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A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER
WAERDEN SPACES

RAFAL FILIPOW'2, KRZYSZTOF KOWITZ'', AND ADAM KWELA

Abstract. For many years, there have been conducting research (e.g., by Bergelson, Furstenberg,
Kojman, Kubis, Shelah, Szeptycki. Weiss) into sequentially compact spaces that are, in a sense, topological
counterparts of some combinatorial theorems, for instance, Ramsey’s theorem for coloring graphs,
Hindman’s finite sums theorem, and van der Waerden’s arithmetical progressions theorem. These spaces
are defined with the aid of different kinds of convergences: IP-convergence. R-convergence, and ordinary
convergence.

The first aim of this paper is to present a unified approach to these various types of convergences and
spaces. Then, using this unified approach. we prove some general theorems about existence of the considered
spaces and show that all results obtained so far in this subject can be derived from our theorems.

The second aim of this paper is to obtain new results about the specific types of these spaces. For
instance, we construct a Hausdorff Hindman space that is not an Z; /,,-space and a HausdorfT differentially
compact space that is not Hindman. Moreover, we compare Ramsey spaces with other types of spaces. For
instance, we construct a Ramsey space that is not Hindman and a Hindman space that is not Ramsey.

The last aim of this paper is to provide a characterization that shows when there exists a space of one
considered type that is not of the other kind. This characterization is expressed in purely combinatorial
manner with the aid of the so-called Katétov order that has been extensively examined for many years
so far.

This paper may interest the general audience of mathematicians as the results we obtain are on the
intersection of topology, combinatorics, set theory, and number theory.

§1. Introduction. For more than 20 years, many mathematicians have been
examining sequentially compact spaces that are, in a sense, topological counterparts
of some combinatorial theorems, for instance, Ramsey’s theorem for coloring
graphs, Hindman’s finite sums theorem, and van der Waerden’s arithmetical
progressions theorem [5, 6, 20-22, 24, 26-28, 30, 35, 36, 52, 57-63, 73]. These
spaces are defined with the aid of different kinds of convergences: IP-convergence,
R-convergence, and ordinary convergence.

We start our brief overview of these spaces with the ones defined using ordinary
convergence. A topological space X is called:

o van der Waerden [58] if for every sequence (x, ), cn in X there exists a convergent
subsequence (x,),c4 With 4 being an AP-set (i.e., 4 contains arithmetic
progressions of arbitrary finite length);
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2 RAFAL FILIPOW ET AL.

e an 7y ,-space [30] if for every sequence (xn)nen in X there exists a convergent
subsequence (x,),c4 With A having the property that the series of reciprocals
of elements of A4 diverges.

In fact both mentioned classes of spaces are special cases of a more general notion.
A nonempty family Z C P(N) of subsets of N is an ideal on N if it is closed under
taking subsets and finite unions of its elements, N ¢ 7 and Z contains all finite
subsets of N (it is easy to see that the family Z;/, = {4 CN: )" _, 1/n < oo} is
an ideal on N, and it follows from van der Waerden’s theorem [75] that the family
W ={A4 CN: 4isnotan AP-set} is an ideal on N). If Z is an ideal on N then a
topological space X is called an Z-space [30] if for every sequence (x,),en in X there
exists a converging subsequence (x,),c4 With 4 ¢ Z. In particular, van der Waerden
spaces coincide with WW-spaces.

Now we want to turn our attention to spaces defined with the aid of different kinds
of convergences. We start with Hindman spaces. A set A C Nis an /P-set [36] if there
exists an infinite set D C N such that FS(D) C A4 where FS(D) denotes the set of all
finite sums of distinct elements of D. The family H = {4 C N : 4 is not an IP-set}
is an ideal on N (it follows from Hindman’s theorem [44]).

An IP-sequence in X is a sequence indexed by FS(D) for some infinite D C N.
An IP-sequence (x,),cFs(p) in a topological space X is IP-convergent [36] to a point
x € X if for every neighborhood U of x there exists m € N so that x, € U for every
n € FS(D\{0.1,....,m}) (then x is called the IP-limit of the sequence).

Since only finite spaces are H-spaces [57]. Kojman replaced the ordinary
convergence with IP-convergence (introduced by Furstenberg and Weiss [36]) to
define a meaningful topological counterpart of Hindman’s finite sums theorem.
Namely, a topological space X is called Hindman [57] if for every sequence (x,),en
in X there exists an infinite set D C N such that the subsequence (x,),cps(p) IP-
converges to some x € X.

We finish our brief overview of classes of sequentially compact spaces with Ramsey
spaces. Let [4]° denote the set of all pairs of elements of 4. A sequence (Xn)werpp In
X (indexed by pairs of natural numbers from some infinite set D C N) R-converges
[5. 6] to a point x € X if for every neighborhood U of x there is a finite set F' such
that x¢,y € U foralldistincta.b € D \ F. A topological space X is called Ramsey
[61]if for every sequence (x,), ¢y in X there exists an infinite set D C N such that
the subsequence <xn>ne[D]2 R-converges to some x € X.

We say that an ideal Z (on N) is below an ideal J in the Katétov order [55] if there
is a function f : N — N such that £ ![4] € J for every 4 € Z. Note that Katétov
order has been extensively examined (even in its own right) for many years so far [2,
3,8, 10, 12, 41, 42, 45, 47-50, 67, 68, 70, 72, 76].

There are three objectives of this paper. The first aim is to present a unified
approach to these various types of convergences and spaces. This is achieved in
sections in Part 1 with the aid of partition regular functions (Definition 3.1).
a convergence with respect to partition regular functions (Definition 9.1), and a
subclass of sequentially compact spaces defined using this new kind of convergence
(see Definition 10.1). Then using this approach, we prove some general theorems
about those classes of spaces (Theorem 10.5) and show that all results obtained so
far in this subject can be derived from our theorems (see sections in Parts 2 and 3).
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The second aim of this paper is to obtain new results concerning specific types
of these spaces: Ramsey spaces, Hindman spaces, van der Waerden spaces, and
T, /,-spaces. For instance, we construct a Hausdorff Hindman space that is not an
T, /,-space (Corollary 14.10(2))—this gives a positive answer to a question posed
by Flaskova [29] (so far only non-Hausdorff answer to this question was known
[24, Theorem 2.5]). We also construct a Hausdorff so-called differentially compact
space that is not Hindman (Corollary 14.9(3)) which yields the negative answer to
a question posed by Shi [73, Question 4.2.2] and other authors [22, Problem 1], [60,
Question 3]. Moreover, we compare Ramsey spaces with other types of spaces (so
far Ramsey spaces were only examined in their own right without comparing them
with other kinds of spaces [6. 11, 61]). For instance, we construct a Ramsey space
that is not Hindman and a Hindman space that is not Ramsey (Corollary 14.9).

The final aim of this paper is to provide a characterization that shows when there
exists a space of one considered type that is not of the other type (Theorem 16.1 and
other results in Part 4). This characterization is expressed in purely combinatorial
manner with the aid of the Katétov order or its counterpart in the realm of partition
regular functions (Definition 7.3).

§2. Preliminaries. In the paper we are exclusively interested in Hausdorff
topological spaces with one exception (Sections 17 and 18) where we were unable
to obtain results for Hausdorff spaces but succeeded in constructing a topological
space with unique limits of sequences.

Following von Neumann, we identify an ordinal number o with the set of all
ordinal numbers less than «. In particular, the smallest infinite ordinal number
o = {0, 1,... } isequal to the set N of all natural numbers, and each natural number
n={0,....,n—1} is equal to the set of all natural numbers less than n. Using this
identification, we can, for instance, write n € k instead of n < k and n < w instead
ofn € worANmninstead of AN{0,1,....,n—1}.

IfACwandn e w,wewriteAd+n={a+n:acAtandd-n={a-n:ac
A,a > n}.

We write [A4]? to denote the set of all unordered pairs of elements of A, [4]<” to
denote the family of all finite subsets of A, [4]” to denote the family of all infinite
countable subsets of 4, and P(4) to denote the family of all subsets of A.

We say that a family A of subsets of a set A is an almost disjoint family on A if

(1) |4] = |A| for every 4 € A and
(2) |4 N B| < |A| for all distinct elements 4, B € A.

By 4 U B we denote the disjoint union of sets A and B:
AUB=(Ax{0}H)U(Bx{1})={(x.0):xe A} U{(y.1):y € B}.

For families of sets A C P(A) and B C P(X), we writte AGB={AUB:A¢c
A, B € B}.

A nonempty family Z C P(A) of subsets of A is an ideal on A if it is closed under
taking subsets and finite unions of its elements, A ¢ 7 and Z contains all finite subsets
of A. By Fin(A) we denote the family of all finite subsets of A. For A = w, we write
Fin instead of Fin(w). For an ideal Z on A, we write ZV = {4 CA: A ¢ I} and
call it the coideal of T, and we write Z* = {A\ 4 : A € T} and call it the filter dual
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toZ.ForanidealZonAand A € T, itiseasytoseethatZ | A ={4ANB: B €1}
is an ideal on 4.
In our research the following ideal on w? plays an important role:

Fin® ={CCw’:{ncw:{kcw:(nk)e C}¢Fin} € Fin}.

We say that a function f : A — X is Z-to-one if f'(¢) € T for every o € X.

Aset A C X is F, (Gjs, Fys, etc., resp.) in a topological space X if 4 is a union of
a countable family of closed sets (4 is an intersection of a countable family of open
sets, A is an intersection of a countable family of F, sets, etc., resp.).

For a function f: X — Y and a set 4 C X, we write f | A to denote the
restriction of /" to the set A.

Part 1. Partition regular operations

§3. Partition regular operations and ideals associated with them. Below we
introduce a notion that proved to be a convenient tool allowing to grasp the common
feature of different kinds of convergences related to Hindman, Ramsey, and van der
Waerden spaces.

DerNITION 3.1. Let A and Q be countable infinite sets. Let F be a nonempty
family of infinite subsets of Q such that F \ K € F for every F € F and a finite set
K C Q. We say that a function p : F — [A]? is partition regular if:

(M):VE.F e F (ECF = p(E) C p(F)).
(R):VF € FVA.BCA (p(F)=AUB = JE € F(p(E) CAVp(E)C B)).
(S): VF e FIE € F(E CF AVa € p(E)3K € [Q]%“(a ¢ p(E \ K))).

In our considerations, we use the following easy observation concerning condition
(S) of Definition 3.1.

ProPOSITION 3.2. Let p: F — [A]?(with F C[Q]®) be a partition regular
Sfunction. Then for every F € F there is E € F such that E C F and for every finite
set L C A there exists a finite set K C Q such that p(E \ K) C p(E) \ L.

Proor. For F € F.let E € F be as in condition (S) of Definition 3.1. Let L C A
be a finite set. For every a € p(E), we take a finite set K, such thata ¢ p(E \ K,).
Then K = J{K, :a € p(E)N L} isfinite and p(E \ K) C p(E) \ L. .

The following easy proposition reveals basic relationships between partition
regular functions and ideals.

ProPOSITION 3.3.
(1) If p : F — [A) is partition regular, then
Z,={ACA:VFeF(p(F)Z A4)}.

is an ideal on A.
(2) If T is an ideal on A, then the function

pr It = [A]”° givenby pr(4)=A

is partition regular and T = T,
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REmARK. If p is partition regular and 7 = Pz, then Z. = Z,, but, as we will see,
in general, p # t. More important, T may miss some crucial properties which p
possesses (e.g., P-like properties—see Proposition 6.5(3) and (4)).

Below we present the most important examples of partition regular functions
that were our prototypes while we were thinking on a unified approach to Hindman,
Ramsey, and van der Waerden spaces.

3.1. Hindman’s finite sums theorem. Let the function FS : [w]” — [w]® be given
by

FS(D) = {Zn ca € [DIS\{0}¢.

nea

i.e., FS(D) is the set of all finite non-empty sums of distinct elements of D.

Aset D C w is sparse [57, p. 1598] if for each n € FS(D) there exists the unique
set o C D such that n =", i. This unique set will be denoted by ap(n). For
instance, the set E = {2/ : i € w} is sparse, and in the sequel. we write a(n) instead
of ag(n).

A sparse set D C w is very sparse [24, p. 894] if ap(x) Nap(y) # 0 implies
x +y ¢ FS(D) for every x, y € FS(D).

THEOREM 3.4 (Hindman). The function FS is partition regular and the family
H=Tps={A Cw:VYD € [w]” (FS(D) £ 4)}
is an ideal on . The ideal H is called the Hindman ideal [30, p. 109].

Proor. It is easy to see that condition (M) of Definition 3.1 is satisfied for
FS. Condition (R) of Definition 3.1 holds for FS as in this case it is the well-
known Hindman’s finite sums theorem [44, Theorem 3.1], [4, Theorem 3.5]. To
see that condition (S) of Definition 3.1 holds for FS, it is enough to notice [57,
p- 1598] that every infinite set F C w has an infinite sparse subset G C F which

obviously satisfies condition (S). Finally, Proposition 3.3(1) shows that # is an
ideal on w. -

REMARK. Itis known that sets from H™ (that are called IP-sets) are examples of
so-called Poincaré sequences' that play an important role in the study of recurrences
in topological dynamics [35, p. 74].

The following lemma will be used in some proofs regarding properties of the
function FS.

LemMma 3.5 [57, Lemma 7]. If D is an infinite sparse set, then there exists a set
S ={s;:i € o} CFS(D) such that for every i € w we have s; < s;,1 and

max ap(s;) < minap(s;11) and max a(s;) < mino(si, ).

YA set W C Zis called a Poincaré sequence [35, Definition 3.6 at p. 72] if for any measure preserving
system (X.B. u, T) and A € B with u(A4) > 0 we have u(T"[A]N A) > 0 forsomen € W.,n # 0.
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3.2. Ramsey’s theorem for coloring graphs.

THEOREM 3.6 (Ramsey). Let r : [w]” — [[w]*]” be given by

r(H)=[H = {{x.y} Clol: x.y € Hx # y}.

i.e., ¥(H) is the set of all unordered pairs of elements of H. Then r is partition regular
and the family

R =1, = {4 C[w]:VH € [0]” [H € A)}

is an ideal on []?. The ideal R is called the Ramsey ideal [49. 67]. (If we identify a
set A C [w]? with a graph G4 = (w. A). the ideal R can be seen as an ideal consisting
of graphs without infinite complete subgraphs.)

ProoF. It is easy to see that condition (M) of Definition 3.1 is satisfied for r.
Condition (R) of Definition 3.1 holds for r as in this case it is the well-known
Ramsey’s theorem for coloring graphs [71, Theorem A], [40, Theorem 1.5]. To see
that condition (S) of Definition 3.1 holds for r, it is enough to notice that for every
{a,b} € [F]* we have {a,b} ¢ [F \ {a,b}]*. Finally, Proposition 3.3(1) shows that
R is an ideal on [w]?. .

3.3. The positive differences and the associated ideal. Let the function A : [w]® —
[0]® be given by

AE)={a-b:abecE a>b},
i.e., A(E) is the set of all positive differences of distinct elements of E.

We say that a set E C w is D-sparse [22, p. 2009] if for every a € A(E) there are
unique elements b, ¢ € E such thata = b —c.

PrOPOSITION 3.7. The function A is partition regular and the family
D=Iy={ACw:VE €[w]”(A(E) L 4)}

is an ideal on w such that D C H. It is known that sets from D are examples of
so-called Poincaré sequences [35, p. 74].

PrOOF. It is easy to see that condition (M) of Definition 3.1 is satisfied for A.
It is known [22, Proposition 4.1] that condition (R) of Definition 3.1 holds for A.
To see that condition (S) of Definition 3.1 holds for A, it is enough to notice [22.
Proposition 4.3(2)] that every infinite set F C w has an infinite D-sparse subset
G C F which obviously satisfies condition (S). Finally, Proposition 3.3(1) shows
that D is an ideal on w and it is known [73, Proposition 4.2.1], [22, Proposition 4.1]
that D C H. .

3.4. The summable ideal.

ProposITION 3.8.  The family

1
Ly = Agw:Z—<oo}
neAn—i_1
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is an ideal on . The ideal T/, is called the summable ideal [66, Definition 1.6],
[64, Example 3], [15, p. 238]. [53, p. 411]. The function PIy, Il+/n — [w]® given by
Py, (A) = A is partition regular and Ly = I/’Iu .

ProoF. It is easy to show that 7, is an ideal on w, whereas Proposition 3.3(2)
gives the required properties of pz, = -

3.5. van der Waerden’s arithmetical progressions theorem.

THEOREM 3.9 (van der Waerden). A set A C w is called an AP-set if it contains
an arithmetic progressions of arbitrary finite length. The family

W ={A4 Cw: Aisnot an AP-set}

is an ideal on w. The ideal W is called the van der Waerden ideal [30, p. 107]. The
Sunction pyy : W — [w]® given by pw(A) = A is partition regular and W =T,

Proor. It is easy to see that all conditions from the definition of an ideal but
additivity are satisfied, whereas additivity is the well-known van der Waerden’s
arithmetical progressions theorem [75], [40, Theorem 2.1]. Finally, Proposition
3.3(2) gives the required properties of pyy. -

3.6. Ideals on directed sets. Finally, we introduce a class of partition regular
functions which are connected with ideals on directed sets [19, 20]. Recall that (A, <)
is a directed set if the relation < is an upward directed strict partial order on A.

Let (A, <) be a directed set such that A is infinite countable. A set B C A is cofinal
in (A, <) if for every 1 € A there is b € B with 1 < b. A family Z of subsets of A
is an ideal on (A, <) [20, Definition 2.2] if Z is an ideal on A and Z contains all
sets which are not cofinal. A family B of subsets of A is a coideal basis on (A, <)
[20, Definition 2.4] if B # (), all sets in B are cofinal and if C U D € B, then there
exists B € B such that B C C or B C D. In particular, for every ideal Z on (A, <)
the family Z* is a coideal basis on (A, <). It is known [19, Proposition 2.7] that Z
is an ideal on (A, <) if and only if there exists a coideal basis B on (A, <) such that
I={ACA:VBeB(BZA)}

The following easy proposition reveals basic relationships between partition
regular functions and ideals on directed sets.

PROPOSITION 3.10. Let (A, <) be a directed set.

(1) If p: F — [A)” is a partition regular function such that p(F) is cofinal for
every F € F, then

I,={ACA:VF € F(p(F) ¢ 4)}

is an ideal on (A, <).
(2) For a coideal basis B on (A, <) (inparticular for B = 1", where T is an ideal
on (A, <)). we define

B={B\K:BecB.Kec[A“}.
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Then the function pg : Be Fin(A)* — [A]® given by
pe((B\K)UC)=(B\K)N{ieA: Vi e(A\C) <)}

is a partition regular function such that ps((B\ K) U C) is cofinal for every
(B\K)uC e BoFin(A)*andZ,, ={ACA:VBeB(BZA)}.

B

§4. Restrictions and small accretions.

4.1. Restrictions of partition regular operations. For B ¢ Z,, we define a fam-
ily FI B={E € F:p(E)C B} and a function p | B: F | B —[B]° by (p |
B)(E) = p(E) (i.e., p | B=p | (F | B)). The following easy proposition reveals
relationships between restriction of a function p and restriction of an ideal Z,,.

PropoSITION 4.1. If p : F — [A]® is partition regular and B ¢ T,, then p | B is
partition regular and Z,;1p =1, | B.

4.2. Small accretions of partition regular operations. We will need the following
notion in the last part of the paper for characterization that shows when there exists
a space of one considered type that is not of the other type (Theorem 16.1).

DerFINITION 4.2. Let p: F — [A]° (with F C[Q]”) be a partition regular
function.

(1) A set F € F has small accretions if p(F)\ p(F \ K) € Z, for every finite
set K.

(2) p has small accretions if for every E € F thereis F € F such that F C E and
F has small accretions.

ProposiTioN 4.3. If p € {FS.r, A} U {pz : T is an ideal}, then p has small accre-
tions.

PROOF FOR p = p7r WHERE Z Is AN IDEAL. The function p has small accretions,
since for every 4 € I and finite K C A we have pz(A4) \ pz(A\ K) =4\ (4\
K)CKEeT. 4

PrOOF FOR p = FS. It is known [24, Lemma 2.2] that every infinite set £ C w
has an infinite very sparse subset F' C E, so if we show that every very sparse set
has small accretions, the proof will be finished.

Let F C w be an infinite very sparse set and K C w be a finite set. Assume towards
contradiction that FS(D) C FS(F) \ FS(F \ K) = {x € FS(F) : ar(x)NK # 0}
for some D € [w]®. Since K is finite, we can find x, y € D, x # y, such that ap (x) N
ar(y) # (. But then x + y € FS(D) \ FS(F), a contradiction. .

PrOOF FOR p = r. The function r has small accretions, since for every 4 € [w]®
and finite K C w we have r(4) \r(4\ K) =[AP\[A\ KPP ={{i.j}: i€ An
K,j S A} cR. -

PrOOF FOR p = A. It is known [22, Proposition 4.3(2)] that every infinite set
E C w has an infinite D-sparse subset F' C E, so if we show that every D-sparse set
has small accretions, the proof will be finished.

Let F C w be an infinite D-sparse set and K C w be a finite set. It is known [22,
Proposition 4.3(1)] that then F —n € D for every n < min F, and consequently,
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{a-b:ae F\K.beFNK}NweD. Thus, A(F)\A(F\K)={a-b:ac
FNK.beFa>b}U({a-b:acF\K.be FNK}Nw) € D as a finite union
of sets from D. —

§5. Topological complexity of partition regular operations. If A is a countable
infinite set, then we consider 2 = {0. 1}* as a product (with the product topology)
of countably many copies of a discrete topological space {0, 1}. Since 2* is a Polish
space [56, p. 13] and [A]” is a G; subset of 2*, we obtain that [A]” is a Polish
space as well [56, Theorem 3.11]. In particular, if A and Q are countable infinite
and F C [Q]”. we say that a partition regular function p : F — [A]? is continuous
if p is a continuous function from a topological subspace F into a topological space
[A]”.

By identifying subsets of A with their characteristic functions, we equip P(A)
with the topology of the space 2 and therefore we can assign topological notions
to ideals on A. In particular, an ideal Z is Borel (analytic, coanalytic, resp.) if T is
a Borel (analytic, coanalytic, resp.) subset of 2*. Recall, a set A C X is analytic if
there is a Polish space Y and a Borel set B C X x Y such that 4 is a projection of B
onto the first coordinate [56, Exercise 14.3], and a set C C X is coanalyticif X \ C
is an analytic set.

PROPOSITION 5.1. If a partition regular function p : F — [A]° (with F C [Q]?) is
continuous and F is a closed subset of [Q2]”, then the ideal T, is coanalytic.

ProoF. We will show that Z} = P(A) \ Z, is an analytic set. Let B = {(4, F) €
P(A) x F: p(F) C A}. Since B € P(A) x [Q]” and Z is a projection of B onto
the first coordinate, we only need to show that B is a Borel set. It suffices to show
that C = (P(A) x [Q]?) \ B is an open set, since

B = ((P(A) x [Q]")\ C) N (P(A) x F).

Let (4, F) € C. We have two cases: (1) F ¢ For (2) F € F.

Case (1). Since F is closed, there is an open set U C [Q]” with F € U and
UNF=0.Then W =P(A) x Uisopenand (4.F) € W C C.

Case (2). Since p(F) € A, thereisa € p(F)\ A.Let V = {D € P(A) : a € D}.
Then V is an open and closed set, 4 ¢ V', and p(F) € V. Since p is continuous at
the point F, there is an open set U C [Q]® such that F € U and p[U] C V. Then
W =(P(A)\V)x Uisopenand (4,F) e W C C. 4

PROPOSITION 5.2.

(1) The ideals T,;, and W are F.

(2) The functions FS and r are continuous.

(3) The function A is not continuous. In fact, the function A is discontinuous at
every point A such that A(4) # .

@) IfL={Ad€e[w]” :Vnew(esn+1)—eq(n) >e4s(n))} where e4 : w — A
is the increasing enumeration of a set A C ., then Iy = Ipz. L is closed and
A T L is continuous.

(5) The ideals H. R. and D are coanalytic.
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Proor. (1) It is known that Z, ;, and W are F, [66. Example 1.5]. [25. Example
4.12].

(2) Case of FS. Let D € [w]” and let U be an open basic neighborhood
of FS(D). Then there exists a finite set G C w such that U = {B € [w]® : BN
{0,1,....max G} =G}. Let F=DnN{0.1,....maxG}. Then V ={4 € [w]”:
An{0.1,....max G} = F} is an open neighborhood of D and FS[V] C U.

Case of r. Let D € [@]® and let U be an open basic neighborhood of [D]>.
There exists a finite set G C [w]? such that U = {B € [[0]*]” : BN[NT* = G}.
where N = max{max{p.q}:{p.q} € G}. Then V ={4 € [w]®: ANN =D} is
an open neighborhood of D and r[V] C U.

(3) Let A C wbesuchthath ¢ A(A)forsomeb € w. ThenU ={B Cw:b ¢ B}
is an open neighborhood of A(A4). Let ¥ be an open basic neighborhood of A.
Thereis N e w such that V ={C Cw:CNN=ANN}. Then C =(ANN)U
(w\N) €V and A(C) = w ¢ U. Hence the function A is discontinuous at the
point A.

(4) Tt is obvious that Zp = Zx;z. To show that £ is closed, notice that
[w]” \ £ is open as for each 4 € [w]® \ £ there is n € w such that e (n + 1) —
eq(n) <ey(n) and U={C €[w]®*:CNnesn+1)+1)=An(eq(n+1)+1)}
is an open neighborhood of 4 disjoint with L.

Below we show that A | £ is continuous. Let 4 € £. We are going to show that
the function A [ £ is continuous at the point A. Let U be a neighborhood of
A(A). Without loss of generality, we can assume that there is N € w such that U =
{B € [w]®: BN N = A(4) N N}. There exists M € w such thate,(M) > N. Then
V={Celw]®:Cn(es(M)+1)=A4n(eq(M)+ 1)} is an open neighborhood
of 4. Once we show that A[}VV N L] C U, the proof will be finished. Let C € V' N L.
Since 4, C € L, we obtain A(C) N (e (M) +1)=A(CN(es(M)+1))=AAN
(eq(M)+1)) =A(A) N (e (M) +1).But N < ey(M), hence A(CC)NN =A(4) N
N and consequently A(C) € U.

(5) It is known that H and R are coanalytic [25, Example 4.11], [67. Lemma
1.6.24] (but it also follows from item (2) and Proposition 5.1). It follows from item
(4) and Proposition 5.1 that D is coanalytic. -

§6. P-like properties.

6.1. P-like properties of ideals. For 4, B C A, we write A C* B if there is a finite
set K C Awith 4\ K C B.

Let us recall definitions of P-like properties of ideals that are considered in the
literature [50, p. 2030]. An ideal Z on A is:

e P~ (A) if for every C-decreasing sequence A, € Z+ with 49 = A and 4, \
A,,1 €T for each n € w there exists B € Zt such that B C* 4, for each
n € w;

e P~ if for every C-decreasing sequence 4, € Z* with 4, \ 4,4 € Z for each
n € o there exists B € ZT such that B C* 4, for each n € w;

e P if for every C-decreasing sequence 4, € Z* there exists B € Z such that
B C* A4, foreachn € w.
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The following proposition reveals some implications between P-like properties
and provides equivalent forms of the properties P~(A) and P~ that were considered
in the literature [62] under the names weak P-ideals and hereditary weak P-ideals,
where the author used them for in-depth research on Z-spaces.

PROPOSITION 6.1. Let T be an ideal on an infinite countable set A.
(1) ZisP* = ZisP~ = Lis P~(A).
(2) The implications from item (1) cannot be reversed.
(3) The following conditions are equivalent.
(a) Zis P-(A)(Z is P, resp.).
(b) For every partition A of A (of any set C € I, resp.) into sets from I there
exists B € 7 such that B C A(B C C.resp.) and B N A is finite for each
Ac A
(c) T is a weak P-ideal (hereditary weak P-ideal, resp.) i.e., for every
countable family A C T of subsets of A (subsets ofany C € IT,resp.)
there exists B € I such that B C A(B C C, resp.) and B N A is finite for
each A € A.

Proor. (1) Straightforward.

(2) The ideal Fin @ Fin? is P (0w U w?) (the set B = w L) works for every
sequence) but not P~ (as witnessed by the sets 4, = DU ((w \ n) x w)).

Below we show an example of a P~ ideal that is not P*. For a set 4 C w, we
define the asymptotic density of 4 by d(4) = limsup,_,__ |4 N n|/n. Then the ideal
T ={ACw:d(A) =0}is P (see. e.g.. [9. Corollary 1.1]). Now we show that Z,
is not P*. Take a decreasing sequence B, C w such that 0 < d(B,) < 1 /n for each
new. If C Cwis such that C C* B, for all n € w. then d(C) < d(B,) — 0 as
n — oo. Hence C € Z,. This shows that Z,; is not P™.

(3) Straightforward. 4

There are known relationships between topological complexity and P-like
properties.

THEOREM 6.2 [62, Proposition 4.9], [53, Lemma 1.2], [50, Theorem 3.7].

(1) Each Gsgs (inparticular, Fys) ideal is P~(hence P~(A)).

(2) Each F; ideal is P*(hence P~ and P~(A)).

(3) If T is an analytic ideal, then the following conditions are equivalent.
(a) There exists a P* ideal J withZ C J.
(b) There exists an F, ideal K with T C K.

6.2. P-like properties of partition regular operations.

DErFINITION 6.3. Let p : F — [A]® be partition regular. For sets F € F and B C
A, we write p(F) C” B if there is a finite set K C Q with p(F \ K) C B.

REMARK. We want to stress here that the relation “p(F) C” B” is in fact a
relation between F and B and not between p(F) and B because it can happen that
p(F) = p(G)and p(F) C” Bbut p(G) Z” B. We decided that we write p(F) C” B
instead of F C” B as the former seems more natural for us. The same remark
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applies to other notions involving “p(F)” we defined earlier or we define later (e.g..
Definitions 6.4 and 9.1).

The following properties will prove useful in the studies of classes of sequentially
compact spaces defined with the aid of partition regular functions.

DEFINITION 6.4. Let p : F — [A]® be partition regular. We say that p is:

(1) P~(A) if for every C-decreasing sequence A, € 1'/,+ with 49 = A and 4, \
An41 € I, for each n € w there exists F' € F such that p(F) C’ A, for each
ne€ w;

(2) P~ if for every C-decreasing sequence A4, € Ip+ with 4, \ 4,41 € Z, for each
n € w there exists F € F such that p(F) C” A, foreach n € w;

(3) P if for every C-decreasing sequence A, € Z there exists F' € F such that
p(F) CP A, foreachn € w;

(4) weak PT if for every E € F there exists F € F such that p(F) C p(E) and
for every sequence {F, : n € w} C F such that p(F) D p(F,) 2 p(F,.) for
each n € w there exists G € F such that p(G) C” p(F,) foreach n € w.

The following result reveals basic properties of the above defined notions and
their connections with P-like properties of ideals.

PROPOSITION 6.5. Let p : F — [A]® be partition regular with F C [Q]”. Let T be
an ideal on A.

(1) pis P* = pisweak Pt = pis P~ = pis P (A).

(2) Zis PY <= pgis P, for every ideal I. Similar equivalences hold for P~ and
P=(A), resp.

(3) The implications from item (1) cannot be reversed.

(4) IfZ, is P (A)(P. P*. resp.). then p is P~ (A)(P~, P*.resp.).

(5) The implications from item (4) cannot be reversed in case of P~(A) and P~
properties.

Proor. (1) Below we only show that if p is weak P* then it is P~ since other
implications are straightforward.

Let 4, € I/‘f be a C-decreasing sequence with A4, \ 4,41 € Z, for each n € .
Since Ay € I;', there is E € F such that p(E) C Ay. Using the fact that p is weak
P* we can find F € F with p(F) C p(E) and such as in the definition of weak P+
property.

We will show that there is a sequence {F, : n € w} C F such that p(Fy) C p(F)
and p(F,;1) C p(F,) N A, foreach n € w. Indeed, since p(F) C A,. it suffices to
put Fy = F. Suppose now that F; have been constructed for i < n. Since p(F,) N
A1 = p(F,) \ (An \An+1) € I;, there is £, 1 € F with p(F,;1) € p(F,) N Aysr.

Since F is as in the definition of weak P* property, there exists G € F such that
p(G) C? p(F,) foreach n € w. Thus, p(G) C” A, foreach n € w.

(2) Straightforward.

(3) The cases of the second and third implications follow from Proposition 6.1(2)
and item (2), where the proof of the fact that pz, is not weak P is just a slight
modification of the proof that Z, is not P*.

Now we show that the first implication cannot be reversed. Consider the ideal
I={ACwxw: AN ({n} x w) is finite for every n € w}. Then Z is not P* as
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witnessed by 4, = (w \ n) x w, so prisnot P* (byitem (2)). However, we will show
that prisweak P*.Let E € Z*. Then thereisn € wsuchthat F = E N ({n} x o) is
infinite. Then F € Z" and itiseasy to see thatif F,, € Z" aresuchthat F O F, D F, 1
then one can pick x, € F, foreachn € w and G = {x,, : n € o} € T is such that
G\{x;:i<n} CF,foralln € w.

(4) Proofs in all cases are very similar, so we only present a proof for the property
P (A).LetAd, € I/j bea C-decreasing sequence with 49 = Aand 4, \ 4,41 € Z, for
eachn € w. Since Z, is P~ (A). thereis B ¢ 7, such that for every n € w one can find
afiniteset K, € Qsuchthat B\ K, C 4,,. From thefactthat B ¢ 7, thereis F € F
such that p(F) C B. Using Proposition 3.2, we can find E € F such that E C F
and for every K,, there exists a finite set L, C Q such that p(E \ L,) C p(E) \ K,.
Then p(E \ L,) C p(E)\ Ku € B\ K, C A, 50 pis P-(A).

(5) In Proposition 6.7(3) and (4) we will show that p = FSisweak P*.butZ, = H
is not P~ (w). 4

We will need the following lemma to show that FS, r, and A are not P,

LEMMA 6.6. Let p: F — [A]° (with F C [Q]®) be a partition regular function
such that there exists a function © : [Q]<“ — A such that:

(1) VF € F¥{a.b} € [FI* (z ({a.b}) € p(F)).

(2) VF € FVYc € p(F)3S € [FI< (z(S) = ¢).

(3) there exists a pairwise disjoint family {P,:n € o} C F such that the
Sfamily {p(P,):n € w} is also pairwise disjoint and the restriction t |
[U{P, : n € @}~ is one-to-one.

Then p is not P*.

PrROOF. Let {P,:n € w} be as in item (3) of the lemma. For each n € w, we
define B, = |J{p(P;) : i > n}. Then B, € Z; and B 2 B, 2 B, foreach n € .
If we show that there is no G € F such that p(G) C” B, for every n € w. the proof
will be finished. Suppose for the sake of contradiction that there exists G € F such
that for every n € w there exists a finite set K, C Q with p(G \ K,,) C B,. We have
two cases:

(1) |G N Py,| = w for some ny € w.
(2) GNP, <wforalln € w.

Case (1). We take distinct a.b € (G N Py,) \ Kyy11. Since a.b € P, € F. we
have 7 ({a.b}) € p(P,,). On the other hand. a.b € G \ K41 € F.so 1 ({a.b}) €
p(G \ Kuy11) C Byys1. Hence, there exists i > ng + 1 such that 7 ({a.b}) € p(P;).
A contradiction with p(P;) N p(P,,) = 0.

Case (2). In this case, there exists a strictly increasing sequence {k, : n € w} such
that we can choose an element x,, € G N Py, foreach n € w. Since xy,, are pairwise
distinct, there is N € w such that x;, € G \ Ky for every n > N. In particular,
T ({Xky - kaH}) € p(G \ Ky) C By, and consequently there exists i € @ such that
 ({Xky- Xky., }) € p(P;). Therefore there is a finite set S C P; such that 7(S) =
T ({ka, Ny o1 }) Since P, are pairwise disjoint and x, € P,. we obtain that x;, ¢
P; or xy, 41 ¢ Pi. Consequently. {x;,.xp,, } #S.s07 | [[U{Ps:n € w}]*isnot
one-to-one, a contradiction. -
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PROPOSITION 6.7.

(1) The ideals W and 1,,, are P*(hence, P~and P~ (w)) while pyy and Pz, are
P*, weak P*, P~ and P~(w).

(2) If p € {FS,r, A}, then p is not P,

(3) If p € {FS. 1. A}, then p is weak P*(hence P~ and P~(A)).

(4) If T € {H.R, D}, then T is not P~(A)(hence not P+ and not P~).

Proor. (1) It follows from Theorem 6.2(2) and the fact that W and Z, , are F,
ideals (see Proposition 5.2(1)). The “hence” part follows from Proposition 6.5.

(2) Below we show that p is not P* separately for each p.

Case of p = FS. We define a function 7 : [w]<® — w by 7(S) = Y icsi- Then
we take an infinite sparse set P and a partition {P, : n € w} of P into infinite sets.
Lemma 6.6 shows that FS is not P*.

Case of p=r. Let A C w be such that both 4 and w \ 4 are infinite. Let
f :[0]<” — [w \ 4] be any bijection. We define a function 7 : [@]<” — [w]? by
t({a.b}) = {a, b} fordistincta.b € wandt(S) = f(S)forS € [w]<? \ [w]*. Then
we take a partition {P, : n € w} of 4 into infinite sets. Lemma 6.6 shows that r is
not P,

Case of p = A. We define a function 7 : [w]<° — w by t({a.b}) =a - b for
distinct @ > b and ©(S) = 0 otherwise. Then we take an infinite D-sparse set P
and a partition {P, : n € w} of P into infinite sets. Lemma 6.6 shows that A is
not P,

(3) The “hence” part follows from Proposition 6.5(1). Below we show that p is
weak Pt separately for each p.

Case of p = FS. Itis proved in [24, Lemma 2.3] (see also [20, Example 2.9(2)]).

Case of p=r. For any FE € [w]® we take F = E. Let F, € [w]” be such that
[F)? D [F.]? 2 [Fyy1)? for each n € w. We pick x, € F, \ {x; :i < n} foreach n €
w.Then G = {x, : n € w} € [w]” and [G]* C" [F,]* for each n € w.

Case of p = A. Fix any F € [w]®. Inductively pick a sequence (x;);e, C @ such
that x; € F, x; < x;31, and x4 —x; > x; —xp forall i e w. Let E={x;: i €
w} e [F]”.

Define a; = x;.1 — x; for all i € w and observe that a; = x;.1 — x; > x; — X9 =
> j<iaj. Put A={a;: i € w}. By [24, proof of Lemma 2.2] the set 4 is very
sparse, i.e., 4 is sparse and if a(x) Nay(y) # 0 then x + y ¢ FS(4). Note that
A(E) = {>_;c; a;i : Iis afinite interval in w} C FS(A).

Observe that if A({y,: n € w}) C A(E), where y, < y,4 for all n € w, then
there is a partition of w into finite intervals (I,,),c., such that max I, < min I, | and
Vnil = Yn = 2y, @i- Indeed. as y,1—yn € Al{y,: new}) CA(E) CFS(4),
foreachn € w thereisafiniteinterval 7, suchthat y, .1 — y, = )¢ 5, i (because A4 is
sparse, we get I, = aq(Vn41 — yu)). Weneed to show that the intervals I, are pairwise
disjoint and cover w. Suppose first that sup 7, + 1 < inf 7, for some n € w. Then
Y2 = Vn = Pns2 = Yuset) + nst = ) = Yiep,u,.,, @i- On the other hand., .2 —
v €EA{yn: new}) CA(E). SO yui2 — yu = Y ;c; @i for some interval 1. This
contradicts uniqueness of a4 (y,+2 — y,) (because 4 is sparse). Suppose now that
LN Ly # 0. Then poio = yu = (Vuy2 = Yar1) + (Va1 — ya) & FS(A) (because 4 is
very sparse), which contradicts A({y, : n € w}) C A(E) C FS(A).
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Fix any sequence (Fj)ico C [@w]” such that A(F,1) € A(F;) C A(E) for all
k € w. By the previous paragraph, with each k € ®w we can associate a partition of
 into finite intervals I}, i.e. A(Fy) = {X;c;ai: I = I}‘ U I}‘H U...U I;‘, for some
J<J'}

Observe that actually for each n.k € w we have that I5 ! = J,, I} for some
interval /. Indeed, otherwise for some n.k € w we would have x =}, x+1 a; €
A(Fis1) € A(Fy).s0 x =Y, a; for some I = I;‘ U I/I'C+l U UI/",, which contra-
dicts that A is sparse. '

Inductively pick a sequence (n;)rce, € @ such that for each k € w we have

Miy1 >y (so also a,, | > a, ) and n, = min 1/" for some j € w. Define E' =
{xn, : k € w}. Notice that x, , —x, = Zie[nk.nkm“i' Then for each k € w
we have A(E'\[0.x,.)) =A({x, 1 i>k}) C{¥,q;ai: I=17UI} U-U
Ijk, for some j < j'} = A(Fy).

(4) The “hence” part follows from Proposition 6.1. Below we show that Z is not
P~(A) separately for each Z.

Case of T =H. Let A = {2¥(2n+ 1) : n € w} for each k € w. In [24, item (2)
in the proof of Proposition 1.1], the authors showed that 4, € H for every k € w,
whereas in [24, item (1) in the proof of Proposition 1.1] it is shown that for every
B ¢ H there is k € w such that B N Ay is infinite. Thus, the family {4, : k € w}
witnesses the fact that 7 is not P~ (w).

Case of T=TR. Let A, ={{k,i}:i>k >n} for every n € w. Then 4, ¢
R, Ag = [w]*. and 4, \ A,.1 = {{n,i}:i>n} € R. Suppose, for the sake of
contradiction, that thereis B ¢ R such that B C* A4, foreveryn € w.Let H = {h,, :
n € w} be an infinite set such that [H]* C B and h, < h, 1 for every n € w. Since
[H]* C* A,. there is a finite set F such that [H]* \ F C Aj,. Since F is finite, there
is k > Osuch that {ho. h,} ¢ F foreveryn > k. Then {{ho,h,} :n >k} C[H]*\ F
and {{ho.h,} :n >k} N A, =0.acontradiction.

Caseof T="D.Let A, = {2*(2n+1) : n € w} foreach k € w. In [60, item (2) in
the proof of Theorem 2.1], the author showed that A, € D for every k € w, whereas
in [60, item (1) in the proof of Theorem 2.1] it is shown that for every B ¢ D there is
k € o such that B N Ay is infinite. Thus, the family {4 : k € o} witnesses the fact
that D is not P~ (w). 4

The following easy observation will be useful in our considerations.

ProrosITION 6.8. If p: F — [A]? is partition regular with F C [Q]®, then the
Jfollowing conditions are equivalent.
(1) pis P (P(A).resp.).
(2) For every countable family B C I, with\J B ¢ Z, ({J B = A. resp.) there exists
F € F such that p(F) C \J B and for every finite subfamily C C B there is a
Sinite K C Q such that p(F \ K) N |JC = 0.

ProoF. We will assume that p is P~, as the proof in the case of P~(A) is similar.
(1) = (2).Let B={B,:n € w}, where | JB ¢ I, and B, € Z, for every n €
. For each n € w, we define 4, = |J B\ |U{B; : i < n}. Since p is P, there exists
F ¢ F such that p(F) C” A4, for each n € w. Let C C B be a finite subfamily.
Let n € w be such that C C {B; :i < n}. Then | JC C | {B;:i<n}. Let K CQ
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be a finite set such that p(F \ K) C 4,. Then p(F\ K)NU{B;:i<n} =0, so
p(F\K)Nn|JC=0.

(2) = (1). Let 4, € Z; be such that 4, 2 A,y and 4, \ 4,11 € Z, for each
n € w.Foreachn € w wedefine B, = 4, \ 4,1.Let B={B, : n € o}. Then there
exists F € F such that p(F) C | J B and for every finite subfamily C C B there is a
finite K C Q such that p(F \ K)N|JC = (. Thus for any n € w, we find a finite
set K C Qsuchthat p(F\ K)N|{J{B;:i<n}=0.Hence p(F\K) C|J{B;:i >
n} = A, s0p(F)CP A,. 4

§7. Katétov order.

7.1. Katétov order between ideals. We say that an ideal Z; on A is above an ideal
T, on A, in the Katétov order (in short: T, <y Z;) [55] if there exists a function
¢ : A1 — A, such that ¢[A] ¢ T, for each 4 ¢ Z;. If Ay = A, and Z, C 7, then
obviously the identity function on A; witnesses that 7, <x 7.

There are known relationships between Katétov order, P-like properties, and
topological complexity.

ProposiTiON 7.1 [50, Theorem 3.8]. Let Z be an ideal on A.
(1) Zis P~ (A) < Fin®> £ .

(2) ZTisP~ < Fin> £x I | A forevery A € T+,
ProroSITION 7.2.

(1) Fin® <g T forT € {D.H.R}.
(2) IfTisa Gy ideal. then Fin® £x T | A forevery A € I In particular, Fin* £ g
W and Fin? £k Lin-

Proor. (1) Using Proposition 7.1(1), we need to show that D, H, and R are not
P~(A) ideals, but this follows from Proposition 6.7(4). (For Z = R, this item was
earlier proved by Meza-Alcantara [67, Lemma 1.6.25].)

(2) It follows from Theorem 6.2(1) and Propositions 7.1(2) and 6.7(1). -

7.2. Katétov order between partition regular operations. The following notion will
be crucial for showing when a class of sequentially compact spaces defined by p; is
contained in a class of sequentially compact spaces defined by p».

DEFINITION 7.3. Let p; : F; — [A;]? be partition regular (with F; C [€Q;]?) for
each i = 1,2. We say that p; is above p, in the Katétov order (in short: py <g pi) if
there is a function ¢ : A; — A, such that

VF| € F13F, € B2 YK € [Q]°° 3K € [D]<° (p2(F2 \ Ka) C ¢lpi (F1 \ K1)])
or equivalently:
VF] S ]:1 E|F2 S .7:2 VK] S [Q]]<w (pz(Fz) Q’Z ¢[p1(F1 \K])])

The following proposition reveals some basic properties of this new order on
partition regular functions.
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PrOPOSITION 7.4.

(1) The relation <y is a preorder (a.k.a. quasi order), i.e., it is reflexive and

transitive.

(2) The preorder <y is upward and downward directed.

(3) Let p : F — [A]”(with F C [Q]®) be partition regular.

(@) p <k p | p(F) forevery F € F.
(b) PEma) <k p-

Proor. (1) Reflexivity of <g is obvious. To show transitivity, fix F; C [€2;]” and
pi o Fi = [A]%. 1 =1,2,3, and suppose that p; <g p; is witnessed by f and p, <g
p3 1s witnessed by g. We claim that p; <g p; is witnessed by & : A3 — A; given by
h(x) = f(g(x))forall x € As. Let F3 € F3. Then we can find F, € F> such that for
every K € [Q3]< thereexists Lx € [Q]<” such that p(F> \ L) C g [p3(F3 \ K)].
Then for F, we can find F; € F; such that for every L € [Q;]<“ there exists
My € [Q]<” such that py (F; \ M) C f [p2(F>\ L)]. Now fora given K € [Q3]<
we have pi1(Fi \ ML) C f [p2(Fa\ Lx)] C f [g [p3(Fs \ K)]] = h [ps(F3 \ K)].
so the proof is finished.

(2) Let p; : Fi — [A;]° with F; C [€;]® be partition regular fori = 0, 1. We define
the following partition regular functions 7 : {Fy x F) : Fy € Fo. F1 € Fi1} — [Ag %
A1]? by n(Fo X Fl) = po(Fo) X Pl(Fl) and o : Fo @ F1 — [Ag @ A1]” by U((F() X
{0)) U (F x {(11) = (polFo) x {0}) U (pr(F1) x {1}).

Then ¢ <g p; (i =0, 1) is witnessed by a function ¢; : A; — Ay ® A given by
¢:(x) = (x.i), whereas p; <gx n (i =0, 1) is witness by a function y, : Ag x Aj —
A; given by wi(x0. x1) = x;.

(3a) Let F € F. We claim that ¢ : p(F) — A given by ¢(/) = /4 is a witness for
p <k p!lp(F). Let F; € F | p(F). Then F, = F| is such that for every finite set
Ky C Qwe take K, = K; and see that p(F> \ K») C ¢(p(F) \ K1)).

(3b) We claim that ¢ : A — A given by ¢(4) = Ais a witness for pri,n) <x p. Let
FeF. LetQ={o,:n € w}. Since p(F \ {o0; : i < n}) is infinite for every n € w,
we can pick a one-to-one sequence (a, : n € w) such that a, € p(F \ {o; :i < n})
for every n € w. Then 4 = {a, : n € } € Fin(A)™" is an infinite set. For a finite
set K C Qthereisn € w such that K C {o; : i <n}. Then L = {a; : i < n} is finite
subset of Aand 4\ L C p(F \ {o; : i < n}) C p(F \ K). 8

Now we compare the relation <g between partition regular operations with the
relation <g between ideals.

ProposITION 7.5. Let p; : Fi — [A;]° for each i = 1,2 and p : F — [A]”° be
partition regular. Let T be ideal.
(1) p2 <k pp = I,, <k I,, with the same witnessing function.
(2) (a) If ps is PT(inparticular, if p» = pz and T is PT), then p, <gx p1 <
Iﬂz <K Iﬂl'
(b) p<k pr <= I, <k T

Proor. (1) Let F; C [Q;]? for i = 1,2. Let ¢ be a witness for py <x p;. We
claim that ¢ is also a witness for Z,) <x Z, . Let 4 ¢ 7, . Then there is F; €
F1 with pi(F;) C A. Since py <g pi. there is F>» € F, and a finite set K, C Q,
such that p>(F; \ K2) € ¢[p1(F1 \ 0)] = ¢[p1(F1)]. Since F> \ K> € F; and py(F5 \
K>) C ¢[A]. we obtain that ¢[A4] ¢ Z,,. Thus the proof of this item is finished.
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(2a) The “in particular” part follows from Propositions 3.3(2) and 6.5(2).

We only have to show the implication “ <= ,” because the reversed implication
is true by item (1). Let ¢ : A; — A, be a witness for Z,, <k Z,,. We claim that ¢
is also a witness for py <x pi. Let Fy € F1, Q) = {0, : n € o} and B, = ¢[p1(F; \
{o; i< n})] foreachn € w. Then B, ¢ Z,,. B, 2 B, for each n € w. and since
7, is P*, there is F, € F> such that for each n € w there is a finite set L, C Q»
with p»(F> \ L,) C B,. Now, for any finite set K; C Q; there is n € w such that
K, C {Oi i< n} Let K, = Ln.Thenpz(Fz \ Kz) CB,C ¢[p1(F1 \Kl)].ThU.S the
proof of this item is finished.

(2b) The implication “ == ” follows from item (1) and Proposition 3.3(2), so
below we show the reverse implication.

Suppose that 7 is an ideal on A and F C [Q]“. Let ¢ : A — A be a witness of
Z, <k Z.We claim that the same ¢ is also a witness for p <g pz.Indeed.for 4 ¢ Z
we find E € F such that p(E) C ¢[A4]. Using Proposition 3.2, we can find a set F €
F such that F C E and for any finite set K C A there exists a finite set L C Q with

p(F\ L) C p(F)\ $[K]. Consequently. p(F \ L) C $[4]\ $[K] C $[4\ K].

The following example shows that in general p, <k p1 and Z,, <k Z,, are not
equivalent.

EXAMPLE 7.6. Fin® <x H.but py,» Zx FS.

ProoF. By Proposition 7.2(1) we know that Iy, = Fin? <x H = Zgs. Thus,
we only need to show that pp, » £x FS.

Suppose that pp. » <g FSandlet ¢ : v — ? be a witness for this. For each n €
w, we define 4, = ¢ '[(w \ n) x w]. Then Ay = w, A, D A,y1. and 4, \ 4,1 C
¢ '[{n} x w] € H for each n € w by Proposition 7.5(1). Since FS is P~(w) by
Proposition 6.7(3), there is F € [w]® such that for every n € w there is a finite
set K, C w with FS(F \ K,,) C 4,,. Now, using the fact that p, » <x FS. we find
B¢ Fin’? such that for every n € w there is a finite set L, C w? with B \L, C
S[FS(F \ K,)] € ¢[4,] C (w \ n) X w. In particular, sets B N ({n} x w) are finite
for every n, so B € Fin’, a contradiction. =

2

REMARK. The partition regular function pp, > from Example 7.6 is not P~. In
Example 15.5 we will show that there are partition regular functions p; and p, which
are P~ and have small accretions such thatZ,, C 7, <k I, ), but

», C I, (in particular, Z,, <
P2 Lk p1-

7.3. Katétov order between FS.r, A, )V, and 7, In-

THEOREM 7.7.
(1) H £x R. In particular, FS £ r.

(2)

(3) A <x FSand D C H. In particular, D <y H.
(4) A <g r. In particular, D <g R.

(5) R £k D. In particular, r £k A.

(6) H £k D. In particular, FS £ A.

(7)
(8)
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9) Zi/u £k D. In particular, Pz, Lk A.

)
(10) Zy/, £x W. In particular, Pz, £x pw.
(11) D £k Lyy. In particular. A £k o
(12) H £k Ty ). In particular. FS £ Pz,
(13) R £k Ty ). In particular, r £k Pz,
(14) D £x W. In particular, A Lx pyw.

(15) H £x W. In particular, FS £x pyy.

(16) R £x W. In particular, r £g pyy.

ProoF. The “in particular” parts follow from Proposition 7.5(1).

The proofs of items (1), (2), (7), and (8) can be found in [23] (item (8) is also
proved in [24, Theorem 3.2(1)]). Item (10) can be found in [30, Lemma 3.1].

(3) The inclusion is proved in [73, Proposition 4.2.1] (see also [22, Propositions
4.2]). Below, we show that A <g FS.

We claim that the identity function ¢ : ® — w. ¢(n) =n for every n C w is a
witness for A <y FS.

For any infinite set 4 C w, we define an infiniteset B = {) ,_, a; : n € @}, where
{a, : n € w} is the increasing enumeration of A. Next, for any finite set K, we define
afiniteset L ={0,1,....Y ., a;}, where k = max{i € w: a; € K} (for K = 0 we
take k = 0). Finally, we observe that A(B\ L) C FS(4 \ K) = ¢[FS(4 \ K)]. so
the proof is finished.

(4) We claim that ¢ : [@]*> — w given by the formula ¢({n.k}) = n — k, where
n > k, is a witness for A <y r. For any infinite set A C w, we take B = A. Then for
any finite set K C w, we take L = K. Next, we notice that A(B\ L) = A(4\ K) =
#l[A\ KJ*] = ¢[r(4 \ K)]. so the proof is finished.

(5) It follows from items (3) and (2).

(6) It follows from items (4) and (1).
(9) It follows from items (8) and (3).

(11) Suppose otherwise: D <g Z;;,. By Proposition 7.2(1) Fin®> <x D. so
Fin? <g T, /s. By Proposition 7.1(1), we obtain that Z;,, is not a P~ () ideal, a
contradiction with Proposition 6.7(1).

(12) It follows from items (3) and (11).

(13) It follows from items (4) and (11).

(14) Suppose otherwise: D <x W. Using Proposition 7.2(1) we get that Fin®> <g
D. so Fin® <x W. However, since W is F, (see [25. Example 4.12]). Fin®> Zx W by
[13, Theorems 7.5 and 9.1]. A contradiction.

(15) The proof can be found in [59, Lemma 1], but it also follows from items (3)
and (14).

(16) It follows from items (3) and (14). 4

QuEsTION 7.8. Is W <g T for T € {Z1/,. H.R. D}?

REMARK. The positive answer to Question 7.8 for Z = Z;/, is implied by the
inclusion W C 7, that is known as the Erd6s conjecture on arithmetic progressions
(a.k.a. the Erdés-Turan conjecture) which can be rephrased in the following manner:
if the sum of the reciprocals of the elements of a set A C w diverges, then 4 contains
arbitrarily long finite arithmetic progressions.
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§8. Tallness and homogeneity.

8.1. Tallness of partition regular functions. An ideal Z on A is tall if for every
infinite set 4 C A there exists an infinite set B C A4 such that B € Z [64, p. 210] (see
also [65, Definition 0.6]). It is not difficult to see that 7 is not tall <= 7 <g J for
everyideal 7 <= Z <g Fin <= 7 | A = Fin(4) forsome 4 € Z+.

The following proposition characterizes tallness of the ideal Z, in terms of p and
serves as a definition of tallness of partition regular functions.

PRrOPOSITION 8.1. Let p : F — [A]” be partition regular (with F C [Q]?). The
following conditions are equivalent.

(1) Z, is tall.

(2) There exists a partition regular function t such that p £x t.
(3) Z, | p(F) # Fin(p(F)) for every F € F.

(4) p £k PFin(A)-

PrOOF. (1) = (2) If Z, is tall, there is an ideal J such that Z, £x J. Then
p %k p7 by Proposition 7.5(1).

(2) => (3) Suppose that there is F € F such that Z, | p(F) = Fin(p(F)). We
will show that p <k 7 for every partition regular function 7 .

Take any partition regular function 7 : G — [Z]* with G C [[']®.

Let ¢ : £ — A be a one-to-one function such that ¢[X] = p(F). We claim that ¢
is a witness for p <g 1.

Let G€G and T'={y, :n € w}. Since ¢[t(G \ {y; :i <n})] is infinite for
every n € w, we can pick a one-to-one sequence (b, :n € w) such that b, €
@[t(G \ {y;: : i <n})] foreach n € w. Define B = {b, : n € w}. Since B is infinite,
B C p(F).,andZ, | p(F) = Fin(p(F)). thereis H € F such that p(H) C B. Using
Proposition 3.2, there is £ € F with E C H such that for any n € w there is a
finite set L C Q such that p(E \ L) C p(E) \ {b; : i < n}. Consequently, for any
finite set K C I there is n € w such that K C {y; : i < n}, so we can find a finite
set L C Q such that p(E\ L) C p(E)\{b;i:i<n} CB\{b;:i<n}C¢[t(G\
{7 i< nP)] C $l2(G\ K]

(3) = (4) Let ¢ : A — A beawitness for p <g pgin(a). Since ¢'[{2}] € Fin(A)
for every A € A and ¢[A] is infinite, there is an infinite set 4 C A, such that ¢ [ 4
is one-to-one. Then we can find F € F such that p(F) C ¢[A4]. We claim that
Z, | p(F) = Fin(p(F)). Indeed. let B C p(F) be infinite and observe that ¢'[B] is
infinite, so B = ¢[¢'[B]] ¢ Z,.

(4) = (1) If p £k prin(a) then by Proposition 7.5(2b). Z, £k Fin(A). and
consequently Z, is tall. =

DEerINITION 8.2. We say that a partition regular function p is tall if any item of
Proposition 8.1 holds.

ProrosITION 8.3. The ideals H, R, D, W, and 1y, are tall (hence, FS. r, A, pyy.
and pz, , are tall).

ProOF. For the case of W and Z,; . see [7. p. 3—4]. For other cases, see [67, under
Lemma 1.6.24] and [22, Proposition 4.3 and text above Lemma 3.2]. Tallness of the
listed partition regular functions follows then from Proposition 8.1. #
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8.2. Homogeneity of partition regular functions. Let Z; be an ideal on A; for
each i = 1,2. Ideals Z; and Z, are isomorphic (in short: Z; ~ 1) if there exists a
bijection ¢ : Ay — A suchthat 4 € 7| <= ¢[A4] € I, for each 4 C A;. An ideal
T on A is homogeneous if the ideals Z and Z | A are isomorphic for every 4 € Z+
[63, Definition 1.3] (see also [34]). We say that Z is K-homogeneous if T | A <x T
for every 4 € Z* (in [45, p. 37]. the author uses the name K-uniform in this case).
Note that we always have 7 <x Z | A forevery A € Z" (see, e.g., [45. p. 46]).

DrrmNiTION 8.4. Let p : F — [A]® be partition regular. We say that p is K-
homogeneous if p [ A <g p forevery 4 € T (note that we always have p <x p | 4
for every 4 € Z; by Proposition 7.4(3a)).

PROPOSITION 8.5.

(1) If a partition regular function p is K-homogeneous then I, is K-homogeneous.
(2) Anideal T is K-homogeneous <= pz is K-homogeneous.

Proor. (1) It follows from Propositions 7.5(1) and 4.1.
(2) Observe thatif A € Z" then pz;4 = pz | A. Thus, it follows from Propositions
7.5(2b) and 4.1. =

We need the following lemma to show that FS and r are K-homogeneous.

LEMMA 8.6. Let p: F — [A]” be partition regular (with F C [Q]®). If I, is
homogeneous and p is P~ and has small accretions then p is K-homogeneous.

Proor. Let 4 € T . Since Z, is homogeneous, Z,, [ 4 and Z, are isomorphic. Let
f A — A be a bijection witnessing it. We claim that f witnesses p [ 4 <k p.

Let F € F. Since p has small accretions, there is G € F such that G C F and
G has small accretions. Enumerate Q = {0, : n € @} and define K, = {0, : i <n}
and 4, = f[p(G \ K,)]foralln € w.Then 4, D A,,.Since G has small accretions
and f'is a bijection and witnesses that Z, | 4 and Z, are isomorphic, 4, € (Z, | A)*
and A, \ 4,11 C f[p(G\ K,) \ p(G\ Ky11)] C fIp(G)\ p(G\ Kpi1)] €T, | A.
Using the fact that pis P~, wecanfind H € F | Asuchthat p(H) C” 4, = f[p(G \
K,)]foralln € w.Hence, given any finite set K C Qtherearen € w and finite L C Q

_|

such that K C K, and p(H \ L) C 4, = f[p(G\ K,)1 C f[p(G\ K)].
ProrosITION 8.7.

(1) Theideals H, R. and W are homogeneous (hence, K-homogeneous).
(2) The functions FS and r are K-homogeneous.

Proor. (1) See [63, Examples 2.5 and 2.6].
(2) 1t follows from item (1), Lemma 8.6, and Propositions 6.7(3) and 4.3. 4

QUESTION 8.8.

(1) Is the function A K-homogeneous?
(2) Is the ideal 1,;, K-homogeneous?

Part 2. FinBW spaces

In this part we define the main object of our studies—classes of sequentially
compact spaces defined with the aid of partition regular functions (Definition 10.1).
Next, we prove some general results about those classes of spaces (Theorem 10.5).
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§9. A convergence with respect to partition regular functions.

DermNITION 9.1. Let X be a topological space. Let p : F — [A]” be partition
regular with F C [Q]?.

(1) For F € F.afunction f : p(F) — X is called a p-sequence in X.

(2) A p-sequence f : p(F) — X is p-convergent to a point x € X if for every
neighbourhood U of x there is a finite set K C Q such that

flp(FANK)]C U

REMARK. Various kinds of convergences considered in the literature can be
described in terms of p-convergence.

(1) If p = FS, then p-convergence coincides with IP-convergence (see [35], [36].
or [57]).

(2) If p = r. then p-convergence coincides with the R-convergence (see [5], [6]. or
[61, Definition 2.1]).

(3) If p = A, then p-convergence coincides with the differential convergence (see
[73, Definition 4.2.4] or [22, p. 2010]).

(4) If Z is an ideal on A and pz is defined as in Proposition 3.3(2), then pz-
convergence coincides with the ordinary convergence.

The following proposition reveals relationships between p-convergence and
convergence.

PROPOSITION 9.2.
(1) Let p: F — [A]® be partition regular with F C [Q]”. Let F € F and f :

p(F)— X.

(a) If fis convergent to L, then f | p(E) is p-convergent to L for some E €
F | p(F).

(b) If fis p-convergent to L, then f | A is convergent to L for some infinite set
A4 C p(F).

(2) Let I be an ideal on A and f : A — X for some A € TT. Then fis convergent
to L < f is pz-convergent to L.

Proor. (la) Let E € F with E C F be as in Proposition 3.2 and let U be a
neighborhood of L. Then there exists a finite set K such that f(n) € U for every
n € p(F)\ K. There is a finite set L such that p(E \ L) C p(E)\ K C p(F)\ K.
Consequently, f(n) € U foreveryn € p(E \ L).

(1b) Let Q = {0, : n € w}. For each n € w, we pick 4, € p(F \ {o; : i <n})\
{Adii<n}.LetA={A, :n € w}. Weclaim that /' [ 4 is convergent to L. Indeed,
if U is a neighborhood of L, then there is a finite set K C Qsuch that f[p(F \ K)] C
U. Let n € w be such that K C {o; : i <n}. Then f[A\ {4 :i<n}]C fp(F\
{oi:i<np)]C flp(F\K)]CU.

(2) It is straightforward. =

§10. FinBW spaces. Let 7 be an ideal on a countable infinite set A. The following
classes of topological spaces were extensively examined in the literature (see, e.g..
[26, 30, 62]):
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(1) FinBW(Z) is the class of all topological spaces X such that for every sequence
f A — X there exists A € I* such that f | 4 converges (in [30], spaces
from FinBW(Z) are called Z-spaces).

(2) hFinBW(Z) is the class of all topological spaces X such that for every B € 7+
and every sequence f : B — X there exists 4 € Z* such that 4 C B and
f | A4 converges.

REMARK. The classes FinBW(Z,) for p € {W.Z,/,} were examined in the
literature under other names:

(1) In [58, Definition 3], spaces from FinBW(W) are called van der Waerden
spaces.
(2) In[30, Definition 2.1], spaces from FinBW(Z, ,) are called Z, ;,-spaces.

DerinITION 10.1. Let p : F — [A]® be a partition regular function.

(1) FinBW(p) is the class of all topological spaces X such that for every sequence
f : A — X thereexists F € F such that f | p (F) p-converges.

(2) hFinBW(p) is the class of all topological spaces X such that for every
p-sequence f : p(E) — X there exists F € F such that p(F) C p(E) and
f | p(F) p-converges.

ReEMARK. The classes FinBW(p) for p € {FS,r,A} were examined in the
literature under other names:

(1) In [57. Definition 4], spaces from FinBW (FS) are called Hindman spaces.
(2) In [6] (see also [61, Definition 2.1]), spaces from FinBW (r) are called spaces
with the Ramsey property, and we will call them Ramsey spaces in short.

(3) In[73, Definition 4.2.4] (see also [22, p. 2010]), spaces in FinBW(A) are called
differentially compact spaces.

REMARK. Recall that if (A, <) is a directed set, then any function f : A — X is
called a net in X. A net /' : A — X in a topological space X converges to x € X if
for every neighborhood U of x there is 4y € A such that f (1) € U for every A > Ao
(see, e.g.. [17, p. 49]). In [20, Remark 2.6], the authors notice that if B is a coideal
basis on (A, <). then (B, < N(B x B)) isadirected set and f | B is a subnet of / for
every B € B. Furthermore, they examine topological spaces X having the property
that every net / : A — X has a convergent subnet f [ B with some B € B [20, p.
418]. It is not difficult to see that the class of spaces they examine coincides with the
class FinBW(pp) with pp defined as in Proposition 3.10(2).

The following proposition reveals relationships between FinBW-like spaces
defined with the aid of partition regular functions and ideals.

ProrosiTION 10.2. Let p : F — [A]® be partition regular with F C [Q]”. Let T
be an ideal on A.
(1) (a) hFinBW(p) = N{FinBW(p | p(F)) : F € F}.
(b) hFinBW(Z) = ({FinBW(Z | 4) : A € Z"}.
(2) (a) hFinBW(p) C FinBW(p).
(b) hFinBW(Z) C FinBW(Z).
(3) FinBW(Z,) C FinBW(p) and hFinBW(Z,) C hFinBW(p).
(4) FinBW(Z) = FinBW(pz) and hFinBW(Z) = hFinBW (pz).
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(5) (a) If p is K-homogeneous, then hFinBW(p) = FinBW(p).
(b) If T is K-homogeneous, then hFinBW(Z) = FinBW(Z).

Proor. (1) and (2) Straightforward.

(3) It follows from Proposition 9.2(1a) (the other inclusion does not follow from
Proposition 9.2(1b) as it gives us only an infinite set 4, not necessarily 4 € ).

(4) It follows from Proposition 9.2(2).

(5a) We only need to show FinBW(p) € hFinBW(p). Let X € FinBW(p) and f :
p(E) — X bea p-sequencein X forsome E € F.Let ¢ : A — p(E) be a witness for
p I (F|p(E)) <k p.Since fo¢: A — X, thereis F € F such that f o ¢ | p(F)
is p-convergent to some x € X. Since p | (F | p(E)) <k p. thereis G € F | p(E)
such that for every finite set K C Q there is a finite set L C Q with p(G \ L) C

[p(F \ K)]. Weclaim that f | p(G) is p-convergent to x. Let U be a neighborhood
ofx Then there is a finite set K C Q such that (f o ¢)[p(F \ K)] € U. We pick a
finite set L C Qsuchthat p(G \ L) C ¢[p(F \ K)]. Then f[p(G \ L)] C f[od[p(F \
K)]] C U, so the proof is finished.

(5b) It follows from items (5a) and (4) and Proposition 8.5(2). 4

REMARK. In Theorem 10.2(3), we cannot replace inclusion with equality in
general because in [57, Theorems 3 and 10] the author proved that FinBW(H)
contains only finite Hausdorff spaces, whereas FinBW(FS) contains infinite (even
uncountable) ones.

COROLLARY 10.3.

(1) [58. Proposition 4] hFinBW (W) = FinBW (W), and consequently the product
of two van der Waerden spaces is van der Waerden.

(2) [57. Lemma 8] hFinBW (FS) = FinBW(FS), and consequently the product of
two Hindman spaces is Hindman.

(3) [61, Theorem 3.4] hFinBW (r) = FinBW(r), and consequently the product of
two Ramsey spaces is Ramsey.

Proor. It follows from Theorem 10.2(5) and Proposition 8.7. -
QUuEsTION 10.4 [31, 32] and [73, Question 4.2.3].

(1) (a) Does FinBW(Z,,,) = hFinBW(Z, ,)?
(b) Is the product of two I, ,-spaces an I, ;,-space?
(2) (a) Does FinBW(A) = hFinBW(A)?
(b) Is the product of two differentially compact spaces a differentially compact
space?

Note that the positive answer to the question in item (la) gives the positive
answer to the question in item (1b), and similarly for the questions in the second
item. Moreover, the positive answer to the Question 8.8(1) (Question 8.8(2), resp.)
gives the positive answer to Question 10.4(2a) (Question 10.4(1a). resp.).

Let us now turn to one of the main results of this paper.

THEOREM 10.5. Let p : F — [A]® be partition regular with F C [Q]“.

(1) FinBW(p) contains all finite spaces and is a subclass of the class of all

sequentially compact spaces.

(2) pisnottall <= FinBW(p) coincides with the class of all sequentially compact

spaces.
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(3) The following conditions are equivalent.
(a) pis P~(A).
(b) There are Hausdorff compact spaces of arbitrary cardinality that belong to
FinBW(p).
(c) There exists an infinite Hausdorff topological space X € FinBW(p).
(4) The following conditions are equivalent.
(a) pis P.
(b) There are Hausdorff compact spaces of arbitrary cardinality that belong to
hEinBW(p).
(c) There exists an infinite Hausdorff topological space X € hFinBW(p).
(5) If pis P, then
(a) the uncountable non-compact Hausdorff space X = w1 with the order
topology belongs to FinBW(p),
(b) assuming Continuum Hypothesis (CH) there are Hausdorff compact and
separable spaces of cardinality ¢ that belong to FiInBW(p).
(6) If p is weak P, then every compact metric space is in hFInBW (p).
(7) If p is P, then every Hausdorff topological space with the property () belongs
to hFinBW(p).
(A topological space X has the property (*) if for every countable set D C X
the closure cly (D) is compact and first-countable—see [58].)

Proor. (1) It follows from Proposition 9.2(1b).

(2) The implication “ <= " will follow from Theorem 13.2(1). To prove the
implication “ =" we only need to show that every sequentially compact space
belongs to FinBW(p). Fix a sequentially compact space X and f : A — X. Let
¢ : A — A be a witness for p <g ppina). Since f o ¢ : A — X, there is an infinite
set A C A such that (f o ¢) | 4 is convergent to some x € X. Then thereis F € F
with p(F) C ¢[A]. We claim that f | p(F) is p-convergent to x. Let U be any
neighbourhood of x. Then there is a finite set L C A such that f[¢[4\ L]] C
U. Now, we can find a finite set K C Q such that p(F \ K) C ¢[4 \ L]. Thus,
fIp(F\K)CU.

(3) (a) = (b) Let x be an infinite cardinal number. Let X = s U {oo} be the
Alexandroff one-point compactification of the discrete space x. Then X is Hausdorff,
compact, and has cardinality x. Moreover, open neighborhoods of oo are of the
form X \ S where S is a compact (hence finite) subset of x. We show that X
is in FinBW(p). Let f : A — X. If there is x € X with f~![{x}] ¢ Z,. then we
take F € F such that p(F) C f'[{x}] and see that f | p(F) is p-convergent to
x. Now, we assume that f~'[{x}] € Z, for every x € X. By Proposition 6.8, there
is F € F such that for every finite set S C X there is a finite set Kg such that
p(F\ Ks)N f7'[S] = 0. We claim that f | p(F) is p-convergent to co. Let U be
an open neighborhood of co. Let S C k be a finite set with U = X \ S. Then
FIp(F\Ks)|C X\ S=U.

(b) = (c) Obvious.

(c) = (a) Suppose that p is not P (A) and let 4, € Z; be the witnessing
sequence, i.e., Ao = A, A1 € Ay, Ay \ Ay €I, and for each F € F there is
n € o such that p(F) €7 A,. Note that (", ., An € Z,.

new
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Let X be an infinite Hausdorff topological space. We will show that X ¢
FinBW(p). If X is not sequentially compact, then X ¢ FinBW(p) by item (1).
If X is sequentially compact, then find any one-to-one sequence {x, : n € w} in X
converging to some x € X. Without loss of generality we may assume that x # x,
foralln € w. Define f : A = X by f | (), 4n = Xo and f (1) = x,41. Where n is
such that 4 € 4, \ A4,1. Suppose for the sake of contradiction that there are L € X
and F € Fsuch that f | p(F) p-converges to L. By Proposition 9.2(1b) we get that
either L = x, for somen € w or L = x.

If L = x, for some n € w, find open U and V' such that x, € U, x € V', and
UNV =0.Since x,, € V (s0 x,, ¢ U) for almost all m € w and f'[{x,}] € Z,
forallm € w. f'[U] € Z,. Hence, f | p(F) cannot p-converge to x,.

If L = x, we can find n € w such that p(F) ¢’ A,,. Since X is HausdorfT, there is
an open neighbourhood U of L such that x;,; ¢ U for all i < n. Since f | p(F) p-
converges to L, there should be a finite K C Qsuch that /[p(F \ K)] C U: however,
P(F\K)\ A, #0 (by p(F) " 4y,), so f[p(F\ K)]N{x;41:i<n}#0, which
contradicts x;.; ¢ U forall i < n.

(4) (a) = (b) Notice that if X is the space defined in the proof of the implication
(3a) = (3b) then X € FinBW(p) for every p that is P~(A) (the definition of X
did not depend on p). Thus, if p is P~ then p | p(F) is P~ (p(F)) for every F €
F and consequently X € (). FinBW(p | p(F)) = hFinBW(p) (by Proposition
10.2(1a)).

(b) = (c) Obvious.

(¢) = (a) If p is not P~ then p | p(F) is not P~ (p(F)) for some F € F.
Hence, by item (3), FinBW(p | p(F)) contains only finite Hausdorff spaces.
Since hFinBW(p) C FinBW(p | p(F)) by Proposition 10.2(1a), hFinBW(p) also
contains only finite Hausdorff spaces.

(5a) Let f : A — o). If there is & < wy with f~'[{a}] ¢ Z,. then we take F € F
such that p(F) C f'[{a}] and see that f | p(F) is p-convergent to .. Now, we
assume that /~![{a}] € Z, for every a < w. Since A is countable and the cofinality
of w; is uncountable, there is a < w; with f'[a] ¢ Z,. Let oy be the smallest
a such that f~'[a] ¢ Z,. Note that ag is a limit ordinal. Indeed. if ap = @ + 1,
then a < g and f'[a] = /o] \ f'[{a}]  Z,. a contradiction. Since oy is
a countable limit ordinal, there is an increasing sequence {f, : n € w} such that
sup{f, : n € @} = ay. By Proposition 6.8, there is F € F such that p(F) C f ']
and for each n € o there is a finite set K, such that p(F \ K,,) N f~'[B,] = 0. We
claim that f | p(F) is p-convergent to . Indeed, let U be a neighborhood of ay.
Without loss of generality, we can assume that U = (ap + 1) \ S, for some n € w.
Then f[p(F\ K,)] S ao\ p, C U.

(5b) Spaces with these properties are constructed in Theorem 14.5.

(6) Let f : p(E) — X be a p-sequence in a metric compact space X.

Since p is weak P*, there exists F € F such that p(F) C p(E) and for every
sequence {F, : n € w} C Fsuchthat p(F) D p(F,) 2 p(F,+1) foreachn € w there
exists G € F such that p(G) C p(F) and p(G) C” p(F,) foreach n € w.

For x € X and r > 0 we write B(x.r) and B(x,r) to denote an open and closed
ball of radius r centered at a point x, respectively.
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Since X is compact metric, there are finitely many x? € X, i < ng such that X =
U{B(x).1) : i < ng}. Then there exists iy < np such that p(F) N f'[B(x).1)] ¢
Z,. and consequently there is F € F such that p(Fy) C p(F) N f’l[B(xl%, 1)].

Since E( 0 1) is compact metric, there are finitely many x1 € X, i < mn such
that B(x! 0 1) C U{B(x!.1) :i < n}. Then there exists i; < n; such that p(Fp) N
£ [B( .1)1¢ Z,. and consequently there is F; € F such that p(Fy) C p(F) N

/B )

If we continue the above procedure we obtain F, € F and x] € X such that
p(F,) C p(F,) N fB(x", 1)) for each n € w (assuming thatF1 =F).

Xiy» n+1
Let x € ({B(x!. ;) :n € w}.
Since p is weak PT, we have G € F such that p(G) C p(F) and p(G) C? p(F,)
foreach n € w.
We claim that f I p(G) is p-convergent to x. Let U be a neighborhood of x. Since

the sequence (x! ),1@, is convergent to x, there is ng € w such that B(x” o n+1) cuU
for every n > ng. Consequently, there is #n € w with B(x]. +l) CU. Let K C
Q be a finite set such that p(G \ K) C p(F,). Then f[p(G \K)] C flp(F.)] C
B(x].. n+1) C U. so the proof is finished.

(7) Let E € Fand f : p(E) — X be a sequence in a Hausdorff topological space
X having the property (x). Since the set D = {f (1) : 1 € p(E)} is countable, the
closure cly (D) is compact and first-countable. We claim that there exists L € cly (D)
such that f1[U] € I for every neighborhood U of L.

Suppose, for the sake of contradiction that for every x € cly(D) there is a
neighborhood U, of x such that f'[U,] € Z,. Since cly(D) is compact, there
are finitely many x; € cly(D) for i <n with cly(D) C | J{U,, : i <n}. Then
p(E) =U{/[Uy]: i< n} €T, acontradiction, so the claim is proved.

Let {U, : n € w} be a base at L. Without loss of generality, we can assume that
U, D U, for each n € w. For each n € w, we define 4, ={A € p(E): f(4) €
U,}.Since 4, € I;r and 4, D A, foreachn € w, using the fact that p is P*, there
exists F € F such that p(F) C p(E) and p(F) C? A, for each n € w. We claim that
f I p(F) is p-convergent to L.

Take any neighborhood U of L. Then there exists ny € @ with U,, C U. Since
p(F) C’ Ay, there exists a finite set K C Q such that p(F \ K) C 4,,. Thus
fIp(F\ K)] € U,, € U.so the proof is finished. -

The following series of corollaries shows that many known earlier results can be
easily derived from Theorem 10.5.

CoROLLARY 10.6 [28, Proposition 2.4]. If an ideal T is not tall, then FinBW(ZT)
coincides with the class of all sequentially compact spaces.

ProOF. It follows from Theorem 10.5(2) and Propositions 10.2(4) and 8.1.

COROLLARY 10.7 [62, Theorem 6.5]. Fin? <x I <= FinBW(Z) coincides with
the class of all finite spaces in the realm of Hausdorff spaces.

ProoF. It follows from Theorem 10.5(3) and Propositions 7.1(1), 6.5(2), and
10.2(4). 4
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COROLLARY 10.8. Every metric compact space belongs to hFinBW (p) in case when:
(1) p = prandTis P* ideal,

(2) [30, Theorem 2.3] p = pz and T is an F, ideal,

(3) [58. Theorem 10] p = pr and T = W,

(4) [30. Theorem 2.3] p = pz and I = 1.

(5) [36. Theorem 2.5] p = FS,

(6) [6, Theorem 1] (see also [5, Theorem 1.16]) p = r,

(7) [22, Corollary 4.8] p = A.

Proor. It follows from Theorem 10.5(6) and Propositions 6.7 and 6.5. =

CoROLLARY 10.9. Every Hausdorff space with the property (x) belongs to
hFinBW(p) in case when:

(1) p=prandTis P* ideal,

(2) [30. Theorem 2.3] p = pr and T is an F, ideal,

(3) [58. Theorem 10] p = pr and T = W,

(4) [30. Theorem 2.3] p = pz and T = I ,.

ProOF. It follows from Theorem 10.5(7) and Propositions 6.7 and 6.5. -

In [57, Theorem 11] ([61, Corollary 3.2], resp.), the authors proved that every
Hausdorff space with the property () belongs to hFinBW(FS) (hFinBW (r), resp.).
However, their proofs use properties very specific to FS and r. For instance, the
proof for FS uses idempotent ultrafilters, whereas the proof for r uses the bounding
number b.

ProBLEM 10.10. Find a property W of partition regular functions such that both
FS and r have the property W and if p has the property W then every Hausdorff space
with the property (x) belongs to hFinBW (p).

In [22. Corollary 4.8], the author proved that every Hausdorft space with the
property (x) belongs to FinBW(A).

QuEstioN 10.11. Does every Hausdorff space with the property (x) belong to
hFinBW(A)?

Note that the positive answer to Question 10.4(2a) gives the positive answer to
Question 10.11.

§11. Inclusions between FinBW classes.

THEOREM 11.1. Let p; : F; — [A;]® be partition regular with F; C [Q;]?” for each
1,2. Let T be an ideal on A.
1) p» <k p1 = FinBW(p;) C FinBW(p,).
2) (a) If py is P, then
T, <x I,, = FinBW(p|) C FinBW(p,).
(b) Z,, <x T = FinBW(Z) C FinBW(p,).
Proor. (1) Let ¢ : A; — A, be a witness for p, <x p1. Let X € FinBW(p,). If

f:Ay— X, then fo¢: Al — X, so there is F| € F; such that p|(F;) C Aj and
(f o) | pi1(Fy)is pi-convergent to some x € X.

i

(
(
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Let F, € F, be such that for every finite K| C Q; there is a finite K, C Q, with
p(F\ Ka) € ¢lpi(Fi \ K1)

We claim that f | p,(F) is p>-convergent to x. Let U be a neighborhood of x.
Since (f o @) | p1(F)) is p;-convergent to x, then there is a finite set K; C Q; such
that (f o @)[p1(Fi \ K;)] € U. Hence, we can find a finite K, C €, with py(F, \
K) C ¢lp1(Fi \ K1)]. Then f[p2(F2 \ K2)] € f[p[p1(Fi \ K1)]] € U. That finishes
the proof.

(2a) It follows from Proposition 7.5(2a) and item (1).

(2b) It follows from item (1) and Propositions 7.5(2b) and 10.2(4). -

The following series of corollaries shows that many known earlier results as well
as some new one can be easily derived from Theorem 11.1.

COROLLARY 11.2.

(1) [73. p. 39] Every Hindman space is differentially compact.

(2) Every Ramsey space is differentially compact.

(3) LetT be a P* ideal.
(a) [24, Proposition 2.6] If T < H then every Hindman space is in FinBW (Z).
(b) If T <k R then every Ramsey space is in FinBW (Z).
(¢c) If T <k D then every differentially compact space is in FinBW (Z).

(4) [62, Corollary 10.2(a)] If Z; are ideals for i =1,2 and I, <g I,. then
FinBW(Z,) C FinBW(Z,).

Proor. (1) It follows from Theorems 11.1(1) and 7.7(3).

(2) It follows from Theorems 11.1(1) and 7.7(4).

(3) It follows from Theorem 11.1(2a) and Propositions 6.5(2) and 10.2(4).

(4) It follows from Theorem 11.1(2b) and Proposition 10.2(4). -

COROLLARY 11.3.
(1) Let p : Fi — [A]” be a partition regular function.
(a) If p <k p' for some weak P partition regular function p', then every
compact metric space belongs to FinBW(p).
(b) If p <k p’ for some P+ partition regular function p', then every Hausdorff
topological space with the property (x) belongs to FinBW(p).
(2) Let I be anideal. If an ideal I can be extended to a P* ideal, then:
(a) every compact metric space belongs to FinBW(Z);
(b) [27, Corollary 5.6] every Hausdorff topological space with the property ()
belongs to FinBW (7).

Proor. (1) Itfollows from Theorems 11.1(1) and 10.5(6) and (7) and Proposition
10.2(2).
(2) It follows from item (1) and Propositions 6.5(2), 7.5(2b), and 10.2(4). -

The following proposition shows that when comparing classes FinBW(p;) and
FinBW(p,) for distinct functions p; and p, we can in fact assume that both p; and
p2 “live” on the same sets Q and A.

ProposITION 11.4. Let p : F — [A]® be partition regular with F C [Q]”. Suppose
that T and X are countable infinite sets and ¢ : Q — T and y : A — X are bijections.
Let G={¢[F]: F € F}andt : G — [Z]” be given by t1(G) = y[p(¢ ' [G])]. Then:

https://doi.org/10.1017/js1.2024.8 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.8

30 RAFAL FILIPOW ET AL.

(1) 7 is partition regular,
(2) p and t are Katétov equivalent: p <g t andt <k p,
(3) p and t are hereditary Katétov equivalent:
(a) VF € F3G € G(p | p(F) <x 7 [ 7(G)).
(b) VG € GIF € F(z [ (G) <k p | p(F)).
(4) FinBW(z) = FinBW(p) and hFinBW(z) = hFinBW(p).

Proor. Items (1)—(3) are straightforward, whereas item (4) follows from previous
items and Proposition 11.1. o

Part 3. Distinguishing between FinBW classes

In this part we are interested in finding spaces that are in FinBW(p;), but are
not in FinBW(p,). Similar investigations concerning the classes FinBW(Z) were
conducted in [62]. In that paper all the examples (showing that under some set-
theoretic assumption FinBW(Z) \ FinBW(7) # () for some ideals Z and J) were
inspired by [59] and are of one specific type—they are defined using maximal almost
disjoint families. It turns out (see Theorem 13.2) that, in general, we cannot use
maximal almost disjoint families to distinguish between FinBW(p) classes with
the aid of spaces defined as in [62]. Fortunately, we managed to use not necessary
maximal almost disjoint families to prove two main results of this part (Theorems
14.3 and 15.2), which give us FinBW(p;) \ FinBW(p,) # 0 for certain p; and p,.
Our methods were inspired by [61].

§12. Mrowka spaces and their compactifications. For an infinite almost disjoint
family A on a countable set A, we define a set

Y(A) =AUA

and introduce a topology on ¥(A) as follows: the points of A are isolated and a
basic neighborhood of 4 € A has the form {4} U (4 \ F) with F finite.

Topological spaces of the form W(A) were introduced by Alexandroff and
Urysohn in [1, Chapter V, paragraph 1.3] (as noted in [17, p. 182], [16, p. 1380].
and [46, p. 605]) and its topology is known as the rational sequence topology (see
[74, Example 65]; the same topology was later described by Katétov in [54, p. 74]).
Spaces W(A) with maximal (with respect to the inclusion) almost disjoint families
A were first examined by Mrowka (see [69]) and Isbell (as noted in [39, p. 269]). It
seems that the notation W for these kinds of spaces was used for the first time in [39,
Problem 51, p. 79].

Spaces of the form W(A) are known under many names, including ¥-spaces.
Isbell-Mrowka spaces, and Mrowka spaces. Recent surveys on these spaces and
their numerous applications can be found in [43, 46].

It is known that W (A) is Hausdorff, regular, locally compact, first countable, and
separable, but it is not compact nor sequentially compact (see [69] or [14, Section
11]). Itis not difficult to see that 4 U { A} is compact in W (.A) forevery 4 € Aand for
every compact set K C W(A) both sets KNAand (KNA)\J{4:4€ KnNA}
are finite. In particular, for every compact set K C W(A) there are finitely many sets
A; € Aand a finite set Fsuchthat K C {4, :i<n}UU{4, UF i< n}.
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Let
O(A) =¥(A) U{x} =AUAU {0}

be the Alexandroff one-point compactification of W(A) (recall that open neighbor-
hoods of co are of the form ®(A) \ K for compact sets K C W(A)). Itis not difficult
to see that ®(.A) is Hausdorff, compact, sequentially compact, separable, and first
countable at every point of ®(A) \ {oo}.

Topological spaces of the form ®(A) with maximal almost disjoint families A
were first used by Franklin [33, Example 7.1] where the author used the notation
W* instead of @. Later, these spaces were considered in [38] where the authors use
the notation F(.A) and call them the Franklin compact spaces associated with A,
whereas in [37] the authors use the notation Fr(A) and call them the Franklin spaces
of A. The notation ®(A) for these spaces is used in the following papers [22, 24,
60, 62]. Recently, spaces of the form ®(A) were also considered for non-maximal
almost disjoint families [11, 61].

It also makes sense to define ®(.A) for infinite families A that are not almost
disjoint, but then ®(A) is no longer Hausdorff (almost disjointness of A is a
necessary and sufficient condition for a space ®(A) to be Hausdorf).

The following lemma (which will be used repeatedly in the sequel) shows that a
sequence in a space ®(A) may fail to have a p-convergent p-subsequence only in
one specific case. Hence, checking whether ®(A) € FinBW(p) will be reduced to
considering only sequences of this one specific kind.

LemMa 12.1. Let p : F — [A]® be partition regular with F C [Q]®. Let A be an
infinite almost disjoint family on A. For every sequence [ : A — ®(A), the following
five cases can only occur:

(1) [ (c0) ¢ Z,.

(2) f'[Al ¢ Z,.

(3) f N (o0) €Z,. fAl€T,. f7[A] € 7, and

(a) f7U2) & Z, for some 4 € A,

(b) f1(2) € Z, for every 2 € A and f7'[A] ¢ T, for some A € A,
(¢) f7U2) € I, for every . € A and f~[A] € T, for every A € A.

If p is P, then in cases (1), (2), (3a). and (3b) there is F € F such that f | p(F)
is p-convergent.

PrOOF. Case (1). Thereis F € F such that f | p(F) is constant (with the value
00): hence, it is p-convergent.

Case (2). We find F € F with p(F) C f'[A]. Then we enumerate f[p(F)] =
{A4, :n € o} and define E, = f![{4,}] for each n € w.

If there is ny €  such that E,, ¢ Z,. then we find F' € F with p(F') C E,,. and
we see that f | p(F’) is constant, so it is p-convergent.

Now assume that E, € Z, for each n € . Since p(F) C |J{E, : n € w}, we can
use Proposition 6.8 to find £ € F such that for each n € w thereis a finite set K C Q
with p(E\ K) C p(F)NU{E; : i > n}. We claim that f | p(E) is p-convergent to
oo. Let U be a neighborhood of co. Without loss of generality, we can assume that
U=®(A)\ {4;:i<n}Ul,.,4:)forsomen € w.Let K C Qbeafinite set such
that p(E\ K) C p(F)NUJ{E; :i > n}.Then f[p(E\K)|N{A4; :i<n}=0,and
consequently f[p(E \ K)] C U.
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Case (3a). There is F ¢ F such that f | p;(F) is constant; hence, it is
p-convergent.

Case (3b). Let A € A be such that f~![4] ¢ Z,. Using Proposition 6.8, we find
F € F such that p(F) C f'[A4] and for every finite S C A there is a finite set
K CQwith p(F\ K) C f'[A4]\ f7'[S]1= f'[4\ S]. We claim that f | p(F) is
p-convergent to A. Indeed, let U be a neighborhood of 4. Without loss of generality,
we can assume that U = {4} U (4 \ S) where S is a finite subset of 4. Then we take
afinite K C Qsuchthat p(F \ K) C f 1[4\ S].so f[p(F\K)]CA\SCU. H

ProPOSITION 12.2. Let p : F — [A]? be partition regular with F C [Q]?. Let A be
an infinite almost disjoint family of infinite subsets of A. If p is P~ and A is countable,
then ®(A) € FinBW(p).

Proor. Let f : A — ®(A). By Lemma 12.1, we can assume that f!(co) € Z,.
A€, fAl€Z;. f1(A) € Z, for every 2 € A and f'[A] € Z, for every
Ae A

Since f1[4] € Z, forevery A € A, we can use Proposition 6.8 to find F € F such
that p(F) C f~'[A] and for any finite set A’ C A there is a finite set K C Q with

p(F\K)n [ [UA’] p(FNK)N| U f'141] =0

Ac A

We claim that f | p(F) is p-convergent to co. Indeed, let U be a neighborhood
of co. Without loss of generality, we can assume that there is a finite set 4’ C A
such that U = ®(A) \ (A’ U(JA’). Then we have a finite set K C Q such that
p(F\K)n f[JA1=0, and consequently f[p(F \ K)] C U. so the proof is
finished. -

§13. Mrowka spaces for maximal almost disjoint families. In [62] the author
extensively studied FinBW(Z) spaces. In particular, for a large class of ideals,
assuming the continuum hypothesis, he characterized in terms of Katétov order
when there is a space in FinBW(Z) that is not in FinBW(.7). In his proofs the
right space is always of the form ®(A) for some maximal almost disjoint family.
In our paper we want to generalize results of [62] so that they will apply also for
Hindman spaces, Ramsey spaces, and differentially compact spaces. As we will see
at the end of this section, our generalization requires going beyond maximal almost
disjoint families (as always ®(A) ¢ FinBW(p) for maximal A and p € {FS,r,A}—
see Corollary 13.3) and working with almost disjoint families that are not necessarily
maximal.

LemMma 13.1. Let p : F — [A]” be partition regular with F C [Q]”. Let A be an
almost disjoint family on A.

(1) If ACZ, and
VF € FI4 € AVK € QI (AN p(F\ K) #0).

then ®(A) ¢ FinBW(p).
(2) If AC I, and A is a maximal almost disjoint family, then ®(A) ¢ FinBW(p).
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Proor. (1) Let f : A — ®(A) be given by f(A) = A. We claim that there is no
F € Fsuch that f | p(F) is p-convergent. Assume, for the sake of contradiction,
that there is F € F such that f | p(F) is p-convergent to some L € ®(A). We have
three cases: (1) L € A, (2) L € A, and (3) L = cc.

Case (1). The set U = {L} is a neighborhood of L. But for any finite set K C Q
we have f[p(F\ K)]=p(F\ K) € {L} = U Thus, f | p(F) is not p-convergent
to L, a contradiction.

Case (2). The set U = LU{L} is a neighborhood of L. Since f | p(F) is
p-convergent to L, there is a finite set K C Q such that p(F \ K) = f[p(F \ K)] C
U.Thus, p(F\K) C L,so L ¢ Z,, but A C Z,, a contradiction.

Case (3). Let A € Abesuchthat A N p(F \ K) # () forevery finite set K C Q. The
set U = ®(A) \ (4 U {A4}) is a neighborhood of co. Since f | p(F) is p-convergent
to L, there is a finite set K C Q such that p(F \ K) = f[p(F \ K)] C U. Hence,
AN p(F \ K) =0, a contradiction.

(2) Let F € F and enumerate Q = {0, : n € w}. We pick inductively a point
by € p(F\{o;:j<n})\{b;:j<n} for each n € w. Then using maximality of
A we can find 4 € A such that 4 N {b, : n € w} is infinite. Thus, the condition for
item (1) is satisfied, so the proof is finished. -

THEOREM 13.2. Let p : F — [A]? be partition regular with F C [Q]“.

(1) If p is tall (equivalently, I, is a tall ideal), then there exists an infinite
(even of cardinality <) maximal almost disjoint family A on A such that
®(A) ¢ FinBW(p).

(2) If T, is not P~(A) (equivalently, Fin® <k T,), then ®(A) ¢ FinBW(p) for
every infinite maximal almost disjoint family A on A.

Proor. (1) It follows from Lemma 13.1(2), because in [28, Proposition 2.2], the
authors proved that if an ideal Z is tall, then there exists an infinite maximal almost
disjoint family A of infinite subsets of A such that A C Z. If necessary, we can make
A to be of cardinality ¢ (just take one set 4 € A, construct your favourite almost
disjoint family B of cardinality ¢ on A4, then any maximal almost disjoint family
extending A U B is the required family). The equivalence of p being tall and Z,
being a tall ideal follows from Proposition §.1.

(2) The equivalence of Z, not being P~(A) and Fin® < Z, follows from
Proposition 7.1(1).

Let ¢ : A — w? be a witness for Fin? <g Z,. In [2], the authors proved that we
can assume that ¢ is a bijection. For each n € w, we define P, = ¢ '[{n} x w].
Then {P, :n € w} is a partition of A and P, € Z, N[A]” for each n € w. Let
A= {4, : a <|A|}. Since A is infinite, |4| > w. Let f : A — ®(A) be a bijection
such that f[P,] = 4, \ U{4; : i < n}foreachn € w. We claim that f does not have
a p-convergent subsequence. Assume, for the sake of contradiction, that f | p(F)
is p-convergent to some L € ®(A) for some F € F. We have three cases: (1) L € A,
(2) L€ A, and (3) L = <.

Case (1). The set U = {L} is a neighborhood of L. But for any finite set K C
Q we have f[p(F\ K)|Z {L} = U Thus, f | p(F) is not p-convergent to L. a
contradiction.

Case (2). We have two subcases: (2a) In € w (L = 4,) and (2b) Ja € |A] \
o (L =A4,).

https://doi.org/10.1017/js1.2024.8 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.8

34 RAFAL FILIPOW ET AL.

Case (2a). The set U = {4, } U 4, is a neighborhood of L, so there is a finite
set K C Q such that f[p(F \ K)] C U. Then f[p(F \ K)] C 4,.s0o p(F\K) C
/MA44] € U, <, P: € Z,. a contradiction.

Case (2b). The set U = A, U {A4,} is a neighborhood of L. so there is a finite
set K C Q such that f[p(F \ K)] C U. Then f[p(F \ K)] C A,.s0 p(F\K) C
f'[44). Thus f'[44] ¢ Z,. and consequently ¢[f'[4,]] ¢ Fin>. On the other
hand. 4, N A, is finite for each n € w. so f~'[4, N 4,] is finite, and consequently
/7 [44] N P, is finite for every n € w. Thus, ¢[f '[4.]] € Fin’, a contradiction.

Case (3). Using Proposition 9.2(1b) we find an infinite set B C A such that /' | B
is convergent to co. Since f is a bijection, f[B] is infinite. Thus, using maximality
of A, we find « such that 4, N f[B] is infinite. Since U = ®(A) \ ({4,} U 4,) is
a neighborhood of oo, there is a finite set K C A such that f[B\ K] C U. Then
Ay, N f[B\ K] =0, a contradiction. .

COROLLARY 13.3. Let A be an infinite maximal almost disjoint family.
(1) Hindman spaces.
(a) [57. Theorem 10] If A C H, then ®(A) is not a Hindman space.
(b) [24. Proposition 1.1] ®(A) is not a Hindman space.
(1) Ramsey spaces.
(a) [61, Example 4.1] If {{n.k} : k € o \ {n}} € A for every n € w, then
®(A) is not a Ramsey space.
(b) ®(A) is not a Ramsey space.
(3) Differentially compact spaces.
(a) [73. Theorem 4.2.2] or [22, Theorem 4.9] If A C D, then ®(A) is not a
differentially compact space.
(b) [60, Theorem 2.1] ®(A) is not a differentially compact space.
(4) van der Waerden spaces.
(a) [58, Theorem 6] If A C W, then ®(A) is not a van der Waerden space.
(5) Zyp-spaces.
(a) [30. Proposition 2.2] If A C I, ,,. then ®(A) is not a I, ;,-space.
(6) FinBW(Z).
(a) [30. Proposition 2.2] If Z is a tall F,-ideal on A and A C T, then ®(A) ¢
FinBW(Z).
(b) [28, Proposition 2.3]1If T is a tall ideal and A C T, then ®(A) ¢ FinBW(Z).

Proor. (1)—(6) In cases when we assume that A C Z, it follows from Lemma
13.1(2) along with Proposition 10.2(4) in some cases. In other cases, it follows from
Theorem 13.2(2) and Proposition 7.2. =

§14. Distinguishing between FinBW classes via Katétov order on ideals. In this
section we prove first of the two main results of this part and show its various
particular cases and consequences. We will need the following two lemmas.

Lemma 14.1. Let p : F — [A]? be partition regular with F C [Q]®”. Let A be an
infinite almost disjoint family on A such that for every I,-to-one function f : A — A
there is E € F such that the family

{Ae A:VK € [Q* (|40 fIp(E\K)]| = »)}
is at most countable. If p is P~, then ®(A) € FinBW(p).
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ProoOF. Let f : A — ®(A). By Lemma 12.1, we can assume that f~!(c0) € Z,,.
FMAIeZ,. fAl€TZ;. f1(4) €I, forevery 2 € A. and f'[4] € I, for every
A€ A Then B= f'[AleT;and f | B: B — AisZ,-to-one.

We fix an element /o € A and define g : A — A by g(1) = f(1) for A € B and
g(A) = 4o otherwise. Then g is Z,-to-one, so there is E € F such that the family

C={4eA:VK [ (4N glp(E\K)] = )}

is at most countable.

Since p(E) N B ¢ T, and p is P~, we can use Proposition 6.8 to find F € F such
that p(F) C p(E) N B and for any finite sets S C A and 7 C C there is a finite set
L C Q with

p(F\L)N (f NEISIAIZE AGT}>:(7J.

We claim that f | p(F) is p-convergent to oc. Indeed, let U be a neighborhood of
0o. Without loss of generality, we can assume that there is a finite set I’ C A such
that U = ®(A)\ ({A: A €TuJ{4:4€T}).

For each 4 € '\ C, there is a finite set K4 C Q such that AN f[p(F \ K4)] =
ANg[p(F\ K4)] is finite. Then K = J{K4: 4 €T \C} C Qs a finite set such
that A N f[p(F \ K)]1is finite for every 4 € T\ C.

Thenboth S = f[p(F \ K)]NUJ{4: 4 €T\ C}and T = I NC are finite, so we
can find a finite set L C Q such that

p(F\L)N (f is1ulJ{s 1[A]:Ae7'})=®,
and consequently we obtain a finite set K U L such that
[P(F\(KUL)]CA\| J{4:4eT}CU
That finishes the proof. -

Recall that p is the smallest cardinality of a family F of infinite subsets of @ with
the strong finite intersection property (i.e., intersection of finitely many sets from F
is infinite) that does not have a pseudointersection (i.e., there is no infinite set 4 C w
such that 4 \ F is finite for each F € F: see, e.g., [14]).

LemMA 14.2 (Assume p = ¢). Let p; : Fi — [A;]° be partition regular with F; C
[Q;]? foreachi = 1,2. Let { f o : @ < ¢} be an enumeration of all functions f : A; —
Ay and Fy = {F, : o < c}.

If T,, £k I,,. then there exist families A = {A, 1 a < ¢} and C = {Cy : a < ¢}
such that for every a < ¢ :

(1) C E Fi.

) falp1(Ca)l € Z,,.

) A, e 7,, N[A]°,

) VB < a(|Adq ﬁAﬁ| < w),

) Yy >a (4,0 falp (G < ).
) VL € [Q]<” (40 C* p2(Fo \ L)).

ProoFr. Suppose that 43 and Cg have been constructed for f < o and satisfy
items (1)-(6).

(2

3
(4
(5
(6

https://doi.org/10.1017/js1.2024.8 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.8

36 RAFAL FILIPOW ET AL.

First, we construct the set C,. Since Z,

2
fa[pl(ca)] € ng'
Now, we turn to the construction of the set 4. Let

D={M\ fplp1(Cpl: f<atU{A\dp:f<a}U{p(Fa\L):L e[}

Since ({p2(Fa \ L;) : i < n} € Z, forevery n € w and finite sets L; C Q, and A, \
fplp1(Cp)l € I, and Az \ Ay € Ty, forevery ff < a, we obtain that the intersection
of finitely many sets from D is in Z,, . In particular, this intersection is infinite, so D
has the strong finite intersection property. Since |D| < ¢ = p, there exists an infinite
set A C Ay such that 4 C* D forevery D € D. Since Z,, £x I,,, we obtain that the
ideal Z,,, is tall, and consequently there is an infinite set 4, C A such that 4, € Z,,.

It is not difficult to see that the sets A, and C, satisfy all the required conditions,
so the proof of the lemma is finished. .

£k I,,. thereis a set C, € Fj such that

We are ready for the main result of this section.

THEOREM 14.3 (Assume CH). Let p; : F; — [A;]° be partition regular for each
i=1.21Ifpris P~and1,, £x T, . then there exists an almost disjoint family A such
that |A| = cand ®(A) € FinBW(p,) \ FinBW(p,). In particular, there is a Hausdorff
compact and separable space of cardinality ¢ in FinBW(p;) \ FInBW(p,).

Proor. Using Proposition 11.4 we can assume that A} = Ay = A.

Let { f : @ < ¢} be an enumeration of all functions f : A — A and 7, = {F, :
a < ¢}. By Lemma 14.2, there exist families 4 = {4, : @ < c¢}andC = {C, : o < ¢}
such that for every a < ¢ all conditions of Lemma 14.2 are satisfied. We claim that
A is the required family.

First, we see that 4 is an almost disjoint family on A by item (4) of Lemma 14.2,
|A| = ¢and A C Z,,. Second. CH together with item (5) of Lemma 14.2 ensures
that

B <e:VK € [Q™ (45N falpi(Ca \ Kl =)} < e+ 1| <

for each o < ¢, so knowing that p; is P~ we can use Lemma 14.1 to see that ®(A) €
FinBW(p). Third, we use item (6) of Lemma 14.2 and Lemma 13.1(1) to see that
®(A) ¢ FinBW(py). o

Now we want to show various applications of Theorem 14.3. Those applications
can be divided into three parts. The first part concerns existence of a Hausdorff
compact and separable space in FinBW(p). Before applying Theorem 14.3, we need
to prove one more result.

PROPOSITION 14.4.  For every ideal T there is an ideal J such that J £g T.

Proor. Suppose for the sake of contradiction that there is an ideal Z on A
such that J <y T for every ideal J. Then for every maximal (with respect to
inclusion) ideal J on  there exists a function f 7 : A — w such that f :71 [AleT
for every A € J. Let K(f7) ={4 Cw: f}[A] € I}. Then K(f ) is an ideal
and J C K(f 7). Since J is maximal, K(f 7) = J. There are 2¢ pairwise distinct
ultrafilters on  (see, e.g., [51, Theorem 7.6]). so there are 2°¢ pairwise distinct
maximal ideals on w (given an ultrafilter &/ on w, the family {4 Cw: A4 ¢ U}
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is a maximal ideal). However, there are only ¢ many functions from  into w, a
contradiction. -

THEOREM 14.5 (Assume CH). Let p : F — [A]® be partition regular with F C
[Q)°. If p is P, then there exists an almost disjoint family A such that |A| = ¢ and
®(A) € FinBW(p). In particular, there is a Hausdorff compact and separable space
of cardinality ¢ in FinBW(p).

Proor. By Proposition 14.4 there is an ideal 7 such that J £k Z,. so Theorem
14.3 gives us an almost disjoint family A such that | A| = ¢ and ®(A) € FinBW(p) \
FinBW(p). =

COROLLARY 14.6 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which ®(A) is a Hausdorff compact and separable space of
cardinality ¢ such that:

(1) ®(A) is a Hindman space,

(2) [61, Theorem 4.7] ®(A) is a Ramsey space,

(3) ®(A) is a differentially compact space.

(4) [62, Theorem 5.3] ®(A) € FinBW(Z), where T is a P~ ideal (in particular, if T

is a Gsgs ideal).

Proor. Items (1), (2), and (3) follow from Theorem 14.5 and Proposition 6.7(3).
Item (4) follows from Theorem 14.5 and Propositions 6.5(2) and 10.2(4), and the
“in particular” part follows from Proposition 6.2(1). =

The second part of applications of Theorem 14.3 concerns a special case when
Z,, is P~(Ay) while Z,,, is not P~(A,).

THEOREM 14.7 (Assume CH). Let p; : F; — [A;{]? be partition regular functions
foreachi = 1,2.1f py is P~, I, is P~(A1) (equivalently. Fin* £k T, ) and T, is not
P (A,) (equivalently, Fin* <g T,,). then there exists an infinite almost disjoint family
A of cardinality ¢ such that ®(A) € FinBW (p,) \ FInBW(p,). In particular, there is a
Hausdorff compact and separable space of cardinality ¢ in FinBW (p;) \ FInBW(p,).

Proor. The equivalence of Z, being P (A;) and Fin® £x 7,, follows from
Proposition 7.1(1).

Since Fin® <x Z », and Fin? £k Z,,. we know that 7,, £x Z,,. so Theorem 14.3
finishes the proof -

COROLLARY 14.8 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which ®(A) is a Hausdorff compact and separable space of
cardinality ¢ and the following holds.

(1) ®(A) is in FinBW(Z), where T is a P~ ideal (in particular, if T is a Gsss ideal).
but ®(A) is not a:
(a) [62. Corollary 11.5] Hindman space,
(b) Ramsey space,
(c) differentially compact space.
(2) (a) [59. Theorem 3] ®(.A) is a van der Waerden space that is not a Hindman
space.
(b) [30. Theorem 4.4] ®(A) is an I, ,-space that is not a Hindman space.
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(3) (a) [73. Theorem 4.2.2] ®(A) is a van der Waerden space that is not a
differentially compact space.
(b) [60, Theorem 3.51®(A) is in FinBW(Z) but it is not a differentially compact
space for any P* ideal T (in particular, for any F, ideal). For instance,
®(A) isan T, /n=space that is not a differentially compact space.

Proor. Item (1) follows from Theorem 14.7 and Propositions 7.2(2), 10.2(4),
6.5(2), and 6.1(1). Other items follow from item (1), Theorem 6.2(2), and
Propositions 6.7(1) and 6.1(1). .

Now we deal with the third part of applications of Theorems 14.3, in which we
need to use its full strength.

CoROLLARY 14.9 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which ®(A) is a Hausdorff compact and separable space of
cardinality ¢ such that:

(1) ®(A) is a Ramsey space that is not a Hindman space;

(2) ®(A) is a Hindman space that is not a Ramsey space;

(3) ®(A) is a differentially compact space that is not a Hindman space:

(4) ®(A) is a differentially compact space that is not a Ramsey space.

Proor. It follows from Theorems 14.3 and 7.7 and Proposition 6.7(3). -

REMARK. The space from Corollary 14.9(3) yields the negative answer to [73.
Question 4.2.2] (see also [22, Problem 1] and [60, Question 3]).

COROLLARY 14.10 (Assume CH).

(1) If T is an ideal such that T £x H (T £x R.Z £x D.resp.), then there exists
an almost disjoint family A such that the Hausdorff compact and separable
space ®(A) of cardinality ¢ is a Hindman (Ramsey, differentially compact,
resp.) space that is not in FinBW(Z).

(2) There exists an almost disjoint family A such that the Hausdorff compact and
separable space ®(A) of cardinality ¢ is a Hindman (Ramsey, differentially
compact, resp.) space that is not an T, ;,-space.

Proor. (1) It follows from Theorem 14.3 and Propositions 6.7(3) and 10.2(4).
(2) It follows from item (1) and Theorem 7.7. -

REMARK. In [24, Theorem 2.5]. the authors constructed, assuming CH and
T £k H. a non-Hausdorfl Hindman space that is not in FinBW(Z). Corollary
14.10(1) strengthens this result to the case of Hausdorfl spaces. Taking Z = Z; ns
they obtained a positive answer to the question posed in [29], namely they
constructed a (non-Hausdorff) Hindman space which is not Z; /,-space. In Corollary
14.10(2), we obtained a Hausdorff answer to the above mentioned question.

COROLLARY 14.11 (Assume CH). (1) [62, Theorem 9.3] If | and I, are ideals
such that I, is P~ (inparticular, if Iy is a Gsss ideal) and To <x T:. then
there exists an almost disjoint family A such that the Hausdorff compact and
separable space ®(A) of cardinality ¢ belongs to FinBW(Z;) \ FinBW(Z,).

(2) [30, Theorem 3.3] There exists an almost disjoint family A such that the
Hausdorff compact and separable space ®(A) of cardinality ¢ is a van der
Waerden space that is not an I, ;,-space.
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Proor. (1) It follows from Theorem 14.3 and Propositions 6.5(2) and 10.2(4).
(2) It follows from item (1), Theorem 7.7(10), and Proposition 6.7(1). =

§15. Distinguishing between FinBW classes via Katétov order on partition regular
functions. In this section we prove the second of the main results of Part 3. Then we
compare it with Theorem 14.3 and show that none of them can be derived from the
other one. We start with a technical lemma.

Lemma 15.1 (Assume CH). Let p; : Fi — [A;]° be partition regular with F; C
[Q1° foreachi = 1,2. Let { f o : @ < ¢} be an enumeration of all functions f : A; —
Ay and {F, : a < ¢} be an enumeration of all sets F € F, having small accretions.

If pris P~ and py £k p1. then there exist families A = {4y : a < ¢} andC = {C,, :
a < ¢} such that for every o < ¢ :

(1) Aa =0V Ay € T,, N [A5]°.

)
) Ca S fle

) VF € 23K € [Q]*°VL € [0~ (p2(F\ L) € falp1(Ca \ K)).
) Vy>a3K €[] (|4, N falpi(Ca \ K)]| < @),

) 3B < aVL € [Q]<” (Ap N pa(Fo \ L) #0).

ProoF. Suppose that Ag and Cy have been constructed for f < o and satisfy all
the required conditions.
First, we construct a set C,. Since p» £x p1, there is a set C, € F; such that

VF € 23K € [Qu]™ VL € [Q]™ (p2(F \ L)  falp1(Ca \ K))).

Now, we turn to the construction of a set 4,. We have two cases:

(1) 3 < aVL € [ ] (Ag N pa(Fu \ L) #0).

(2) VB < 3Ly € [Q]<° (4y N pa(Fy \ Ly) = 0).

Case (1). We put A, = (). Then the sets 4, and C, satisfy all the required
conditions, so the proof of the lemma is finished in this case.

Case (2). Let o = {f, :n € w}. Let {L, : n € w} be an increasing sequence of
finite subsets of Qy such that | J{Ly, : i <n} C L,and | J{L, : n € } = Q. Notice
that ps(Fo \ Ly) NU{A4p, : i <n} =0 foreveryn € w.

We define inductively sequences {E, : n € w} C F», {K, :n € o} C[Q;]<* and
{a, : n € w} C A such that for every n € w the following conditions hold:

(1) pZ(En+1) c pZ(En) c pZ(Fa)=
(11) ,DZ(En) - ,DZ(Fa \ Ln) \fﬁn[ﬂl(cﬁn \Kn)];

(iti) a, € po(Ey) \{a; : i <n}.

Suppose that E;. K;, and a; have been constructed for i < n and satisfy all the
required conditions.

Since F, has small accretions, we obtain p,(Fy \ L,1) \ p2(Fo \ L) € Z,,,. and
consequently p>(E, 1) N p2(Fo \ Ly) ¢ Z,, (in the case of n = 0 we put L | = () and
E | =F,). Let E € F, be such that py(E) C p(E, 1) N p2(F, \ L,). We have 2
subcases:

(2a) 3K, € [Q]<” (p2(E) \ f,[p1(Cp, \ Ku)1 ¢ T,,,).
(2b) VK € [Q]? (p2(E) \ f5,[p1(Cp, \ K)] € Z,,).
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Case (2a). We take E, € F> such that p>(E,) C p2(E) \ f5,[p1(Cp, \ K,,)] and
pick any a, € p2(E,) \ {a; : i < n}. Then E,, K,, and a, satisfy all the required
conditions.

Case (2b). 1t will turn out that this subcase is impossible. Let {M; : i € w} be an
increasing sequence of finite subsets of Q; such that [ J{M; :i € v} = Q.

We have two further subcases:

(2b-1) U{p2(E) \ f5,Ip1(Cp, \ Mi)]: i € 0} ¢ I,

(2b-2) U{p2(E) \ fp,[p1(Cp, \ Mi)] 1 i € 0} €T,

Case (2b-1). Since p, is P, there is G € F, such that p,(G) C J{p(E)\
Sp.p1(Cp, \ M;)]:i € w} and for every i € w there is a finite set L C Q, such that
p2(G\ L) C fp,[p1(Cp, \ M;)]. On the other hand. from the inductive assumptions
(more precisely: since Cp, satisfies item 4), we know that there is a finite set X such
that p2(G \ L) € f4,[p1(Cp, \ K)] for any finite set L. Let i € w be such that K C
M;. Then there is a finite set L C Q, such that p,(G \ L) C fp,[p1(Cp, \ M;)] C
S 5.[p1(Cg, \ K)]. a contradiction.

Case (2b-2). In this case, there is G € F; such that p,(G) C po(E) \ U{p2(E) \
T p(Cp, \ M) 2 i € w} = pa(E) V(W f5,[1(Cp, \ Mi)] i € w}. From the
inductive assumptions, we know that there is a finite set K such that p,(G \ L) €
S5 [p1(Cp, \ K)] for any finite set L. Let i € @ be such that K C M;. Then
p2(G) € fp,[p1(Cp, \ M;)] C fp,[p1(Cp, \ K)]. a contradiction.

The construction of E,, K,, and a,, is finished.

We define 4 = {a, : n € w}. Since p, £x pi. we obtain that p; is tall. Thus Z,,
is a tall ideal (by Proposition 8.1). Since 4 is infinite, there is an infinite set 4, C A
such that 4, € Z,,.

It is not difficult to see that the sets 4, and C, satisfy all the required conditions,
so the proof of the lemma is finished. -

The main result of this section is as follows.

THEOREM 15.2 (Assume CH). Let p; : F; — [A;]° be partition regular for each
i =1,2.1If p1 and py are P~, py has small accretions, and p Lk pi, then there exists
an almost disjoint family A such that |A| = ¢, A C Z,,. and ®(A) € FInBW(p;) \
FinBW(p»). In particular, there is a Hausdorff compact and separable space of
cardinality ¢ in FiInBW (p1) \ FinBW(p,).

Proor. Using Proposition 11.4 we can assume that A; = Ay = A. Let {f,:
a < ¢} be an enumeration of all functions f : Ay — A, and {F, : @ < ¢} be an
enumeration of all sets F' € F, having small accretions. By Lemma 15.1, there
exist families A = {4, : @ < ¢} and C = {C, : a < ¢} such that for every o < ¢ all
the required conditions of Lemma 15.1 are satisfied. We claim that A \ {0} is the
required family.

First, we see that A \ {()} is an almost disjoint family on A, (by item (2) of Lemma
15.1) and A\ {0} CZ,,.

Second, let CH together with item (5) of Lemma 15.1 ensures that

B <c:VK €[Q (|45 N falpi(Ca\K)][ =0)} < Ja+ 1] S o

for each a < ¢, so knowing that p; is P~ we can use Lemma 14.1 to see that ®(A) ¢
FinBW(p,).
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Third, we use Lemma 13.1(1) along with item (6) of Lemma 15.1 and the fact
that p, has small accretions to see that ®(A) ¢ FinBW(p»).
Finally, using Proposition 12.2 we know that .4 cannot be countable, so |.A\

{0} =« 8

Now we want to compare Theorem 15.2 with Theorem 14.3. Next two examples
show that there are partition regular functions p; and p, satisfying the assumptions
of Theorem 14.3 (so it gives us, under CH, a space in FinBW(p;) \ FinBW(p»)),
but not satisfying assumptions of Theorem 15.2 (i.e., we cannot apply it).

ExaMpPLE 15.3. There exist partition regular functions p; and p, such that p; is
P, pyisnot P~ (so we cannot apply Theorem 15.2) and Z,, £k Z,,.

ProoF. Letp; = Py, and p, = py. By Theorem 6.7, Z;, is P* (hence, P~) and

H is not P~(w) (hence, not P~). Applying Proposition 6.5(2), we see that p; is P~
and p; is not P~. By Theorem 7.7(12). H £k Zyn. =

The above example may not be satisfactory as all Hausdorff spaces from the
class FinBW(p,) are finite (by Theorem 10.5(3) and Proposition 10.2(4)), so one
could just use Theorem 10.5(3) instead of Theorem 14.3. The next example is more
sophisticated.

ExampPLE 15.4. There exist partition regular functions p; and p, such that p; is
P, p> is not P~ (so we cannot apply Theorem 15.2). Z,, £k Z,,. and under CH
there is a Hausdorff compact separable space of cardinality ¢ in FinBW(p,).

PrROOF. Let p; = pz, n and py = peonv. Where conv is an ideal on Q N[0, 1]
consisting of those subsets of Q N[0, 1] that have only finitely many cluster points
in [0, 1]. Then, FinBW(p,) = FinBW(conv) (Proposition 10.2(4)). Applying [62,
Definition 4.3, Proposition 4.6, and Theorem 6.6], assuming CH, there is a Hausdorff
compact separable space of cardinality ¢ in FinBW(p,). Moreover, p; is P~ and ps is
not P~ (by Proposition 6.5(2), Theorem 6.7, and [62. proof of Proposition 4.10(b)]).
Finally. Z,, £k Z,, [47. Section 2]. -

Next example shows that there are partition regular functions p; and p; satisfying
the assumptions of Theorem 15.2 (so it gives us, under CH, a space in FinBW(p;) \
FinBW(p,)). but not satisfying assumptions of Theorem 14.3 (i.e.. we cannot
apply it).

ExaMmpPLE 15.5. There exist partition regular functions p; and p, with small
accretions which are P~ and such that Z,) C 7, (in particular, Z,, <x Z, . so we
cannot apply Theorem 14.3), but p» £k p1.

PrOOF. Consider the ideal nwd={4 CQnN[0.1]: A ismeager}. Let
P2 = Pnwd-

Fix an almost disjoint family A of cardinality ¢, enumerateitas A = {4, : a < ¢}
and denote A’ = {4\ K : A€ A. K €[w]*}. Let I, = [;15. 717) for all n € w.
Enumerate also the set B={B C QN [0,1]: B NI, ¢ nwd for infinitely many n €
w} as {B,: a<c}. Let p; : A —[QNJO0,1]]° be given by p1(4, \ K) = B, \
UnGK In‘

Observe that 7, ={4 CQN[0.1]: Jxerin A\U,cx I is meager}. Thus,
nwd C Z, and Z,, <k 7, . Moreover, it is easy to see that p; and p, both have
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small accretions (in the case of p, just apply Proposition 4.3). Since nwd is Fy; (see
[18, Theorem 3]), it is P~ (by Proposition 6.2(1)) and consequently p, is P~ (by
Proposition 6.5(2)).

Now we show that p; is P~. Suppose that {C, : n € w} C I is decreasing and
such that C, \ C,41 € 7, foralln € w. Foreachn c wletT, ={icw: C,NI; ¢
nwd}.

Assume first that T = (), ., T, is infinite. Since nwd is P~, for each i € T we can
find D; ¢ nwd, D; C I; with D; C* C, for all n € w. Then for E = ;. DiN C;
we have E € B (as D; ¢ nwd and D; \ C; is finite for all i € T'). Hence, E = B,
for some a < ¢. Moreover, for each n € w we have pi(4, \n) = E\U,., Ii =
UiET.iZn DinG: c G

Assume now that T is finite. Inductively pick i, € w and D, ¢ nwd such that
iny1 > ipand D, C [;, N C, for all n € . Define E = | J, ., D» and note that E €
B. Hence, E = B,, for some o < ¢. Moreover, for each n € o we have p; (4, \ in) =
E \ Ui<in I = UiZn D; € G,.

Finally, we will show that p, £k p1. Fix any f:QnN[0,1] — QnNJO0,1]. For
each n € w find r, € QN [0. 1] such that f'[(r, — 21,1 I+ 2,,) NI, ¢ nwd Th1s is
possible as [0, 1] can be covered by finitely many intervals of the form (r — 5. 7 + 5)
and I, N (QN [0, 1]) ¢ nwd. Since [0, 1] is sequentially compact, there is an infinite
S C w such that (r,)ues converges to some x € [0.1]. Put F = J,cg f '[(ra -
21,1 Ly ZL,,)] N 1,. Then F € B (in particular, F € I;l)’ so F = B, for some a < .
Fix any E € nwd" and enumerate S = {s;: i € a)} in such a Way that s; < s;
whenever i < j. Observe that E N ((ry, — 5. 75, + 3 \ Ujsi(rs; — 2/ s+ 2,—}].))
is infinite for some i € w as otherwise £ would converge to x, so £ € nwd.

We claim that for every finite set L C Q N[0, 1] we have

E\NL=p(E\L)Z f[p2(da \ (5i + 1))]
=/ F\NJU 0, - 215 T +2%)]msj)

j<i

Let LCQﬂ[O 1] be a finite set. We will show that E\L,@f[F\
Ui [(ry, Ly, 551 Suppose that E\LC f[F\ U<, (f [(ry, -
2% rs; + 57 ). Let

xeEn|(r, - 1 = )VU (s - 5,5,+% \LCE\L.
2 A

J>i

Then

o LIS ()0
f U (fl [(rsl, - %,rsj + 2%)] ms])

J>i
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crly (f‘1 [(st - zijrf - 2%)D

| i
1 1

_ -1 o _
=f1f U <er 2Sj,rxj + 2”>

L J>i

1 1
< U <rfj TR 2_r,>
j>i
A contradiction. n

Part 4. Characterizations

In the final part we want to characterize when FinBW(p;) \ FinBW(p,) # () in
the cases of p; € {FS,r,A} U{pz : T is an ideal}. In the realm of partition regular
functions that are P~ and have small accretions we were able to obtain a full
characterization (Theorem 16.1(1)) using Theorem 15.2. If p; = pz for some P~
ideal Z, then Theorem 14.3 gives us a complete characterization (Theorem 16.1(2b))
and this problem for p; = pz in the case of non-P~ ideals Z is rather complicated
(see [62] and Example 16.3). However, for instance, in the case of p; = FS and
p2 not being P~, we needed another construction—we were able to obtain a
characterization (Theorem 17.2), but only in the realm of spaces with unique limits
of sequences (which are not necessarily HausdorfT).

§16. Characterizations of distinguishness between FinBW classes via Katétov order.

THEOREM 16.1 (Assume CH). Let py and p> be partition regular functions. Let T;
be an ideal.
(1) If py is P~ and p, is P~ with small accretions, then

p2 £k p1 <= FinBW(p1) \ FinBW(p,) # 0.
(2) (a) If p1 is P~ and ps is P, then
T, %x I,, <= FinBW(p;)\ FinBW(p,) # 0.
(b) If T, is P~ then
Z,, £k T <= FinBW(Z;) \ FinBW(p,) # 0.
Moreover, in every item an example showing that the above difference between
FinBW classes is nonempty is of the form ®(A) with A being almost disjoint and of

cardinality ¢ (in particular, these examples are Hausdorff. compact, separable, and of
cardinality ¢).

ProoF. (1) The implication “ = " follows from Theorem 15.2, whereas the
implication “ <= ” follows from Theorem 11.1(1).

(2a) The implication “ = ” follows from Theorem 14.3, whereas the implication
“ <= " follows from Theorem 11.1(2a).

(2b) It follows from Theorems 14.3, 11.1(2b), and 10.2(4) and
Proposition 6.5(2). -
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Next two examples show that in Theorem 16.1 we cannot drop the assumption
that p; is P~ and obtain a characterization in the realm of Hausdorff spaces.

ExamPLE 16.2. There exist partition regular functions p; and p, with small
accretions such that:

(1) pyisnot P~ and p;is P+,

(2) p2 Zk p1.
(3) there is no Hausdorff space in FinBW(p;) \ FinBW(p,).

PrOOF. Let p; = py and py = pz, I Then p; and p; have small accretions (by
Proposition 4.3). By Theorem 6.7, Z;, is P* and # is not P (w) (hence. not P).
Applying Proposition 6.5(2), we see that p; is not P~ and p, is PT. By Theorem
7.7(8), Ir £k I. so p» £k p1 (by Proposition 7.5(2b)).

By Theorem 10.5(3), FinBW(#) contains only finite Hausdorff spaces. On the
other hand, FinBW(Z,) contains all finite spaces (Theorem 10.5(1)), so there is
no Hausdorff space FinBW(#) \ FinBW(Z, ). Applying Proposition 10.2(4). we
obtain that there is no HausdorfT space in FinBW(p;) \ FinBW(p»). -

The above example may not be satisfactory as all Hausdorff spaces from
FinBW(p;) are finite. The next example is more sophisticated.

ExamPLE 16.3. There exist partition regular functions p; and p, with small
accretions such that:

(1) piisnot P~ and p,is P,
(2) assuming CH, there is a Hausdorff, compact, separable space of cardinality ¢
in FinBW(p,).

(3) p2 £k p1.
(4) there is no Hausdorff space in FinBW(p;) \ FinBW(p,).

Proor. LetZ and J be the ideals from [62, Example 8.9] and define p; = pz and
p2 = p7. Then p; and p, have small accretions (by Proposition 4.3) and J £k Z, so
p2 £x p1 (by Proposition 7.5(2b)). By [62, Example 10.6] and Proposition 10.2(4),
there is no Hausdorff space in FinBW(p;) \ FinBW(p,). Applying [62, Theorem 6.6]
and Proposition 10.2(4) we see that, assuming CH, there is a Hausdorff, compact,
separable space of cardinality cin FinBW(p; ). Since J is P~, p» is P~ (by Proposition
6.5(2)) and p; cannot be P~ as it would contradict Theorem 16.1(1). =

QUESTION 16.4. Can we drop the assumption that p, is P~ in Theorem 16.1 and
obtain the characterization in the realm of Hausdorff spaces?

In Theorem 17.2, we show that we can drop the assumption that p, is P~ in
Theorem 16.1(1) and obtain a characterization in the realm of non-Hausdorff spaces
with unique limits of sequences. but at the cost of requiring that p; is weak P+ instead
of P~.

Now we present some applications of Theorem 16.1.

COROLLARY 16.5 [62, Theorem 10.4]. Assume CH. Let T) and I, be ideals. If T; is
P, then the following are equivalent:

(1) I, £k T,.
(2) FinBW(Z) \ FinBW(Z,) + 0.
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Moreover, an example showing that the above difference between FInBW classes
is nonempty is of the form ®(A) with A being almost disjoint and of cardi-
nality ¢ (in particular, these examples are Hausdorff, compact, separable, and of
cardinality ¢).

PrOOF. It follows from Theorems 16.1(2b) and 10.2(4). 4

QUESTION 16.6. Is every Iy,,-space (Hindman space, Ramsey space) a van der
Waerden space?

Note that under CH Theorem 16.1 reduces the above question to Question 7.8.

COROLLARY 16.7 (Assume CH). Let Z be an ideal.
(1) If T is P, then the following conditions are equivalent:
(a) pr £k FS (pr £k 1r.pz £k A. resp.).
(b) There exists a Hindman (Ramsey, differentially compact, resp.) space that
is not in FiInBW (Z).
Moreover, if T is P then the above are equivalent to T £x H.
(2) If T is P, then the following conditions are equivalent:
(a) H€x T (R £x I.D £k T, resp.).
(b) FS £k pz (r £k pz.A £k p1. Tesp.).
(c) There exists a space in FInBW(Z) that is not a Hindman (Ramsey,
differentially compact, resp.) space.
Moreover, in every item an example showing that the above difference between
FinBW classes is nonempty is of the form ®(A) with A being almost disjoint and
of cardinality ¢ (in particular, these examples are Hausdorff, compact, separable
and of cardinality ).

Proor. It follows from Theorem 16.1(1) and Propositions 4.3, 6.5(2), 6.7(3).
7.5(2a) and (2b), and 10.2(4). 4

REMARK. In [24, Corollary 2.8], the authors obtained Corollary 16.7(1) in the
case of Hindman spaces and P* ideals but in the realm of non-Hausdorff spaces.

COROLLARY 16.8 (Assume CH). Let T be an ideal.

(1) The following conditions are equivalent:
(a) T £x W (T £k Ty ). resp.).
(b) pz £x pw (pz £k P1,),. TeSP.).
(c) There exists avan der Waerden space (I, ;,—s pace) that is not in FinBW(Z).
(2) If L is a P~ ideal, then the following conditions are equivalent:
() W £k T (Zy)n £k I, resp.).
(2) pw £k pz (pz,,, £K PT. TESP.).
(3) There exists a space in FinBW (Z) that is not a van der Waerden space
(Zy/5—space).
Moreover, in every item an example showing that the above difference between
FinBW classes is nonempty is of the form ®(A) with A being almost disjoint and of
cardinality ¢ (in particular, these examples are Hausdorff. compact, separable, and of
cardinality ¢).

Proor. It follows from Theorem 16.1(1) and Propositions 4.3, 6.5(2), 6.7(1),
7.5(2b), and 10.2(4). 4
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§17. Non-Hausdorff world.

ProposITION 17.1. The following conditions are equivalent for every topological
space X.

(1) X has unique limits of sequences.
(2) p-limits of sequences in X are unique for every p.

PRrROOF. Since pgjp-convergence is convergence, (2) = (1) is obvious.

(1) = (2): We will show that the negation of (2) implies the negation of (1).
Suppose that there are partition regular p : F — [A]® with F C [Q]®, F € F, and
{xn:n € p(F)} C X which p-converges to x and to y, for some x,y € X, x #
y. Let {K, : n € o} C [Q]** be nondecreasing and such that ., K, = Q. For
each n € w inductively find any m, € p(F \ K,) \ {m; : i <n} (this is possible
as p(F \ K,) is infinite). Observe that the sequence (X, )nce IS convergent to x
and to y. o

The main result of this section is as follows.

THEOREM 17.2 (Assume CH). Let p; : F; — [A;]° be partition regular for each
i =1,2. If py is weak P and has small accretions, then the following conditions are
equivalent.

(1) p2 £k p1.
(2) There exists a separable space X with unique limits of sequences such that

X € FinBW(p;) \ FinBW(p,).

ProoF. (2) = (1). It follows from Theorem 11.1(1).
(1) = (2). Fixalist { f4 : @ < ¢} of all Z, -to-one functions f : Aj — As.
We will construct a sequence {D,, : a < ¢} C Fj such that for every @ < ¢ we have

VE € F, 3K € [Q]°°VL € [Q]° (p2(E\ L) Z falpi(Da \ K)])
and one of the following conditions holds:

< € (TR O (ol D\ KO0 U 51103 \ 0D =
W%
or
3 < a¥K €[] VM € [A]<° 3L € [Q]<° (W2)
(foz[pl(Da \L)] c fﬁ[pl(Dﬁ \K)] \ M)

Suppose that oo < ¢ and that Dy have been chosen for all § < . Since p» £k pi.
there is D € F such that

VE € F,3K €[] VL € [Q]* (p(E\ L) Z folp(D°\K)]). (A1)

Since p; has small accretions, there is D! € F;. D! C D°, such that for every K €
[Q1]<¢ we have pi(D') \ pi(D'\ K) € Z,,. Observe that D! also has the property
(A1) as fo[p1(D°\ K)] 2 falpi(D'\ K)] for every K € [Q;]<°.

Since p; is weak P, there is D € F; such that p;(D) C p;(D') and satisfying
property:

V{F,:new} CF (Vnew(p(F.1) Cpi(F) Cpi(D)) (A2)
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= JE' € AiVn € 03K € [Y]*” (p1(E'\ K) C p1(Fy)).
Now we have two cases:

VD' € FiVB < a(pi(D') € pi(D) (P1)
= 3K € [~ (pi(D)\ £ [fslp1 (D \ KO ¢ Z,,)

or

D' e Fi3f<a(p(D') C pi(D) (P2)
AYK € [T (p(D)\ 13 Lf slp1 (Dp \ KT € Z,)).

In the first case, let {K, : n € @} C [Q;]<® be such that Unem = Q and let
a x [A]<? = {(Bn. M,) : n € w}, taking into account that « is countable (as we
assumed CH). Using condition (P1) repeatedly and the facts that f;!'[{1}] € Zy,.
forevery 2 € Ay, and pi(D') \ pi(D'\ K) € Z,,. forall K € [Q;]<“, one can easily
construct a sequence {E, : n € w} C F such that

(1) pi(Eo) € pi(D),
(2) Vn e w(pi(Enr) € pi(E, ))
(3) VnewiK €[ <w( (E, M, U f4,Ip1(Dg, \ K)]] = 0).
(4) Vn € wpi(E,)Npi(D')\ 1(D1\K):®
Now using property (A2) we find E’ € F; such that p;(E’) C p;(D) C p;(D') and
for every n € w thereis K € [Q]<¢ with p|(E’\ K) C p(E,).
It is not difficult to see that D, = E’ satisfies (A1) and (W1), i.e., it is as needed.
Consider the second case. Let D' € F; and f < « be such that pl(D ) C pi(D)
and p1(D') \ [/ slp1(Dg \ K)]] € Z,, for each K € [@]<*. Since f,'[{A}] € ,,
for every 4 € A,. we also have pi (D) \ f,'[fslp1(Dp \ K)]\ M] € Z,, for each
K € [Q]7” and M € [A;]<“. Recall also that p;(D')\ p1(D'\ K) € Z,,. for all
K € [©]<®. Since p; is P~ (by Proposition 6.5(1), as p; is weak P"), we find an
infinite set D" € F such that:

e p1(D") C p1 (D7),
o forevery K € [Q]< thereis L € [Q]<® with p; (D" \ L) C p;(D'\ K).
o forevery K € [Q]<? and M € [A,]<? thereis L € [Q]<® with p; (D" \ L) N

(p1 (DN [ LS plp1(Dp \ K1\ M]) = 0.
It is not difficult to see that D, = D" satisfies (A1) and (W2).
The construction of sets D, is finished.

We are ready to define the required space. Let T = {a < ¢ : D, satisfies (W1)}
and

X =M U{pi(Dy):ae€T}U{x}.
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For every x € X we define the family B(x) C P(X) as follows:
o B(Z) = {{2}} for 1 € A,
e B(p1(Da)) = {{p1(Da)} U falp1(Da \ K)]\ M : K € [Q1]°”. M € [A;]<”}
foraeT,
o B(oo)={{oc} UUner\r Ua : F [T AUa € B(p1(Do)) fora €T \ F}.

It is not difficult to check that the family V"= {B(x) : x € X} is a neighborhood
system (see, e.g.. [17, Proposition 1.2.3]). We claim that X with the topology
generated by A is a topological space that we are looking for.

First we will show that X has unique limits of sequences. It is not difficult to see that
X \ {0} is Hausdorff. Thus, it suffices to check that if {x, : » € w} C X converges
to oo then it cannot converge to any other point in X. Indeed. if {x, : n € w} would
converge to some A € A, then it would have to be constant from some point on,
50 {00} UUuer({p1(Da)} U falp1(Da)]\ {2}) would be an open neighborhood
of co omitting almost all x,,’s. On the other hand, if (x,),c, would converge to
some p;(D,) for & € T then using (W1) for each g € T\ {a} we could find Ky €
[Q]<® with f4[p1(De \Kﬁ)] ﬂfﬁ[pl(Dﬁ \ K/;)] = (). Then, denoting My = {xn:
new}l\ falpi(Da\ Kg)] (which is a finite set, as {pi(Dq)} U fulpi (Do \ Kp)] is
an open neighborhood of p;(D,,) and (x,),c. converges to p;(D,)), the set {oo} U
UﬁeT\{a}({/’I(D/f)} U fplp1(Dg \ K/;) \ Mpg) would be an open neighborhood of
oo omitting all x,,’s. Hence, X has unique limits of sequences.

Now we show that X € FinBW(p;). Fix any f : A; — X. If there is x € X
with f'[{x}] ¢ Z,, then find F € F; with p;(F) C f'[{x}] and observe that
(f (1)) nep, () s p1-convergent to x. Thus. we can assume that f* [{x}] € Z,, forall
xeX. There are two possible cases: f1[X \ Ay] € Z, or f71[X \ A2] €1,.

If fX\A]¢7Z, then we find F eF with pi(F)C f'[X\As]. As

“{x}1 €T, forall x € X and f'[{x}] # 0 only for countably many x € X,
using the fact that p; is P~ (by Proposition 6.5(1)) we can find E € F; with
p1(E) C p1(F) and such that for each x € X \ A, there is K € [Q;]<® with
p1(E\ K)N f{x}] = 0. Since for each U € B(cc) there are only finitely many
a € T with p1(D,) ¢ U, (f(n)),ep, (5)p1-converges to co.

If S 'X \ As] € Z,, then define g : Al — Ay by g(4) = f(4) for all A€ A\

"X\ Ay] and g(4) = x for all A € f~'[X \ Ay]. where x € A, is a fixed point.
Then there is o < ¢ with f, = g. We have two subcases:a € T anda ¢ T.

Assume « € T'. Since p; has small accretions, there is £ C D,,, E € Fj such that
pL(E)\ pi(E\ K) € Z,, for all K € [Q;]<”. Using that p; is P~ (by Proposition
6.5(1)), we find D € Fj such that:

o p1(D) S pi(E)\ f1X \ As).

o for each K € [Q]<® there is L € [Q]<* with p;(D\ L) C pi(E\K)C

P1 (Da \ K),

e for each M € [A,]<¢ thereis L € [Q{]<“ with p;(D \ L) N f'[M] =
Since each U € B(p;(D,)) is of the form {p1(Dy,)} U falp1(Da \ K)]\ M for
some K € [Q;]<” and M € [A;]<“, the subsequence (f(n))nEpl(D) p1-converges
to py (Da)~

Assume o ¢ T. Then there is f < . f € T such that

VK €[] VM € [A]™ 3L € [ (falp1(Da \ L)1 C fplp1(Dg\ K)1\ M)
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(we take the minimal f < o satisfying property (W2)). Since each open neighbor-
hood of p;(Dy) is of the form {pi(Dy)} U f4[p1(Dg \ K)]\ M forsome K € [Q;]<*
and M € [A3]°°. (fa(n))nep, (o) P1-converges to pi(Dg) € X. Since p; has small
accretions, there is E C Do, E € F; such that pi(E)\ pi(E\ K) € Z,, for all
K € [Q]%®. Then also (fa(n))nepl(5> pi-converges to pi(Dg) € X. Finally, since

X\ As] € Z,,. using that p, is P~ (by Proposition 6.5(1)), we get E’ € F; such
that p;(E’) C p1(E)\ f'[X \ A2] and for each K € [Q]< there is L € [Q;]<®
with pi(E'\ L) C p1(E \ K). It is easy to see that f,, [ p1(E’) = f | p1(E’) and
(fa(n))nep, (5r)p1-converges to p1(Dy) € X.

Finally, we check that X ¢ FinBW(p,). Define f : A, — X by f (1) = A for all
A€ Ay and fix any E € F,. We claim that (f(n)),e,,r) does not py-converge.
Clearly, it cannot converge to any x € A,. Moreover, it cannot converge to any
p1(D,) for a € T as property (Al) guarantees that for some K € [Q]<“ we have
pZ(E \ L) Jg fa[pl(Da \K)] for all L € [Q2]<wv so U = {pl(Da)} Ufa[pl(Da \
K)] would be an open neighborhood of p;(D,) such that p,(E \ L) C U for no
L € [Qu]<.

We will show that (f(1)),¢,,(r) cannot p-converge to co. Suppose otherwise.
let {L,:n € w} C[Q]~” be such that | J, ., L, = Q, and inductively pick m, €
p(E\ L,)\ {m; : i <n}. Then (f(m,))nce is convergent to co. However, if g :
Ay — {f(my) :n € w} is any bijection (the set { f(m,) : n € w} is infinite since f
is one-to-one) then g = f, for some a. If & € T thenin (f(m,)),c. we could find
a subsequence converging to p;(D,) (in the same way as above when showing that
X € FinBW(p1) in the case of a € T) which contradicts that X has unique limits
of sequences. If a ¢ T then in (f (m,)),c, We could find a subsequence converging
to p1(Dy) for some f < a, f € T (in the same way as above when showing that
X € FinBW(p;) in the case of a ¢ T') which also contradicts that X has unique
limits of sequences. =

§18. Hindman (Ramsey, differentially compact) spaces that are not in FinBW (Z)
and vice versa. Now we turn our attention to the question when there is a space
in FinBW(Z) that is not Hindman (Ramsey. differentially compact, resp.) and vice
versa in the case when 7 is an arbitrary ideal.

COROLLARY 18.1 (Assume CH). For each ideal T and p € {FS, r, A} the following
conditions are equivalent.

(1) pz £k p-
(2) There exists a Hindman (Ramsey, differentially compact, resp.) space that is
not in FinBW(Z).

Moreover, an example showing that the above difference between FInBW classes is
nonempty is separable and has unique limits of sequences. If I is P~, then this example
is of the form ®(A) with A being almost disjoint of cardinality ¢ (in particular, it is
Hausdorff. compact, separable, and of cardinality c).

Proor. It follows from Theorem 17.2 and Proposition 10.2(4) as each p €
{FS, r, A} isweak P™ (by Theorem 6.7(3)) and has small accretions (by Proposition
4.3). The case of P~ ideals T follows from Corollary 16.7(1). B
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In [62, Definition 4.1], the author introduced the following ideal:
BT = {4 C 0’ : 3k [Vi <k (4 € Fin®) AVi > k (4, € Fin(?) ]},

where A = {(x.y) € w*: (i.x.y) € A}. The ideal BZ proved to be useful in
research of FinBW(Z) spaces (see [62] for more details).

CoRrOLLARY 18.2 (Assume CH). For each ideal I, the following conditions are
equivalent.

(1) BT £x T.

(2) There exists a space in FinBW (Z) that is not a Hindman (Ramsey, differentially

compact, resp.) space.

Moreover, an example showing that the above difference between FiInBW classes is
nonempty is of the form ®(A) with A being infinite maximal almost disjoint (in
particular, it is Hausdorff, compact, separable, and of cardinality c).

Proor. (1) = (2) In [62. Theorem 5.3]. the author proved that if BZ £x T
then there exists an infinite maximal almost disjoint family A such that ®(A) €
FinBW(Z). Then Corollary 13.3 shows that ®(.A) is not Hindman (Ramsey nor
differentially compact).

(2) = (1) Using [62. Proposition 6.3 and Lemma 3.2(ii)], it is not difficult to
see that if BZ <g T then each space in FinBW(Z) satisfies property (*). On the
other hand, we know that spaces with (x) property are Hindman, Ramsey, and
differentially compact (see [57. Theorem 11], [61, Corollary 3.2], and [22, Corollary

4.8], resp.). -
CoroLLARY 18.3 (Assume CH). If p € {FS.r,A} then FinBW(p) # FinBW(Z)
for every ideal T.

PrOOF. Let p € {FS,r,A} and T be an ideal. If BZ £x Z then FinBW(Z) \
FinBW(p) # 0 by Corollary 18.2. On the other hand, if BZ < 7 then the interval
[0, 1]isin FinBW(p) (by Theorem 10.5(6) and Propositions 10.2(2) and 6.7(3)) and
it is not in FinBW(Z) (by [62, Proposition 4.6], [2, Example 4.1], and [67, Section
2.7)). .
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