged
wake-induced lift from the pressure difference and momentum flux terms are acquired by
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calculating those two contributions for the total and quasi-steady pressure and flow fields
and taking their differences as

L̄w,pressure =
∫

UL
�PUL dA

∣∣∣∣∣
total

−
∫

UL
�PUL dA

∣∣∣∣∣
quasi-steady

, (3.3)

and

L̄w,momentum = −
∫

CS
ρv(V · n) dA

∣∣∣∣∣
total

+
∫

CS
ρv(V · n), dA

∣∣∣∣∣
quasi-steady

. (3.4)

Figure 7(d) shows that, in ground effect, the momentum flux term is negative, yet the
wake-induced lift acts in the positive direction since the pressure difference term again
outweighs the momentum flux term, as in the out-of-ground effect case. It is worth noting
that compared with the out-of-ground effect case the pressure difference term now has a
more significant effect on the wake-induced lift.

To show that the conclusion of the pressure difference term determining the direction
of the wake-induced lift is not affected by the size of the control volume, Cx of the
control volume is varied from 3.5c to 4.5c for both out-of-ground and in-ground cases
numerically (figure 7e, f ). It is discovered that the magnitudes of the two terms stay nearly
constant, and still, the magnitude of the positive pressure difference term is larger than
that of the negative momentum flux term. Our simulations and the experiments in Cleaver
et al. (2012) suggest that, as long as the momentum flux crosses the control volume
boundary, the conclusion that the pressure difference term determines the direction of
the wake-induced lift still holds.

3.4. Quasi-steady lift
To provide deeper insight as to why there is a net negative quasi-steady force in the
time average, we further break down the quasi-steady lift into its constituent components
by leveraging the Kutta–Joukowski theorem (von Kármán & Sears 1938), Lq = ρsUΓ0,
where Lq is the quasi-steady lift, s is the span length, U is the local effective flow velocity
acting on a foil and Γ0 is the quasi-steady bound circulation of a foil. The local effective
velocity is calculated from simulations by summing the free-stream velocity, U∞, with
the induced velocity Ui at the leading edge from the image body. The quasi-steady bound
circulation is simply the negative of the strength of the trailing-edge panel used to enforce
the Kutta condition in the boundary element simulations, that is, Γ0 = −μTE (Katz &
Plotkin 2005). The Kutta–Joukowski theorem can be non-dimensionalized and written as

CLq = 2U∗Γ ∗
0 , U∗ = U

U∞
, Γ ∗

0 = Γ0

cU∞
. (3.5a–c)

When a foil is out of ground effect then U∗ = 1, Γ ∗
0 = Γ ∗

0,∞ and CLq = CLq,∞ , where
Γ ∗

0,∞ and CLq,∞ are the time-varying quasi-steady bound circulation and lift coefficient
for a foil in an infinite domain. The quasi-steady bound circulation has been found to be
amplified as the foil gets closer to the ground (Zong, Liang & Zhou 2012; Baddoo et al.
2020). This effect comes from the fact that, as the foil approaches the ground, the bound
vortex of its image foil induces a transverse velocity at the trailing edge of the real foil.
In order for the Kutta condition to be preserved, an additional bound circulation of the
real foil must arise to cancel the additional transverse velocity induced by the image foil.
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Figure 8. Asymmetry in the quasi-steady lift for a steady foil in ground effect is caused by the velocity induced
on a foil by its image body’s quasi-steady bound circulation. (a) The quasi-steady lift coefficient. Note that the
lift coefficient calculated in the simulations (using the unsteady Bernoulli equation) is represented with solid
lines, the lift coefficient calculated from the simulations using the Kutta–Joukowski theorem is represented
by the circle markers and the experimental data are represented by the square markers. (b) The dimensionless
quasi-steady circulation. (c) The dimensionless effective flow velocity. (d) Schematic of the components of the
effective flow velocity, U, that is the summation of Ui and U∞.

Without loss of generality, the quasi-steady bound circulation for in-ground effect foils
can then be modelled as the multiplication of a circulation amplification factor β and the
infinite domain quasi-steady circulation, Γ ∗

0 = βΓ ∗
0,∞. We expect that both the circulation

and the effective flow velocity will be amplified or reduced for foils in ground effect as
opposed to out-of-ground effect foils.

To understand the connections among the circulation amplification factor, the
amplified/reduced effective flow velocity and the quasi-steady lift, as well as to verify
these connections with experimental data, we begin with a simple case of a static foil
in and out of ground effect at various pitch angles (figure 8). For the static foil, the
quasi-steady lift is precisely the total lift, which is readily measured in experiments.
Figure 8(a) presents the quasi-steady lift for D∗ = 0.3 and D∗ = ∞ from the simulations
(solid lines), which is directly determined by integrating the pressure acting on the foil
calculated from the unsteady Bernoulli equation (§ 2.2). The simulations are also used
to calculate the quasi-steady lift by using the Kutta–Joukowski theorem (circle markers)
as outlined above, and both approaches are observed to produce exactly the same result.
Also, the in-ground effect quasi-steady lift is verified by having good agreement with
experimental data (square markers).

For the out-of-ground effect foil, the quasi-steady lift shows the classic linear
relationship with the pitch angle for −8◦ ≤ θ ≤ 8◦. However, when in ground effect
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the quasi-steady lift shows a nonlinear relationship with the pitch angle, where both the
negative and positive lift regimes are amplified compared with the out-of-ground effect
case, yet the negative lift regime is amplified more than the positive lift regime. This
produces an asymmetric lift response about θ = 0. If one were to pitch the foil through
an 8◦ amplitude sinusoidal pitching motion at an infinitesimal Strouhal number, this
asymmetric lift response would lead to a net negative quasi-steady lift in the time average
(C̄Lq = −0.07 for simulations and C̄Lq = −0.09 for experiments), just as is observed in the
quasi-steady data of finite Strouhal numbers. In fact, throughout this section, we will show
that precisely the same mechanism is at play in this static case as is in the quasi-steady
cases of finite Strouhal number.

Figure 8(b) presents the dimensionless quasi-steady circulation. The circulation
amplification is observed to be symmetric about θ = 0 and appears to just be a constant
factor giving rise to a slope change in the Γ ∗

0 – θ line. This shows, at least for
the static case, that β is only a function of D∗, not θ . Moreover, the circulation
amplification is responsible for amplifying the quasi-steady lift forces in ground effect,
but is not responsible for asymmetry in the lift curve. Figure 8(c) shows that the effective
flow velocity increases above the free-stream speed when the quasi-steady circulation
is negative (counterclockwise), while it decreases below free-stream speed when the
quasi-steady circulation is positive (clockwise). This occurs due to the velocity induced by
the quasi-steady bound vortex of the image body (figure 8d). By consequence, increased
effective flow speed acts to amplify the negative lift of negative pitch angles (negative
bound circulation) thereby acting in concert with the circulation amplification effect, and
decreased effective flow speed acts to reduce the positive lift of positive pitch angles
(positive bound circulation), thereby counteracting the circulation amplification effect.
Therefore, it is the change in the effective flow speed that leads to the asymmetric lift
response. This mechanism will be implicated further as the reason for the net negative
quasi-steady lift for oscillating foils from zero to finite Strouhal numbers.

Figure 9 presents the quasi-steady lift coefficient, dimensionless quasi-steady
circulation and dimensionless effective flow velocity for a foil at a range of ground
distances with St = 0.3. In figure 9(a), first, the quasi-steady lift calculated by the
unsteady Bernoulli equation and by the Kutta–Joukowski theorem still show good
agreement. Figure 9(b) shows that the negative and positive quasi-steady circulations
are symmetrically amplified with decreasing ground distance, precisely as in the static
foil case. Moreover, figure 9(c) shows that the effective flow velocity increases above
and decreases below the free-stream velocity when the bound circulation is negative
and positive, respectively, also mirroring the static foil case. Consequently, the change in
effective flow velocity leads to an enhancement in the negative lift and a reduction in the
positive lift thereby generating a net negative quasi-steady lift in the time average over one
pitching cycle. Figure 9(d) illustrates precisely the same effective flow altering mechanism
of the image body’s quasi-steady circulation as is in the static foil case.

3.5. Three-dimensional decomposition
In figure 10(a), both 3-D simulations and experiments observe that the stable equilibrium
altitude disappears when the aspect ratio decreases toA = 1, which is reproduced from
Zhong et al. (2019). Figure 10(b), presents the lift decomposition of the 3-D simulations
into the added mass, quasi-steady and wake-induced components. Exactly as in the 2-D
simulations, a stable equilibrium altitude arises for foils of finiteA by a balance between
the positive wake-induced lift and negative quasi-steady lift. The equilibrium altitude
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Figure 9. The velocity induced by the ground image body creates asymmetry in the quasi-steady lift at finite
Strouhal numbers just like the steady foil case. (a) The quasi-steady lift coefficient. (b) The dimensionless
quasi-steady circulation. (c) The dimensionless effective flow velocity. (d) Schematic showing the effective
flow velocity, U, is the summation of Ui and U∞.

   No

equilibria

D∗
0.3

–0.1

0

0

0.2

Sim
= 2.5
= 2
= 1.5
= 1

Exp

0.4

0.6

0.1

0.2

0.4 0.5 0.6 0.7

D∗
0.3 0.4 0.5 0.6 0.7

(b)(a)

CL

CLa
CLw
–CLq

Figure 10. The magnitude of the wake-induced lift of 3-D foils degrades more with decreasingA than their
quasi-steady lift leading to the disappearance of an equilibrium altitude for A < 1.5. Simulation data of
pitching 3-D hydrofoils of varying aspect ratio with St = 0.25 and θ0 = 11◦. (a) Total lift as calculated from the
simulations. Note that the circle markers represent the stable equilibrium altitudes measured by experiments.
(b) Decomposed lift components from the simulations.

disappears for low aspect ratio (A < 1.5) hydrofoils, which instead experience a net
negative time-averaged lift force. The decomposition reveals that this occurs since the
magnitude of the wake-induced lift reduces more with decreasingA than the reduction in
the magnitude of quasi-steady lift, thereby having the negative quasi-steady lift outweigh
the positive wake-induced lift at all ground distances.

978 A5-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1004


Scaling equilibrium altitudes of near-ground swimmers

3.6. Scaling the equilibrium altitude
The analysis of the added mass, quasi-steady and wake-induced forces presented above
can now be leveraged to develop scaling laws that capture the physics of ground effect and
are capable of predicting the equilibrium altitude of a pitching foil. Since the added mass
forces do not play a role in the generation of an equilibrium altitude then scaling laws
for only the quasi-steady and wake-induced lift are sought, two flow models were used to
develop the scaling laws for the quasi-steady lift and wake-induced lift, respectively, which
enables us to pinpoint any sources of the modelling error in the scaling laws.

3.6.1. Quasi-steady lift
As presented in § 3.4, the quasi-steady lift coefficient is

CLq ∝ U∗βΓ ∗
0,∞, (3.6)

Γ ∗
0,∞ = πθ + 3πcθ̇

4U∞
, (3.7)

where β is the quasi-steady circulation amplification factor, U∗ is the normalized effective
flow velocity at the foil’s leading edge and Γ ∗

0,∞ is simply the formula for a flat plate
pitching about its leading edge from Theodorsen (1935) and Mccune & Tavares (1993).
To determine a scaling law for the quasi-steady lift, consider a simplified flow model
where the quasi-steady bound vortex is located along the chord (figure 9d). Then a scaling
relation for the circulation amplification factor and the effective flow velocity can be
determined. The circulation amplification factor is calculated by finding the circulation
amplification necessary to enforce the Kutta condition at the foil’s trailing edge due
to the influence of the image quasi-steady bound vortex. Assuming that the distance
between the bound vortex and foil’s leading edge is bc with 0 ≤ b ≤ 1, then the circulation
amplification factor is simply calculated as

β = 1 + (1 − b)2

4D∗2 where b = 0.55. (3.8)

To determine the placement of the bound vortex along the chord, circulation amplification
data at D∗ = 0.5 from an exact solution for a steady foil in ground effect (figure 4(d) in
Baddoo et al. 2020) were used to determine that b = 0.55. The effective flow velocity is
calculated by finding the normalized induced velocity at the leading edge, U∗

i = Ui/U∞,
from the image foil’s quasi-steady bound vortex

U∗ = 1 + U∗
i where U∗

i = −Γ ∗
0,∞β

π

(
D∗

b2 + 4D∗2

)
. (3.9)

After organization, the time-varying quasi-steady lift becomes

CLq ∝ βΓ ∗
0,∞ − β2Γ ∗2

0,∞D∗

π(b2 + 4D∗2)
. (3.10)

According to thin airfoil theory, the coefficient of the first term is 2, which gives

CLq = 2βΓ ∗
0,∞ − c1

β2Γ ∗2
0,∞D∗

π(b2 + 4D∗2)
, (3.11)

where c1 needs to be determined.
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As an important side note, this formula can be used to determine a lift scaling relation
for steady ground effect by neglecting the rotational lift or virtual camber term (θ̇ term) in
Γ ∗

0,∞. Then a scaling law for steady ground effect can be deduced as

Csteady
L = 2πβθ − c1

πβ2θ2D∗

b2 + 4D∗2 where c1 = 2.76. (3.12)

Using the static foil numerical and experimental data from figure 8(a), the coefficient is
determined to be c1 = 2.76 by linear regression. Figure 11(a) then compares the scaling
law prediction with the data, which shows that it can predict the steady ground effect data
to within 10 % for the numerical data and 15 % for the experimental data.

Returning to the time-varying formula (3.11), we can also consider an unsteady ground
effect case where the foil undergoes sinusoidal pitching. If this scaling relation is then time
averaged only a contribution from the second term will remain as

C̄Lq = −c1
β2Γ ∗2

0,∞D∗

π(b2 + 4D∗2)
. (3.13)

Considering that θ = θ0 sin(2πft) and θ0 = A∗/2 = St/(2k) we have

C̄Lq = c1φ1, (3.14)

φ1 = −π3

8

(
β2D∗

b2 + 4D∗2

)(
9
4

+ 1
π2k2

)
St2. (3.15)

The coefficient c1 = 2.76 determined from the static foil data is used for scaling the
quasi-steady lift of both the steady and unsteady foil cases. Figure 11(b) presents an
excellent collapse of the quasi-steady lift data over a wide range of St, k and D∗.

3.6.2. Wake-induced lift
The wake-induced lift can be calculated as

CLw ∝ U∗γΓ ∗
w,∞, (3.16)

U∗ = 1 + U∗
i,1 + U∗

i,2, (3.17)

where Γ ∗
w,∞ is the normalized infinite domain wake circulation, and the effective flow

velocity U∗ is composed of the velocity U∗
i,1, induced by an image bound vortex

(representing the total bound vorticity, not the quasi-steady bound vorticity), and the
velocity induced by an image wake vortex, U∗

i,2. To determine a scaling law for the
wake-induced lift, consider a simplified flow model where a wake vortex is placed along
the chord line at a distance of U∞/(4f ) downstream of the trailing edge (figure 11c), which
gives,

U∗
i,1 = −Γ ∗∞γ

π

(
D∗

b2 + 4D∗2

)
and U∗

i,2 = −Γ ∗
w,∞γ

π

[
16k2D∗

(1 + 4k)2 + 64k2D∗2

]
,

(3.18a,b)

where Γ ∗∞ is the normalized infinite domain total circulation, and γ is the wake circulation
amplification factor. By enforcing the Kutta condition at the foil’s trailing edge, the wake

978 A5-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1004


Scaling equilibrium altitudes of near-ground swimmers

0.5

0.5

Bio
lo

gica
lly

Rele
van

t St

1.0

Sim

Exp

Exp Kurt (2019)

1.0

D∗
eq,scaling

D∗
eq

0

U∞/4f

2

4

6

8

2 4

St ≥ 0.45

c2φ2 + c3φ3

c1φ1

6 8

0

Sim
Exp

–1–2 –8 –6 –4 –2

0.25 ≤ D∗ ≤ 1.5

0.25 ≤ St ≤ 0.55

0.55 ≤ k ≤ 1

0

–2

–1

0
–4

–6

–8

–2

0

1

2

1 2

CL
steady

C̄Lw

2πβθ – c1 (πβ2θ2 D∗/(b2 + 4D∗2))

D∗ = 0.25
D∗ = 0.3
D∗ = ∞

(a) (b)

(c)

(d)

(e)

CLq

Figure 11. Scaling laws for steady and unsteady ground effects show a good collapse across a wide range of
St, k and D∗. (a) The lift for a steady foil in ground effect (data from figure 8(a) with additional numerical
case at D∗ = 0.25) is compared with the steady foil scaling law. (b) The quasi-steady lift of an unsteady
pitching foil (data from figure 9 compared with its scaling relation for 0.25 ≤ D∗ ≤ 1.5, 0.25 ≤ St ≤ 0.55
and 0.55 ≤ k ≤ 1. The marker colour from dark blue to light yellow represents increasing St while the marker
size from small to large represents increasing k. (c) Schematic to illustrate the simple flow model for calculating
the wake circulation amplification factor. (d) The wake-induced lift of an unsteady pitching foil compared with
its scaling relation. Markers outlined in red represent data with St ≥ 0.45. (e) Stable equilibrium altitudes
compared with the scaling relation. Dashed lines present 20 % margins of error. These include 2-D numerical
data with 0.25 ≤ St ≤ 0.55 and 0.55 ≤ k ≤ 1, and 2-D experimental data with 0.2 ≤ St ≤ 0.4 and 0.6 ≤ k ≤
0.9, as well as 2-D experimental data from Kurt et al. (2019) with 0.2 ≤ St ≤ 0.6 and 0.5 ≤ k ≤ 1. Data points
in the blue shaded area cover the Strouhal number range of biological locomotion (Taylor, Nudds & Thomas
2003; Saadat et al. 2017).

circulation amplification factor is calculated as

γ = 1 + 4k(1 − b)

1 + 4k(1 − b) − (1 − b)2

(1 − b)2 + 4D∗2 − 4k(1 − b)

1 + 64k2D∗2

. (3.19)
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Following Moored & Quinn (2018), we have

Γ ∗
w,∞ ∝ Γ ∗

0,∞
k∗

k∗ + 1
and k∗ = k

1 + 4St2
, (3.20a,b)

Γ ∗
∞ ∝ Γ ∗

0,∞. (3.21)

Similar to the quasi-steady lift, after time averaging the wake-induced lift, only terms
associated with Γ ∗2

0,∞ remain, which gives

C̄Lw = c2φ2 + c3φ3, (3.22)

φ2 = −γ 2St2
(

9
4

+ 1
π2k2

)(
D∗

b2 + 4D∗2

)(
k∗

k∗ + 1

)
, (3.23)

φ3 = −γ 2St2
(

9
4

+ 1
π2k2

)[
16k2D∗

(1 + 4k)2 + 64k2D∗2

](
k∗

k∗ + 1

)2

. (3.24)

By using the wake-induced lift data from figure 4, the coefficients were determined by
linear regression to be c2 = −33.00 and c3 = 83.35. Figure 11(d) shows that a good
collapse of the data can be achieved with the exception of data with St ≥ 0.45 (outlined
in red). As shown in figure 7(a), the wake-induced lift is significantly altered by a wake
instability effect that occurs when St ≥ 0.45 even for out-of-ground effect foils. Since
this wake instability effect is not accounted for in the scaling laws, the data points with
St ≥ 0.45 (figure 11d) begin to show deviation from the scaling law prediction. Details
of the scaling laws derivation, such as calculation of circulation amplification factors,
velocities induced by the image system and time-averaged circulation square, can be found
in Appendix A.

3.6.3. Total lift
Now, the quasi-steady lift and wake-induced lift can be summed to acquire the total lift,
and the total lift becomes a function of St, k and D∗

C̄L = c1φ1 + c2φ2 + c3φ3 = f
(
St, k, D∗) . (3.25)

Then, for a given pair of St and k, the equilibrium altitude, D∗
eq, can be determined by

setting (3.25) to zero, which gives

c1
π3

8

(
β2

b2 + 4D∗
eq

2

)
+ c2γ

2

(
1

b2 + 4D∗
eq

2

)(
k∗

k∗ + 1

)

+ c3γ
2

[
16k2

(1 + 4k)2 + 64k2D∗
eq

2

](
k∗

k∗ + 1

)2

= 0. (3.26)

The equilibrium altitude cannot be written in a closed-form explicit solution, but rather
(3.26) must be solved implicitly. In this way, (3.26) represents an implicit scaling law
for the equilibrium altitude of a pitching foil in ground effect. Figure 11(e) presents
the scaling law prediction for the equilibrium altitude. The scaling law can predict the
equilibrium altitude to within 20 % error except for the data with St ≥ 0.45. Moreover, the
predicted equilibrium altitude for St ≥ 0.45 is shown to decrease with increasing St. The
deviation in the prediction of equilibrium altitudes at St ≥ 0.45 is due to the deviation in
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the wake-induced lift prediction, which is caused by neglecting the wake instability effect
in the wake-induced lift scaling law. At St ≥ 0.45 the foil has a non-zero time-averaged
wake-induced lift as D∗ goes to infinity. However, the time-averaged wake-induced lift
always goes to zero in the scaling law as D∗ goes to infinity. Data points in the blue
shaded area in figure 11(e) cover the Strouhal number range of biological locomotion that
is 0.2 ≤ St ≤ 0.4 (Taylor et al. 2003; Saadat et al. 2017), so it can be observed that the
scaling law captures the trend of the biologically relevant data. For the numerical data
with St < 0.45 a 5 % and 10 % error in predicting the quasi-steady and wake-induced lift,
respectively, leads to a 20 % error in predicting the equilibrium altitude. This indicates that
the equilibrium altitude relies on a delicate balance and is sensitive to small changes in the
lift components. This is also observed by Liu et al. (2023), who found that a pitch bias
angle equal to 7 % of the amplitude can shift the equilibrium altitude of a pitching foil by
28 %.

4. Conclusions

In this article we decomposed the lift of a near-ground pitching hydrofoil into its
added mass, wake-induced and quasi-steady components, and determined that their
time-averaged values are always zero, positive and negative, respectively, across all ground
proximities. This shows that both stable and unstable equilibrium altitudes are generated
by a balance between positive wake-induced lift and negative quasi-steady lift while the
added mass lift does not play a role.

Using both simulations and experiments, detailed analyses are provided to illustrate
the three lift components’ near-ground behaviour. In ground effect the negative peak
of the added mass lift is amplified more than the positive peak, however, the negative
peak also becomes sharper while the positive peak becomes broader compared with a
foil out of ground effect. This leads to a scallop theorem result, where the added mass
lift precisely integrates to zero over one oscillation cycle. Through a control volume
analysis, the wake-induced lift is discovered to be positive due to the positive lift from
the pressure difference on the control volume outweighing the negative lift from the net
momentum flux. This leads to the upwards deflected wake behind a near-ground swimmer
being responsible for a positive wake-induced lift. The quasi-steady lift is further analysed
through the lens of the Kutta–Jowkouski theorem. It is observed that the velocity induced
by the positive (negative) quasi-steady circulation bounded to the ground image foil
enhances (reduces) the effective flow velocity at the foil’s leading edge. For a pitching
foil, this amplifies the negative quasi-steady lift during the upstroke and reduces the
positive quasi-steady lift during the downstroke leading to a net negative quasi-steady
lift. Additionally, the lift decomposition was applied to 3-D pitching foil simulations of
varying aspect ratio. It was demonstrated that equilibrium altitudes of 3-D hydrofoils are
also generated by a balance between positive wake-induced lift and negative quasi-steady
lift. Moreover, as the aspect ratio decreases, the magnitude of the wake-induced lift drops
off faster than the magnitude of the quasi-steady lift, leading to the disappearance of an
equilibrium altitude whenA < 1.5.

Using these insights, scaling laws of the quasi-steady lift, wake-induced lift and
equilibrium altitudes are developed. Additionally, a simple scaling law for the lift of a
steady foil in ground effect is discovered. The scaling laws show good agreement to both
numerical and experimental data by predicting the equilibrium altitudes to within 20 % of
their values as long as St < 0.45. For St ≥ 0.45, significant effects from wake instability,
not accounted for in the scaling laws, arise that alter the wake-induced lift. These results
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bc bc

D DβΓ0,∞ –γΓw,∞ γΓw,∞

U∞/4f
(a) (b)

Figure 12. Schematics for calculating (a) the quasi-steady circulation amplification factor, β, and (b) the
wake circulation amplification factor, γ .

not only provide key physical insights and scaling laws for unsteady ground effect,
but also for two schooling hydrofoils in a side-by-side formation with an out-of-phase
synchronization.
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Appendix A. Derivation of scaling laws

A.1. Quasi-steady circulation amplification factor
When the foil is near the ground (figure 12a), in order for the Kutta condition to be
preserved at the foil’s trailing edge, an additional bound circulation of the real foil must
arise to cancel the transverse velocity induced by the image foil, which gives

(β − 1)V1 + V2 = 0, (A1)

with

V1 = Γ0,∞
2π(1 − b)c

and V2 = −Γ0,∞β

2π

[
(1 − b)c

(1 − b)2c2 + 4D2

]
, (A2a,b)

where V1 is the transverse velocity induced by the bound vortex of the real foil out of
ground effect, and V2 is the transverse velocity induced by the bound vortex of the image
foil.

Then, Γ0,∞/2πc can be divided from both sides, which gives

β − 1
1 − b

− β

[
(1 − b)

(1 − b)2 + 4D∗2

]
= 0. (A3)

After organization we have

β = 1 + (1 − b)2

4D∗2 . (A4)
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A.2. Wake circulation amplification factor
When the foil is near the ground (figure 12b), in order for the Kutta condition to be
preserved at the foil’s trailing edge, additional bound and wake circulations of the real
foil must arise to cancel transverse velocities induced by the image foil, which gives

(γ − 1)V3 + (γ − 1)V4 + V5 + V6 = 0, (A5)

with

V3 = Γw,∞
2π(1 − b)c

, V4 = 2Γw,∞ f
πU∞

, (A6a,b)

V5 = − Γw,∞γ (1 − b)c
2π[(1 − b)2c2 + 4D2]

, and V6 = − 2Γw,∞γ fU∞
π(U2∞ + 64D2f 2)

, (A7a,b)

where V3 and V4 are transverse velocities induced by the bound and wake vortex of the
real foil out of ground effect, and V5 and V6 are transverse velocities induced by the bound
and wake vortex of the image foil.

Then Γw,∞/2π can be divided from both sides, which gives

γ − 1
(1 − b)c

+ 4f (γ − 1)

U∞
− γ (1 − b)c

(1 − b)2c2 + 4D2 − 4γ fU∞
U2∞ + 64D2f 2 = 0. (A8)

After organization we have

γ

[
1

1 − b
+ 4k − 1 − b

(1 − b)2 + 4D∗2 − 4k

1 + 64D∗2k2

]
= 1

1 − b
+ 4k. (A9)

Then γ can be calculated as

γ = 1 + 4k(1 − b)

1 + 4k(1 − b) − (1 − b)2

(1 − b)2 + 4D∗2 − 4k(1 − b)

1 + 64k2D∗2

. (A10)

A.3. Calculation of time-averaged circulation square
The normalized quasi-steady circulation is

Γ ∗
0,∞ = πθ + 3πcθ̇

4U∞
= πθ0 sin(2πft) + 3π2cf θ0 cos(2πft)

2U∞
, (A11)

which, considering θ0 = A∗/2 = St/(2k), becomes

Γ ∗
0,∞ = πSt

2k
sin(2πft) + 3π2St

4
cos(2πft). (A12)

The time-averaged square of the normalized quasi-steady circulation, Γ ∗2
0,∞, is calculated

as

Γ ∗2
0,∞ = f

∫ 1/f

0

[
πSt
2k

sin(2πft) + 3π2St
4

cos(2πft)
]2

dt. (A13)
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After expansion we have

Γ ∗2
0,∞ = f

∫ 1/f

0

π2St2

4k2 sin2(2πft) + 3π3St2

4k
sin(2πft) cos(2πft) + 9π4St2

16
cos2(2πft) dt.

(A14)

The second term in the above equation integrates to zero. Then we have

Γ ∗2
0,∞ = f

∫ 1/f

0

π2St2

4k2 sin2(2πft) + 9π4St2

16
cos2(2πft) dt = π4St2

8

(
9
4

+ 1
π2k2

)
.

(A15)

A.4. Calculation of the induced flow velocity
The horizontal velocity induced by an image bound circulation, Γ , at the foil’s leading
edge is calculated as

Ui,1 = Γ

2π
√

b2c2 + 4D2

(
2D√

b2c2 + 4D2

)
= Γ D

π(b2c2 + 4D2)
. (A16)

After normalization we have

U∗
i,1 = Γ ∗

π

(
D∗

b2 + 4D∗2

)
. (A17)

The horizontal velocity induced by a image wake circulation, Γ , at the foil’s leading edge
is calculated as

Ui,2 = Γ

2π

√
4D2 +

(
c + U∞

4f

)2

⎛
⎜⎜⎜⎜⎝

2D√
4D2 +

(
c + U∞

4f

)2

⎞
⎟⎟⎟⎟⎠

= Γ D

π

[
4D2 +

(
c + U∞

4f

)2
] . (A18)

After normalization we have

U∗
i,2 = Γ ∗

π

[
16k2D∗

(1 + 4k)2 + 64k2D∗2

]
. (A19)

Note that Γ is a general representation for vortices at locations of the image bound or
wake vortex, and it is replaced by circulations associated with Γ0,∞ or Γw,∞ in the article
accordingly.
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