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Abstract

We show that every a -complete MV-algebra is an MV-cr-homomorphic image of some a -complete
MV-algebra of fuzzy sets, called a tribe, which is a system of fuzzy sets of a crisp set £2 containing
l n and closed under fuzzy complementation and formation of min{5^n/n, 1}. Since a tribe is a direct
generalization of a a -algebra of crisp subsets, the representation theorem is an analogue of the Loornis-
Sikorski theorem for MV-algebras. In addition, this result will be extended also for Dedekind CT-complete
£-groups with strong unit.
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1. Introduction

The concept of MV-algebras was introduced by Chang [Cha] in 1958 as a non-
latticeal generalization of Boolean algebras and they arise from many valued logic of
Lukasiewicz in the same manner as Boolean algebras arise from classical two-valued
logic.

a-complete MV-algebras are MV-algebras which are a-complete lattices. Such
MV-algebras are always semisimple algebras, and they are exactly those for which
there exists an MV-isomorphism with a Bold algebra, that is, with an algebra of
fuzzy sets of a crisp set £2 which contains ln , and which is closed under the fuzzy
complementation and formation of min{/ + g, 1}. Belluce [Bel] showed that every
semisimple MV-algebra M can be always represented as a Bold algebra of continuous
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262 Anatolij Dvurecenskij [2]

fuzzy sets on the compact Hausdorff space of all maximal ideals of M. And this is an
analogue of Stone's representation theorem for Boolean algebras.

Tribes are Bold algebras of fuzzy sets which are roughly speaking closed under
pointwise suprema, and they are a direct generalization of a CT-algebra of crisp subsets.

The famous Loomis-Sikorski theorem [Sik] plays a crucial role for analysis of
Boolean CT-algebras, and it says that every Boolean CT-algebra is a cr-homomorphic
image of a CT-algebra of subsets.

In the present paper, we show that every cr-complete MV-algebra is an MV-CT-

homomorphic image of a tribe, which gives a generalization of the Loomis-Sikorski
theorem for CT-complete MV-algebras. In addition, we extended this result also for
Dedekind CT-complete £-groups with strong unit.

2. MV-algebras

An MV-algebra is a non-empty set M with two special elements 0 and 1 (0 ̂  1),
with a binary operation © : M x M -* M and with a unary operation * : M -> M
such that, for all a,b, c e M, we have

(MVi) a ® b = b ® a (commutativity);
(MVii) {a © b) © c — a © (b © c) (associativity);

(MViii) a®0 = a;
(MViv) a® I = 1;
(MVv) (a*)* = a;

(MVvi) a® a* = 1;
(MVvii) 0* = 1;

(MVviii) (a* ®b)*®b = (a® b*)* ® a.

We define the following binary operations O, v, A as follows:

(2.1) a © b := (a* © b*)*, a,beM,

avb:=(a*®b)*®b, a A b := (a* V b*)*, a,beM.

Then (M; O, 1) is a semigroup written 'multiplicatively' with the neutral element 1.
If, for a, b e M, we define

a < b O a = a A b,

then < is a partial order on M, and (M; v, A, 0, 1) is a distributive lattice with the
least and greatest elements 0 and 1, respectively, [Cha]. We recall that a < b if and
only if ft ©a* = 1.

Without loss of generality we write for MV-algebras M = (M; ©, Q,*, 0, 1),
where O is defined by (2.1).
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[3] Loomis-Sikorski theorem 263

Similarly, we can define a (total) binary operation * on M by

a*b:=aQb*, a,beM.

Then

a * b = a * (a A b),

and 1 * a = a* for any a € M.

Let (G; +, 0, <) be an Abelian f-group with a strong unit u, that is, given v € G,
there is an integer n > 1 such that —nu < v < nu.

Define

(2.2) T(G, u) = ( s e G : 0 < j < U )

and set for all gx,g2, g e T(G, u)

gi®g2 = (gl + gl) A M,

?iOft = (gi + gi - u) V0,

g* = u-g.

Then (r(G, u); 0 , ©,*, 0, H) is an MV-algebra. The famous Mundici result [Mun]
says that given an MV-algebra M there is an Abelian ^-group G with a strong unit
u such that M is isomorphic with some F(G, M), in addition, V defines a categorical
equivalence between the category of unital <!-groups and the category of MV-algebras.
We denote any representation £-group (G; +, 0, <) with a strong unit u of an MV-
algebra as a unital ^-group G = (G; +, 0, <, u), or simply G = (G, u).

The case M = [0, 1], the real interval of the €-group R, that is, [0, 1] = T(1R, 1),
is of a particular importance for the study of MV-algebras.

Given an MV-algebra M, we can introduce a partial binary operation + in the
following way: a + b is defined if and only if a < b*, and in this case we put

a + b := a © b.

It is easy to see that a + 0 = 0 + a = afor any a e M, and + is commutative,
that is, if a + b is defined in M, so is b + a, and a + b — b + a; + is associative,
that is, if (a + b), (a + b) + c are in M so are defined b + c and a + (b + c), and
(a + b) + c = a + (b + c). Identifying the MV-algebra M with T(G, u) via (2.2), we
can see that our partial operation + coincides with the group addition +.

In addition, we can define a subtraction: a —bis defined in M if and only if b < a,
and a — b = c whenever b + c = a.

A nonvoid subset / of M is said to be an ideal of M if
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(i) x,y € I implyx © y e / ;
(ii) x e / , y < x imply y € I.

A proper ideal A of M is said to be (i) maximal if there is no proper ideal of M
containing A as a proper subset, and (ii) prime if a A b G A entails a € A or b G A.
Every maximal ideal is prime. Let ^(M) denote the set of all maximal ideals of M.
Then J({M) •£ 0. Denote by

Rad(M) := f][A : A e Jt(M)\,

and we call Rad(M) the radical of M. A nonzero element a of M is said to be
infinitesimal if na exists in M for any integer n > 1. The set of all infinitesimals in
M is denoted by Infinit(M). Then according to [CDM, Proposition 3.6.4], we have

Rad(M) = Infinit(M) U {0}.

Let a be an element in M and n an integer. We define na := a{-\ \- an, where
ay = • • • = an = a. An MV-algebra M is said to be (i) semisimple if Rad(M) = {0};
(ii) Archimedean if existence of na for any n > 1 implies a = 0; and (iii) Archimedean
in the sense ofBelluce [Bel] if, for each a, b € M, if n Q a = a © • • • © a < b for all
n > 1 then a O b = a.

We have the following characterization of the Archimedeanicity of M [DvGr].

PROPOSITION 2.1. An MM-algebra M is Archimedean if and only if its representa-
tion t-group (G, u) is an Archimedean t-group.

According to Belluce [Bel], we say that a subset & c [0, l ] n , where £2 ̂  0, is a
Bold algebra if

(0 0 n e J ? ;
(ii) / e ^ entails l n — / 6 &;

(iii) f,ge^ imply / © g € <^, where

(2.3) (/ ©#)(&>) = min{/(<w) + g(a>), 1}, a> e £2.

Then & with/ * := l n —/ and with 0n and l n is an MV-algebra which is semisimple
and Archimedean. In particular, if X is a topological space, by C(X) we denote the
set of all continuous fuzzy subsets on X, and any Bold algebra of all continuous fuzzy
subsets is of special interest (see (viii) in Theorem 2.3).

An MV-homomorphism of two MV-algebras Mi and M2 is any mapping h : Mx - •
Mi preserving 0, 1, ©, and *.

A state on MV-algebra M is a mapping m : M -> [0, 1] such that m(l) = 1, and
m(a + b) = m(a) + m(b), whenever a + b is defined in M. Denote by y(M) the set
of all states on Af, then y(M) + 0.
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[5] Loomis-Sikorski theorem 265

A state m on M is said to be o-additive if an /* a entails m(an) / m(a).
A state-homomorphism is a mapping m : M -» [0, 1] such that m(\) = 1, and

m(a 0 b) = min{l, m(a) + m(b)}, a,b € M. Any state-homomorphism is a state,
but the converse does not hold, in general. There is a one-to-one correspondence
between state-homomorphisms and maximal ideals [Muni, Theorem 2.4], [Goo, The-
orem 12.18].

THEOREM 2.1. (1) A state m on Mis a state-homomorphism ifandonlyifKetm :=
[a € M : m(a) = 0} is a maximal ideal.
(2) Given a maximal ideal A ofM, the mapping x i-> x/Aisa state-homomorphism.
(3) The mapping m i-> Kerm is a one-to-one correspondence from the set of all

state-homomorphisms on the set of all maximal ideals ofM.
(4) A state m on M is an extremal point (an extremal state) of the set 5?(M) if and

only ifm is a state-homomorphism.

Denote by Ext(^(M)) the set of all extremal states (state-homomorphisms) on
M. Then [Muni, Theorem 2.5] Ext(^(M)) ^ 0 and it is a compact Hausdorff
space with respect to the weak topology of states (that is, ma -*• m if and only if
ma(a) ->• m(a) for any a € M), and any state m on M is in the closure of the convex
hullofExt(^(M)).

We introduce a topology , 5 ^ on the set J((M) of all maximal ideals of M. Given
an ideal / o fM, let

0(1) := {A e JC(M) : A 2 /},

and let ^ - be the collection of all subsets of the above form. It is possible to show
that 5^- gives a compact Hausdorff topological space. Moreover, any closed subset
of Jt(X) is of the form

: A 2 / } ,

where / is any ideal of M. It is worth recalling that JK(M) and Ext(^(M)) are
homeomorphic spaces; the homeomorphism is given by m i-> Kerm,m € Ext(^(M)),
[Goo, Theorem 15.32].

A nonvoid subset S" of S"(M) is said to be order-determining if m(a) < m(b) for
any m e y imply a < b.

The following characterizations of semisimple MV-algebras can be found in [DvGr,
Bel, Muni].

THEOREM 2.2. Let M be an MM-algebra. The following statements are equiva-
lent.

(i) M is semisimple;
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(ii) M is Archimedean;
(iii) M is Archimedean in the sense ofBelluce;
(iv) There exists an order-determining system of state-homomorphisms on M;
(v) There exists an order-determining system of states on M;
(vi) M is isomorphic to some Bold algebra of fuzzy subsets of some Q. ^ 0;

(vii) M is isomorphic to some Bold algebra of continuous functions defined on
some compact Hausdorff spaces X;
(viii) M is isomorphic to some Bold algebra of C(^(M)), the set of all continuous

fuzzy subsets defined on

Let M be semisimple. The property (vi) means the following: Let a e M and
A e ^tf(M). Then ai->a, where a e [0, l]-*(M> is defined as follows

(2.4) a(A) := a/A, A € JK{M),

is an MV-isomorphism between M and [a : a e M}. We recall that if A is a maximal
ideal of M, then using Holder's theorem, [Bir, Theorem XIII.12] a/A, a € M, can be
represented as a number in [0, 1].

Or, equivalently, since there is a one-to-one correspondence between Ext(^ (M))
and Jt{M) given by the homeomorphism m h+ Kerm, we have the embedding a h+ a,
of M into [0, 1]M, where a is defined as follows

(2.5) a(m) := m(a), m e

3. a-complete MV-algebras and tribes

The following forms of distributive laws are known.

PROPOSITION 3.1. Let \j. a, be defined in M. Then for any b 6 M,we have

rai)=\/(bAai),

bO\\/a\ =f\(bOa*).

The equalities hold in the sense that the expressions on the right-hand side exist, and
are equal to the left-hand ones.
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[7] Loomis-Sikorski theorem 267

We recall that an 4!-group G is Dedekind o-complete if, for any sequence {#„}„
of elements of G with an upper bound in G, Vn Sn e G; similarly for Dedekind
complete.

We say that an MV-algebra M is a -complete (complete) if M is a a -complete
(complete) lattice. M is a-complete (complete) if and only if G is Dedekind
a-complete (complete) £-group, where M = T(G, u), [Jak], [Goo, Proposition 16.9],
An MV-o-homomorphism is any MV-homomorphism of a -complete MV-algebras
preserving also countable joins (and meets).

We give another proof of the following statement (see for example [Cig,
Lemma 2.1]).

PROPOSITION 3.2. Any a-complete MS-algebra is Archimedean.

PROOF. Assume that na is defined in M for any integer n > 1. For any integer k,
we have (k + l)a < ViHi na s o *hat ka < (V^Lina) ~ a which entails Vtli ^ a —
(V^Li na) ~ a whence a = 0. D

The following notion is a direct generalization of a cr-algebra of crisp subsets.
A tribe of fuzzy sets on a set fi ^ 0 is a nonvoid system & c [0, l]n such that

(i) l o € ^ ;
(ii) if a e &, then 1 - a € &\

(iii) if [an}™=l is a sequence of elements of &, then

min

(We recall that all above operations with fuzzy sets are defined pointwisely on Q.)
By [RiNe, Proposition 3.13], if & is a tribe and if a,b e &, then (i) a v b =

max{a, b], a A b = min{a, 6}, (ii) 6 — a e ^ i f a < f e , that is, if a(co) < b(co) for all
(o e fi, (iii) if an e «^, and an / a (pointwisely), then a = limn an e «̂ ". It is simple
to verify that & is a <r-complete MV-algebra of fuzzy sets, where the partial order is
determined by the set-theoretical ordering, with the least and greatest elements On and
In, respectively. Moreover, the system {sw : co e Q], where sa)(f):=f(co),f € J?,
is an order-determining system of a -additive states on &.

Let & be a family of fuzzy subsets of Q. We define «^0 '•— & U (On. In), and for
any ordinal number a > 0, we define

where the family ^* denotes the set of all functions of the form min {
where either/„ or 1 — /„ e *€ for any n > 1. Then
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(i) & c ^ , c ^ a c «T(^") for 0 < p < a, where 5 ^ ) is a tribe generated

(ii) &(&) = U^«u, «^ ' w n e r e a>i is t n e first uncountable ordinal number.

The following result characterizes the tribe generated by C(X), the space of all
continuous fuzzy functions on X, where X is a compact Hausdorff space. We recall
that by 3B(X) we mean the Baire cr-algebra generated by compact Gs sets on X, or
equivalently, by {f'l([a, oo)) : / e C(X), a e K}.

PROPOSITION 3.3. Let X be a compact Hausdorff space. Let &(X) be the tribe
generated by C(X), and let ̂ (X) be the set of all Baire measurable fuzzy sets on X.
Then

PROOF. It is obvious that ̂ f(X) is a tribe containing C(X) hence, &(X) c Jf(X).
Let Sfp and 5?^ be the systems of all crisp subsets A C X such that \A € &(X) and

), respectively. Then =5^ and ^ ^ are a-algebras of subsets of X, and

Since each/ e ^"(Z) is .^-measurable, then each/ e C(X) is ,$^--measurable,
so that BS(X) c y ^ .

On the other hand, because &(X) contains C(X), &(X) contains all constant
functions taking values in the interval [0, 1]. By [RiNe, Theorem 8.1.4], this is a
necessary and sufficient condition in order &(X) consists of all 5f&-measurable
fuzzy subsets of X. Consequently, &(X) = Jt(X). D

4. Loomis-Sikorski Theorem

In the present section, we give a generalization of the Loomis-Sikorski theorem for
a-complete MV-algebras. Before it we present partial results.

For any a e M, we put

(4.1) M(a) :={A eJ?(M) : a $ A}.

Then {M(a) : a e M} is a base of ^^ of the compact Hausdorff space J((M), and
for a, b € M,

(i) M(O) = 0;
(ii) M(a) c M{b) whenever a < b\

(iii) M(a A b) = M(a) D M(fc), M(a V fe) = M(a) U M(fe).

An element a € M is idempotent if and only if a v a* = 1. It is possible to show
that a is idempotent if and only if a © a = a if and only if a O a = a if and only if
a A a* = 0. Denote by 5(M) the set of all idempotent elements of M.
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[9] Loomis-Sikorski theorem 269

PROPOSITION 4.1. B(M) is a Boolean algebra with the least and greatest elements
0 and 1 and with unary operation * taken from M. In addition, if\Ji a, of elements
{a,} of B(M) exists in M, then V, a i e B{M). Consequently, if M is a-complete or
complete, so is B(M).

PROOF. Let {a,} be a family of elements of B(M) such a = V, fl; € M. Then

a A a* = \ / ( a , A a*) < \J\a, A a*) = 0 . •

PROPOSITION 4.2. For any a e M,

M(a)c C M(a*).

//"a is idempotent, then M(a)c = M(a*). In general, if a < Z>, then

M(b)\M(a) <ZM(b*a).

If a and b are idempotent, a < b, then b * a* = b A a* and M(b) \M(a) = M(b* a).
IfM is semisimple, then a is idempotent if and only ifM(a*) = M (a)c.

PROOF. Let a < b. Take A eM(b) \M(a). Then b £ A and a € A. We claim that
fc * a £ A. If not, then b * a e A so that ft = a + (fe*a) e A which is a contradiction.

Let a and b be two idempotent elements of M and take A e M(b * a). Then
& * a £ A and b £ A. Since A is a prime ideal of M, then 0 = (b*a)Aa€A entails
a € A so that A e M(b) \ M(a). The first condition follows from the above.

Let M be semisimple and M(a*) = M{a)c. Then for any maximal ideal I of M
either a € / or a* e I which entails a A a* e I, and the semisimplicity of M gives
a A a* = 0. •

REMARK 4.1. We recall that if M(a) is clopen, then not necessary M(a*) = M{a)c.
Indeed, take M = [0, 1]. Then ^(M) = {{0}}, and for any nonzero a e M,
M(a) = Jt{tf) is clopen, and M(a)c = 0.

Similarly, if M is not semisimple, then the equality M(a*) = M(a)c does not entail
that a is idempotent. Indeed, take the Chang MV-algebra [Cha] M = {0,1,2,... ,n,
. . . , l i , . . . , 2, i, 6}. Then JK(M) = {{0,1, . . .}}, and M(l ) = 0 = M( i ) c and 1 is
not idempotent.

A topological space fi is said to be

(i) totally disconnected if every two different points are separated by a clopen
subset of Q;

(ii) basically disconnected if the closure of every open Fa subset of ft is open;
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(iii) extremally disconnected if the closure of every open set is open.

PROPOSITION 4.3. If M is a a-complete or complete MV-algebra, then the space
M{M) is basically disconnected or extremally disconnected, respectively.

PROOF. Since M is a -complete (complete) if and only if its representation £-group
G is Dedekind cr-complete (complete), according to [Goo, Theorem 8.14], the space
Ext(^(Af)) is homeomorphic with the set ^(B(M)) of all maximal ideals of the
Boolean algebra B(M). Hence, by [Sik, Theorem 22.4], a Boolean algebra is a-
complete (complete) if and only if Ji{B{M)) is basically disconnected (extremally
disconnected). •

PROPOSITION 4.4. Let M be a semisimple MV-algebra. If a = \J,at e M, then

M(a)\\jM(a,),
i

where M(a) is defined by (3.1), is a nowhere dense subset of^K(M).

PROOF. Let a = \Jta, and suppose M(a) \ (J, M(a,) is not nowhere dense. Since
{M(a) : a e M} is a base of the topological space ^P(M), there exists a nonzero
element b e M such that 0 ^ M(b) c M(a) \ \J, M(a,). Due to M(b) = M(b) D
M(a) = M(b A a), we take bo :— b A a which is a nonzero element of M. Then
M(b0) n M(at) = 0 for any t, so that M(b0 A a,) = 0 and the semisimplicity of M
yields b0 A a, = 0 for any t.

Then

b0 — b0 A a = b0 A \J a, = \f(b0 A a,) = 0,

which gives M(b) = 0, a contradiction, so that our assumption was false, and conse-
quently, M(a) \ U( M(a,) is a nowhere dense set. •

We recall that the converse to Proposition 4.4 is not true for any semisimple MV-
algebra. TakeM = [0, 1], then M(0.3) \ (M(0.1)UM(0.2)) = 0 but0.3 ^ 0.1 v0.2.

PROPOSITION 4.5. Let M be a semisimple MM-algebra and let a, < afar any t. If
f]t M(a * a,) is a nowhere dense subset of^(M), then a — \Jt a,.

PROOF. It is clear that in order to prove a = \Jta, it is sufficient to verify that
o-t < b < a for any t implies b = a.

So let P|, M(a * a,) be nowhere dense, and let b ^ a for some b > a,, b < a.
Then a * b yt 0 and M(b * a) is a nonempty open subsets of Jl{M). By assumptions,
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[11] Loomis-Sikorski theorem 271

there exists a nonzero open subset O c M{b * a) such that O n f | ( M(a * a,) = 0.
Consequently, there is a nonzero element c e M such that M(c) c O. Hence, for any
/ € M(c) c M(a * b), we have c <£ I, a* b <£ I and I £ f)t M(a * a,). This entails
that there is an index t such that a* a, G / . Since a, < b, we have a*b<a*a,&I
which implies a * b 6 / , and this is a contradiction with a * b £ I. Finally, our
assumption b < a was false, and whence b — a, and a = \Jt a,. •

The converse statement holds, for example, if {a,} is a system of idempotents,
Proposition 4.2 and Proposition 4.4. We recall that the converse to Proposition 4.5 is
not true for any semisimple MV-algebra. Take M — [0, 1], then Jt(M) = {{0}}. If
an = 0.5 - 1 / n , then \Jnan = a := 0.5, andM(a*an) = M(1/n) = ^(M)forany
n > 1, so that f]n M{a * an) is not nowhere dense.

It is worth recalling that if M is a Boolean algebra, then a = \Jta, if and only if
P|r M(a * a,) = M(a)\ [Jt M(a,) is a nowhere dense set, and this observation is a
corner stone for the Loomis-Sikorski theorem. As we have seen, for semisimple MV-
algebras, the analogical statement is not true, in general. Hence, for the validity of
the Loomis-Sikorski theorem on CT-complete MV-algebras we have to develop below
a more detailed analysis of CT-complete MV-algebras.

Let a e M and k > 1. We define

k © a = ax © • • • © ak,

where a\ = • • • = ak = a.

PROPOSITION 4.6. For any a e M,

00

M(a) = \jM((kOa)*)c.
k=\

If, in addition, M is a -complete, then the closure of any M(a) is open.

PROOF. If a = 0, the statement is evident. Let now a ^ 0 . Let / e M(a). Then
a £ / , and consequently, there is an integer k > 1 such that (k O a)* € I, and

Conversely, let / € |J*li *f ((it O a)*)c. There exists an integer k > 1 such that
/ 6 M((k O a)*)c. Hence, (k Q a)* e / . Since / is a maximal ideal, we conclude that
ail.

The second part of the assertion follows from Proposition 4.3 and from the fact that
M(a) is an open Fa set. •

REMARK 4.2. We recall that a Boolean algebra M is CT-complete (complete) if
and only if ^(M) is basically disconnected (extremally disconnected) [Sik, Theo-
rem 22.4]. For MV-algebras such assertion is not true, in general. Indeed, take the
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ChangMV-algebra[Cha] M = {0, 1,2 n,... ,h,... ,2,1,6}. Then JC{M) =
{{0, 1,...}}, and it is basically disconnected (extremally disconnected) but M is not
a -complete.

PROPOSITION 4.7. An element a of a semisimple MV-algebra M is idempotent if
and only if a is a characteristic function.

PROOF. Let a e B(M). For any maximal ideal A of M, from 0 = a A a* e A we
conclude that either a e A or a* e A which implies that a(A) € {0, 1}. Conversely,
let a be a characteristic function. Then a(A) = a/A is either 0 or 1, or equivalently,
eithera € A or a* e A. HenceaAa* e AfoianyA € JK(M), and the semisimplicity
of M entails a A a* = 0. •

For a bounded function g : X -*• R on a topological space X we define

(4.2) g(x) = inf sup{s(;y) : y € U],

where ^¥{x) is the system of open neighbourhoods for x € X. Then

(i) g(x) < It*) for any x e X;
(ii) £(*) = g(x) if g is continuous in x.

If D(g) is the set of discontinuity points for g, then

(4.3) {x € X : s(x) ^ g(x)} C D(g) = U t * " ' ^ " ) ~ Int(g~l(Rn)},

where {/?„} is an open basis in R.
Let / be a real-valued function on £2 ^ 0. We define

N(f):={coeQ:\f(a>)\>0).

Suppose that & is a Bold algebra of fuzzy sets on £2. Then for all f,geJ?v/e
have

(i)
(ii)
(in) <y*g)e (#* / ) = ( / *
(iv) N((f*g)®(g*f)) =
(v) N(f)£N(g)iff <g.
We recall that if M is a semisimple algebra, then

M(a) = {I € ^ T ( A f ) :ail} = N{a).

Now we are ready to formulate the main result, the representation Loomis-Sikorski
theorem for a-complete MV-algebras.
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THEOREM 4.1 (Loomis-Sikorski Theorem). For every a-complete MV -algebra M
there exist a tribe & of fuzzy sets and an MV-a-homomorphism hfrom & onto M.

PROOF. Let & be the tribe of fuzzy sets on Ext(y(M)) generated by the Bold
algebra {a : a e M}. Consider by &' the class of all functions / € & with the
property that for some b e M, N((f * b) © (b * f)) is a meager set.

If bx and b2 are two elements of M such that N((f * bt) © (S, * / ) ) is a meager set
fori = 1,2. Then

N«bt * b2) © (h * £,)) = N(bt - b2) C tf(&, -f)UN(f- b\)

is a meager set. Due to the Baire theorem saying that any non-empty open set of a
compact Hausdorff space cannot be a meager set, we conclude that b\ = b2, that is,
bx = b2.

It is clear that &' is closed under the formation of complement / i-> 1 — / and it
is a Bold algebra containing {a : a € M}.

To show that &' is a tribe is necessary to verify that &' is closed under limits of
non-decreasing sequences from &'.

Let {/„}„ be a sequence of non-decreasing elements from &'. Choose bn e M
such that N(fn — bn) is a meager set. Without loss of generality we can assume that
bn < bn+i. Denote / = limn/n, b — \J^=l bn, b0 = limn bn. Then f,b0 e & and
b e M.We have

N(f-b)£N(f- b0) U N(b - bo)

and N(f - b0) = {m : / (m) < fco(m)} U (m : bo(m) < f (m)}.
If m e {/n : / (m) < foo('")}» then there is an integer n > 1 such that / (m) <

< bo(m). Hence fn(m) < f (m) < bn(m) < bo(m) so that m € {m : fn(m) <

Similarly, we can prove that if m 6 {m : bo(m) < f (m)}, then there is an integer
n > 1 such that m 6 {m : bn(m) < fn{m)}.

The last two cases imply

-bo)£\jN(bn-fn)

which is a meager set.
Apply now (4.1) to the function b0 to obtain b0, that is

bo(m) := inf sup{fco(y) : y e £/}•

Since Ext(«^(M)) is basically disconnected, compact, Hausdorff, and b^l(a, oo) =
Un K

l(a, oo) for any a e R, ^ ' ( a , oo) is an open Fa set, by [Goo, Lemma 9.1],
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b0 is continuous. Since bo is a point limit of a sequence of continuous functions, by
[Kur, pp. 86, 405-6], D(b0) ^>N(b0- b0) is a meager set,

b0 < b0 < b,

and N(b - b0) c N(b - b0) U D(b0).
Finally we show i>0 = b. Define ^(X), where X = Ext(^(M)), as the set of all

continuous real valued functions defined on X. Since X is a basically disconnected,
compact, Hausdorff space, ̂ (X) is a Dedekind a -complete £-group with a strong unit
lx, [Goo, Corollary 9.3]. Using Mundici's functor T, we see that the system of all
continuous fuzzy functions on X, C(X) = T{^{X), l x ) is a cr-complete MV-algebra.
Applying [Goo, Lemma 9.12], we conclude the mapping a \-+ a, a e M preserves
countable suprema and infima. Consequently, b0 = b, which proves that &' is a tribe,
and whence, &' = &.

Due to definition of &', for any / e & there is a unique element h(f):=b€M
such that N(f — b) is meager, which proves that h : & —>• M is a surjective MV-CT-

homomorphism in question. D

We recall that if M is an atomic a-complete MV-algebra with the countable set of
atoms, then M is a-isomorphic with some tribe [DCR].

5. Loomis-Sikorski theorem for Dedekind a-complete l-groups

In the present section, we apply the Loomis-Sikorski theorem for MV-algebras to
Dedekind a-complete £-groups.

A g-tribe is a nonvoid system & of bounded functions on Q ^ 0 such that

(i) On, \n&S;
(ii) / ± g € & whenever/, g e &;

(iii) if {/„ }„ is a sequence of elements from 17 for which there exists / € & with
fn<f (pointwisely), n > 1, then supn/n e &.

It is evident that & with respect to the pointwise ordering / < g if and only if
/ (<o) < g(co) for every co e fi is a Dedekind a -complete £-group with strong unit ln .
In addition, F(^, ln) '•— {f € & • 0n < / < In) is a tribe of fuzzy functions.

Let (G, u) be an ̂ -group with strong unit u. A state on G is any mapping s : G -> K
such that J (S , + g2) = j(g,) + j(^2), s(u) = 1, i(g) > 0 for g € G+.

If m is a state on M = F(G, M), then it can be uniquely extended to a state m on G
and conversely, any restriction of a state s on G to M gives a state on M.

Let y(G, u) denote the set of all states on (G, u). Then there exists a one-to-one
correspondence m «* m between 5^{M~) and 5^(G, w), and extremal points of S^{M)
are mapped onto extremal points of ̂ (G, u) and vice-versa. In addition, this mapping
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is a homeomorphism. Since an £-group is Dedekind a-complete if and only if M is a
a-complete MV-algebra, we conclude that if G is Dedekind a-complete, then the set
X = Ext(y(G, M)), the set of all extremal points of y (G, u), is a compact Hausdorff
basically disconnected space.

A state s on (G, u) is discrete if s(G) = 1/nZ for some integer n > 1, where I is
the set of all integers.

We recall that an £-group a-homomorphism h from & onto G means: (i) h(f ±
g) = h(f)± h(g); (ii) hsupjn) = Vn h(fn); (iii) A(lx) = u.

Now we present an analogue of the Loomis-Sikorski theorem for Dedekind o-
complete ^-group.

THEOREM 5.1. For any Dedekind a-complete l-group G with strong unit u there
exists a g-tribe !7 of bounded functions on a compact Hausdorff space X and an
(--group a-homomorphism hfrom £? onto G with h(lx) = u.

PROOF. Put X = Ext(^(G, u)) and let ̂ (X) be the set of all continuous functions
on the compact space X. Denote by

(5.1) B = [f € if (X) : / (s) € s(G) for all discrete states s € X}.

Then B is an ^-group with strong unit lx. According to [Goo, Corollary 9.14], the
mapping \}r : G -*• ̂ (X), defined by i/f(g)(s) := s(g), g e G (s e X), defines an
isomorphism of (G, u) onto (B, lx) (as ordered groups with ordered unit).

Let &(B) be the g-tribe generated by B. We assert that for the tribe ^"(M) of
fuzzy sets generated by the set M := (i/Kg) : g £ M}, where M = f(G, M), we have

(5.2) &(M) = rCTXB), lx).

Step 1. Since for any g € G, \fr(g) € &{M) and f(g) € V(^(B), lx), we
conclude from the fact that r ( ^ ( B ) , lx) is a tribe containing C(X) that

(5.3) ^-(M) c T{ST{B), \x).

Let now G(J?(M)) be an €-group generated by ^"(M). In view of (5.3), we have

(5.4)

Step 2. Since lx is a strong unit for G(<^(M)), to prove that G(&(M)) is closed
under supn/n for every sequence {/„}„ of element from G(J?(M)) with an upper
bound in G(<^(M)), it is sufficient to verify that for each sequence {/„}„ of functions
belonging to [0, *lx] for k > 1.
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We proceed by induction on k. The case k = 1 is trivial. Suppose now that k > 1
and that the interval [0, (k — 1)1*] is closed under supn. Since [(k — l)lx, klx] is
isomorphic to [0, lx], we conclude that [(k — 1)1*, klx] is closed under supn.

Let {/„}„ be a sequence of functions of [0, klx]. For any k > 1, we put

/„' = min{/n, a}, fl = max{/n, a],

where a = {n- 1)1*. Then/,, = /„' + (/n
2 - a) for each n > 1. Define/' = sup,,/,,1

and/2 = supn/n
2and/ = / ' + / 2 . Then/1 € [0, (* - l ) l x L / 2 e [ (* - l )U ,* l* ]

and f > fn for each n > 1. Let now s e X and e > 0. Then there exists an
integer n > 1 such that/'(.$) - f^(s) < c/2 for i = 1,2. Hence / ( s ) - fn(s) =
/'(•*) — /„'(•*) + f2(s) — ff(s) < e which proves that/ = supn/n. Similarly we
prove that infn/n exists in [0, klx].

Step 3. In fact we have verified that G{&(M)) is a g-tribe containing B which
entails

(5.5) 3T{B) c G(^(M)),

which by (5.4) yields &(B) = G(^(M)), consequently, &(M) = T(^(fi), lx).
Step 4. By the Loomis-Sikorski Theorem 4.1, there exists an MV-cr-homomo-

rphism h from J?(M) onto M. Using arguments of Mundici's categorical equivalence
of ^-groups with strong unit with MV-algebras, given by M «* F(G, u), see (2.2),
we conclude that there exists an extension h of h from ^(B) onto G such that h is
an £-group homomorphism, that is, for h we have (i) h(f ± g) = h(f) ± h(g), (ii)
Mmax{/, g}) = h(f) v A(«), and (iii) \x = u.

To prove that A(supn/n) = supn ^(/n) whenever supn/n e ^(B), we proceed in
the same was is in the Step 2. •

Comparing Proposition 3.4, we have the following statement.

PROPOSITION 5.1. Let X be a compact Hausdorff space and let ̂ g{X) be a g-tribe
generated by the set ^€{X) of all continuous functions on X. Then 5^(X) = ^Kb{X),
where ̂ b(X) denotes the set of all bounded Baire measurable functions on X. In
addition, JK{X) = T(&g{X), lx).

PROOF. Since J(b{X) is a g-tribe containing ^(X), we have ^g(X) c J?b(X).
^g(X) is an £-group with strong unit lx, whence F ( ^ ( X ) , lx) is a tribe containing
the set C(X) of all continuous fuzzy sets on X, which by Proposition 3.4 entails

(5.6) JC(X) c T{ft(X), lx) C Jlb{X).

If is a non-negative function from ^?b(X), then there is an integer k > 1 such
that / < ^ l x , and by Proposition 3.4 it means thatf/k € M{X). Consequently,
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/ belongs to the £ -group generated by S?(X). This is also true for any function
/ e JKb{X). Consequently, if / € T(&g(X), l x ) , then / e Jt(X). Hence,

and JK(X) = r ( ^ ( X ) , \x). U
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