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Abstract. We give a C1-perturbation technique for ejecting an a priori given finite set of
periodic points preserving a given finite set of homo/heteroclinic intersections from a chain
recurrence class of a periodic point. The technique is first stated under a simpler setting
called a Markov iterated function system, a two-dimensional iterated function system in
which the compositions are chosen in a Markovian way. Then we apply the result to the
setting of three-dimensional partially hyperbolic diffeomorphisms.
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1. Introduction
1.1. Background. When we describe the global structure of dynamical systems, periodic
points play important roles. For instance, if we have a hyperbolic periodic point whose
eigenvalues all have absolute values smaller than one, then we immediately know that
there is a non-empty open region of the phase space which is attracted to the orbit of the
periodic point.

For C1-generic chaotic dynamical systems, it is known that several objects which
recapitulate the properties of the system are well approximated by periodic orbits. For
instance, for C1-generic diffeomorphisms, we have the following (see [BDV, B] for more
comprehensive accounts on backgrounds and references).
• Pugh’s closing lemma implies that the non-wandering set is equal to the closure of the

set of periodic points.
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• Mañé’s ergodic closing lemma implies that every ergodic probability measure is the
weak limit of Dirac measures supported on periodic orbits which converges to the
support of the measure in the Hausdorff distance.

• More recently, as a consequence of Hayashi’s connecting lemma, in [BC], it was
proved that the chain recurrent set is the closure of the set of periodic points. More
precisely, according to [C], every chain transitive compact set is the Hausdorff limit of
a sequence of periodic orbits. Furthermore, [BC] shows that every chain recurrence
class of a periodic orbit is indeed its homoclinic class (closure of the set of the
transverse intersections of its invariant manifolds).

However, in [BD1, BD2], it was proved that there are open sets of Diff1(M) in which
every C1-generic diffeomorphism has uncountably many chain recurrence classes that do
not contain periodic points. This phenomenon is not exceptional in the sense that it occurs
for every C1-generic diffeomorphism having a homoclinic class that robustly fails to carry
any kind of dominated splittings. This result naturally leads to the notion of aperiodic
classes, chain recurrence classes which do not contain any periodic points.

The previously known constructions of C1-locally generic diffeomorphisms with
aperiodic classes follow essentially the same process (see for instance [BCDG]): by
performing successive perturbations of a given diffeomorphism, we first build a nested
family of periodic attracting/repelling regions whose components have diameters tending
to 0 and whose periods tend to infinity. The aperiodic class is the intersection of these
periodic regions and therefore the dynamics on it conjugates to an adding machine. In
particular, in all the known examples, the aperiodic classes of C1-generic diffeomorphisms
are minimal and uniquely ergodic.

The lack of examples of aperiodic classes is a huge hindrance for understanding the
general behavior of C1-generic diffeomorphisms, in particular, in a neighborhood of
an aperiodic class. This paper is part of a research, as the sequel to [BS1, BS2], for
building aperiodic classes with totally different behaviors: non-unique ergodicity or even
non-transitivity.

Let us briefly see what was done in the previous works. In [BS1], we defined the notion
of ε-flexible periodic points and discussed their principal property: its stable manifold
in a fixed fundamental domain can be deformed into an arbitrarily prescribed shape by
performing an ε-perturbation of the diffeomorphism. We also showed their C1-generic
existence among certain kinds of partially hyperbolic homoclinic classes for arbitrarily
small ε > 0. In [BS2], we introduced the notion of partially hyperbolic filtrating Markov
partitions which is an assembly of the information about partial hyperbolicity and the chain
recurrence in a region. In this setting, we showed that if it contains an ε-flexible point with
a large stable manifold, then it can be ejected from the chain recurrence class by performing
a C1-ε-small perturbation. As a consequence, assuming additional information about the
partial hyperbolicity which guarantees the abundance of flexible points, we proved that the
C1-generic diffeomorphisms in the neighborhood of a diffeomorphism having partially
hyperbolic filtrating Markov partition are wild: they admit infinitely many periodic points
with trivial homoclinic classes (saddles). With regard to this type of construction, see also
the recent progress of Wang [W], in which the creation of weak periodic orbits keeping
the connection with the initial homoclinic class was discussed.
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In this paper, based on these preparations, we discuss the main technical issues of
the project. Let us explain it. Consider a diffeomorphism of a 3-manifold admitting
a partially hyperbolic filtrating Markov partition. We assume that it contains a finite
family of ε-flexible points {qi} with large stable manifolds and a finite family of
homoclinic/heteroclinic points {Qj } among {qi}. We take another periodic point p. Then
we want to find an ε-perturbation which ejects a transitive hyperbolic basic set containing
the periodic points {qi} and the chosen homo/heteroclinic orbits {Qj } in such a way that
the chain recurrence class of the ejected hyperbolic set does not contain p. The aim of this
paper is to describe such a perturbation technique.

We want to find such a perturbation because it leads us to construct new kinds of
aperiodic classes. The ejected hyperbolic set admits a filtrating Markov partition and
admits flexible periodic points. Hence, we can inductively proceed with this construction.
We eject nested sequence of hyperbolic sets, by increasingly smaller perturbations. The
aperiodic classes will be obtained as the limit of the successively ejected hyperbolic sets.
Its dynamics depends on the choice of the ejected hyperbolic sets. By controlling the choice
of intermediate dynamics, we expect that we can produce aperiodic classes having a great
variety of different dynamical behaviors. The confirmation of such properties will be the
topic of the next paper [BS3].

1.2. Main results. Let us give the precise statement of our results. Our main result
is about the bifurcation of chain recurrence classes appearing near a system having
specific conditions. We freely use the basic notions of topological dynamical systems
such as attracting/repelling sets (we also use the phrases attracting/repelling regions), chain
recurrence classes, and filtrating sets based on the convention [BS2] (see [BS2, §2.1]).

We first review the notion of partially hyperbolic filtrating Markov partitions of saddle
type which was introduced in [BS2]. For simplicity, we use the phrase ‘filtrating Markov
partitions’ in the sense of partially hyperbolic filtrating Markov partitions. For more
information about the definition and its basic properties, see [BS2, §§1.2 and 2].

Throughout this article, M denotes a closed (compact and boundaryless) smooth
manifold of dimension 3. A compact subset C of M is said to be a rectangle if it is
C1-diffeomorphic to a cylinder D2 × [0, 1]. ∂lC denotes the subset of C corresponding
to D

2 × {0, 1}, called a lid boundary and ∂sC to (∂D2) × [0, 1], called a side boundary.
Given a cone field on a rectangle, we have the notion of a vertical cone field. A

cone field C on a rectangle C is vertical if there is a C1-diffeomorphism φ which
sends C to the standard cylinder D

2 × [0, 1], and for which dφ(C) contains ∂/∂z and
is transverse to the plane 〈∂/∂x, ∂/∂y〉, where (x, y, z) denote the local coordinate
functions of φ. A cone field is said to be unstable if it is strictly invariant (that is, the
image of the closure of the cone field is contained in its interior on each fiber of the
projective bundle) and if every vector in it is uniformly expanding (see [BS2, §2.2] for
details).

Now we are ready to state the definition of filtrating Markov partitions.

Definition 1.1. Let f : M → M be a C1-diffeomorphism and let R ⊂ M be a compact set.
We say that it is a (partially hyperbolic) filtrating Markov partition if the following hold.
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• It is a filtrating set: R = A ∩ R for an attracting set A and a repelling set R.
• It is a disjoint union of finitely many rectangles: R = ⋃

Ci .
• For each Ci , its side boundary is contained in ∂A and its lid boundary is contained

in ∂R.
• R has a vertical, strictly invariant unstable cone field C.
• For every (i, j), we have that f (Ci) ∩ Cj consists of finitely many vertical rectangles

in Cj . Roughly speaking, a sub rectangle C′ ⊂ C is called vertical if it properly crosses
C. For the precise definition, see [BS2, §2.3].

A filtrating Markov partition is a capsuled set of information about a filtrating set which
behaves in a Markovian way keeping the shape of rectangles differential-topologically.
Recall that having a filtrating Markov partition is a C1-robust property and for a filtrating
Markov partition R, we have the notion of refinements: f −m(R) ∩ f n(R) turns to be a
filtrating Markov partition (see [BS2, Corollary 2.14]). We call it the (m, n)-refinement of
R and denote it by R(m,n). See also §2 of this paper. We also use the notation R(m,n;f )

when we want to indicate the map used to take the refinement.
In [BS1], we defined the notion of an ε-flexible periodic point. It is a periodic point for

which we can find a convenient ε-small deformation. For the precise definition, see §3.4 of
this paper. In the same article, we showed that the existence of ε-flexible points is abundant
among chain recurrence classes satisfying certain conditions. Let us recall the result. In the
following, C(p) denotes the chain recurrence class of a hyperbolic periodic point p of f.

Definition 1.2. Let f be a C1-diffeomorphism of a three-dimensional manifold and p be
a hyperbolic periodic point of stable index two. Consider the following conditions for a
chain recurrence class C(p).
• There is a filtrating Markov partition containing p having a large stable manifold. We

say that a hyperbolic periodic point of stable index two in a filtrating Markov partition
has a large stable manifold if Ws(p) cuts the cylinder to which p belongs, see [BS2
Definition 2.16].

• There is a hyperbolic periodic point p1 homoclinically related to p such that p1 has a
stable non-real eigenvalue.

• It has a robust heterodimensional cycle (see [BS1, Proposition 5.1] for the definition of
robust heterodimensional cycles).

In this paper, we say that C(p) satisfies condition (�) if it satisfies all the conditions above.

In [BS2], we showed that a diffeomorphism having a chain recurrence class satisfying
the condition (�) is wild (see [BS2, Corollary 1.2]). We proved it by showing that
C1-generically, there is an accumulation of isolated saddles nearby. The aim of this paper
is to show that it has stronger pathological behavior. To state it, we prepare a definition.

Definition 1.3. [B] A property Q about chain recurrence classes containing a hyperbolic
periodic point is called Cr -viral if for every Cr -diffeomorphism f and every hyperbolic
periodic point p of f whose chain recurrence class C(p; f ) satisfies property Q, the
following hold.
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• There is a Cr -neighborhood U of f such that C(p; g) also satisfies property Q for
every g ∈ U, where C(p; g) denotes the chain recurrence class of the continuation of
p for g. In other words, Q is Cr -robust.

• For every Cr -neighborhoodV of f and every neighborhood V of C(p; f ), there exists
g ∈ V such that the following hold:
– g has a hyperbolic periodic point p′ with C(p′; g) ⊂ V and
– C(p′; g) satisfies property Q and C(p′; g) 	= C(p; g).

Now let us give a main result of this paper.

THEOREM 1.4. Having a partially hyperbolic filtrating Markov partition containing a
chain recurrence class satisfying condition (�) is a C1-viral property.

By carefully investigating the proof of the result, we can obtain the following.

THEOREM 1.5. Let f ∈ Diff1(M) have a filtrating Markov partition containing a
chain recurrence class C(p) satisfying property (�). Consider an open neighborhood
O ⊂ Diff1(M) of f where we can define the continuation of C(p) keeping the property (�).
Then, every C1-generic diffeomorphism in O has an aperiodic class.

1.3. Main result with precise information. Theorem 1.4 implies the creation of new
chain recurrence classes for filtrating Markov partitions with condition (�) up to a C1-small
perturbation. While this result is easy to understand, our construction indeed gives more
information about the structure of the chain recurrence classes ejected. In this subsection,
we formulate it.

We begin with a general definition. Let f be a C1-diffeomorphism of M. For a point
q, by O(q), we denote the orbit of q, namely, O(q) = {f i(q)}i∈Z. By a circuit of points,
we mean a collection of finitely many hyperbolic periodic orbits {O(qi)} and finitely many
transverse homo/heteroclinic orbits {O(Qi)} connecting among them. Let S be a circuit of
points. Consider a directed graph whose vertices are periodic orbits {O(qi)} of S and whose
edges are the collection of homo/heteroclinic orbits connecting the vertices. If we consider
a C1-diffeomorphism g sufficiently C1-close to f, then we can consider the continuation
of S, which we denote by Sg .

We say that a circuit of points is transitive if its corresponding directed graph is
transitive (that is, every two vertices can be connected by a sequence of edges). In this
article, we only consider circuits which are transitive. Thus, throughout this paper, by a
circuit we mean a transitive one. We define a similar notion for filtrating sets. Given a
filtrating set R, suppose that it has finitely many connected components. This is always
the case for filtrating Markov partitions. We say that R is c-transitive if for every pair of
connected components R1, R2 of R, there is a sequence of components (Si)i=1,...,k such
that S1 = R1, Sk = R2 and f (Si) ∩ Si+1 	= ∅ holds for every i = 1, . . . , k − 1.

Let f, g be C1-diffeomorphisms of M. Let �f , �g be f, g-invariant subset of M,
respectively, and δ > 0. We say that �f and �g are δ-similar if there is a homeomorphism
h : �f → �g which is C0-δ-close to the identity (that is, for every x ∈ �f , we have that
d(x, h(x)) < δ holds, where d is a distance function) such that h is a conjugacy between f
and g, that is, h ◦ f = g ◦ h holds on �f .
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Suppose that we have a hyperbolic set � ⊂ C(p). We say that � is ε-coarsely expulsible
from C(p) if the following holds: for any δ > 0, there is a C1-diffeomorphism g = gδ

which is C1-ε-close to f such that the following hold:
• there is a g-invariant set �g such that �f and �g are δ-similar;
• there is a filtrating set R′ containing �g such that R′ does not contain p.

We say that � is ε-expulsible from C(p) if R′ can be chosen arbitrarily close to �, that
is, for any neighborhood U ′ of �, we can choose g in such a way that R′ is contained in U ′.

We introduce one more definition about filtrating Markov partitions. It is called the
robustness. Roughly speaking, a filtrating Markov partition is said to be α-robust if it
persists for every C1-diffeomorphism g which is α-close to f and coincides with f outside
the filtrating Markov partition. We give the precise definition in the next section, see
Definition 2.23.

Then, our refined statement is the following.

THEOREM 1.6. Let f be a C1-diffeomorphism of a closed three manifold having a chain
recurrence class C(p) contained in a filtrating Markov partition R which is α-robust. Let
S ⊂ R be a circuit of points which does not contain O(p). Assume that every periodic
orbit of S is ε-flexible (where ε satisfies 2ε < α) and has a large stable manifold. Then,
S is 2ε-expulsible with a filtrating set R′ which is also a filtrating Markov partition.
Furthermore, R′ can be chosen in such a way that it is c-transitive, (α − 2ε)-robust, and
every periodic orbit of S is ε-flexible with a large stable manifold in R′.

We give one more statement of an expulsion result containing more information about
the new filtrating Markov partition and the process of the perturbation. In the following,
given a filtrating Markov partition, we often consider not the whole set of rectangles but
a sub family of rectangles. We call them a sub Markov partition of R. Note that a sub
Markov partition may fail to be a filtrating set. We are mainly interested in the sub Markov
partition R(S), where R(S) denotes the set of rectangles having non-empty intersection
with the circuit of points S.

In §2, we define the notion of affine Markov partitions. It roughly means that the
dynamics restricted to there is given by affine maps and the shape of the cylinders respects
the affine structures. It enables us to investigate the bifurcation of the dynamical systems
there in terms of two-dimensional dynamics. For the precise definition, see Definition 2.22.

In the following, by the support of a diffeomorphism g with respect to f, denoted by
supp(g, f ), we denote the closure of the set {x ∈ M | f (x) 	= g(x)}. The next result is the
first step of the proof.

THEOREM 1.7. Let f be a C1-diffeomorphism having a filtrating Markov partition R
containing a circuit of points S such that every periodic orbit of S has a large stable
manifold. Then for any neighborhood W of S and any C1-neighborhood U of f, there is
a diffeomorphism f1 ∈ U such that the following hold.
• The support supp(f1, f ) is contained in W.
• For f1, all the orbits of Sf1 have the same orbit with the same derivatives along the

orbits as S.
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• For every sufficiently large m and n, (to be precise, there are m0, n0 such that if
m ≥ m0 and n ≥ n0, then) R(m,n;f1)(S) (see the discussion before Definition 1.2 for
the definition of R(m,n;f1)) is an affine Markov partition.

Thus, roughly speaking, up to an arbitrarily small perturbation which preserves the local
dynamics along the periodic orbits, we may assume that for a sufficiently fine refinement,
we have the affine property.

The following is one of the main steps of the proof of Theorem 1.6. For a filtrating
Markov partition R, we say that it is generating if for any two rectangles C1, C2 of R,
f (C1) ∩ C2 has at most one connected component. See §2.3 for more information.

THEOREM 1.8. Assume that f ∈ Diff1(M) has a circuit of points S in a generating
filtrating Markov partition R such that every periodic orbit in S is ε-flexible and has a
large stable manifold in R. Assume that R is α-robust for α > 2ε and R(S) is an affine
Markov partition. Then for every sufficiently large n, there is a diffeomorphism fn which
is 2ε-close to f and whose support supp(fn, f ) is contained in the interior of R(S) such
that the following hold.
• fn has a transitive filtrating Markov partition R′

n containing a circuit of points Sn

which is δ-similar to S for some δ > 0 (see the beginning of this subsection for the
definition of being δ-similar) and satisfying the following:
– we have R(S) = R(Sn) and we can require that the points of S and Sn which are

conjugated under the conjugacy belong to the same rectangle;
– all the periodic orbits of Sn have large stable manifolds in R′

n and they are all
ε-flexible;

– the periodic orbits of Sn have the same orbits as S.
For R′

n, we have the following.
– Each rectangle of R′

n is a vertical sub rectangle of some rectangle of R(0,n;fn)(Sn).
In particular, R′

n is contained in R(0,n;fn)(Sn).
– Each rectangle of R(0,n;fn)(Sn) contains one and only one rectangle of R′

n.
– The cone field of R′

n is the restriction of the one of R(0,n;fn). In particular, R′
n is

(α − 2ε)-robust.

Note that, in general, fn is so C1-far from f that we may fail to have a continuation of S.
This theorem claims the non-trivial existence of the continuation of S.

This result, together with the abundance result of the flexible points with large stable
manifolds, implies Theorem 1.4. We will discuss the derivation of Theorem 1.4 in §4.

Let us briefly see the idea of the proof. The proof is divided into two steps. In the
first part, we describe such perturbation results in the context of Markov iterated function
systems (referred as Markov IFSs), which are the abstraction of the information of affine
Markov partitions. Theorem 3.24 (see §3) is the technical core of this paper. It states that
the ejection described above is possible in the level of IFSs: given a circuit consisting of
ε-flexible periodic orbits with large stable manifolds related by heteroclinic/homoclinic
orbits, one can eject a hyperbolic set containing this circuit away from a given class by
an ε-perturbation. In the second part, we transfer the result for iterated function systems
to filtrating Markov partitions by giving a perturbation technique which reduces to the
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original problem for the study of Markov IFSs. We will discuss more about the proof of
Theorem 3.24 later (see §5.1).

1.4. Organization of this paper. Finally, let us explain the structure of this paper. In §2,
we introduce several notions related to rectangles of filtrating Markov partitions containing
a circuit of points. We discuss the effect of taking refinements for such rectangles. We also
give a linearization result (Theorem 1.7) for the dynamics around them. This enables us to
reduce the proof of Theorems 1.4 and 1.6 into the problem of two-dimensional dynamics.
In §3, we introduce the definition of Markov IFSs and discuss their elementary properties
such as their periodic orbits, refinements, attracting/repelling regions. Based on these
preparations, we give the statement of Theorem 3.24, the main perturbation result stated in
terms of Markov IFSs. In §4, after preparing several preliminary perturbation techniques
which are essentially given in the past papers [BS1, BS2], we prove Theorems 1.6
and 1.8 assuming Theorem 3.24. We also see how we derive Theorems 1.4 and 1.5 from
Theorems 1.6 and 1.8. The rest of the paper is dedicated to the proof of Theorem 3.24.
We first prove Theorem 3.25, which is a simplified version of Theorem 3.24. In §5,
we introduce several notions such as retarded families, wells, and obstructions. They
are extractions of some important information of the Markov IFSs for the proof of
Theorem 3.25. In §6, we complete the proof of Theorem 3.25. Finally, in §7, we explain
how to deduce Theorem 3.24 from the proof of Theorem 3.25.

2. Local linearization of Markov partitions
In this section, we prove several elementary results which reduce the investigation of
Markov partitions into a simpler one up to small perturbations.

2.1. Basic notions and refinements. For a filtrating Markov partition R = ⋃
Ci and a

point x ∈ R, we denote the (unique) rectangle containing x by Cx .
Consider a periodic point contained in R. Note that the assumption that R is a filtrating

set implies that the orbit is contained in the interior of R. In general, a periodic orbit may
contain two points which belong to the same rectangle. For us, it would be convenient if
each point belongs to different rectangles. To formulate this, we prepare a definition. In the
following, for a hyperbolic periodic point q in R, by Wu

loc(q) (respectively Ws
loc(q)), we

denote the connected component of Wu(q) ∩ Cq (respectively Ws(q) ∩ Cq ) containing q.

Definition 2.1. Let R = ⋃
Ci be a filtrating Markov partition. Suppose that R contains a

periodic point q of period π . We say that {Cf i(q)}i=0,...,π−1 is a cycle of periodic rectangles
for q if {Cf i(q)}i=0,...,π−1 are mutually different.

In the following, we use the alphabet K to notify that it is a rectangle in a cycle of
periodic rectangles. Let us define a similar notion for homo/heteroclinic points.

Definition 2.2. Let R be a filtrating Markov partition satisfying the following:
• R contains a periodic point qj and there is a cycle of periodic rectangles

{Kf i(qj )}i=0,...,πj −1, where πj is the period of qj , for j = 1, 2;

https://doi.org/10.1017/etds.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.76


2088 C. Bonatti and K. Shinohara

• there is a point Q ∈ Wu
loc(f

d(q1)) ∩ Ws(q2), where d is some integer, such
that {f i(Q)}i=1,...T −1 is disjoint from any rectangles {Kf i(qj )} and f T (Q) ∈
Ws

loc(f
a(q2)) ∩ Wu(f T +d(q1)) holds for some integer a and T > 0.

We say that the family of rectangles {Cf i(Q)}i=1,...,T −1 is a path of transition rectangles if
they are all distinct. The integer T is called its transition time.

We call Kf d(q1)
the departure rectangle and Kf a(q2) the arrival rectangle. Note that we

do not exclude the case where q1 and q2 have the same orbit.

In the following, we consider the set of periodic rectangles connected by paths of
transition rectangles. Let us formulate it.

Definition 2.3. Let S be a circuit of points consisting of a set of periodic points {qj } and
homo/heteroclinic points {Ql} contained in a filtrating Markov partition R. We say that the
sub Markov partition R(S) (see §1.3 for the definition) is a circuit of rectangles for S if the
set of rectangles {Kf i(qj )}0≤i≤πj −1 are mutually disjoint cycles of periodic rectangles and
the rectangles {Lf i(Ql)

}1≤i≤Tl−1 are paths of transition rectangles.

Remark 2.4. When we consider a circuit of rectangles, it may be that two paths have
common rectangles. We only require that for each path, the rectangles are distinct, and we
do not require such conditions among two different paths.

Recall that for a filtrating Markov partition R, we can define a new one by taking
refinements. Let R = A ∩ R, where A is an attracting set and R a repelling set. Then,
the set

⋂n
k=−m f k(R) turns to be a filtrating Markov partition with an attracting set

f n(A) and a repelling set f −m(R) (see [BS2, Corollary 2.14]). In this paper, we call
it an (m, n)-refinement of R and denote it by R(m,n) or R′ when we do not need to
indicate (m, n). We write R(m,n;f ) when we want to indicate with which map we took
the refinement.

If R has a cycle of periodic rectangles or a path of transition rectangles, then one
can naturally associate new ones for R′. Suppose we have a cycle of periodic rectangles
{Kf i(q)}i=0,...,π−1 in a filtrating Markov partition R. Then take its (m, n)-refinement. In the
refinement, there are rectangles containing f i(q) (i = 0, . . . , π − 1) and one can check
that they form a cycle of periodic rectangles for q as well. We call it the corresponding
cycle of periodic rectangles in the refinement. We denote the corresponding rectangles by
{K ′

f i(q)
}. Similarly, consider a filtrating Markov partition with cycles of periodic rectangles

{Kj

f i(qj )
}j=0,...,πj −1 (j = 1, 2) and a path of transition rectangles {Lf i(Q)}i=1,...,T −1 with

respect to a homo/heteroclinic point Q having the departure rectangle K1
f d(q1)

and the

arrival rectangle K2
f a(q2)

. For the (m, n)-refinement, by considering homo/heteroclinic
points f −m(Q), we have transition rectangles with transition time T + m + n, with the
departure rectangle (K1)′

f d−m(q1)
and the arrival rectangle (K2)′

f a+n(q2)
. We call such

rectangles corresponding transition rectangles. Note that a similar construction holds for
a circuit of rectangles.
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2.2. Choosing rectangles. In this subsection, we prove that for a circuit of points in
a filtrating Markov partition, by taking some refinements, we can obtain a circuit of
rectangles if every periodic point has a large stable manifold (see Definition 1.2 for the
definition of the largeness of the stable manifold).

PROPOSITION 2.5. Let R = ⋃
Ci be a filtrating Markov partition and S be a circuit of

points such that every periodic point has a large stable manifold. Then for every sufficiently
large m and n, R(m,n)(S) is a circuit of rectangles.

Proof. We first prove that in every sufficiently fine refinement, the periodic points in the
periodic orbit are in distinct rectangles.

Notice that taking backward refinements makes the height of the rectangles uniformly
(exponentially) small. Also, the largeness of the stable manifold of periodic points ensures
that taking forward refinement makes the width of the rectangles to which the periodic
points belong uniformly small. Thus, by taking sufficiently large (both in forward and
backward) refinements, we can assume that the rectangles which contain a point of an
orbit of a periodic point are uniformly small. In particular, none of them can coincide.

Now let us see how to construct the paths of transition rectangles. First, by the argument
of the first step, we can assume that for each rectangle of a cycle of periodic rectangles,
they contain homo/heteroclinic points only in the local stable/unstable manifolds by
taking sufficiently fine refinements. Then, notice that while taking refinements increases
the number of rectangles, such newly created rectangles are contained in the initial
periodic rectangles and they contain at most one homo/heteroclinic point of a given
homo/heteroclinic orbit. Thus, we only need to prove that by taking refinements, we can
separate the points of homo/heteroclinic points outside the periodic rectangles. Since the
diameters of periodic rectangles tend to zero by taking refinements and the transition
rectangles in the refinements are images of periodic rectangles, we can assume that
the diameters of rectangles containing the point of homo/heteroclinic points outside the
periodic rectangles also tend to zero as we take finer refinements. Thus, they are separated
into different rectangles for every sufficiently fine refinements.

This completes the proof.

Remark 2.6. This proof shows that if every periodic point of S has a large stable
manifold, then given a neighborhood W of S, for every sufficiently large (m, n), we have
R(m,n)(S) ⊂ W .

2.3. Refinements and itinerary. Let S be a circuit of points contained in a filtrating
Markov partition R such that R(S) is a circuit of rectangles. As in Remark 2.4, it may be
that two paths of transition rectangles of R(S) share some rectangles. In this subsection,
we show that two different homo/heteroclinic points cannot have totally the same itinerary
under a mild condition.

First, let us recall the definition of the generating property which we defined in §1.

Definition 2.7. Let R be a filtrating Markov partition. We say that R is generating if for
any two rectangles C1, C2 of R, f (C1) ∩ C2 has at most one connected component.
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LEMMA 2.8. For a filtrating Markov partition, its refinement is generating.

Proof. We prove it for (0, 1)-refinement. The general case is similar. Let C ′
1, C′

2 be
rectangles in R ∩ f (R) and assume f (C′

1) ∩ C′
2 	= ∅. We will show f −1(f (C′

1) ∩ C′
2) =

C′
1 ∩ f −1(C′

2) is connected. Let us take a rectangle C1 of R which contains C′
1. Then, C′

1
is a vertical subrectangle of C1 and f −1(C′

2) is a horizontal subrectangle of C1 (see [BS2,
§2.3] for the details). Thus, they intersect and there is a unique connected component.

LEMMA 2.9. Let S be a circuit of points contained in a generating filtrating Markov
partition R. Let x, y be its homo/heteroclinic orbits from q1 to q2, where q1, q2 are periodic
points in S. If the transition time of x and y are the same and f i(x) and f i(y) belong to the
same rectangle for every 0 ≤ i ≤ T , where T is the common transition time, then x = y.
In other words, two different homo/heteroclinic orbits must have different itineraries.

Proof. Let σ be the local unstable manifold of f d(q1). It contains x and y. Let Ci be the
rectangle which contains f i(x) and f i(y) for i = 0, . . . , T . By using the invariance of the
cone field and the generating property of R, we see that the part of σ whose image under f
is in C1 is a connected curve. Inductively, the part of σ whose image under f i is in Ci for
every 0 ≤ i ≤ k is a connected curve for every 0 ≤ k ≤ T . Let us denote the curve by σk ,
and consider σT . By definition, we know x, y ∈ σT and f T (σT ) has unique intersection
with the local stable manifold of f a(q2) due to the invariance of the cone field. Thus, we
know f T (x) = f T (y) and consequently x = y.

2.4. Linearization of periodic rectangles. In this and the next subsections, we discuss
perturbation techniques which transform the dynamics near a circuit of rectangles into a
simpler one.

Let us prepare some definitions. We say that a compact set in R
3 is a product rectangle

if it contains the origin in the interior and has the form D × I , where D ⊂ R
2 is a compact

set C1-diffeomorphic to the round disc D
2 and I is a closed interval.

Definition 2.10. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism f and

{Kf i(q)} be a cycle of periodic rectangles of a periodic point q of period π . We say that
the cycle {Kf i(q)}i=0,...,π−1 is linearized if the following hold.
• For each 0 ≤ i ≤ π − 1, there exists a coordinate neighborhood (Ui , φi) contain-

ing Kf i(q) such that φi(Kf i(q)) is a product rectangle Di × Ii ⊂ R
2 × R. We set

(Uπ , φπ) := (U0, φ0).
• For each 0 ≤ i ≤ π − 1, let Jf i(q) be the connected component of Kf i(q) ∩

f −1(Kf i+1(q)) containing f i(q). Then the map φi+1 ◦ f ◦ φ−1
i restricted to φi(Jf i(q))

is an affine map preserving the product structure R
2 × R in such a way that R2, R

corresponds to Ecs , Eu directions, respectively.

Remark 2.11. For a linearized cycle, if we take a refinement, then the corresponding cycle
is also linearized.

The following result says that, up to an arbitrarily C1-small perturbation and a
refinement, one can make a cycle of periodic rectangles having large stable manifolds
being linearized.
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PROPOSITION 2.12. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism

f and {Kf i(q)} be a cycle of periodic rectangles of a periodic point q. Suppose that q has
a large stable manifold. Then, for every C1-neighborhoodU of f and every neighborhood
W of O(q), there exists a diffeomorphism g ∈ U such that the following hold:
• q is a periodic point of g with the same orbit as for f, and the derivatives of f and g

along O(q) are the same;
• the support supp(g, f ) is contained in W;
• for g, R is a filtrating Markov partition such that for every sufficiently large (m, n),

the corresponding cycle of periodic rectangles in R(m,n;g) is linearized.

For the proof, we need Franks’ lemma, which enables us to linearize the dynamics
locally. See for instance [BD3] for more information.

LEMMA 2.13. (Local linearization by Franks’ lemma) Let f ∈ Diff1(M), dim M = m,
x ∈ M and φ : U → R

m, ψ : V → R
m be two coordinate neighborhoods of x, f (x),

respectively, such that φ(x), ψ(f (x)) are the origin of R
m. Then for any ε > 0 and

any neighborhood U ′ of x, there exists a neighborhood Ũ of x contained in U ′ and
f̃ ∈ Diff1(M) such that f̃ is ε-C1-close to f, f̃ coincides with f on M \ U ′, and the map
ψ ◦ f̃ ◦ φ−1 coincides with a linear map given by d(ψ ◦ f ◦ φ−1) on φ(Ũ).

Proof of Proposition 2.12. The proof is similar to [BD3, Proposition 3.6].
First, we apply Franks’ lemma along the orbit of q. More precisely, we take a

diffeomorphism f1 that satisfies the following.
• For each j ∈ Z, f

j

1 (q) = f j (q). In particular, q is a periodic point for f1 with the
same orbit.

• supp(f1, f ) ⊂ W .
• For each j, there exists a coordinate neighborhood Vj of f

j

1 (q) = f j (q) such that the
dynamics of f1 on Vj is given by the linear map df (f j (q)).

We fix such f1 ∈ U. This is the only part where we perform the perturbation along O(q).
Note that this does not change the derivatives along O(q).

By choosing f1 sufficiently close to f, we may assume that R is still a filtrating Markov
partition and q has a large stable manifold for f1 as well. Now let us take the refinements.
As we take finer refinements, due to the fact that q has a large stable manifold, the rectangle
to which f i

1 (q) belongs shrinks to {f i
1 (q)}. Thus, we may assume that each corresponding

periodic rectangle is contained in the linearized coordinates. Notice that in this coordinate
system, f i

1 (q) is mapped to the origin. We assume that the xy-plane coincides with the
Ecs direction and the z-axis coincides with the Eu direction.

We show that by taking the refinement and slightly perturbing f1, we have that the
periodic rectangles are product rectangles in the linearized coordinates. First, let us see
how to make the lid boundary flat. For each i, the intersection between Wu

loc(f
i
1 (q)) and

∂l(Kf i(q)) consists of two points. We denote them by yi,+ and yi,−. Now we perform a
C1-perturbation whose support is contained in a small neighborhood of f1(yi,±) so that
for f2 (the perturbed diffeomorphism), the preimage of the image of the lid boundary
near yi± is parallel to the xy-plane. Note that the size of the perturbation can be chosen
arbitrarily small by taking refinement (due to the partial hyperbolicity near the periodic
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point), and by taking sufficiently fine refinement in advance, we can guarantee that the
support of the perturbation is contained in W.

Since the periodic rectangles converges to Wu
loc(f

i
2 (q)) by taking the forward refinement

and the property that the lid boundary is flat near yi,± is not affected by taking the forward
refinement (note that taking the forward refinement does not change the repelling set but
just replace the attracting set), we have that the periodic rectangles for {f i

2 (q)} has a flat
lid boundary by taking a sufficiently fine refinement.

Next, let us see how to make the side boundary flat. The argument is essentially the
same. Let us consider the rectangle Kf i

2 (q) in the linearized coordinates. Then in the

linearized coordinates, Ws
loc(f

i
2 (q)) is a flat plane which coincides with the xy-plane

locally. For Kf i
2 (q), we fix a C1-circle Bi := ∂sKf i

2 (q) ∩ Ws
loc(f

i
2 (q)). Now near f −1

2 (Bi),

we perform a C1-small perturbation so that for f3 (the perturbed map), the image of the
preimage of the side boundary near Bi is flat. Now we take backward refinement: notice
that taking backward refinement does not destroy the flatness of the lid boundary. However,
by the uniform contraction property, we know that as the number of the refinement tends to
infinity, we have that the rectangle containing Kf i

3 (q) converges to the local stable manifold

of f i
3 (q). Thus, at some moment, all the side boundaries of {Kf i

3 (q)} turn to be flat. In

particular, the rectangle containing f i
3 (q) is now flat.

Thus, letting g = f3, we obtain the conclusion.

Remark 2.14. In the above construction, we take refinements and add perturbations several
times. One may wonder whether the refinement of R with respect to g consists of the
rectangles we constructed. This is true as long as the support of the perturbation is
contained in the interior of the rectangles. More precisely, let us consider the refinement
R(m,n;f ) and a perturbation g of f. If supp(g, f ) ⊂ R(m,n;f ), then for m′, n′ ≥ 0, we have

[R(m,n;f )](m′,n′;g) = [R(m,n;g)](m′,n′;g) = R(m+m′,n+n′;g).

Thus, assuming this holds at each step, we can conclude the coincidence of two
refinements. To be precise, to obtain it, we need to confirm this property but since it is
easy and appears many times, we omit this kind of argument for simplicity.

2.5. Linearization of transition rectangles. Let us discuss the linearization for paths of
transition rectangles.

Definition 2.15. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism f

and {Kf i(qj )} (j = 1, 2, i = 0, . . . , πj − 1, where πj is the period of qj ) be a cycle of
periodic rectangles of a periodic point qj . Let Q be a homo/heteroclinic point from q1 to
q2 and {Lf k(Q)}k=1,...,T −1 be a path of transition rectangles of Q, where T is the transition
time of Q. We assume that {Kf i(qj )} are linearized with the local coordinates {(Uj ,i , φj ,i )}.
We say that the path {Lf k(Q)} is linearized if the following hold.
• For each k = 1, . . . , T − 1, there exists a coordinate neighborhood (Vk , ψk) con-

taining Lf k(Q) such that ψk(Lf k(Q)) is a product rectangle. In the following, we set
(V0, ψ0) = (Ud,1, φd,1) and (VT , ψT ) = (Ua,2, φa,2), where d, a are the integers for
the departure and the arrival rectangles of Q, respectively (see Definition 2.2).
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• For each k = 0, . . . , T − 1, let Jf k(Q) be the connected component of Lf k(Q) ∩
f −1(Lf k+1(Q)) containing f k(Q), where we set L0 to be the departure rectangle
and LT the arrival rectangle of Q. Then the map ψk+1 ◦ f ◦ ψ−1

k is an affine map
preserving the product structure R

2 × R on ψk(Jf k(Q)) in such a way that R2, R
corresponds to Ecs , Eu directions, respectively.

Remark 2.16. For a path of transition rectangles which is linearized, if we take a
refinement, then the corresponding path is also linearized.

PROPOSITION 2.17. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism f

and S be a circuit of points in R. Suppose that every periodic point of S has a large stable
manifold, R(S) is a circuit of rectangles for S, and every cycle of periodic rectangles is
linearized. Then, for any neighborhood W of the orbits of homo/heteroclinic points and
any C1-neighborhoodU of f, there exists g ∈ U such that the following hold.
• supp(g, f ) ⊂ W and it is disjoint from the orbits of the periodic points in S. In

particular, the derivatives Df and Dg are the same along every periodic orbit of S.
• f = g on S. In particular, S is a circuit of points for g as well.
• For every sufficiently large m and n, R(m,n;g)(S) is a circuit of rectangles for S and

every cycle of periodic rectangles is linearized.
• Every path of transition rectangles of R(m,n;g)(S) is linearized.

To prove this, we first prove the following.

PROPOSITION 2.18. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism

f and {Kf i(qj )} be a linearized cycle of periodic rectangles of the periodic point qj for
j = 1, 2. Let Q be a homo/heteroclinic point from q1 to q2 with a path of transition
rectangles {Lf k(Q)}k=1,...,T −1.

Suppose that q1 and q2 have large stable manifolds. Then, for every C1-neighborhood
U of f and every neighborhood W of O(Q), there exists a diffeomorphism g ∈ U satisfying
the following.
• The support supp(g, f ) is disjoint from O(qi) and contained in W.
• f = g on O(q1) ∪ O(q2) ∪ O(Q).
• For every sufficiently large (m, n), the refinement R(m,n;g) satisfies the following:

– the corresponding cycle of periodic rectangles for qj in R(m,n;g) is linearized for
j = 1, 2 and

– the corresponding path of transition rectangles for Q in R(m,n;g) is also linearized.

Proof. The proof is very similar to the proof of Proposition 2.12, but it requires some extra
care.

Step 1. A perturbation along the transition map. First, we give an auxiliary perturbation.
Let us consider the (m, n)-refinement of R. Then Q is substituted by f −m(Q) and its
transition time is T + m + n. Then consider a perturbation whose support is contained in
a small neighborhood of f −m(Q) and f M+n−1(Q) such that D(f m+M+n)(Q) preserves
the center stable direction and the strong unstable direction of the linearized coordinates.
Note that, by letting m and n be large, the C1-size of the perturbation tends to zero, thanks
to the hyperbolicity near the periodic orbits. Thus, by giving this perturbation, we may
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assume that the transition map Df T (Q) preserves the center stable direction and the strong
unstable direction of the linearized coordinates from the very beginning. Note that this
property is preserved by taking refinements.

Step 2. Linearizing local dynamics. Now let us consider the orbit {f k(Q)}k=0,...,T −1.
By applying Franks’ lemma along {f k(Q)}, we obtain a diffeomorphism f1 close to f for
which we have linearized coordinates around {f k

1 (Q)} for every k. By taking the support
sufficiently small, we may assume that the support is contained in W and the perturbation
does not disturb the linearization property of the periodic rectangles. We also assume
that in the linearized coordinates, f k

1 (Q) is mapped to the origin, the xy-plane coincides
with the center-stable direction, and the z-axis coincides with the unstable direction. Note
that since Df T (Q) preserves the strong unstable and the center-stable direction in the
linearized coordinates (see Step 1), these new coordinates are compatible with those in the
periodic rectangles.

Step 3. Obtaining the product rectangles. Then we take refinements. Due to the largeness
of the stable manifolds of qj , the diameter of transition rectangles goes to zero as we take
refinements. Thus, by taking sufficiently fine refinements, we have that the corresponding
transition rectangles outside the periodic rectangles (those before the refinement) are
contained in the domain of linearized coordinates. In particular, we may assume that they
are in W.

One thing which is different from the proof of Proposition 2.12 is that taking refinements
increases the number of transition rectangles. Notice that these new rectangles are
contained in the periodic rectangles (those before the refinement). Thus for these newly
produced rectangles, we can furnish linearized coordinates just by restricting the linearized
coordinates for the cycle of periodic rectangles and thus the increase of rectangles does not
cause any problem for constructing linearized coordinates.

Now let us see how to make the lid and the side boundaries of the rectangles flat. The
argument is almost the same as the proof of Proposition 2.12, so we discuss only for the
lid boundary. First, for each Lf k

1 (Q), we take the intersection of Wu
loc(f

k
1 (Q)) and the lid

boundary. There are two such points. Then we slightly perturb f1 so that the lid boundary
near the intersection points is flat plane.

Then we take a forward refinement. Notice that taking (0, n)-refinement increases the
number of transition rectangles by n. However, the rectangles which are newly created
are included in the linearized region of the periodic rectangles. Thus, we know that
their lid boundaries are flat. For the rest of the rectangles, since taking the forward
refinement shrinks the cylinders in the center stable direction, we know that up to some
sufficiently large forward refinement, we have that all of the transition rectangles have flat
lid boundaries.

By the same argument, we can make the side boundary of the transition rectangles flat
as well.

Now let us discuss the proof of Proposition 2.17.

Proof of Proposition 2.17. For a circuit of rectangles R(S), by applying Proposition 2.18
to each path one by one, we linearize all the homo/heteroclinic orbits. For that, we need to
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confirm that we can apply Proposition 2.18 without destroying the linearized coordinates
which are already obtained. Let us explain how to avoid the interference.

First, in the very beginning, we apply the perturbation along each homo/heteroclinic
orbit so that the derivative of each transition map preserves the center-stable and the
unstable direction of the linearized coordinates for periodic rectangles.

Then, let us consider a path of transition rectangles {Lf j (Q)}1≤j≤T −1 for a
homo/heteroclinic point Q. If {Lf j (Q)} does not contain any transition rectangles
which are already linearized, then by applying Proposition 2.18, we can linearize the
homo/heteroclinic orbit {f j (Q)}.

If not, we consider the refinements. Since we assume that every periodic point of the
circuit has a large stable manifold, as we take refinements, every rectangle shrinks to a
point. Thus, we may assume that the (finitely many) rectangles L′

Q, . . . , L′
f T (Q)

(these
Q and T are the same as the initial ones, we do not take the corresponding points and
transition times) are distinct and none of them contain any other homo/heteroclinic points
of the circuit.

Then, we follow the procedure of Proposition 2.18. By applying Franks’ lemma along
Q, . . . , f T (Q), we linearize the local dynamics along Q. Note that taking refinements
increases the number of transition rectangles, but by assumption we know that for these
newly created rectangles, we can endow linearized coordinates just by taking restrictions.
Thus, at this moment, the dynamics along the orbit of Q is linearized. Then we need to
make the boundaries of the transition rectangles flat, but this can be done in the same way
as in the proof of Proposition 2.18.

Repeating this argument, we can obtain the desired coordinates for every rectangle of
the circuit.

2.6. On the shape of other rectangles. In this subsection, we discuss perturbation
techniques which make the shape of rectangles easier to handle. We begin with a definition.

Definition 2.19. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism f.

Let N be a rectangle of R which is linearized (that is, it is either a rectangle in a cycle of
periodic rectangles or a path of transition rectangles which is linearized). We say that it is
adapted if every connected component of f (R) ∩ N is a product rectangle in the linearized
coordinates.

Remark 2.20. Let f ∈ Diff1(M), R be a filtrating Markov partition and {Kf i(q)} be a cycle
of periodic rectangles. If every rectangle in {Kf i(q)} is adapted, then the same holds for the
corresponding rectangles in the refinements: it is obvious for backward refinements. For
forward refinements, it follows since the rectangles and image rectangles in the refinements
are images of rectangles and image rectangles, respectively.

Similarly, suppose there is a linearized path of transition rectangles between two cycles
of periodic linearized rectangles such that all the rectangles involved are adapted. Then,
the same is true for the corresponding path of transition rectangles in the refinements.

PROPOSITION 2.21. Let R = ⋃
Ci be a filtrating Markov partition of a diffeomorphism f

and S be a circuit of points consisting of periodic points {qj } and homo/heteroclinic points
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{Qk} in R. Suppose that R(S) is a circuit of rectangles for S, every qj has a large stable
manifold, and every cycle of periodic rectangles and every path of transition rectangles
are linearized.

Then, given a neighborhood W of S and a C1-neighborhoodU of f, there is g ∈ U such
that the following hold:
• supp(g, f ) ⊂ W and it is disjoint from {O(qj )} and {O(Qk)};
• for every sufficiently large (m, n), every rectangle in R(m,n)(S) is adapted (and

linearized).

Proof. Let us see the perturbations which make rectangles in a cycle of periodic rectangles
and a path of transition rectangles adapted. Then applying these perturbations one by one,
we obtain the conclusion.

First, note that due to the largeness of the stable manifolds of periodic points in S, every
sufficiently fine refinement R′ satisfies R′(S) ⊂ W . Thus, we may assume that this holds
from the very beginning.

Let us see how to make the cycles of periodic rectangles adapted. Let {Kf i(q)} be a
cycle of periodic rectangles for q. We consider f (R) ∩ Kf i(q). Recall that as we take
backward refinements, the height of the rectangle to which f i(q) belongs decreases and
tends to zero, while Ws

loc(q) does not change. By assumption, the image rectangles f (R) ∩
Kf i(q) containing a point of S are product rectangles. For the other image rectangles, they
automatically have flat lid boundaries but possibly with non-flat side boundary. Note that
if we take enough forward refinement, each rectangle in f (R′) ∩ K ′

f i(q)
is almost vertical

thanks to the partial hyperbolicity near O(q).
Then by giving a C1-small perturbation, we can construct a diffeomorphism f1 close

to f such that each connected component of f1(R′) ∩ K ′
f i

1 (q)
has flat boundaries near

Ws
loc(f

i
1 (q)). Since these perturbations are only for the boundary of rectangles which

are not periodic rectangles and transition rectangles, we may assume that the support is
contained in W and disjoint from S. Also, we may assume that these perturbations do not
disturb the linearization property on the periodic rectangles and transition rectangles.

Now, by taking backward refinement, we have the product property for f1(R′′) ∩ K ′′
f i

1 (q)
.

Thus, we can obtain the adaptedness for a cycle of periodic rectangles. By repeating this
perturbation, we may assume that every cycle of periodic rectangles is adapted.

The proof for the transition rectangles can be done similarly. The only thing to which we
need to pay extra attention is that by taking refinements, the number of transition rectangles
increases. Meanwhile, once we have the adaptedness for periodic rectangles, this does not
bring any problem for the following reasons.
• Taking the (0, n)-refinement increases the number of transition rectangles by n. It adds

n rectangles to the tail of the path. However, the first n transition rectangles are images
of periodic rectangles which are adapted. Thus the number of rectangles which are not
adapted are the same.

• Taking (m, 0)-refinement increases the number of transition rectangles by m. It adds
m rectangles in the head. However, the first m transition rectangles are contained in
periodic rectangles which are adapted. Thus, the number of rectangles which are not
adapted are the same.
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In short, some of newly added rectangles are automatically adapted. Hence, to obtain
the adaptedness for transitions, we only need to repeat the argument for finitely many
rectangles.

Now we are ready to state the definition of affine Markov partitions.

Definition 2.22. Let f ∈ Diff1(M), R be a filtrating Markov partition and S be a circuit
of points contained in R. We say that R(S) is an affine Markov partition if we have the
following:
• R(S) is a circuit of rectangles for S (see Definition 2.3);
• every cycle of periodic rectangles in R(S) is linearized and adapted (see Definitions

2.10 and 2.19);
• every path of transition rectangles in R(S) is linearized and adapted (see Definitions

2.15 and 2.19).

Note that the arguments in this section, more precisely, Propositions 2.5, 2.12, 2.17,
and 2.21, conclude Theorem 1.7. Indeed:
• Proposition 2.5 guarantees that if we take sufficiently fine refinements then R(S) is a

circuit of rectangles;
• by applying Proposition 2.12 to each cycle of periodic rectangles, by an arbitrarily

small perturbation, we can linearize the cycle, up to some refinements;
• by applying Proposition 2.17, by an arbitrarily small perturbation, we can linearize all

the paths, up to some refinements;
• finally, by Proposition 2.21, by an arbitrarily small perturbation, we obtain the

adaptedness for every rectangle, up to some refinements.
Thus we obtain the conclusion.

2.7. Robustness of filtrating Markov partitions. In this subsection, we clarify the
definition of the robustness of a filtrating Markov partition which we gave in §1. Also, we
discuss the relation between the perturbation techniques in this section and the robustness.

Let us begin with the definition.

Definition 2.23. Let R be a filtrating Markov partition of f ∈ Diff1(M). We say that R is
α-robust if there is a cone field C over R which satisfies the definition of filtrating Markov
partition (see Definition 1.1) and for any C1-diffeomorphism g which is C1-α-close to f,
the cone field C is strictly invariant and unstable.

Note that in the definition of a filtrating Markov partition (see Definition 1.1), every
condition except the last one refers some properties about the behavior of f on R. Thus, if
R is α-robust, then for every g which is C1-α-close to f and whose support is contained
in the interior of R, we know that R is a filtrating Markov partition for g with the same
coordinates and the same cone field.

The α-robustness gives a sufficient condition for the persistence of a filtrating Markov
partition, but a priori it may be that R persists under a perturbation whose C1-size is larger
than α.
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Remark 2.24. Let us discuss the robustness of refinements of filtrating Markov
partitions.
• Suppose that R is α-robust. Then recall that for the refinement R(m,n) the cone field

for R also satisfies the assumption of Definition 1.1. Thus, we know that R(m,n) is also
α-robust with the same cone field (see [BS2, Proposition 2.10]).

• Consider a filtrating Markov partition R which is α-robust and suppose that for a
refinement R(m,n), the rectangles R(m,n)(S) are affine for some circuit of points S.
Then, each rectangle in R(m,n)(S) has a linearized coordinate. In general, we do
not know if the restriction of the cone field for R(m,n)(S) satisfies the condition
of Definition 1.1 with respect to the linearized coordinates. However, by the partial
hyperbolicity on the circuit, we know that the cone field must contain z-direction and
does not contain x, y-direction over the points of S. Then, by the continuity of the
cone field, we know that if the linearized coordinates are defined in a sufficiently small
neighborhood of S, then we have the compatibility between the linearized coordinates
and the cone field. Thus, by taking a sufficiently fine refinement, we know that the
restriction of the cone field of R to R(m,n)(S) gives a vertical, strictly invariant unstable
cone field with respect to the linearizing coordinates.

2.8. Realizing two-dimensional perturbation in dimension 3. In this subsection, we
consider the following perturbation result.

PROPOSITION 2.25. Given a filtrating Markov partition R = ⋃
Ci , suppose that there

are rectangles Ni (i = 1, 2) which are linearized. Let φi be the linearization coordinates,
φi(Ni) = Di × Ii and assume that N1 ∩ f −1(N2) 	= ∅. Let F : D1 → D2 be the corre-
sponding two-dimensional maps on a connected component of N1 ∩ f −1(N2). More pre-
cisely, let D1 × J be one of the connected components of N1 ∩ f −1(N2) and assume that
the map φ2 ◦ f ◦ φ−1

1 over D1 × J is given by the form (x, y, z) �→ (F (x, y), λ(z)), where
F(x, y) and λ(z) are some affine maps.

Suppose that we have a C1-diffeomorphism G : D1 → D2 and constants ε0, ε1 > 0
such that:
• G coincides with F near the boundary of D1;
• the C0-distance between F and G is less than ε0; and
• the C1-distance between F and G is less than ε1.
Then, if ε0, ε0 are sufficiently small, there exists a C1-diffeomorphism g which is
(ε1 + Kε0)-C1-close to f (where K is some constant which depends only on the choice
of rectangles) such that the following hold:
• the support supp(g, f ) is contained in the interior of N1;
• g keeps the product structure for φi and the two-dimensional map over D1 × J is given

by G.

Proof. The construction of g can be done by standard arguments involving the partition of
unity and the closeness of G to F in the C1-distance. We just give a sketch of the proof.

Assume that on D1 × J , the map φ2 ◦ f ◦ φ−1
1 is given by

(x, y, z) �→ (F (x, y), λz)
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in some neighborhood of D1 × J . Then, we choose a C1-function ρ defined in the interval
J ′ which contains J in the interior and satisfies the following:
• 0 ≤ ρ(z) ≤ 1;
• ρ(z) ≡ 1 on J;
• ρ(z) ≡ 0 near the endpoints of J ′.
Then, given G, consider the following map:

(x, y, z) �→ ((1 − ρ(z))F (x, y) + ρ(z)G(x, y), λz).

Considering the fact that F ≡ G near the boundary of D1, this map is equal to φ2 ◦
F ◦ φ−1

1 near the boundary of D1 × J ′, thus extends to outside D1 × J ′ so that it
coincides with the unperturbed map. If ε0 and ε1 are sufficiently small, then one can
check that this defines a diffeomorphism on each slice by the xy-plane. The surjectivity of
the map is the consequence of a standard algebraic topological argument. The injectivity
follows if we choose F sufficiently close to G.

Now we measure the C1-size of this perturbation. By a direct calculation, the difference
of the derivatives of f and g in the local coordinates is given by(

ρ(z)Dx,y(G(x, y) − F(x, y)) 0
ρ′(z)(G(x, y) − F(x, y)) 0

)
,

where Dx,y denotes the Jacobi matrix with respect to x and y. This calculation
shows that the C1-distance is given by two terms |ρ(z)Dx,y(G(x, y) − F(x, y))| and
|ρ′(z)(G(x, y) − F(x, y))|. The supremum norm of the first one is proportional to the
C1-distance between F and G, and the second one is to |ρ ′(z)| times the C0-distance
between F and G. Thus, the C1-distance of the perturbation itself is given by the form
ε1 + Kε0, where K is determined by ρ′, which depends only on the shape of J ′.

3. Markov IFS
To prove Theorem 1.6, we investigate two-dimensional iterated function systems (IFSs)
where the iteration is chosen in a Markovian way. In this section, we give the precise
definition and discuss their elementary properties. In §3.5, we discuss the relation between
Markov IFSs and affine Markov partitions. This enables us to use Markov IFSs for the
investigation of the bifurcation of filtrating Markov partitions.

3.1. Definition. Recall that by a disc, we mean a subset of R2 which is C1-diffeomorphic
to a two-dimensional round disc. Let D = ∐m

i=1 Di , the disjoint union of a finite set
of discs Di . We denote the boundary of Di by ∂Di , put Int(Di) = Di \ ∂Di and call it
(geometric) interior.

Remark 3.1. We introduce the topology induced from R
2 for each Di . Accordingly, each

Di itself is an open set and the topological boundary of Di is empty. This seemingly strange
topology will be convenient for instance when we define the notion of relatively repelling
regions, see §3.6.

The following is the formal definition of a Markov IFS, see also Figure 1.
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FIGURE 1. An example of Markov IFS. It consists of two discs D = D1
∐

D2 and five diffeomorphisms
F = {f1, . . . , f5} on their images. The non-trivial restriction on Markov IFS is that the images of discs have

empty overlaps.

Definition 3.2. A Markov IFS on D = ∐m
i=1 Di is a family of finitely many local

diffeomorphisms (where a local diffeomorphism means a diffeomorphism on its image)
F = {fj }1≤j≤k such that the following hold:
• for every integer j ∈ [1, k], there are integers dom(j) ∈ [1, m] and im(j) ∈ [1, m]

such that Ddom(j) is the domain of the definition of fj (called the domain disc of
fj ) and im(fj ) := fj (Ddom(j)) (called the image of fj ) is contained in Int(Dim(j))

(Dim(j) is called the target disc of fj );
• the images {im(fi)}i∈[1,k] are pairwise disjoint.

Remark 3.3. We put F(D) := ∐
1≤j≤k im(fj ). The collection {f −1

j }1≤j≤k defines a
uniquely defined inverse map from F(D) toD. We denote it by F−1.

3.2. Periodic points and homo/heteroclinic orbits. In this subsection, we introduce
several basic definitions related to Markov IFSs.

3.2.1. Periodic points. Let (D = ∐m
i=1 Di , F = {fj }1≤j≤k) be a Markov IFS. We con-

sider words whose letters are in I = [1, k]. We say that a non-empty word ω = j1 · · · jn

is admissible if fjm(Ddom(jm)) ⊂ Ddom(jm+1) holds for every m = 1, . . . , n − 1. For an
admissible word ω, we put Fω := fjn ◦ · · · ◦ fj1 . We say that a point p ∈ D is periodic if
Fω(p) = p holds for some admissible ω. The period of p is the least length of non-empty
word ω for which fω(p) = p holds. As a straightforward consequence of Remark 3.3, we
have the following.

Remark 3.4. If p is a periodic point of period n, there is a unique word ω(p) of length n
such that p is a fixed point of Fω(p). We call ω(p) the itinerary of p. If p is a fixed point of
Fω′ where ω′ is another word, then ω′ is a concatenation of several copies of ω(p).

The periodic orbit of the periodic point p, denoted by orb(p), is the set of points
pi = fji

◦ · · · ◦ fj1(p), i ∈ {1, . . . , π(p)}, where π(p) is the period of p and we put
ω(p) = j1 · · · jπ(p). We set p0 = p and fjπ+1 = fj1 . In the following, by abuse of
notation, we write F i(p) in the sense of pi .

Remark 3.5. Since F−1 is a well-defined map, we have pi = F−π(p)+i (p) for
1 ≤ i < π(p).
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For x ∈ D, we denote the disc of D which contains x by Dx . A periodic point p ∈ D
is called a hyperbolic periodic point if it is a hyperbolic fixed point of Fω(p) : Dp → Dp

and its s-index is the dimension of its stable manifold. Suppose that DFω(p)|TpDp has
two eigenvalues 0 < λ1 < 1, λ1 < λ2 (we allow the case λ2 ≤ 1). Then the local strong
stable manifold of p, denoted by Wss

loc(p), is the strong stable manifold of p of Fω(p) in
Dp tangent to the eigenspace of λ1 at p. A periodic orbit orb(p) is called separated if
{Dpi

}i=0,...,π(p)−1 are all distinct. We say that p is separated if orb(p) is. For a separated
periodic point p, by Fp, we denote the map on

∐
Dpi

→ ∐
Dpi

defined by Fp|Dpi
=

fji+1 (recall that we put fjπ(p)+1 = fj1 ). Let p′ be another periodic point whose orbit is
not equal to that of p. We say that p and p′ are mutually separated if there is no disc in D
which contains both points of orb(p) and orb(p′).

We say that a periodic point p ∈ Dp has a large stable manifold if the whole disc Dp

is contained in the local stable set Ws
loc(p) for Fω(p), where we put Ws

loc(p) := {y ∈ Dp |
(Fω(p))

n(y) → p (n → ∞)}.

3.2.2. Homo/heteroclinic points. Let p be a separated periodic point. A point
P ∈ Ws

loc(pi) \ fji−1(Dpi−1) (where we put p−1 = pπ(p)−1) is called a u-homoclinic
point of p if there is an integer k ≥ 0 such that F−k(P ) = pl holds for some l. If p has the
strong stable manifold Wss

loc(p), then P is a u-strong homoclinic point of p if P ∈ Wss
loc(pi)

for some i and it is a u-homoclinic point of p, too. For a u-homoclinic point P, there exists
a word ω such that (Fω)−1(P ) = pl holds. One can check that there is a unique shortest
word among such words. We denote it by ω(P ) and call it the itinerary of P. For u-(strong)
homoclinic points, the backward orbit F−i (P ) makes sense for i ≥ 0. Also, for i ≥ 0, we
define F i(P ) := (Fp)i(P ). We put orb(P ) := {F i(P )} and call it the homoclinic orbit
of P. Given two periodic points p1 and p2 having different orbits, we also define the notion
of u-heteroclinic points in a similar way. The notions of the itinerary and the heteroclinic
orbit are defined similarly.

Let P ∈ Ws
loc(p) be a u-homo/heteroclinic point of a periodic point p. We say that P

is p-free if the following holds: let k be the smallest positive integer such that F−k(P ) ∈
orb(p). Then for every i = 1, . . . , k − 1, we have F−i (P ) 	∈ ⋃

0≤i≤π(p)−1 Dpi
.

3.2.3. Perturbations of IFSs. Given a Markov IFS (D, F = {fi}i=1,...,k), consider a
family of C1-diffeomorphisms F̃ = {f̃i}i=1,...,k such that the following hold:
• near the boundary of the domain disc, f̃i ≡ fi for every i.
• Each f̃i is a C1-diffeomorphism with the same image as fi for 1 ≤ i ≤ k.
Then, (D, F̃ ) is also a Markov IFS with the same set of admissible words. We call it a
perturbation of (D, F). For each i, we define supp(f̃i) to be the closure of the set {x ∈
Ddom(i) | f̃i (x) 	= fi(x)} and call it the support of f̃i . We put supp(F̃ ) := ⋃k

i=1 supp(f̃i).
Let G := {gi} be a perturbation of F and p be a periodic point of F. Here, G is called a

perturbation along the orbit of p if and only if they only differ for {fji
}i=1,...,π(p), where

ji is some letter appearing in ω(p).

3.3. Refinement of a Markov IFS. Let (D = ∐
i Di , F = {fj }) be a Markov IFS. For

n > 0, consider the disjoint union of the images of the discs
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Fn(D) :=
∐

|ω|=n,
ω:admissible

Fω(Dω),

where |ω| denotes the length of the word ω and Dω denotes the domain of Fω. Now,
consider the collection of local diffeomorphisms

∧nF = {fi |Fω(Dω) | |ω| = n, ω : admissible, Fω(Dω) ⊂ Ddom(i)}.
Then the pair (F n(D), ∧nF ) defines a Markov IFS. We call it an n-refinement of (D, F).

Remark 3.6
• (∧nF )−1 is the restriction of F−1 to Fn(D).
• A point x ∈ Fn(D) is a periodic point of ∧nF if and only if it is periodic for F. In

such a case, the periods of x for F and ∧nF are the same.
• A periodic point x ∈ D has a large stable manifold for ∧nF if and only if it has a large

stable manifold for F. The equivalence follows by noticing that the disc in Fn(D)

which contains x is the image of the disc inD which contains F−n(x).
• Suppose we have a u-homoclinic point P of a separated periodic point p with a large

stable manifold. Then for the refinement (∧1F), we take the point fjP
(P ) (where jP

is the letter of ω(p) such that P ∈ dom(fjP
) holds) and call it the u-homoclinic point

corresponding to P for (∧1F). Inductively we define the corresponding homoclinic
point for (∧nF ). We define the same notion for heteroclinic points.

3.4. Flexible periodic points. In [BS1], we defined the notion of an ε-flexible periodic
point. It is a periodic point of a diffeomorphism whose invariant manifold is so flexible that
its configuration in a prescribed fundamental domain can be deformed into an arbitrarily
chosen shape by an ε-small perturbation. Let us recall the precise definition (see [BS1] for
further information).

Definition 3.7. Let (Ai)i=0,...,n−1 be a two-dimensional linear cocycle, that is, let
Ai ∈ GL(2, R) for every i. We say that (Ai) is an ε-flexible cocycle if there exists a
continuous path of linear cocyclesAt = (Ai,t )t∈[−1,1] such that the following hold:
• diam(At ) < ε, that is, for every i, we have max−1≤s<t≤1 ‖Ai,s − Ai,t‖ < ε;
• Ai,0 = Ai for every i;
• for every t ∈ (−1, 1), the product At := An−1,t · · · A0,t has two distinct positive

contracting eigenvalues;
• A−1 is a contracting homothety;
• let λt be the smallest eigenvalue of At . Then, max−1≤t≤1 λt < 1;
• A1 has an eigenvalue equal to 1.

With regard to Markov IFSs, a periodic point p of a Markov IFS (D, F = {fi}) is called
ε-flexible if the linear cocycle of linear maps (Dfji

)i=1,...,π(p) between tangent spaces over
the orbit of p is ε-flexible, where we put ω(p) = j1 · · · jπ(p).

3.5. Affine circuits and Markov IFSs. Let us clarify the relation between Markov IFSs
and affine Markov partitions.
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Definition 3.8. Suppose that we have a filtrating Markov partition R with a circuit of points
S such that R(S) is an affine Markov partition. Assume that:
• each (linearized) rectangle has the form Di × Ii in the linearized coordinates;
• for each connected component of Ci ∩ f −1(Cj ) containing a point of S, where Ci ,

Cj are rectangles of R(S), the dynamics in the two-dimensional direction is given
by a map F(i,j),k : Di → Dj (where k is a subscript to distinguish the connected
components);

• for each Ci , every image rectangle in Ci ∩ f (R) which does not contain any point of
S has the form Ei,l × Ii in the linearized coordinates, where Ei,l is a two-dimensional
disc (where l is a subscript to distinguish different connected components) and Ii is an
interval.

Then, we can define a Markov IFS as follows.
• The set of discs are {Di} ∪ {Ei,l} (note that while Ei,l is a subset of Di , we consider

them as different objects).
• The set of maps are {F(i,j),k} ∪ {idi,l}, where idi,l : Ei,l → Di is the restriction of the

identity map.
This Markov IFS is called the corresponding Markov IFS of R(S) and we denote it by
M(R(S)).

In the proof of Theorem 1.6, the information of f on the adapted rectangles is not
important. The only information we need is the shape of the image of the rectangles. Thus,
for the maps on {Ei,l}, we put the identity maps.

We can also define the periodic points {qi} and homo/heteroclinic points {Qj } for
M(R(S)). For {qi}, we just take the projections of them in the above Markov IFS. For
homo/heteroclinic points, instead of dealing with {Qj }, we consider the projections of
{f Tj (Qj )}, where Tj is the transition time of Qj . Then they give u-homo/heteroclinic
points in the Markov IFS.
• If {qi} are ε-flexible or have large stable manifolds, then the same property holds for the

projected periodic points. Here, we say that a periodic point qi in a filtrating Markov
partition is ε-flexible if the differential cocycle along Ecs

O(qi )
is so.

• If R(S) is a circuit of rectangles, then for the associated Markov IFS, every periodic
orbit is separated, every pair of periodic orbits are mutually separated, and every
homo/heteroclinic orbits are free from every periodic orbit (see §3.2.1 for the
definitions). Furthermore, if R is generating, then each pair of homo/heteroclinic orbits
has different itineraries (see Lemma 2.9).

• The operation of taking forward refinements is functorial with respect to the operation
M. More precisely, if R(S) is affine, then we have

M(R(0,n)(S)) = ∧nM(R(S)).

3.6. Relatively repelling regions. We are interested in constructing a repelling region
by giving small perturbations to a Markov IFS. Since what we deal with is not a single
diffeomorphism but an IFS, the formulation of the notion of repelling/attracting sets
requires extra care. In the following subsections, we will discuss their definitions.
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FIGURE 2. An example of a relatively repelling region. The Markov IFS consists of one disc D and two
diffeomorphisms F = {f1, f2} on their images. The relatively repelling region R has an attracting property for

f −1
1 restricted to f1(D) ∩ R and for f −1

2 to f2(D) ∩ R.

Definition 3.9. Let (D, F) be a Markov IFS. We say that a compact set R ⊂ D is a
relatively repelling region if we have

F−1(R ∩ F(D)) ⊂ Intt (R),

where Intt (R) denotes the topological interior of R with respect to the topology of D, see
Figure 2.

The definition may look strange, but since F−1 is a well-defined map, it is natural to
define the repelling property as an attracting property for F−1.

While we do not use the following lemmas in this paper, to have better understanding
of the notion of relatively repelling regions, let us prove the following.

LEMMA 3.10. If R ⊂ D is a relatively repelling region, then Rn := F−n(R ∩ Fn(D)) ⊂
D is a relatively repelling region for (D, F).

Proof. We prove the case n = 1, that is, F−1(R1 ∩ F(D)) ⊂ Intt (R1). The general case
follows by induction. Notice that

Rn+1 = F−1(F−n(R ∩ Fn+1(D)))

= F−1(F−n(R ∩ Fn(D) ∩ (F n+1(D))) = F−1(Rn ∩ F(D)).

Consider a point x ∈ F−1(R1 ∩ F(D)). By definition, there is a point y ∈ D such that
x = F−2(y). Then consider the point F−1(y), which belongs to R1 ∩ F(D). We know
F−1(y) ∈ F(D). By the fact that R is a relatively repelling region and F−1(y) ∈ R1, we
deduce that F−1(y) ∈ Intt (R). Then, by taking the inverse image, we have x = F−2(y) ∈
Intt (F−1(R ∩ F(D))) = Intt (R1).

LEMMA 3.11. If R ⊂ Fn(D) is a relatively repelling region for the n-refinement
(F n(D), ∧nF ) of (D, F), then R ∪ (D \ Fn(D)) is a relatively repelling region for
(D, F), where X denotes the closure of X.

Proof. We prove the case n = 1. Then the general case follows by induction. Consider the
set R̃ := R ∪ (D \ F(D)) and take a point x ∈ R̃. If x 	∈ F(D), then there is nothing we
need to prove. Suppose x ∈ F(D). Then, we have either x ∈ F 2(D) or not. For the first
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case, by the definition of a relatively repelling region, we know that F−1(x) ∈ Intt (R) ⊂
Intt (R̃). For the latter case, F−1(x) ∈ D \ F(D) ⊂ Intt (R̃). This shows the relatively
repelling property of R̃.

3.7. Contracting invariant curves. In this subsection, we formulate the notion of
(normally repelling/attracting) contracting invariant curves and discuss some related
notions.

In this article, by a curve we mean the image of a C1-embedding of an interval to D
satisfying the following two conditions:
• the image intersects with the boundary of the disc transversely at the endpoints;
• except the endpoints, the image has no intersection with the boundary of the disc.
By a family of curves, we mean a union of finitely many C1-curves (some of them may
have non-empty intersections to the others).

Definition 3.12. Let (D = ∐
Dj , F = {fi}) be a Markov IFS and � = ⋃

γi ⊂ D be a
family of curves. We say that � is a family of invariant curves if the following holds:

� is invariant under F−1; for every x ∈ � ∩ F(D), we have F−1(x) ∈ �.

Furthermore, we say that � is contracting if the following holds: there is k0 > 0 such that
for every x ∈ � ∩ Fk0(D), we have

‖DF−k0 |T γj (x)‖ > 1,

where DF−k0 |T γj (x) denotes the differential map restricted to T γj and γj is any curve of
� containing x.

We say that � is univalent if for every Di , the curve Di ∩ � is empty or consists of a
single regular (unbranched) curve.

We prepare a definition.

Definition 3.13. A family of invariant curves � in a Markov IFS (D, F) is normally
contracting (respectively repelling) if there is k1 > 0 such that T F−k1 |Nγi

can be chosen
uniformly greater (respectively smaller) than one at every point where F−k1 is defined.
In this definition, the normal derivative is the linear map induced on the quotient bundle
Nγi := TD/T γi .

Since a family of normally repelling invariant curves is expanding in the normal
direction, one can see the following.

Remark 3.14. If � is a family of univalent normally repelling contracting curves, then
there exists a neighborhood R ⊂ D of � which is a relatively repelling region.

Definition 3.15. Let 0 < η < 1. A family of invariant curves � for (D, F) is η-weak if
there exists k1 > 0 such that the normal derivative T F−k1 |Nγi

belongs to the open interval
((1 − η)k1 , (1 − η)−k1) at every point where F−k1 is defined. We refer to the number η as
the normal strength of �.
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In the following, we want to construct a family of invariant curves with arbitrarily weak
normal strength (close to 0). Roughly speaking, the importance of weak normal strength is
that, by adding η-C1-perturbation, we can produce attracting/repelling behavior.

Let us formulate the notion of an attracting region.

Definition 3.16. Let (D, F) be a Markov IFS and R ⊂ D a relatively repelling region. We
say that a compact set A ⊂ D is an attracting region with respect to R if for any i and for
any connected component Aj of A contained in Ddom(i), either fi(Aj ) is contained in the
interior of A or fi(Aj ) ∩ R = ∅ holds.

This definition may seem tricky. Its importance can be seen when we discuss
three-dimensional systems, see §4.2.

Remark 3.17. If A is an attracting region with respect to R contained in the interior of R
and its connected components are all discs, then the family of restrictions fi |Aj

satisfying
fi(Aj ) ⊂ R defines a Markov IFS.

3.8. Constructions for weak invariant curves. In the following, we discuss the construc-
tion of a relatively repelling region and an attracting region with respect to it near a family
of univalent, contracting invariant curves with small normal strength.

We prepare one fundamental perturbation result.

PROPOSITION 3.18. Suppose that (D, F) is a Markov IFS having a family of univalent
invariant curves � and let κ be some real number. Then there exists a set of diffeomor-
phisms {ξi : Di → Di} which is C1-|κ|-close to the identity map such that the following
hold:
• the support of ξi is contained in the interior of Di;
• ξi |γi

= id|γi
, where γi is the connected component of � in Di;

• the support of ξi is contained in an arbitrarily small neighborhood of γi in Di . In
particular, if � ∩ Di = ∅, then ξi is the identity map on Di;

• on γi , Dξi |Nγi
= 1 + κ except some small neighborhood of the endpoints of γi . This

neighborhood can be chosen arbitrarily small.
Furthermore, we can choose the C0-distance between ξi and the identity map arbitrarily
small.

Proof. For each connected component γi of �, we take a smooth vector field satisfying
the following:
• it is perpendicular to γi and has the form dx/dt = [log(1 + κ)]x except near the

endpoints;
• the support of the vector field is in a small neighborhood of γi ;
• the vector field is null near the endpoints.
Choosing the vector field adequately, the time-1 map of this vector field satisfies the
conclusion.
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Remark 3.19. In the proof of Proposition 3.18, the size of the perturbation depends only
on the normal strength and it is independent of the geometry of �, since we are working
on the C1-topology.

Now, let us state a perturbation result in the form of a proposition.

PROPOSITION 3.20. Let (D, F = {fj }) be a Markov IFS having a family of univalent
invariant contracting curves � with normal strength η > 0, where η is sufficiently close to
zero. Then, there exists a set of diffeomorphisms τi : Di → Di satisfying that:
• each τi is 6η-close to the identity map in the C1-topology and
• arbitrarily C0-close to the identity
such that the new Markov IFS with the discsD and the maps F̃ = {τim(fj ) ◦ fj } satisfy the
following:
• � is a family of univalent, contracting invariant curves for F̃ , too;
• there exists a relatively repelling region R ⊂ D containing �. Here, R can be chosen

in such a way that it is contained in an arbitrarily small neighborhood of �;
• there is an attracting region A = ⋃

Ai with respect to R such that each Ai is a
C1-disc which contains exactly one component of � and A contains �. Furthermore,
the Markov IFS (A = ∐

Ai , F̂ = F̃ |A) (see Remark 3.17) is uniformly contracting in
the sense that there exists k1 ≥ 1 such that for every admissible words ω with |ω| = k1,
the inequality ‖DF̂ω‖ < 1 holds.

Remark 3.21. The uniform contraction property of F̂ implies that every periodic orbit in
(A, F̂ ) has a large stable manifold.

Proof. The proof consists of two steps.
Step 1. Construction of a relatively repelling region. We apply Proposition 3.18 to �

letting κ = 2η. We obtain a family of diffeomorphisms {ξi} satisfying the conclusion.
Then, by direct calculation, one can check that for F1 := {ξim(fj ) ◦ fj }, � is a family of
normally repelling curves with normal strength at most 3η, if η is sufficiently close to 0.
Notice that the condition that ξi is not necessarily expanding near the endpoints does not
affect the conclusion, since the points near the endpoints go out from the discs by the
backward iteration. By Remark 3.14, this gives us a repelling region R near � and it can be
chosen arbitrarily close to �.

Step 2. Construction of an attracting region in R. Then, for this F1, we apply
Proposition 3.18 letting κ = −3η. It gives another set of diffeomorphisms {θi} such that
for the Markov IFS F2 := {θim(fj ) ◦ ξim(fj ) ◦ fj | fj ∈ F }, � is a family of univalent,
normally attracting, contracting invariant curves. We choose {θi} in such a way that its
support is contained in the relatively repelling region R which we constructed in Step 1.
Since � is contracting in the tangential direction, for each γi , we can find a disc Ai in R
containing γi such that

⋃
Ai is a relative attracting region with respect to R and F2 is

uniformly contracting. Thus by letting τi := θi ◦ ξi , we complete the proof.

Remark 3.22. In the application of Proposition 3.20, we add one more perturbation to {τi}
(see §4.2). Suppose � contains several periodic orbits {qi} which has large stable manifolds
for F. Then, we may choose τ̃i which is 6η-close to τi such that the following hold.
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• The support of τ̃i is arbitrarily close to γi and the C0-distance between τ̃i and τi can
be arbitrarily small.

• For ˜̃
F = {τ̃im(fj ) ◦ fj }, qi are still periodic points and they have large stable manifold.

• Near qi , τ̃i is the identity map.
Such τ̃i can be obtained just by composing the inverse of τi near qi . Since qi has a large
stable manifold for F and τi is just a contraction perpendicular to �, one can make such a
local deformation keeping the largeness of the stable manifold.

3.9. Coordinate change of Markov IFS. In the following sections, for simplifying the
presentation, we perform change of the coordinates of Markov IFSs. Let us briefly discuss
what it exactly means.

Definition 3.23. Let (D = ∐
Di , F = {fj }) be a Markov IFS. Suppose that we have

a family of diffeomorphisms φk : Dk → D′
k for each k. Then, we can check that the

following also define a Markov IFS:
• D′ = ∐

D′
i ;

• {f ′
j = φim(j) ◦ fj ◦ (φdom(j))

−1}.
We refer to the map (

∐
φk) : D→ D′ as a coordinate change between Markov IFSs

(D, F) and (D′, F ′).

Notice that coordinate change preserves information of dynamical systems. For
example:
• if R′ is a relatively repelling region for (D′, {f ′

j }), then (
∐

φk)
−1(R′) is a relatively

repelling region for (D, {fj }), where (
∐

φk) : D→ D′ is the map which is defined
by (φk) in a natural way;

• if �′ is a family of normally repelling curves for (D′, {f ′
j }), then (

∐
φk)

−1(�′) is a
family of relative repelling curves for (D, {fj });

• if {g′
k,m} is a sequence of perturbations converging to {f ′

j }, then {(φim(j))
−1 ◦ g′

j ,m ◦
φdom(j)} is a sequence of perturbations converging to {fj }.

3.10. Statement of the main perturbation result. Now we are ready to state our main
result.

THEOREM 3.24. Let (D, F) be a Markov IFS and ε > 0, η > 0 be given. Assume that
(D, F) has the following objects:
• ε-flexible points {qi}i∈[1,k] with large stable manifolds. Each qi is separated and for

any pair of qi and qj (i 	= j ), they have different orbits and are mutually separated
(see §3.2.1);

• {Q�}�∈[1,m], a finite set of u-homo/heteroclinic points between q�(0) and q�(1) for some
�(0), �(1) ∈ [1, k] (�(0) and �(1) may coincide). Each Ql is qi-free for all qi (see
§3.2.2) and any pair of homo/heteroclinic orbits have different itineraries.

Then, for any ε0 > 0 and every sufficiently large integer m, there is a C1-ε-perturbation
G = {gi} of F which is ε0-C0-close to F such that we have the following.
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• {qi} are s-index 1 periodic points for G whose orbits coincide with that of F. For each
qi , the derivatives (DGqi

) (see §3.2.1 for the definition of Gqi
) along qi coincide with

(Bi;j ,1) where (Bi;j ,t ) is some ε-flexible cocycle (see §3.4). Thus, it has one contracting
eigenvalue and the other is equal to one.

• each qi has a large stable manifold (it is not uniformly contracting but just topologi-
cally attracting).

• {Q�} are still u-homo/heteroclinic points between the same periodic points with the
same itineraries as for F.

• There is a family of invariant curves � containing {qi} and {Q�} such that:
– � is of normal strength η;
– � is contracting and contains Ws

loc(qi) for every qi .
Furthermore, we have the following:
• � ∩ (G)m(D) is univalent;
• the discs in (G)m(D) which have non-empty intersection with � contain a point of

orbits of {qi} or the homo/heteroclinic points {Q�} (see §3.2.2 for the definition of the
orbit of a homo/heteroclinic point).

3.11. A simplified result. The proof of Theorem 3.24 is one of the main topics of this
paper. It involves several flexible points and homo/heteroclinic points. Because of the
plurality of the objects, a direct proof of Theorem 3.24 will be complicated. Thus, for
the sake of simplicity, we only give the proof of the case where only one flexible point and
only one homoclinic point are involved. Below we give it in the form of a theorem. In §7,
we explain how we deduce Theorem 3.24 by the proof of Theorem 3.25.

THEOREM 3.25. Let (D, F) be a Markov IFS and ε > 0, η > 0 be given. Assume that it
has the following objects:
• q, a separated, ε-flexible point with a large stable manifold;
• Q, a u-homoclinic point of q such that it is q-free.
Then, given ε0 > 0 and every sufficiently large integer m, there is a C1-ε-perturbation G
of F which is C0-ε0-close to F such that:
• q is an s-index 1 periodic point for G with the same orbit as F. The derivative cocycle

(DGq) along the orbit of q is (Bi,1) of some ε-flexible cocycle (Bi,t ). Furthermore, q
has a large stable manifold for G;

• the point Q is a u-homoclinic point of q with the same itinerary for G;
• there is a family of η-weak, contracting invariant curves � = ⋃

γi which contains q,
Ws

loc(q), and Q.
Furthermore, � ∩ (G)m(D) is univalent and each disc in (G)m(D) having non-empty

intersection with � contains a point of orbit of q or that of Q.

4. Expulsion in dimension three
In this section, we complete the proof of theorems which we presented in §1 assuming the
main technical result Theorem 3.24.

In §4.1, we give some auxiliary perturbation results, which are essentially proved in
papers such as [BCDG, BS1, BS2]. In §4.2, we prove Theorem 1.8. The proof goes
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as follows. First we reduce the problem into the one about Markov IFSs. We apply
Theorem 3.24 to the reduced problem and, by applying Proposition 2.25, we realize the
perturbation in Theorem 3.24 in dimension three, which concludes Theorem 1.8. In §4.3,
we prove Theorems 1.6 and 1.4 using Theorems 1.7, 1.8, and the results in §4.1. Finally, in
§4.4, we complete the proof of Theorem 1.5 by improving the proof of Theorem 1.4.

4.1. Auxiliary results. In this subsection, we prepare some preparatory results.
4.1.1. Abundance of flexible points. In [BS2], we proved a result about the existence of
flexible points with large stable manifolds. We cite it with a small modification. To state it,
we prepare some definitions. Let U be a subset of a closed three-dimensional manifold M
and p, q be two hyperbolic periodic points of the same s-index whose orbits are contained
in U. We say that p, q are homoclinically related in U if there are heteroclinic orbits
contained in U from p to q and vice versa. The relative homoclinic class H(p, U) is the
closure of the set of the periodic points in U which are homoclinically related to p in U.

For a hyperbolic periodic point p of s-index 2, we say that it is ε-flexible if the linear
cocycle obtained by restricting the derivative cocycle to the stable direction along O(p) is
ε-flexible, see §3.4 for the definition of ε-flexible cocycles.

Let p be an s-index two hyperbolic periodic point of f ∈ Diff1(M). We say that p has
a robust heterodimensional cycle in U if the following holds (see also [BS1, Proposition
5.1]). There are hyperbolic basic sets � and � in U such that:
• � is s-index two and � is s-index one;
• there is a C1-neighborhood U of f such that for every g ∈ U, the continuations pg ,

�g , and �g are defined and contained in U. Furthermore, pg ∈ �g holds;
• for every g ∈ U, there are heteroclinic points in Ws(�) ∩ Wu(�) and Ws(�) ∩

Wu(�) whose orbits are contained in U.
Now we are ready to state the result.

Definition 4.1. Let f be a C1-diffeomorphism of a three-dimensional manifold having a
filtrating Markov partition R. Let W be a sub Markov partition of R (that is, a collection of
rectangles of R) such that there is a hyperbolic periodic point p whose orbit is contained
in W. We say that the relative homoclinic class H(p, W) satisfies property (�W) if the
following hold:
• p has a large stable manifold in R;
• there is a hyperbolic periodic point p1 whose orbit is contained in W such that p and

p1 are homoclinically related in W and p1 has a stable non-real eigenvalue;
• p has a robust heterodimensional cycle in W.

Now let us give the result.

PROPOSITION 4.2. (See [BS1, Proposition 5.1] and [BS2, Lemma 3.8]) Let R = ⋃
Ci be

a filtrating Markov partition of a diffeomorphism f andU a C1-neighborhood of f in which
one can find a continuation of R. Assume that there are a hyperbolic periodic point p ∈ R
and a sub Markov partition W of R such that for every f̃ ∈ U, the relative homoclinic
class H(p

f̃
, W; f̃ ) satisfies condition (lW).
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Then, for any ε > 0, there is a C1-open and dense subset D of U such that every
diffeomorphism g ∈ D has a hyperbolic periodic point x ∈ H(pg , W; g) of s-index two
satisfying the following:
• x has a large stable manifold in R;
• x is ε-flexible;
• x is homoclinically related with pg in W;
• the orbit of x is ε-dense in H(pg , W; g).

Remark 4.3. In Proposition 4.2, we may assume that for any N > 0, the flexible point x
has period larger than N (choose x letting ε be sufficiently small).

The difference from the original statement is that the assumption of the condition (l) is
stated for relative homoclinic classes and the conclusion holds for the relative homoclinic
classes. Since the argument used in the proof is local, one can obtain this result just by
following the proof line-by-line, including the result [BS1, Proposition 5.2].

By adding a small modification, we obtain the following.

COROLLARY 4.4. Let f, R, and H(p, W; f ) be as in the assumption of Proposition 4.2.
Then, there is a C1-diffeomorphism h which is C1-arbitrarily close to f such that h satisfies
the conclusion of Proposition 4.2 and h ≡ f holds outside W.

Proof. First, by applying Proposition 4.2, we take a sequence of diffeomorphisms (fn)

which converges to f such that each fn satisfies the conclusion. Then, (fn)
−1 ◦ f is a

C1-diffeomorphism which converges to the identity map in the C1-topology. For R, we
take a (1, 1)-refinement R′ := f (R) ∩ f −1(R) and set W′ = R′ ∩ W. Note that due to the
filtrating property of R, W′ contains H(pfn , W; fn) for sufficiently large n.

Then, we consider the diffeomorphism (fn)
−1 ◦ f for sufficiently large n. In the

following, we will show that for n sufficiently large, we can find a diffeomorphism gn

satisfying the following:
• on W′, gn is the identity map;
• gn = (fn)

−1 ◦ f outside W;
• (gn) converges to the identity map in the C1-topology as n → ∞.
For the time being, assuming the existence of such gn, let us conclude the proof. Consider
the diffeomorphism hn := fn ◦ gn. By definition, one can see that hn = fn ◦ (fn)

−1 ◦
f = f outside W. Furthermore, on W′, we have hn = fn. Since the relative homoclinic
class H(p, W; hn) is determined by the behavior of the dynamics on W′, we know that
H(p, W; hn) = H(p, W; fn). Note that ε-flexibility is a local property and the largeness
of the stable manifold can be determined by the behavior on W′. Thus for hn, we still
have the periodic point which is ε-flexible, having a large stable manifold and ε-dense in
H(p, W; hn).

Now let us construct (gn). For that, we first fix a smooth bump function κ : M → [0, 1]
which takes value 1 outside W and 0 on W′. Now, we follow the classical construction of
representing a diffeomorphism close to the identity map by a vector field, for instance, see
[L]. We fix a smooth Riemannian metric. Then we consider a map T M → M × M

which sends (x, v) ∈ M × TxM to (x, expx(v)). This is a diffeomorphism in the
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neighborhood of the image of the zero section in T M . Now given a C1-diffeomorphism
f which is sufficiently C1-close to the identity, we can associate a C1-vector field F such
that for every x ∈ M , we have expx(F (x)) = f (x) holds.

By applying this construction to (gn), we take a sequence of C1 vector fields (Gn)

whose image under the exponential map is (gn). Now consider the vector field κGn

and take its image under the above correspondence. Note that applying exp( · ) is
continuous with respect to the C1-topology. Thus, this defines the desired sequence of
diffeomorphisms hn.

Remark 4.5. In general, a relative homoclinic class H(p, U) may behave badly under
perturbation. In this article, we deal with the case where U is a sub Markov partition W of
a filtrating Markov partition R. In such a case, due to the filtrating property of R, we know
that every point of H(p, W) has uniform distance from the boundary of U and it enables
us to treat H(p, W) as if it is a homoclinic class in an ambient manifold.

4.1.2. Flexibility implies condition (�). We present a result which recovers the property
(�) for an invariant set containing a flexible periodic point. We prove it under a local setting
(that is, for property (�W)). For the purpose of this paper, the version for property (�) is
enough, but for the future use, we provide the proof under more general settings.

The following result can be proved by arguments based on the results in [BCDG, BS1].

PROPOSITION 4.6. Let f ∈ Diff1(M) having an ε-flexible periodic point p in a filtrating
Markov partition R with a large stable manifold. Let W be a sub Markov partition of
R. Assume that R is 4ε-robust and H(p, W) is non-trivial. Then, given δ > 0, there is
g = gδ ∈ Diff1(M) which is C1-4ε-close to f such that the following hold:
• p is still an ε-flexible point with the same orbit for g;
• H(pg , W; g) satisfies condition (�W);
• the support of g is contained in W. In particular, R is still a filtrating Markov partition

and W is its sub Markov partition;
• suppose that p is contained in a circuit K. Then, for appropriately chosen g = gδ , there

is a circuit Kg which is δ-similar to K.

Proof. For the proof, we need to construct several objects (a periodic point with non-real
eigenvalue and a robust heterodimensional cycle) by a small perturbation keeping the
largeness of the stable manifold and the smallness of the similarity of the circuit. Such
a process is already well described for instance in [BCDG, proof of Proposition 5.2
and Corollary 5.4]. Thus, we only give the sketch of the proof. First, we explain how to
construct these objects. At the end of the proof, we will see how to guarantee the largeness
of the stable manifold and the smallness of the similarity of the circuit.

First, let us see how to construct a periodic point with complex eigenvalues. Recall
that the flexibility of p guarantees the existence of a path of linear hyperbolic cocycles
which connects (Df (f i(p))) and a cocycle whose product has non-real eigenvalues. Thus,
if we deform f along p which gradually realizes the path, we can change p so that it
has non-real eigenvalues into the Ecs-direction. It guarantees the existence of f1 which
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is an ε-perturbation along O(p) such that p has the same orbit and the eigenvalues to
the Ecs-direction are non-real, keeping the non-triviality of the relative homoclinic class.
Note that due to the existence of such p, we know that H(p, W; f1) does not admit any
dominated splitting in the Ecs-direction.

Now we add a perturbation whose C1-size can be chosen arbitrarily small such that in
the relative homoclinic class H(p, W), there is a hyperbolic periodic point which is not
(the continuation of) p and has non-real eigenvalues in the Ecs-direction. This process is
explained in [BCDG, proof of Proposition 5.2]. The only difference is again that we work
on relative homoclinic classes, but the local feature of the argument enables us to prove
this. We denote the perturbed diffeomorphism by f2.

Now, we give another perturbation around p to obtain a diffeomorphism f3 which
returns p into an ε-flexible point, keeping the existence of periodic points with non-real
eigenvalues. Such a perturbation can be done by following the path of cocycles used
in the previous step in the opposite direction. Up to now, the amount of the size of the
perturbation is 2ε.

In the following, we give another sequence of perturbations to obtain a robust
heterodimensional cycle. First, using the ε-flexibility of the periodic point p, we obtain
a diffeomorphism f4 such that p is almost an s-index 1 hyperbolic periodic point. This
can be done by following the path of cocycles to the direction of t = 1. Then, by [BS1
Proposition 5.2], we know that, up to an arbitrarily small perturbation, we can find an
ε′-flexible point homoclinically related to p in W, say r, where ε′ can be chosen arbitrarily
close to zero.

Then, as we obtained f3 from f2, we give an ε-perturbation around p to obtain a
diffeomorphism f5 such that p is again ε-flexible, without disturbing the existence of a
periodic orbit having complex eigenvalues and the ε′-flexible periodic point r. The size of
the perturbation from f3 to f5 is also bounded by 2ε.

Now, we construct a robust heterodimensional cycle. Using the ε′-flexibility of r, we
give an ε′-perturbation around r such that r is a stable index 1 periodic point whose
strong stable manifold has a non-empty intersection with the unstable manifold of some
hyperbolic periodic point of s-index 2, say p′, homoclinically related to p. Such a
perturbation is possible due to the flexibility, see [BS1, Theorem 1.1].

Then, by [BD2], we may assume that the heterodimensional cycle turns to be robust
up to an arbitrarily small perturbation (since the homoclinic class of p′ is non-trivial, we
can apply [BD2, Theorem 5.3]). Thus, the relative homoclinic class of p now C1-robustly
satisfies the condition (�W). The size of the last perturbation is ε′ and it can be chosen
arbitrarily close to zero. As a result, the total amount of the size of the perturbation is less
than 2ε + 2ε = 4ε.

Finally, let us see how to obtain the similarity of the circuit and the largeness of
the periodic points after perturbation. For the δ-similarity of the circuit, notice that the
perturbation we performed is either arbitrarily small or a perturbation around the periodic
point using the flexibility of the point. For the first one, by decreasing the size of the
perturbation, we can guarantee the δ-similarity by continuity. For the second one, we use
the ‘adapted perturbation’ (see [G] and [BCDG, §3 and the proof of the Corollary 5.4]),
which preserves the bounded part of the invariant manifolds.
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A circuit consists of periodic orbits and hetero/homoclinic orbits. The periodic orbits are
preserved under perturbation based on the flexibility property. For the other perturbation,
the size can be chosen arbitrarily small, thus the change of the orbits can be made
arbitrarily small, too. For the hetero/homoclinic points, note that they converge to
periodic orbits (both forwardly and backwardly). Thus, the effect of the perturbation
on the homo/heteroclinic orbits near the periodic orbits is always bounded. As a result,
we see that the invariance of bounded part of the invariant manifold is enough to
guarantee the smallness of the variation of the position of the orbits. Thus, by requiring the
invariance of the invariant manifold in the fixed region, we can guarantee the δ-similarity
of the circuit.

Also, notice that the largeness of the stable manifold is determined by the information
of the invariant manifold contained in a bounded part. Thus, by using the adapted
perturbation, we can keep the largeness of the manifold.

This concludes the proof.

By using the same argument in the proof of Corollary 4.4, we have the following.

COROLLARY 4.7. Under the same hypothesis as in Proposition 4.6, we can choose a
C1-diffeomorphism h which is 4ε-close to f and coincides with f outside W such that
H(ph, W; h) satisfies the conclusion.

4.1.3. Recovering the flexibility. The following result is used to recover the flexibility of
the periodic points.

PROPOSITION 4.8. Let p be a periodic point of a Markov IFS (D, F = {fi}) having a
large stable manifold. Suppose that the cocycle of the differentials (DFpi

) coincides with
(Bi,1) where (Bi,t ) is some ε-flexible cocycle. Then, there exists an ε-perturbation G of F
along the orbit of p such that the following hold:
• the support of the perturbation is contained in an arbitrarily small neighborhood

of {pi};
• p is a periodic point for G with the same itinerary;
• p has a large stable manifold for G, too;
• DGpi

= Bi,0 for every i.

The proof can be done by repeating the argument in [BS1, proof of Proposition 4.1],
which also appeared in the proof of Proposition 4.2. Thus, we just give a short account of
the proof. For the details, see [BS1, §4].

By the definition of the ε-flexible cocycle, there is a path of cocycles (Bi,t ) which
connects (Bi,0) and (Bi,1) such that it is uniformly hyperbolic for 0 ≤ t ≤ 1 and has the
size smaller than ε. Then, by realizing this path slowly, we can deform (Bi,1) into (Bi,0),
keeping the largeness of the stable manifold. It gives the perturbation G we desired.

4.2. Expulsion of the circuit. Using the results in §4.1, together with the linearization
result, we prove Theorem 1.8.
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Proof of Theorem 1.8.
Step 1. Reduction to Markov IFSs. Let f ∈ Diff1(M) having a filtrating Markov

partition R of robustness α, and suppose that we have a circuit of points S in R consisting of
ε-flexible periodic orbits {O(qi)} with large stable manifolds and homo/heteroclinic orbits
{O(Qj )} such that R(S) is an affine Markov partition.

Then, as is explained in §3.5, we construct a Markov IFS M(R(S)). We denote it by
(D, F). We have corresponding periodic points and homo/heteroclinic points for it. Recall
that these periodic points are separated, any pair of them are mutually separated, and every
homo/heteroclinic orbit is free from the periodic orbits (see §3.5). Also, the generating
property of the Markov partition ensures that every pair of homo/heteroclinic points has
different itineraries (see Lemma 2.9).

Step 2. Solving the two-dimensional problem. Then we apply Theorem 3.24. We set ε

to be the size of the flexibility of {qi} and η to be a sufficiently small number (which we
will fix later). Then for every sufficiently large integer n, we can find an ε-perturbation
G0,n = G0 of the two-dimensional maps F such that:
• {qi} are still periodic points with the same orbits;
• there is a family of contracting invariant curves � containing qi and Qj ;
• � is univalent in the n-refinement Gn

0(D);
• the normal strength of � is smaller than η;
• the C0-size of the perturbation is less than ε0, which can be chosen arbitrarily small.

Now we apply Proposition 3.20 to this family in the (0, n)-refinement. Then, for
(Gn

0(D), ∧nG0), we can find a family of diffeomorphisms {τi} which is 6η-close to the
identity map such that G1 := {τim(gj ) ◦ fj } has a relatively repelling region R and an
attracting region A = ⋃

Ai with respect to R such that (A, G1) defines a new Markov
IFS containing {qi} and {Qj }. Since G1 is contracting on A, we have that each qi has a
large stable manifold inA.

Remark 3.22 tells us that by performing another 6η-C1-small perturbation, we may
assume that τi is the identity map near the orbit of qi , keeping the largeness of the stable
manifold. We denote the perturbed IFS by G2. Finally, using Proposition 4.8, we perform
another ε-small perturbation which makes qi ε-flexible, keeping the largeness of the stable
manifold. We denote the obtained IFS by Hn. Note that the support of Hn is contained in
Gn

0(D). Thus, one can consider Hn as a perturbation of F as well. Then the amount of the
size of the perturbation between F and Hn is less than

ε + 6η + 6η + ε = 2ε + 12η,

and η can be arbitrarily small. Thus, letting η be sufficiently small, the size of the
perturbation is less than 2ε. Note that the C0-distance between F and Hn can be chosen to
be arbitrarily small. We denote it by δ.

Step 3. Expulsion in dimension 3. Let f denote the three-dimensional map in Step 1. Now
we perform a perturbation to the three-dimensional diffeomorphism f by Proposition 2.25.
We apply Proposition 2.25 to the Markov IFS (D, Hn) which we obtained in Step 2: we
can find hn which is (2ε + Kδ)-close to f such that hn still keeps the product structure
on the rectangles and the corresponding Markov IFS is given by Hn. Since the size of
the perturbation in the C0-distance can be made arbitrarily small and K is already fixed,
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we may assume that hn is indeed 2ε-C1-close to f. Throughout this proof, this is the last
part where we perform the perturbation.

Note that by the property of Hn we have:
• the support supp(hn, f ) is contained in R(S);
• hn has the continuation of the circuit Sn, whose periodic orbits has the same orbits as

in S;
• the periodic orbits of Sn are all ε-flexible;
• Sn is δ-similar to S for some δ; for the homo/heteroclinic points of Sn, we only need

to collect the points which corresponds to f Tj (Qj ). Since the points {f Tj −k(Qj )}k>0
does not get any change under the perturbation and {(hn)

Tj +k(Qj )}k≥0 belong to the
local stable manifold of some periodic points, we can choose the conjugacy in such a
way that the corresponding points in S and Sn belong to the same rectangle.

For this hn, we can construct a new filtrating set. First, recall that the filtrating Markov
partition R = ⋃

Ci has an attracting set A and a repelling set R such that
⋃

Ci = A∩R.
Then we consider its (0, n)-refinement R(0,n) with respect to hn, which has the form
(hn)

n(A) ∩ R. We denote the rectangles in it by {Dj }.
The two-dimensional dynamics of hn on these rectangles is given by the iterated

function system Hn. Recall that Hn has a relative repelling region for the (0, n)-refinement.
Thus, for each Dj , there is a corresponding three-dimensional set which projects to the
relatively repelling region. We denote it by D̂j .

Now we define a repelling set as follows:

R′ =
(
R \

(⋃
Di

))
∪

(⋃
D̂j

)
.

By construction, one can check that R′ is a repelling set for hn. Thus, (hn)
n(A) ∩ R′ is a

filtrating set containing Sn.
Now we choose the attracting set. Recall that for Hn, we have an attracting set with

respect to the repelling set corresponding to {D̂j } contained in {Dj }. We denote them by
{Aj }, take the corresponding three-dimensional sets and denote them by {Âj }.

Then, one can see that

A′ =
(

(hn)n(A) \
(⋃

D̂i

))
∪

(⋃
Âj

)
is an attracting set for hn. Now, after smoothing the corners of R′ and A′ appropriately, one
can see that R′′ = R′ ∩ A′ = ⋃

Âj satisfies the condition of filtrating Markov partitions
except the existence of the cone field. To confirm the existence of the cone field, we need
to consider the robustness of R. Note that for R(0,n) and f, there is an invariant cone
field inherited from R whose robustness is α which is greater than 2ε. Then, since each
rectangle in {Âj } is a product rectangle in the linearized coordinate of R(0,n), together with
Remark 2.24, we see that the restriction of the cone field of R to R′′ gives the vertical cone
field of robustness α − 2ε.

Now we conclude that R′′ is a filtrating Markov partition. Recall that the attracting
region in the Markov IFS is obtained as the neighborhood of the family of normally
contracting invariant curves � in the Markov IFS and it is univalent in the n-refinement,
that is, it has one and only one connected component. This shows that each R(0,n)(Sn)
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contains one and only one rectangle in {Âj }. Also note that by the property of Hn, all the
periodic orbits in Sn have large stable manifolds in R′ ∩ A′.

Let us confirm the c-transitivity of the rectangles. For that we only need to confirm for
each pair of rectangles C1, C2 containing a periodic point, we can find a path of connected
components connecting them (for the other rectangles, it must contain a homo/heteroclinic
point but they can be connected to rectangles having periodic rectangles). Let q1, q2 be
the periodic points which C1, C2 contain, respectively. If they have the same orbit, the
conclusion is straightforward. If not, by the definition of the transitivity of the circuit of
points (recall that we assume that every circuit of points is transitive), there are sequences
of homo/heteroclinic points {xj ,l} and periodic points {qj ,l} contained in the circuit
connecting C1 and C2. Then, by following these connections, we can find the desired chain
of connected components. It concludes the proof.

4.3. Proof of the viralness. In this subsection, let us see how to obtain Theorem 1.6
using Theorems 1.7 and 1.8.

Proof of Theorem 1.6. Let C(p) be a chain recurrence class in the assumption. Then
there is a circuit of points S contained in the filtrating Markov partition R satisfying
the assumption. First we apply Theorem 1.7 to f such that up to an arbitrarily small
perturbation, we may assume in a sufficiently fine refinement R′, we have that R′ is
generating and R′(S) is an affine Markov partition. Note that, by using the largeness of the
stable manifolds for every periodic orbit in S, we may assume that R′(S) do not contain
the orbit of (continuation) of p and the diameter of each rectangle of R′(S) is less than
δ, see Remark 2.6. Then we apply Theorem 1.8. It gives, up to an 2ε-perturbation, us a
new filtrating Markov partition R′′ containing a circuit S′ which is δ-similar to S where
δ can be chosen arbitrarily small. By construction, we know that this new R′′ satisfies all
the conclusions claimed, that is, c-transitivity, the largeness of the stable manifold, and the
ε-flexibility of periodic points.

Now the proof of Theorem 1.4 is immediate.

Proof of Theorem 1.4. Suppose we have a C1-diffeomorphism f having a chain recurrence
class C(p) contained in a filtrating Markov partition R satisfying property (�). Note that
this implies H(p, R) satisfies property (�R). By choosing small ε > 0, we may assume
that R is 6ε-robust. By Proposition 4.2, up to an arbitrarily small perturbation, we may
assume that H(p, R) contains an ε-flexible point with a large stable manifold which is not
equal to p, say q. Since both p and q have large stable manifolds, we know that H(q, R)

is not trivial. In particular, we can find a circuit S which consists of the orbit of q and a
homoclinic orbit of q. Then we apply Theorem 1.6 to S. We can find a 2ε-perturbation
of f such that there is a filtrating Markov partition R′ containing the continuation S′ of S
and disjoint from the continuation of p such that the continuation of q has a large stable
manifold and is ε-flexible. We have that R′ is 6ε − 2ε = 4ε robust.

Now we apply Proposition 4.6. Up to 4ε-perturbation, we know that the relative
homoclinic class H(q, R′) satisfies the property (�R′). Hence, the chain recurrence class
C(q) satisfies the property (�) the filtrating Markov partition R′.
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In short, up to 6ε-perturbation, we have constructed a new chain recurrence class C(q)

satisfying the property (�) and ε > 0 can be chosen arbitrarily small. It concludes the proof
of the viralness.

Remark 4.9. In the above proof, we may assume that the period of q is larger than any
prescribed integer. This is possible by letting ε close to zero, for ε-flexible points with
small ε must have a large period.

4.4. Construction of aperiodic classes. Finally, let us give the proof of Theorem 1.5.
For the construction of the aperiodic classes, we prove the following.

PROPOSITION 4.10. Let f be a diffeomorphism having a filtrating Markov partition
containing a chain recurrence class C(p) satisfying the property (�). Let W be a
C1-neighborhood of f in which we have the continuation of C(p) keeping the property
(�). Then, there exists a nested sequence of C1-open sets {On} satisfying the following.
• Each On is dense inW.
• For each n ≥ 1, there exists a locally constant map Un : On → K(M) where K(M)

is the set of all compact subsets of M such that the following holds for every g ∈ On:
– Uk+1(g) ⊂ Uk(g) for 1 ≤ k ≤ n − 1;
– Un(g) is a c-transitive filtrating set;
– every connected component ofUn(g) has the diameter less than 1/n;
– there is a periodic point qn inUn(g) such that C(qn) satisfies the property (l);
– for every r ∈ Un(g), if it is a periodic point of g, then the period is larger than n.

We call the last property of Proposition 4.10 n-aperiodic.
First, let us complete the proof of Theorem 1.5 assuming Proposition 4.10.

Proof. Suppose we have such {On}. Then R := ∩On is residual inW. Take f ∈ R. Then
there is an infinite nested sequence of filtrating regionsU1(f ) ⊃ U2(f ) ⊃ · · · .

Now consider C′ := ∩Ui (f ). The c-transitivity for each Uk(f ) and the smallness of
the connected component for each Uk(f ) for k large implies that C′ is chain-transitive.
Furthermore, since each Ui (f ) is a filtrating set, we know that C′ is a chain recurrence
class. Finally, the condition about the period implies the aperiodicity of C ′.

Now let us prove Proposition 4.10. A key step is a version of Theorem 1.6 which delivers
stronger conditions.

PROPOSITION 4.11. In Theorem 1.6, given k > 0 and δ > 0, we may assume that the
expelled chain recurrence class satisfies the following. The filtrating Markov partition for
the new chain recurrence class is k-aperiodic and each connected component has diameter
less than δ.

Proof. In this proof, we use the notation from the proof of Theorem 1.4. The last condition
can be obtained by requiring the size of the expelled Markov partition be very small, which
is contained in the definition of the ε-expulsibility. For the first condition, we choose q in
such a way that its period is greater than k, see Remark 4.9. Then we expel the circuit S,
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letting the new filtrating partition be very close to S ′. If it is close enough, then we may
assume that there are more than k consecutive homoclinic points outside the neighborhood
of the periodic orbit. Thus, given a periodic in the filtrating Markov partition:
• if it is near the periodic orbit, its period must be larger than k, because to come back

to the initial point following the periodic points, we need more than k times iteration
and following the homoclinic orbit does not give much shortcut;

• if it is near the homoclinic point, it needs at least k iteration to come back, because the
length of the homoclinic orbit is larger than k.

Thus, the proof is done.

Using Proposition 4.11, let us conclude the proof of Proposition 4.10.

Proof of Proposition 4.10. We explain how we obtain On+1 from On. We also need to
confirm the existence of O1, but it can be done by following the induction step.

Given g ∈ On, we have a locally constant nested sequence of filtrating regions
{Uk(g)}k=1,...,n such that each Uk(g) satisfies the conclusion. Then, we apply
Proposition 4.11 to (g,Un(g)), which produces a new smaller filtrating region Un+1

which robustly satisfies the conditions in Proposition 4.10. This gives the candidate for
Un+1(g). We need to extendUn+1 to some open and dense set of On.

We proceed as follows. First we choose a countable dense set (hm) ⊂ On. Then, for each
hm, we apply Proposition 4.11. It gives an open neighborhoodWm of hm in On where we
have a filtrating set Vm satisfying the conclusion. We define two sequences of open sets
(Am) and (Bm) as follows:

A1 =W1, B1 =W1, Al+1 =Wl+1 \ Bl , Bl+1 = Bl ∪Al+1.

Then one can check that On+1 := ⋃
Bm is an open and dense set of On. OnAm, we define

Un+1 to beVm. This defines a map on Bm and consequently on On+1.
This finishes the construction ofUn+1.

5. Reduction to local problem
In this section, we begin the proof of Theorem 3.25. We provide several arguments which
enable us to reduce the problem into a local perturbation problem.

5.1. Overview of the proof of Theorem 3.25. We give some overview of the proof of
Theorem 3.25.

In the assumption of Theorem 3.25, we have an ε-flexible point q having a large stable
manifold and a homoclinic point Q. Then our goal is to construct a family of invariant
curves containing q and Q by a small perturbation such that in the normal direction, the
dynamics exhibit almost neutral behavior, in other words, small normal strength.

In [BS2], we established a perturbation technique with which we can expel q using
its flexibility. The main idea (here translated in the IFS language) of the proof is in the
same direction. By using the flexibility of q, we perform a perturbation so that q becomes
neutral in one direction, and then we again use the flexibility of q for controlling its local
strong stable manifold. In particular, we modify the strong stable manifold to be far from
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the components of the image of the IFS in a fundamental domain of the center stable
manifold. These components are considered as obstructions to avoid. Then turning the
neutral direction of q to be repelling expels the point q from the class.

In our problem, we have an extra difficulty. When we expel q, we need to keep Q as
a homoclinic point of q. Let us explain the strategy for that. Once again, we deform q to
be neutral by performing a perturbation and we want to control its strong stable manifold.
However, now we furthermore want this curve to coincide with its return corresponding to
the homoclinic point Q (in backward iteration), in a neighborhood of Q. This will be the
notion of pre-solution (see §5.3). More precisely, we want that the strong stable manifold of
q will be disjoint from all the components of the images of the IFS (called the obstructions)
but the one that corresponds to the homoclinic point Q. This component will be called the
well. In a well, we also define two kinds of nested sequences of discs. The transition well
is the successive nested images of the IFS along the orbit of the transition. The periodic
well is the nested images along the periodic orbit of q.

For a pre-solution, we require that the (backward) return of Wss
loc(q) following the

transition itinerary of Q coincides with Wss
loc(q) exactly on one of this nested images,

avoiding all the obstructions as well as their images, except the well. The nested sequence
of the wells allow to define the depth of the pre-solution. It is an integer which indicates in
how small a region the coincidence property holds. The construction of the invariant curve
with this coincidence property is one of the big issues of this theorem and of this paper.
We will discuss it in §6.

For the time being, assume that we can construct such a pre-solution and consider the
second point, that is, obtaining the almost neutrality of the normal behavior of the invariant
curve. Recall that we have the neutral behavior of the periodic point q, as it was assumed
to be flexible.

We want to spread the neutrality of q on the whole invariant curve, but that is not
always possible, as we have no a priori knowledge about the behavior of the intermediate
dynamics. This will be possible only for a pre-solution of very large depth, that is, for
which the return of Wss

loc(q) coincides with Wss
loc(q) only on a very small neighborhood of

the orbit of q and Q. For such pre-solutions, the orbits in the maximal invariant set in that
curve spend most of the time near the orbit of q, and therefore inherit its neutral behavior.
For pre-solutions with enough profound depth, we will see that the neutralization of the
normal dynamics indeed happens, thus constructing them will conclude the theorem, see
§§5.4 and 6.5.

The construction of the pre-solution with arbitrarily large depth will be the aim of §6.
An important issue in the construction consists of proving that the cost of a pre-solution
does not depend on its depth. Let us explain this. Small perturbations in a neighborhood of
a flexible point q allow us to get an arbitrary number of successive fundamental domains
around q where the diffeomorphism is an homothety. This is the notion of retarded families
that we introduce in §5.2. The more one has homothetic fundamental domains, the more
one has freedom for performing perturbations to modify the the strong stable manifold
of q. The cost of a pre-solution is the number of these fundamental domains one needs for
getting the chosen invariant curve, and an important point is that this cost remains bounded
when the required depth tends to infinity. We will discuss more details in §6.
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FIGURE 3. An example of a retarded family. It is a family of diffeomorphisms {fm}. Each fi behaves
homothetically on B(R) \ B(λiR). Roughly speaking, a retarded family is a sequence of diffeomorphisms

obtained by ‘inserting’ homothetic regions.

5.2. Retarded families. In [BS1], the authors defined the notion of an ε-flexible periodic
point and proved one of its eminent properties: by an ε-C1-small perturbation in an
arbitrarily small neighborhood of its orbit, one can choose the position of one fundamental
domain of its stable manifold as one wishes. Unfortunately, this result is not enough for
our purpose and we need to come back to some essential step of its proof.

The proof of the flexibility property of the stable manifold in [BS1] is done by using
the notion of retardable cocycles. For the proof of Theorem 3.25, we need to recall its
definition. In this paper, we use the notion of retarded diffeomorphisms in a slightly
different way, given as follows (see also Figure 3).

Definition 5.1. Let D be a C1-disc in R
2 which contains the origin 0 in its geometric

interior. By B(R), we denote the closed disc of radius R in R
2 centered at 0. A family

of diffeomorphisms {fm}m≥m0 (where m0 is some positive integer) from D to its image
contained in D is called a retarded family if it satisfies the following conditions:
• there is a radius R > 0 such that B(R) ⊂ D and all the maps fm coincide on D \

B(R);
• 0 is the unique fixed point of fm for every m ≥ m0;
• there is λ ∈ (0, 1) such that for every m ≥ m0, the maps fm coincide with the

homothety Hλ = λId on B(R) \ B(λmR). The annulus B(R) \ B(λmR) is called the
homothetic region of fm and λ its homothetic factor;

• consider the restriction fm|B(λmR). Then, for every m ≥ m0, we have

fm|B(λmR) = Hλm−m0 ◦ fm0 |B(λm0R) ◦ (Hλm−m0 )
−1.

The diffeomorphism fm|B(λmR) is called the core dynamics of fm and the region
B(λmR) is called the core region of fm.

Definition 5.2. A retarded family {fm}m≥m0 is called saddle-node if:
• 0 has one positive contracting eigenvalue and the other eigenvalue equal to 1;
• there is a neighborhood Um0 of 0 such that fm0 |Um0

has the form (x, y) �→ (λ0x, k(y))

where λ0 is the contracting eigenvalue and k(y) is a C1 map satisfying k(0) = 0,
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k′(0) = 1 and topologically attracting in a neighborhood of 0 (more precisely, for every
sufficiently small ε > 0, k([−ε, ε]) ⊂ (−ε, ε) holds).

For fm, Hλm−m0 (Um0) is called the diagonal region of fm.

The arguments of the paper [BS1] (see [BS1, Proposition 2.2 and the proof of
Theorem 1.1]) show that if a diffeomorphism has an ε-flexible periodic point with a large
stable manifold, then one can produce a saddle-node retarded family by giving an ε-small
perturbation along the orbit, keeping the largeness of the stable manifold. In other words,
an ε-flexible point can be deformed into a saddle-node point, keeping the stable manifold
large and inserting homothethic fundamental domains as much as one wishes. Thus, we
have the following proposition. Recall that for a periodic point q of a Markov IFS, π(q)

denotes its period.

PROPOSITION 5.3. Let (D = ∐
Di , F = {fj }) be a Markov IFS. Let ε > 0 and a

separated ε-flexible periodic point with large stable manifold q be given.
Given a neighborhood V of orb(q), there is an ε-C1-small family of perturbations Gm =

{gj ,m}m≥1 along q of F supported in V satisfying the following.
• For every m, q is a periodic point of Gm and the orbit orb(q) is the same as that of F.
• q has a large stable manifold for every Gm (m ≥ 1).
• The family of diffeomorphisms {(Gm,q)π(q)|Dq } (here, (Gm,q) denotes the map of Gm

on
∐

Dqi
, see §3.2) is a saddle-node retarded family of diffeomorphisms, up to a

coordinate change which is independent of m.

The proof of Proposition 5.3 is almost immediate from the argument of [BS1,
Proposition 2.2 and the proof of Theorem 1.1]. So we omit the proof. Based on
Proposition 5.3, we give the following definition.

Definition 5.4. A family of Markov IFSs {(D, Fm)}m≥m0 is said to be a saddle-node family
retarded at a periodic point q if the following hold:
• Fm is a perturbation of Fm0 along q;
• {(Fm,q)π(q)|Dq } is a saddle-node retarded family on the disc containing q;
• q has a large stable manifold.

We prepare one more definition.

Definition 5.5. Let {(D, Fn)}n≥1 be a family of Markov IFSs. We say that (Fn) is
uniformly bounded if the C1-norm of (Fn) is uniformly bounded.

Proposition 5.3 implies the following.

LEMMA 5.6. Let (D, F) be a Markov IFS, ε > 0, and q be a separated ε-flexible periodic
point with a large stable manifold. Assume that there is a q-free u-homoclinic point Q of q.

Then there are ε-C1-small perturbations (Fm)m≥1 of F along q supported in an
arbitrarily small neighborhood of the orbit of q such that:
• {(D, Fm)}m≥1 is a saddle-node family retarded at q with the same orbit;
• Q is a q-free u-homoclinic point of q for every m ≥ 1.
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Note that:
• (Fm) is uniformly bounded since each (Fm) is an ε-C1-small perturbation of a single

IFS F;
• the C0-distance between Fm and F can be chosen to be arbitrarily small uniformly

with respect to m, for the size of the support can be chosen to be arbitrarily small.

5.3. Wells and pre-solutions. In the assumption of Theorem 3.25, we have a separated
periodic point q and a q-free homoclinic point Q of q. To prove the theorem, we want
to reduce the problem to a perturbation problem which involves information only on the
disc Dq . Let us formulate it.

Consider the disc Dq and orb(Q) (see §§3.2.1 and 3.2.2 for the definitions). Recall
that the points F−i (Q) ∈ orb(q) for every sufficiently large i. We choose the smallest i
such that this holds, and denote the point by Q1 ∈ orb(q). Then there is a smallest
t > 0 such that F t

Q(Q1) ∈ ⋃
Dqi

. We set Q2 = F t
Q(Q1). Finally, we choose the smallest

a ≥ 0 such that F a
q (Q2) ∈ Dq .

Then we define the following objects.

Definition 5.7. A transition well is a nested sequence of discs (�n)n=1,...,t in Dq and
a sequence of unions of discs �n ⊂ Int(�n \ �n+1) for n = 1, . . . , t − 1 defined as
follows.
• Definition of �n: put �′

n := DF−n
Q (Q2)

. Then, �n := F a
q ◦ Fn

Q(�′
n).

• Definition of �n: put �′
n := (DF−n

Q (Q2)
∩ F(D)). Then,

�n := F a
q ◦ Fn

Q(�′
n) \ �n+1.

Definition 5.8. A periodic well is a nested sequence of discs (Tn)n≥0 in Dq and a sequence
of unions of discs (Sn)n≥0 such that Sn ⊂ Int(Tn \ Tn+1) defined as follows.
• Definition of Tn: first put T ′

n := DF−n
q (Q1)

. Then,

Tn := F a
q ◦ F t

Q ◦ Fn
q (T ′

n).

• Definition of Sn: first we put S′
n := DF−n

q (Q1)
∩ F(D). Then, put

Sn := F a
q ◦ F t

Q ◦ Fn
q (S′

n) \ Tn+1.

Note that T0 = �t. Thus, (�i) and (Ti) defines a nested sequence of discs in the
fundamental domain Dq \ F

π(q)
q (Dq).

The definitions of wells seem complicated, but it can be well understood as follows.
First consider the backward orbit {F−i (F a

q (Q2))}i≥0. It initially belongs to periodic discs,
then passes transition discs, and finally comes back to the periodic discs. The discs �n and
Tn are nothing but the images of these discs in Dq which F−i (F a

q (Q2)) passes, and the
definition of �n and Sn are the images of image discs in �n and Tn excluding �n+1 or
Tn+1.

We also define another class of discs in the fundamental domain, see Figure 4.
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FIGURE 4. A graphical explanation of obstructions and wells. �i is a disc in �i \ �i+1 which contains all the
images of image discs except �1.

Definition 5.9. For i ≥ 0, let

�i := F i
q(∂DF−i (q))

and call it a stratum. Note that �0 = ∂Dq and �π(q) = ∂(F
π(q)
q (Dq)). We also set

�̄i := F i
q(DF−i (q))

and call it the ith image disc. In the following, by i�, we denote the integer such that
�1 ⊂ �̄i� \ �̄i�+1 holds.

For 0 ≤ i ≤ π(q) − 1, set

�′
i := (DF−i (q) ∩ F(D)) \ Fq(DF−(i+1)(q))

and put

�i,∗ = (Fq)i(�′
i ).

Note that it is a disjoint union of finitely many discs in the annulus bounded by �i and
�i+1. Thus, we can choose a disc �i contained in the annulus which contains all �i,∗ and
disjoint from �1 (if the annulus contains �1). We fix such (�i) and we say that �i is the
ith obstruction. Also, for i ≥ π(q), we define �i setting �i = F

π(q)
q (�i−π(q)) recursively.

Remark 5.10. Let d ≥ 0 be the smallest integer such that F d
q (Dq) ⊂ DQ1 holds. Then,

recall that the following holds:

Td = F a
q ◦ F t

Q ◦ F d
q (Dq).

https://doi.org/10.1017/etds.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.76


Ejecting a horseshoe from a partially hyperbolic chain recurrence class 2125

Consider the disc Td+j for j ≥ 0. We have

Td+j = F a
q ◦ F t

Q ◦ F d
q (�̄j ).

Also, Sd+kπ(q)+i is contained in{
(F a

q ◦ F t
Q ◦ F d

q )(�kπ(q)+i ) if �1 is not in �̄i \ �̄i+1,

(F a
q ◦ F t

Q ◦ F d
q )(�kπ(q)+i ∪ F

kπ(q)
q (�1)) otherwise.

To prove Theorem 3.25, we only need to deal with this information. Recall that Theorem
3.25 has two conclusions. One is that there is an invariant curve which is univalent in some
refinement. The other one is that it is η-weak. Let us consider the first part.

Definition 5.11. Let (D, F) be an IFS with a separated periodic point q and a q-free
homoclinic point Q of q. Let (�i) and (Ti) be the transition well and the periodic well.
We say that F is a pre-solution of depth l if the following hold (see Figures 5 and 6):
(S1) q has a strong stable manifold and Q is a u-strong homoclinic point of q;
(S2) Wss

loc(q) ∩ �i = ∅ for i = 0, . . . , π(q) − 1;
(S3) Wss

loc(q) ∩ �i is a connected C1-curve disjoint from �i for i = 1, . . . , t − 1;
(S4) for i = 0, . . . , l − 1, Wss

loc(q) ∩ Ti is a connected C1-curve disjoint from Si ;
(S5) Wss

loc(q) ∩ Tl is a connected C1-curve satisfying the following:

Wss
loc(q) ∩ Tl = F a

q ◦ F t
Q(Wss

loc(Q1) ∩ (Fq)l(DF−l (Q1)
)).

The following proposition says that if we have a pre-solution of depth l, then we can
obtain a family of invariant curves which is univalent in the l-refinement.

PROPOSITION 5.12. Suppose (D, F) has a pre-solution of depth l, then for the
l-refinement (F l(D), ∧lF ) there is a family of univalent invariant curves �l such that
it contains q and Q in (F l(D), ∧lF ).

Proof. First, consider (F l(D), ∧lF ). In the disc Dq , we have a curve Wss
loc(q). Then take

its backward images.
By conditions (S1)–(S3) in the definition of the pre-solution, the backward images

appear on the transition discs which contains orb(Q). Note that if we take the l-refinement,
the corresponding transition discs in the refinements are given by the images of transition
discs or periodic discs in D under (Fq)l . This, together with condition (S4), implies
that the backward images of Wss

loc(q) in the refinement defines a connected curve in
each corresponding transition discs. By the last condition (S5) of the pre-solution, the
collection of backward images of Wss

loc(q) forms a family of univalent invariant curves in
(F l(D), ∧lF ) (see Figures 5 and 6).

Remark 5.13. The points in �l have simple backward itineraries. If x ∈ �l is in a periodic
disc, then as i increases, the point F−i (x) spends some time in the periodic discs. Then it
arrives at the first fundamental domain of Dq . Then, after t backward iterations, passing
through the transition discs, the point comes back to the periodic disc. Note that by the
definition of pre-solution of depth l, after coming back to the periodic discs, this point has
at least l-backward orbit contained in the periodic discs.
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FIGURE 5. A pictorical explanation of pre-solution of depth l in Dq . In Dq , the curve Wss
loc(q) avoids every

�i but has a non-empty intersection with �i . Thus, in the first fundamental domain, the backward iteration is
well defined only for Wss

loc(q) ∩ �1. We can define backward images of Wss
loc(q) ∩ �1 under F−1

Q until it arrives
at a periodic disc. The backward images avoid all of the image discs in the transition discs by condition (S3).
When it comes back to the periodic discs, the inverse image of Wss

loc(q) avoids all intermediate �i and �i , but in
discs of depth l, it coincides with the local stable manifold of the periodic point (in this picture, for the sake of
better visibility, this coincidence is depicted in DQ1 = DF−1(q)). Thus, by taking the l-refinement, we can take a

univalent invariant family of curves.

In the following, we are interested in the following special kind of perturbations.

Definition 5.14. Let {(D, Fn)} be a saddle-node family retarded at a q-free periodic orbit q
having a separated homoclinic point Q. Let Fk be one of (Fn). A perturbation G of Fk along
the orbit of q is called admissible if the support of G is contained in

⋃k
i=1(F

π(q)
k,q )i(�1).

Remark 5.15
(1) If (Gm)m≥m0 is a family of admissible perturbations of Fn, then there exists a

neighborhood W of q such that G
π(q)
m,q |W = F

π(q)
n,q for every m ≥ m0.

(2) If G is an admissible perturbation of Fn, then for every k ≥ 0, we have

(F
π(q)
n,q )k(Dq) = Gk

q(Dq).

Also, the shapes of �i , �i , �i , Si , and Ti are all the same for Fn and G.

5.4. On the distribution of itineraries for pre-solutions. For a pre-solution, we have a
family of univalent invariant curves in some refinements. We also want to control the
normal strength of the invariant curve. A priori, there is no information available about
the normal strength. However, if we know that the periodic point has a neutral eigenvalue,
then pre-solutions of the large depths have small strength. In §6, we prove that such a
construction is possible for a special type of retarded family called a prepared family
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FIGURE 6. A pictorical explanation of pre-solution of depth l in �1. There are two curves: Wss
loc(q) and F a

q ◦
F t

Q(Wss
loc(Q1)). The former avoids all �i for i = 1, . . . , t − 1 and Si for i < l by conditions (S3) and (S4). Inside

Tl , these two curves coincide. Note that the existence of the u-homoclinic point implies that F a
q ◦ F t

Q(Wss
loc(Q1))

must have non-empty intersection with F a
q ◦ F t

Q(�1) which is depicted as a shaded disc.

(see Proposition 6.5). We also prove that for every saddle-node family, by an arbitrarily
small perturbation, we can make it into a prepared one (see Proposition 6.3). We prove
Theorem 3.25 by these propositions. See §6.5.

In this subsection, we prove a result which enables us to estimate the distribution of
the orbits in the invariant curve for a pre-solution of profound depth, which will be a
fundamental tool for the proof of Theorem 3.25.

PROPOSITION 5.16. Let (D, F) be a Markov IFS with a separated periodic point q and its
q-free homoclinic point Q such that q has a large stable manifold, where F is a member of
some retarded family (Fn). Given a neighborhood W of orb(q) and r ∈ (0, 1), there exists
an integer L0 such that the following holds. Given a pre-solution G of depth L ≥ L0 which
is an admissible perturbation of F = Fn, consider the Markov IFS (GL(D), ∧LG). For
every point x ∈ �L (see Proposition 5.12), if (G)−L(x) is defined, then one of the following
holds.
• In the interval [0, L − 1], there is a connected interval H ⊂ [0, L − 1] such that for

any i ∈ H , G−i (x) ∈ W ∩ GL(D) and #H > rL.
• In the interval [0, L−1], there are two disjoint connected intervals H1, H2 ⊂ [0, L−1]

such that for any i ∈ H1 ∪ H2, G−i (x) ∈ W ∩ GL(D) and #H1 + #H2 > rL.
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Proof. Let W and r be given. First, since q has a large stable manifold, there exists � such
that (Fq)�(

⋃
Dqi

) ⊂ W . We fix such � and denote it by �0. We fix L0 which satisfies
(L0 − �0 − a − t)/L0 > r . Notice that for every L ≥ L0, (L − �0 − a − t)/L > r holds.
Let us show that any pre-solution G of depth L ≥ L0 which is an admissible perturbation
of F satisfies the desired condition.

To see this, let us take x ∈ �L such that G−L(x) is well defined. We define two sets of
integers:

I1 :=
{

0 ≤ i < L | G−i (x) ∈ (Fq)�0
(⋃

Dqi

)}
, I2 := [0, L − 1] \ I1.

Let us consider the length of connected intervals of I1 and I2.
• By Remark 5.13 and the definition of �0, the connected intervals of I1 which are

bounded by the points of I2 have a length at least L − �0 + 1. Indeed, let i1 be the
first integer of such a connected interval, then by Remark 5.13, we know G−i0(x) ∈
(Fq)L0(

⋃
Dqi

). Thus, G−i0−k(x) belongs to (Fq)�0(
⋃

Dqi
) for k = 0, . . . , L − �0.

• By Remark 5.13, the connected intervals of I2 have a length no longer than �0 + a + t.
Note that, together with the definition of L, this implies that I1 is not empty.

Thus, we can deduce the following.
• If I2 is empty, then the conclusion is obvious.
• If the number of connected intervals in I2 is more than one, then there is at least one

connected interval in I1 which is bounded by the points of I2. Let us denote one of
them by H. Then we have

#H ≥ L − �0 + 1 > Lr .

• If there is only one connected interval in I2, then I1 has at most two connected
intervals. If there is only one, say H, since the length of the connected interval in
I2 is no more than �0 + a + t, we have

#H ≥ L − (�0 + a + t) > Lr .

If there are two (and only two) connected components, we obtain the conclusion by
letting them be H1 and H2 and repeating a similar argument.

Thus, the proof is completed.

6. Solution of local problem
The aim of this section is to complete our construction by building perturbations having the
announced invariant curves. Usually, constructions of invariant objects are done by means
of fixed point theorem arguments in some infinite dimensional setting. Our construction is
somehow unconventional. We directly propose families of pre-solutions having arbitrarily
profound depth and we prove that such families are realizable by a small perturbation.

The confirmation of the smallness of the perturbation is the main step of the proof.
For getting our pre-solution by a C1-small perturbation, we need enough homothetic
fundamental domains, and this changes the deepness of the pre-solution for which we
are looking. Seemingly, the ‘cost’ of the perturbation would increase as we require the
coincidence only on the deeper part. As such, it appears to lead us to a vicious circle.
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However, by carefully observing the proof of the fragmentation lemma and choosing the
curve correctly, we see that it does not depend on the depth we demand, if the intermediate
dynamics is sufficiently ‘clean’. More precisely, we will see that, after cleaning, we can
choose the curves which are graphs with bounded derivatives independent of the depth,
and all these curves have the same cost. To follow this strategy, we need to examine the
geometric information of objects we treat and establish a method for cleaning the possible
difficulties by a small perturbation.

Let us now explain how our strategy is structured in this section. The first step is
that a saddle-node retarded family can be perturbed into a prepared family (that is, the
announced family which is sufficiently ‘clean’). In §6.1, we give the precise definition and
its construction. Then we need to show that any prepared family admits a pre-solution of
arbitrarily profound depth by a small perturbation. To find such a perturbation, we need to
have an estimation of the C1-size, which we shall refer to as the cost of the perturbation
(see Definition 6.7). We will prove that there is an upper bound of the cost which is
independent of the depth. Our estimation will be obtained as follows. First, we prepare a
quantitative version of the fragmentation lemma which relates the cost of the perturbation
and the geometric complexity of the curves (§6.2). Then we observe that the geometric
complexity of the curve we need to produce is bounded thanks to the preparedness of the
family (§6.3). The combination of these two techniques enables us to conclude Theorem
3.25 (§§6.4, 6.5).

In this section, by a support of a diffeomorphism f : M → M , we mean supp(f , id),
that is, the closure of the set {x ∈ M | x 	= f (x)}.

6.1. Prepared family. We begin with the definition of the prepared family. It is a
saddle-node retarded family having convenient behavior of the objects we treat such as
the obstructions, images of discs, and the strong stable manifold of the flexible point.

Definition 6.1. A saddle-node family {(D, Fn)}n≥1 retarded at a separated periodic point
q having a q-free homoclinic point Q is said to be prepared if the following hold (see
Figures 7 and 8).
(P0) Dq is a round disc B(1).
(P1) The homothetic region of (F1,q)π(q) is B(1) \ B(λ) = Dq \ B(λ), where 0 < λ <

1 is the homothetic factor. Also, �i = B(λi) for i = 0, . . . , π(q), where 1 = λ0 >

· · · > λπ(q) = λ.
(P2) There are τ > 0 and rectangles βi ⊂ Dq (i = 0, . . . , π(q) − 1) satisfying the

following:
(P2-1) �̄τ+i are round discs contained in the diagonal region (see Definition 5.2)

of F
π(q)

1,q whose centers are q for i = 0, . . . , π(q) − 1;
(P2-2) for i = 0, . . . , π(q) − 1, βi is a rectangle in the interior of the annulus

bounded by �τ+i and �τ+i+1 such that its sides are parallel to the
coordinate axes (which are eigendirections of DF

π(q)

1,q |q ) and its center
is on the positive side of the x-axis. Furthermore, it is disjoint from the
line {x = y};

(P2-3) �τ+i is contained in the interior of βi for i = 0, . . . , π(q) − 1;
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FIGURE 7. A graphical explanation of a prepared family outside the diagonal region. In the few first fundamental
domains, the map is a contracting homothety. The well �1 and the obstructions �i are all round discs (indicated
by tiny circles) and Wss

loc(q) coincides with the x-axis except some region in each annulus bounded by �i and
�i+1.

(P2-4) There is an integer τ ′ > 0 such that (F
π(q)

1,q )τ
′
(�1) is contained in the

interior of βi for some i = 0, . . . , π(q) − 1.
(P3) For each i = 0, . . . , π(q) − 1, there is λ∗

i ∈ (λi+1, λi) such that the following
holds. Set Ai = B(λi) \ B(λi+1) and A′

i = B(λ∗
i ) \ B(λi+1). Then for every i, we

have:
(P3-1) the intersection of Wss(q, F

π(q)

1,q ) with Ai consists of two connected

components connecting �i and �i+1. The intersection of Wss(q, F
π(q)

1,q )

with A′
i coincides with the x-axis;

(P3-2) �i is contained in A′
i and is disjoint from the x-axis and the line {x = y};

(P3-3) �1 is contained in some A′
i and is a round disc whose center is on the

x-axis and disjoint from the line {x = y}.

Remark 6.2
• In condition (P2), βi is defined for i = 0, . . . , π(q) − 1. For i ≥ π(q), we define

βi setting βi = F
π(q)

1,q (βi−π(q)). Note that they are rectangles satisfying similar
conditions, but they may touch the line {x = y}. This will not bring any inconvenience
to our construction.
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FIGURE 8. A graphical explanation of the prepared family near the diagonal region. Here, �̄τ+i are round discs
for i = 0, . . . , π(q) − 1. Each annulus bounded by �̄τ+i and �̄τ+i+1 contains a rectangle which contains the
image of the well and the obstruction. Note that in the diagonal region, the x-axis coincides with the strong stable

manifold of q.

• The definition of a prepared family is stated as the condition of F1. Note that if F1
satisfies the condition, then Fn satisfies the corresponding condition. More precisely:
– condition (P1) holds replacing B(1) \ B(λ) with B(1) \ B(λn);
– condition (P2) holds in the corresponding diagonal region of Fn by replacing τ

with τ + n − 1;
– condition (P3) holds for Fn as it is.

The following proposition says that any saddle-node retarded family admits an arbi-
trarily small perturbation such that the perturbed family is C1-conjugated to a prepared
family.

PROPOSITION 6.3. Let {(D, Fn)}n≥1 be a saddle-node family retarded at an ε-flexible,
separated periodic point q having a q-free homoclinic point Q. For every δ > 0, there exist
a C1-coordinate change ϕ of D (see Definition 3.23) independent of n and a saddle-node
family (Gn = {gn,j })n≥1 such that the following hold.
• There is n1 ≥ 1 such that for every n ≥ 1, Gn is a perturbation of Fn+n1 along q and

the two IFSs Fn+n1 and Gn are δ-C1 close.
• {Gn}n≥1 is a prepared family up to the coordinate change ϕ, that is, (ϕ(D), {ϕ ◦ gn,j ◦

ϕ−1})n≥1 is a prepared family for ϕ(q) and ϕ(Q).
Note that if (Fn) is uniformly bounded (see Definition 5.5), then the same holds for (Gn),
since each Gn is a perturbation of one of Fn whose size is uniformly bounded.
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The proof of Proposition 6.3 consists of several steps. Since the proof is lengthy, we
give the outline of the proof before going into the details.

First, we consider a deformation of the retarded family (Fn) with which we can achieve
the desired conclusion. Then, we investigate the ‘cost’ of the deformation, where the
word ‘cost’ means the number of diffeomorphisms which are δ-close to the identity
whose composition realizes above perturbation. Then we use the retardability of the
family to obtain homothetic regions where we realize above δ-small diffeomorphisms.
These perturbations produce (Gn) for which the properties of prepared families hold
inside homothetic regions. Then, since the number of fundamental domains outside the
homothetic region is finite, one can complete the proof just by taking a coordinate change
outside the homothetic region.

Proof. Let a saddle-node family {(D, Fn)} for q and Q be given. Let B(R) \ B(λnR) be
the homothetic region of F

π(q)
n,q .

Step 1. First preparation. Since the stable manifold of q is large, (Fπ(q)
n,q )j (�i) converges

to {q} as j → ∞ for every n and i = 0, . . . , π(q) − 1. The same holds for (F
π(q)
n,q )j (�i)

(i = 0, . . . , π(q) − 1) and (F
π(q)
n,q )i(�1). Thus, we can take the projections of �i ,

�i (i = 0, . . . , π(q) − 1), and �1 to the orbit space (the quotient space obtained
by identifying the points in the same orbit) of the punctured disc Dq \ {q} which is
diffeomorphic to the 2-torus T2 (for the details of the orbit space, see [BS1, §§2 and 3]).
Notice that the projections of these objects are independent of the choice of n. We project
the two branches of the strong stable manifold Wss(q), �i , �i , and �1 to T

2. We denote
them by σ̃1, σ̃2, �̃i , �̃i , and �̃1, respectively. In the following, given an object in Dq \ {q},
we denote its projection to T

2 by putting a tilde.
Step 2. Preparation from outside. We fix constants 1 = λ0 > · · · > λπ(q)−1 > λ and

consider B(λiR). Also, we fix {λ∗
i }i=0,...,π(q)−1 satisfying λi > λ∗

i > λi+1. We denote the
boundary of B(λiR) by Ci and its projection to T

2 by C̃i . Note that Ci are in the same
homotopy class as �i in Dq \ {q}. Thus, we can find a C1-ambient isotopy which maps⋃

�̃i to
⋃

C̃i in T
2 (that is, a C1-diffeomorphism isotopic to the identity such that it maps⋃

�̃i to
⋃

C̃i). We denote it by X̃1 : T2 → T
2.

We choose round discs Di ⊂ Int(B(λiR) \ B(λi+1R)) such that Di is disjoint from the
x-axis and the line {x = y} for i = 0, . . . , π(q) − 1. Also, we choose a round disc D�

contained in Int(B(λi�R) \ B(λi�+1R)) disjoint from {x = y} and Di� such that its center
is on the x-axis (see Definition 5.9 for the definition of i�). By deforming X̃1, we can
obtain another ambient isotopy X̃2 which satisfies the condition of X̃1, X̃2(�̃i) = D̃i , and
X̃2(�̃1) = D̃�.

Step 3. Preparation from inside. Now we consider the information in the diagonal
region. We fix concentric round circles Ei (i = 0, . . . π(q) − 1) in Dq contained in the
diagonal region of F

π(q)

1,q such that:
• the center of Ei is q;
• Ei is contained in Ei−1 for i = 1, . . . π(q) − 1;
• Eπ(q)−1 contains Eπ(q) := F

π(q)

1,q (E0) in its interior.
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We denote their projections to T
2 by Ẽi ⊂ T

2. Consider Ẽi and C̃i in T
2 (i =

0, . . . , π(q) − 1). Since they are in the same homotopy class in Dq \ {q}, we see that
they are ambient isotopic in T

2. We denote such an ambient isotopy by Ỹ1 (that is,
Ỹ1(

⋃
C̃i) = ⋃

Ẽi holds).
Let us consider the position of the strong stable manifold σ̃j (j = 1, 2) in the orbit

space. First, in each annulus Ai (i = 0, . . . , π(q) − 1), let r1,i (respectively r2,i) be the
intersection between Ai and the half x-axis in the positive (respectively negative) side.
Similarly, using A′

i (i = 0, . . . , π(q) − 1), we define r ′
1,i and r ′

2,i in a similar way.
Then, we choose two families of curves γi,j ,k (j = 1, 2, k ∈ Z) in Ai \ Ai+1 such that

the following hold:
• in a small neighborhood of r ′

i,j , γi,j ,k coincides with ri,j ;
• in Ai \ A′

i , γi,j ,k winds k-times in the counter-clockwise direction (if k is negative,
then it winds k-times in the clockwise direction);

• γi,1,k and γi,2,k are disjoint.
Recall that Ei are round circles in the diagonal region, and Ei and Ei+1 bound an

annulus. Consider the intersection of the annulus and Wss(q). It is a union of two disjoint
curves. We denote each connected component by σj ,i (j = 1, 2). Then, in T

2, σ̃i,j is a
curve which connects Ẽi and Ẽi+1.

Now, we consider a diffeomorphism Ỹ2 which is isotopic to Ỹ1 satisfying the follow-
ing:
• Ỹ2(

⋃
C̃i) = ⋃

Ẽi ;
• σ̃i,j ∩ Ã′

i coincides with Ỹ2(r̃
′
i,j ); and

• σ̃i,j coincides with Ỹ2(r̃
′
i,j ) in a small neighborhood of Ỹ2(r̃i,j ).

Then we see that for each i,
⋃

j σ̃i,j is ambient isotopic to
⋃

Ỹ2(γ̃i,j ,ki
) in the annulus

bounded by Ẽi and Ẽi+1 for some ki . Thus, we can take Ỹ3 which is isotopic to Ỹ2

satisfying all the conditions of Ỹ2 and σ̃i,j = Ỹ3(γ̃i,j ,ki
) for every i and j.

Finally, we choose βi . Consider the annulus bounded by Ei and Ei+1. We choose a
subset βi which satisfies the following. It is a rectangle whose edges are parallel to two
coordinate axes and whose center is on the x-axis. Notice that Int(βi) ∪ Wss(q) coincides
with the x-axis. Now we perform the final modification to Ỹ3. We take Ỹ4 which is isotopic
to Ỹ3, satisfying all the conditions of Ỹ3 and furthermore it satisfies:
• Ỹ4(D̃i) is a disc contained in Int(β̃i);
• Ỹ4(D̃�) is a disc contained in Int(β̃i) for some i.

Step 4. Estimation of the cost of the deformation. We have finished the preparation of
the perturbation. Now we give perturbations to the family (Fn). In the following, the maps
which will be perturbed are just Fn,F−1(q).

As is in the argument of [BS1] (see the proof of [BS1, Lemma 3.1]), we realize X̃2

and Ỹ4 as follows. First, by applying the fragmentation lemma (see Theorem 6.6 in the
next section), we take C1-diffeomorphisms {χ̃i}i=1,...,K and {υ̃i}i=1,...,L of T

2 which
are δ-C1-close to the identity and are supported on small discs such that the following
equalities hold:

X̃2 = χ̃K ◦ · · · ◦ χ̃1, Ỹ4 = υ̃L ◦ · · · ◦ υ̃1.
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Now, consider the family {(D, Fn)}, where n = 3K + k + 3L and k ≥ 1. We will prove
the theorem setting n1 = 3K + 3L (for n1, see the statement of Proposition 6.3).

Step 5. Realization of deformations. In each three consecutive fundamental domains in
the homothetic region B(λ3i−3R) \ B(λ3iR), we take the lift of χ̃i and denote it by χi .
We take χ̃i in such a way that their supports are so small that we can take the lift of them
supported in B(λ3i−3R) \ B(λ3iR).

Now consider the following diffeomorphism X of Dq (whose support is contained in
B(R) \ B(λ3KR)):

X = χK ◦ · · · ◦ χ1.

Since the conjugation by a homothetic transformation does not affect the C1-distance, X
is also δ-C1-close to the identity map. We define the new IFS (D, F ′

n) by composing X to
Fn,F−1(q) and keep the other maps intact.

Now, there exist K, K0, and n1 such that the following hold for every n = n1 + k:

• (F
′ π(q)
n,q )K0(�i) = B(λKλiR) for i = 0, . . . , π(q) − 1;

• F
′ π(q)
n,q is a homothety of homothetic factor λ on B(λ3KR) \ B(λ3K+k+3LR);

• (F
′ π(q)
n,q )K0(�i) is a round disc contained in (F

′ π(q)
n,q )K0(�̄i \ �̄i+1) disjoint from the

x-axis and the line {x = y};
• (F

′ π(q)
n,q )K0(�1) is a round disc contained in (F

′ π(q)
n,q )K0(�̄i� \ �̄i�+1) whose center

is on the x-axis and disjoint from the line {x = y}.
We perform another perturbation. For n = n1 + k, take the lift of υ̃i and compose it on

B(λ3K+kR) \ B(λ3K+k+3LR) and define Y in the similar way. That is, first, we take the
lift of υ̃i on B(λ3K+k+3(i−1)R) \ B(λ3K+k+3iR) and denote it by υi (remark that υi does
depend on k, while χi does not). Then consider the following diffeomorphism of Dq :

Y = υL ◦ · · · ◦ υ1.

Then for F ′
n, we compose Y to F ′

n,F−1(q)
and keep the other maps intact. We denote this

IFS by Gk .
We can check that it satisfies, in addition to the previous four conditions, the following

ones:
• Wss(q, F

π(q)
n,q ) coincides with the x-axis on B(λ3Kλ∗

i R) \ B(λ3Kλi+1R) for every
i = 0, . . . , π(q) − 1. Note that the same holds for B(λ3K+j λ∗

i R) \ B(λ3K+j λi+1R)

for j = 0, . . . , k − 1;
• (G

π(q)
k,q ) satisfies condition (P2) in Definition 6.1.

Thus, (G
π(q)
k,q )k≥1 is a retarded family for q and Q with a homothetic region B(λ3KR) \

B(λ3K+kR) such that every Gk is δ-C1-close to Fn1+k .
Final step. Taking conjugacy. Now, let us take a coordinate change between Dq and

B(1) under which the family (Gk) satisfies condition (P1) (we change coordinates only
on Dq ). First, let RG = λ3KR be the radius of a ball such that G

π(q)
k,q is a homothety on

B(RG) \ B(λkRG). Recall that K0 ≥ 0 satisfies (G
π(q)
k,q )K0(Dq) = B(RG). Then we define

a family of diffeomorphisms {hk} on the disc B(λ−K0RG) as follows:

• hk = G
π(q)
k,q inside (G

π(q)
k,q )K0(Dq) = B(RG);

• outside (G
π(q)
k,q )K0(Dq), hk is a homothety of homothetic factor λ.
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Now we can define a conjugacy ρ : Dq → B(λ−K0RG) between G
π(q)
k,q and hk as follows.

Set ρ to be the identity map inside (G
π(q)
k,q )K0(Dq). Outside (G

π(q)
k,q )K0(Dq), we extend ρ

subject to the formula ρ = h−1
k ◦ ρ ◦ G

π(q)
k,q . Notice that ρ can be extended to a conjugacy

ρ : Dq → B(λ−K0RG) since (G
π(q)
k,q )K0(Dq) = B(RG).

Finally, by conjugating the family {hk} by the homothety with homothetic factor λK0 , we
obtain the desired family. Notice that the conjugation by the homothety keeps the x-axis
and the roundness of discs. Thus, we see that this conjugated family satisfies condition
(P1). Using condition (P1) and the conditions on (Gk), we can also check that the resulted
family also satisfies conditions (P2) and (P3). This completes the proof.

Remark 6.4. If we construct a prepared family by Proposition 6.3, then the obtained
prepared family is automatically bounded, for (Fn) are uniformly bounded and each Gk

is δ-close to Fk+n1 .

In the rest of this section, we will prove the following.

PROPOSITION 6.5. Let {(D, Fn)}n≥1 be a prepared family for a periodic point q and
its u-homoclinic point Q such that (Fn) is uniformly bounded. For every ε2 > 0, there
exist n0, m0 ≥ 1 and a neighborhood Wn0 of q such that there is a family of adapted
ε2-perturbations (Gm)m≥m0 of Fn0 such that Gm is a pre-solution of depth m and
(Gm,q)π(q)|Wn0

= (Fn0,q)π(q)|Wn0
holds for every m ≥ m0.

If we prove Proposition 6.5, then with Proposition 6.3, we can conclude Theorem 3.25.
At the end of this section, we will prove Proposition 6.5 using Proposition 6.8, which will
be proved in the next two sections.

6.2. Fragmentation lemma and the cost of a curve. In this subsection, we give an
important ingredient of the proof of Proposition 6.5. First, let us recall the statement of
the classical fragmentation lemma.

THEOREM 6.6. (Fragmentation lemma) Given any smooth closed Riemannian manifold
M, any diffeomorphism f : M → M isotopic to the identity map, and any ε > 0, there is
a sequence {ϕi}i=1,...,k of diffeomorphisms of M with the following properties.
(1) For every i, the C1-distance between ϕi and the identity map IdM is less than ε.
(2) For every i, ϕi coincides with the identity map outside a disc of radius ε.
(3) f = ϕk ◦ · · · ◦ ϕ1.

Theorem 6.6 enables us to decompose a given diffeomorphism into a composition of
diffeomorphisms whose C1-distance from the identity is arbitrarily small, while it does not
give any information about the number of diffeomorphisms needed. To prove Proposition
6.5, we need to establish the upper bound of it. To clarify the meaning of the upper bound,
we introduce a definition.

Definition 6.7. Let γ1, γ2 be C1-curves in a disc D ⊂ R
2 transverse to ∂D. We assume

that γ1 and γ2 coincide near ∂D. Let η > 0. The η-cost from γ1 to γ2, denoted by
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cη(γ1, γ2) ∈ N, is the minimum integer n such that there are diffeomorphisms ϕ1, . . . , ϕn

of D satisfying the following:
• ϕi is supported in a disc of radius η contained in D \ ∂D for every i;
• ϕi is η-C1-close to the identity map for every i; and
• ϕn ◦ · · · ◦ ϕ1(γ1) = γ2.

We will prove the following.

PROPOSITION 6.8. Given a real number η > 0 and a prepared family {(D, Fn)}n≥1 for a
periodic point q and its u-homoclinic point Q, there exist c = cη ∈ N, m2 = m2,c ∈ N, and
a curve γ0 ⊂ �1 such that for every n ≥ 1 and m ≥ m2 + (n − 1)π(q), there is a curve
γn,m ⊂ �1 which coincides with γ0 near ∂�1 and satisfies the following (see Definition 5.8
for the definitions of Ti , Si and �i . Note that they are defined by Fn and depend on n):
• γ0 = {x-axis} ∩ �1 = Wss

loc(q, F
π(q)
n,q ) ∩ �1;

• γn,m ∩ Tm = F a
n,q ◦ F t

n,Q ◦ Fm
n,q(Wss

loc(F
−m(Q1))) (see §5.3 for the definitions of Q1,

t and a);
• γn,m ∩ �i is a connected C1-curve and γn,m ∩ �i = ∅ for i = 1, . . . , t − 1;
• γn,m ∩ Ti is a connected C1-curve and γn,m ∩ Si = ∅ for i = 0, . . . , m − 1;
• cη(γn,m, γ0) ≤ c for every n ≥ 1 and m ≥ m2 + (n − 1)π(q).

The next lemma will be one of our main tools. We give a bound of the cost of curves in
a simple situation. In the following, by D, we denote the unit disc B(1) ⊂ R

2.

LEMMA 6.9. Let 0 < δ < 1 be given. Given α > 0 and ε > 0, there is N ∈ N satisfying
the following property. Suppose f : [−1, 1] → R is a C1-map satisfying:
• f (t) = 0 if t ∈ [−1, −1 + δ] ∪ [1 − δ, 1];
• |f ′(t)| < α for every t;
• the graph of f, that is, {(t , f (t)) ∈ R

2 | t ∈ [−1, 1]}, is contained in D.
Then there is a sequence of diffeomorphisms {ϕi}i=1,...,K where K ≤ N and satisfies the
following:
• for every i = 1, . . . , K , the support of ϕi is contained in D \ ∂D and has diameter

less than ε;
• for every i, the C1-distance between ϕi and the identity map is smaller than ε; and
• ϕK ◦ · · · ◦ ϕ1([−1, 1] × {0}) is equal to the graph of f.

Proof. Let θ : R → [0, 1] be a smooth bump function satisfying the following:
• θ is equal to zero in (−∞, −2 + δ0] ∪ [2 − δ0, +∞) for some small δ0 > 0;
• θ is identically 1 on [−1, 1].
For every sufficiently large n ∈ N and every i ∈ {0, . . . , n3 − 1}, we denote by ψi,n the
diffeomorphism of D defined as the time one map of the vector field

Xi,n(x, y) = θ(n(y − i

n3 f (x)))
f (x)

n3
∂

∂y
.

Note that ψi,n(x, i/n3f (x)) = (x, (i + 1)/n3f (x)), so we have ψn3−1,n ◦ · · · ◦
ψ0,n((x, 0)) = (x, f (x)) for every x ∈ [−1, 1]. Furthermore, the support of ψi,n is
contained in the 2n−3-neighborhood of {(x, i/n2f (x)) | x ∈ [−1 + δ, 1 − δ]}. A simple
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calculation shows that the C1-distance of ψi,n from the identity map is bounded by
Kαn−2 (where α is the constant in the statement of this lemma and K > 0 is some
constant independent of f ), and hence tends to 0 when n → ∞.

However, the diameter of the support of ψi,n does not tend to 0. To obtain this property,
we take finer factorization in products of diffeomorphisms with smaller support.

We put

θj ,n(x) = θ(n(x − j/n))∑+∞
k=−∞ θ(n(x − k/n))

.

The family {θj ,n} is a partition of unity whose differential is proportional to n. Then, we
define diffeomorphisms {ϕi,j ,n} as a time one map of the vector field

Xi,j ,n(x, y) = θj ,n(x)Xi,n(x, y).

Given a pair (i, n), each ϕi,j ,n commutes, because each ϕi,j ,n is, when restricted to the
line {x = x0}, a flow generated by a proportional vector field. Let ρi,n be the product of
{ϕi,j ,n} for j ∈ {−2, . . . , n + 2}. Then we have ρn3−1,n ◦ · · · ◦ ρ0,n((x, 0)) = (x, f (x))

for every x ∈ [−1, 1], the C1 distance between ϕi,j ,n and the identity map is bounded by
a constant proportional to K ′αn−1 (where K ′ > 0 is some constant independent of f ) and
the diameters of their supports are bounded by 4n−1. Thus, the proof is completed.

6.3. Choice of the curves: proof of Proposition 6.8. Using Lemma 6.9, we can complete
the proof of Proposition 6.8.

Proof of Proposition 6.8. Let {(D, Fn)}n≥1 be a prepared family for a periodic point q
and its homoclinic point Q. Let λ be the homothetic factor of the retarded family (F

π(q)
n,q ).

Also, let η > 0 be given.
To construct the family {γn,m}, given η′ > 0, we only need to construct a family of

curves {αn,m}n≥1,m≥m3+π(q)(n−1) (where m3 is some non-negative integer) in Dq = B(1)

such that the following hold (recall that �i and �i are defined by Fn, so they depend
on n):
• let α0 be the diameter Dq ∩ {x = y}. Every αn,m coincides with α0 near ∂Dq ;
• αn,m ∩ �̄i is a connected curve for every i = 0, . . . , m;
• αn,m ∩ �i = ∅ for i = 0, . . . , m − 1;
• αn,m ∩ (F

π(q)
n,q )i(�1) = ∅ for i = 0, . . . , [m/π(q)] − 1;

• αn,m ∩ �̄m coincides with the x-axis;
• there exists an integer cη′ > 0 such that

cη′(αn,m, α0) ≤ cη′

for every n ≥ 1 and m ≥ m3 + π(q)(n − 1).
If we have constructed such a family, then we can obtain the conclusion. To see this, recall
that there is an integer d such that Td = F a

n,q ◦ F t
n,Q ◦ F d

n,q(Dq) holds (see Remark 5.10,
recall that Td is a disc in the transition well). If we take the image of the family {αn,m} under
F a

n,q ◦ F t
n,Q ◦ F d

n,q , it gives a family of curves in Td such that for each n, the Knη
′-cost

between F a
n,q ◦ F t

n,Q ◦ F d
n,q(α0) and F a

n,q ◦ F t
n,Q ◦ F d

n,q(αn,m) is uniformly bounded, where
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Kn > 0 is some constant determined by F a
n,q ◦ F t

n,Q ◦ F d
n,q . Note that Kn depends on n, but

as (Fn) is uniformly bounded by assumption, the sequence (Kn) is also uniformly bounded.
As a result, the Kη′-cost of the family F a

n,q ◦ F t
n,Q ◦ F d

n,q(αn,m) is uniformly bounded by
cη′ , where K is the uniform bound of (Kn). Thus, given η > 0, considering η′ satisfying
Kη′ < η, we obtain the boundedness of the η-cost for the image curves.

Let us explain how to extend these curves to obtain {γn,m} and γ0. We extend the curve
F a

n,q ◦ F t
n,Q ◦ F d

n,q(α0) to a C1-curve γ0 in �1 which coincides with the x-axis near the
boundary of �1. Since the objects in �1 outside Td, such as �i for i = 1, . . . , t − 1 and
Si for i = 1, . . . , d − 1, are the same for every n, we can extend each image F a

n,q ◦ F t
n,Q ◦

F d
n,q(αn,m) to �1 such that the following hold:

• each extension coincides with γ0 near the boundary of �1;
• the η-costs between each extension and γ0 are uniformly bounded;
• the intersections between each extension and �i (i = 0, . . . , t − 1), Ti (i = 0, . . . , d)

are connected.
Thus, they give the desired family {γn,m}.

Now, given η′ > 0, let us construct the family of curves {αn,m} in Dq which has
uniformly bounded η′-cost from α0. We only need to construct a family {α1,m}m≥m3 since
for general {αn,m}, we only need to extend the homothetic image of {α1,m}l≥m3 by a straight
line in the homothetic region. Note that by increasing n by 1, the number of the homothetic
region increases by 1, thus the number of intermediate strata increases by π(q). Thus,
{αn,m} is defined only for m ≥ m3 + π(q)(n − 1).

Let τ be an integer in condition (P2) (see Definition 6.1). Recall that we have rectangles
βk ⊂ �τ+k \ �τ+k+1 for k ≥ 0. Now, we construct a family of curves {ζi}i≥0 in �̄τ

satisfying the following conditions (see Figure 9):
• βk ∩ ζi = ∅ if k < i;
• βk ∩ ζi coincides with the x-axis if k ≥ i;
• for each i, the two endpoints of ζi are �τ ∩ {x = y};
• for every i ≥ 0 and j ≥ τ , ζi ∩ �̄j is a connected curve.

Let us prove the following.

CLAIM 6.10. {ζi} ⊂ �τ can be chosen in such a way that the η′-cost from ζ−∞ := �̄τ ∩
{x = y} is uniformly bounded.

Proof. We need to achieve two properties: ζi avoids the intersection with βk for k < i and
they must have intersection for i ≥ k. The other condition is that the intersection with ζi

and �̄j is connected.
To obtain both, we choose the family of curves {ζi} described as in Figure 9. Namely,

ζ� is a curve such that:
• in the positive x-half plane, first it follows the x-axis;
• then it makes an almost vertical turn to the y-direction between β� and β�−1;
• after the curve reaches higher than the line {x = y}, it makes another almost vertical

turn to the x-direction. Recall that we require that βi (i = 0, . . . π(q) − 1) is disjoint
from the line {x = y};
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FIGURE 9. A graphical explanation of the family {ζi}. They are chosen in such a way that they have bounded
derivatives with respect to the orthogonal x′y′-coordinates where {x = y} corresponds to the x′-axis, except
some finitely many ζi . In the picture, ζ0, ζ1, ζ2 are the exceptions. They need to turn back to reach the line

{x = y} and may fail to be graphs in x′y′-coordinates.

• when it arrives at the line {x = y}, the curve follows it to reach �τ ;
• on the negative x-half plane which contains no βi , we just take some extension, paying

attention to keep the condition about the connectedness.
We can construct such ζi for every sufficiently large i. If we introduce an orthogonal
x′y′-coordinate system on �τ which sends ζ−∞ to the x′-axis, then it is not difficult to see
that we can realize ζi as the graphs of functions whose derivatives are uniformly bounded.
Note that in the diagonal region, the map F

π(q)

1,q has the diagonal form. It guarantees that
if the turns of ζi are sufficiently vertical, then the curves �̄j ∩ ζi are connected.

Now, Lemma 6.9 implies the uniform boundedness of the cost from ζ−∞ to ζi . There
may be some curves where this construction does not hold, but there are at most finitely
many such curves and their contributions are irrelevant to the boundedness of the cost.

Then we need to connect {ζi} to �0. The shape of (�i) and (F
π(q)

1,q )j (�1) may be
complicated in �̄0 \ �̄τ but the size of this region is bounded. Thus, we can extend {ζi} to
{α1,m} keeping the uniform boundedness of the η′-cost.

6.4. Proof of Proposition 6.5. In this subsection, we finish the proof of Proposition 6.5.

Proof. Let {(D, Fn)}n≥1 be a prepared family and fix ε2 > 0. We take an integer c > 0
and the curves γ0 and {γn,m}n≥1,m≥m2+π(q)(n−1) in �1 by Proposition 6.8. We have
cε2(γm,n, γ0) < c for every n ≥ 1 and m ≥ m2 + π(q)(n − 1).
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By definition of the ε2-cost, for each m ≥ m2 + π(q)(n − 1), there are diffeomor-
phisms ϕ1,m, . . . , ϕc,m supported in the interior of �1, ε2-C1-close to the identity such
that

ϕc,m ◦ · · · ◦ ϕ1,m(γn,m) = γ0.

Fix now an integer n0 greater than c + 1. We compose ϕi,m to Fn0,F−1(q) as in the proof
of Proposition 6.3. Namely, for i ∈ {1, . . . , c}, let ψi be a diffeomorphism of Dq which
satisfies ψi,m = (F

π(q)
n0,q )i ◦ ϕi,m ◦ (F

π(q)
n0,q )−i on (F

π(q)
n0,q )i(�1) and equal to the identity map

outside. Note that ψi,m is supported on (F
π(q)
n0,q )i(�1), which is contained in the annulus

(F
π(q)
n0,q )i(Dq) \ (F

π(q)
n0,q )i+1(Dq). Remark that this is contained in the homothetic region of

Fn0 .
Notice that the C1-distance between ψi,m and the identity map is bounded by ε2, as ψi,m

is conjugated to ϕi,m by a contracting homothety. The maps {ψi,m}i=1,...,c have disjoint
supports. So they commute. Let ψm be the product ψm = ψc,m ◦ · · · ◦ ψ1,m and let Gm be
a Markov IFS obtained by composing ψm to Fn0,F−1(q) and keeping the other maps intact.

The map Gm is an admissible ε2-C1-small perturbation of Fn0 . Let us check the
following.

CLAIM 6.11. Gm is a pre-solution of depth m.

Proof. Let us see that

Wss(q, G
π(q)
m,q ) ∩ �1 = γn0,m.

Then, the fact that Gm is an admissible perturbation of Fn0 and the definition of γn0,m

immediately implies the conclusion.
Consider a point x̄ ∈ �1 and k > c. Then,

(G
π(q)
m,q )k(x̄) = (F

π(q)
n0,q )k−c ◦

[ c∏
i=1

[(Fπ(q)
n0,q )i ◦ ϕi,m ◦ (F

π(q)
n0,q )−i ◦ F

π(q)
n0,q ]

]
(x̄)

= (F
π(q)
n0,q )k ◦ ϕc,m ◦ · · · ◦ ϕ1,m(x̄).

Therefore, for x̄ ∈ �1, we have x̄ ∈ Wss(q, G
π(q)
m,q ) if and only if ϕc,m ◦ · · · ◦ ϕ1,m(x̄)

belongs to Wss(q, F
π(q)
n0,q ) ∩ �1 = γ0, that is, x̄ ∈ γn0,m.

Thus, the proof of Proposition 6.5 is completed.

6.5. Weakness of the invariant curves. Now we are ready to finish the proof of
Theorem 3.25. Let us complete it.

Proof. Let a Markov IFS (D, F) with an ε-flexible point q having a large stable manifold
and its u-homoclinic point Q be given. Also, let η > 0 and ε0 > 0 be given.

First, we apply Lemma 5.6 and Proposition 6.3 successively. Then we obtain a
bounded prepared family {(D, Fn)} such that each Fn is a C1-ε-perturbation of F and
the C0-distance between Fn and F is less than ε0.
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Then we apply Proposition 6.5 to (Fn) letting ε2 > 0 be small. Then we obtain n0, m0,
Wn0 , and a family of pre-solutions (Gm)m≥m0 of depth m which are ε2-admissible perturba-
tions of Fn0 . Each Gm has a family of univalent invariant curves �m in (0, m)-refinement
by Proposition 5.12. Note that (Gm) is bounded, too. Since ε2 can be chosen arbitrarily
small, we see that (Gm) is C1-ε-close to F and C0-ε0-close to F. Note that by shrinking
Wn0 , we may assume that the differential of F

π(q)
n,q |Dq∩Wn0

on the x-axis is equal to one.
In the following, we will choose convenient m so that in the resulted dynamics, this

curve has two kinds of hyperbolicity in the definition of contracting invariant curves, see
Definitions 3.12, 3.13, and 3.15. We only explain how to establish the weakness of the
curves. The choice of m for the contraction in the tangential direction is left to the reader.

We choose

M+ = sup
m

{
max
x∈�m

‖D(Gm)−1(x)|TD/T �m‖
}

,

M− = inf
m

{
min
x∈�m

‖D(Gm)−1(x)|TD/T �m‖
}

.

Notice that, even though there are infinitely many maps Gm in the argument of the
supremum and the infimum, M+ and M− are positive finite values, for Gm are bounded.
We apply Proposition 5.16 to Fn0 , W, and some r. Then for every Gm, the conclusion of
Proposition 5.16 holds. In the following, we consider the case where the first conclusion of
Proposition 5.16 holds, that is, there is one connected interval H satisfying the conditions.
The proof for the second case is similar, so we omit the argument of that case.

Consider a point x ∈ �m for which (Gm)−m(x) is defined. Since the normal expansion
of �m is 1 in W, x ∈ �m and x goes around orb(q) at least ([mr/π(q)] − 2)-times (where
[x] denotes the integer part of x), we know

M
m−([mr/π(q)]−2)π(q)
− ≤ ‖D(Gm)−m|TD/T �m(x)‖ ≤ M

m−([mr/π(q)]−2)π(q)
+ .

Thus, by taking r arbitrarily close to 1, we see that the contribution of the derivatives
outside W will be negligible. Thus, we have that the average normal derivative of �m tends
to 1 by letting r close to one.

7. On the proof of general cases
In this section, we discuss the proof of Theorem 3.24 based on the argument of the proof of
Theorem 3.25. Indeed, the proof can be done in a parallel way, adding some modification
to avoid the interference. Let us briefly see it.

Let {qi} and {Qj } be given.
• First, we apply Lemma 5.6 to each qi . It gives us a saddle-node retarded family retarded

at each qi . Note that there is no interference between two different periodic points, due
to the assumption of mutual separatedness.

• Then, for each qi , we consider the homo/heteroclinic points of orb(qi). For each
homo/heteroclinic point, we define the periodic well and the transition well in the
first fundamental domain.

• Note that two transition wells of different homo/heteroclinic orbits may share some
discs, since two different homo/heteroclinic orbits may share their itinerary.
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• However, they cannot have totally the same itinerary by assumption. Thus, at least we
know that their periodic wells are disjoint.

• Now we give small perturbation to each retarded family which makes it to be prepared.
Then for each periodic well, we find curves {γn,m} with bounded cost.

• Since the periodic wells are disjoint, we have no interference when we perform the
perturbation in §6.4. Thus, we can obtain the pre-solution of arbitrarily profound depth
for each homo/heteroclinic orbits.
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