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Abstract: Deep neural networks have attracted considerable attention 
because of their state-of-the-art performance on a variety of image 
restoration tasks, including image completion, denoising, and segmen-
tation. However, their record of performance is built upon extremely 
large datasets. In many cases (for example, electron microscopy), it is 
extremely labor intensive, if not impossible, to acquire tens of thou-
sands of images for a single project. The present work shows the possi-
bility of attaining high-accuracy image segmentation, isolating regions 
of interest, for small datasets of transmission electron micrographs by 
employing encoder-decoder neural networks and image augmentation.
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Introduction
Transmission electron microscopy (TEM) is widely used 

for resolving the ultrastructures of biological samples, materials, 
and hybrid soft/hard systems. Recent advances in sample pres-
ervation and microscope hardware have dramatically increased 
imaging throughput and have enabled access to higher statistical 
power for biological studies. As more samples can be examined 
within a fixed time, the challenge associated with data processing 
also increases. Image processing is becoming a significant com-
ponent of modern microscopy projects, particularly as a required 
step in image analysis. Surprisingly, one of the most labor-inten-
sive tasks in electron micrograph processing for biological sam-
ples involves the separation of the various cellular organelles, 
such as the nucleus, mitochondria, Golgi, etc. In order to investi-
gate the linkage between ultrastructure and higher-order cellu-
lar function, the organelles must first be “selected” or segmented 
from the cellular background. For example, a common analysis 
to understand the connection between chromatin topology and 
gene transcription involves comparing EM images of nucleus 
texture from normal cells and cancer cells [1].

Usually, manual nucleus segmentation is important for 
determining correct statistical relationships (for example, 
not impacted by imprecision and random fluctuations within 
the cellular membrane space surrounding the organelle). As 
modern microscopy offers easy access to large datasets, image 
acquisition is no longer the bottleneck for biological studies, 
but labor-intensive manual image segmentation is. Moreover, 
humans are prone to bias and inconsistencies, which might also 
render the downstream statistical analysis unreliable. There-
fore, an accurate, automatic, and consistent computational tool 
for image segmentation should be useful to accelerate biologi-
cal research. This article describes such an automation tool.

Automated Segmentation
Image segmentation using neural networks. To meet this 

end, machine learning can provide a potential solution for “label-
ing” EM images by automating the segmentation process after 
observing a set of “ground truth” hand-processed examples. 

“Labeling” is classifying the data, or in the case of this study, seg-
menting the image. This approach has already found use in criti-
cal applications as disparate as self-driving cars and segmenting 
diagnostic features in patients’ medical CT scans [2]. Supervised 
machine learning methods, such as deep learning, on the other 
hand, rely on inferring a common pattern from a set of “perfect” 
or “ideal” ground truth examples [3]. This would be “learning by 
example.”

In the present work, a class of deep learning methods, 
known as convolutional neural networks (CNNs), is used for 
image segmentation. A CNN contains a large set of matrices 
that are iteratively convolved with the input data, typically an 
image. A convolution is a specific matrix operation that can 
reduce an image to features of interest. Initially, the convolu-
tional matrices in a CNN are populated by random numbers, 
such that input images are randomly transformed and distorted. 
By comparing the output of the network against the desired 
output, values inside the network can be optimized using the 
chain rule, a calculus technique for optimization. Minimizing 
the error at the end of the process using a differentiable loss 
function results in a set of parameters that can perform a com-
plex task, such as image segmentation.

Optimizing the CNN with training data. A CNN can have 
millions or tens of millions of individual parameters that must 
be optimized, or tuned, using input/output pairs, which are the 
labeled data pairs that the model learns from. A lack of labeled 
data can result in overfitting the data, when the algorithm 
becomes overly focused on details that are specific to the small 
set of images in the training. In all cases, the generalizability (or 
the quality of predictions on unseen data) of a CNN is directly 
dependent on the overall size and quality of the training data [4]. 
Most computer vision tasks leveraging CNNs require thousands 
to millions of labeled data pairs, as in the case of PASCAL VOC 
2011 [5] and ImageNet [6]. For biological EM, analyzing and 
processing the raw data often involves expert knowledge and a 
significant amount of time, so hand-labeling tens of thousands 
of images as training data is likely prohibitive. Thus, although 
the idea of using CNN for image segmentation has been around 
for several years, implementation of it remains challenging.

Smaller training sets. Many efforts have been made toward 
generalizing CNNs with a small training set. Among them, data 
augmentation has been effective for several types of biological 
samples [7]. In data augmentation, a small set of input/output 
pairs are artificially altered through simple geometric transfor-
mations to create new entries. These transformations include 
rotations, scaling, translations, and elastic deformations, 
among others. In addition to data augmentation, smaller mod-
els with fewer parameters based on encoder-decoder structures, 
such as the U-Net CNN architecture, also have been successful 
in segmenting biological samples from differential interference 
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contrast (DIC) and electron microscope images with few train-
ing examples [7]. Encoder-decoder structures entail downsiz-
ing the image to the features of interest and then restoring the 
image with its low-level features. By combining data augmen-
tation with the U-Net model, a hybrid algorithm has achieved 
unprecedented success in certain tasks. In some cases, the algo-
rithm can work with only 15 training examples [7].

Connecting new data with the training set. Further 
enhancements on the basic CNN structure have relied on chang-
ing the way convolutions and nonlinear activations are arranged. 
Residual blocks (resblocks) are one way to connect the convolu-
tion operations between the input and output. The residual block 
structure allows the network to learn small features rather than 
full image transformations, thus making it easier to pass errors 
back through the network during training [8]. The Deep ResUnet 
model, also known as Deep Residual U-Net, implements residual 
blocks to increase training speed and simultaneously reduce the 
risk of overfitting [9]. With 15 convolutional layers, 6 residual 
blocks, and no data augmentation, ResUnet has a record perfor-
mance of 98.66% accuracy on the Massachusetts roads dataset [9].

Testing the model with TEM images. This article exam-
ines the effectiveness of a Deep ResUnet model for segment-
ing TEM images of stained nuclei from human cheek cells. The 
effectiveness of data augmentation has been examined by vary-
ing the training data size for a generalizable model.

Materials and Methods
TEM sample preparation. Human cheek cells were har-

vested using a Cytobrush® (CooperSurgical, Trumbull, CT) by 

gently swabbing the inner cheek. The cells were fixed immedi-
ately in 2.5% EM grade glutaraldehyde (Electron Microscopy 
Sciences, Hatfield, PA) and 2% paraformaldehyde (EMS) in 
1 × phosphate buffered saline (Sigma-Aldrich, St. Louis, Mo). 
Cell pellets were formed after centrifuging at 2500 rpm, and 
gelatin was added to prevent dislodging. After the gelatin solid-
ified at 4 °C, the cell-gelatin mixture was treated as a tissue 
sample. The mixture was further fixed by the same fixative for 
1 hour at room temperature before staining with 1% OsO4 to 
enhance contrast in TEM imaging. After serial ethanol dehy-
dration, the sample was embedded in epoxy resin and cured at 
60 °C for 48 hrs. Microtomed sections of 50 nm thickness were 
produced with an Leica FC7 ultramicrotome (Leica Microsys-
tems, Buffalo Grove, IL) and mounted on a plasma-cleaned 200 
mesh TEM grid covered with a carbon/formvar film (EMS). 
Post-staining was performed with uranyl acetate (EMS) and 
lead citrate (EMS) to enhance the contrast of nuclear content.

Imaging. A Hitachi HT7700 TEM (Hitachi High-Tech-
nologies in America, Pleasanton, CA) was employed to image 
whole cheek cells, operating at 80 kV under low-dose condi-
tions. Careful manual segmentation of the nuclei was per-
formed using Adobe PhotoShop (Adobe Inc., San Jose, CA) 
and MATLAB (MathWorks, Natick, MA).

Architecture of the model. The Deep Residual U-Net has 
been implemented from scratch using TensorFlow (Google 
Inc., Mountain View, CA) and Keras libraries [9]. Figure 1 gives 

Figure 1:  Flowchart of a U-Net convolutional neural network. A U-Net is one 
classic way to arrange operations for segmenting and denoising images. In 
a U-Net, several convolutional blocks with nonlinear-functions at the end, 
referred to as resblocks in the figure, are arranged in sequence. After each 
block, the image is downsampled, which allows for convolution to be per-
formed at a higher and higher level in the image. After three convolutions and 
downsamples, the transformed image is then passed to the right-hand side of 
the network and iteratively upsampled, increased in size with greater detail. 
After each upsample, the fine details are passed back into the image through a 
skip-connection before being convolved and output into a binary mask.

Figure 2:  Flowchart of the resblock. Each resblock is composed of a batch 
normalization, a rectified linear unit (ReLU), and a convolution. Batch normaliza-
tion simplifies training by scaling down the size of the inputs. The left path down 
the network transforms the input image through a series of convolutions and 
nonlinear activations. The right side simply passes the image through without 
any large transformation. The paths are then added together, which allows the 
network to learn subtle transformations without having to remember the entire 
image down the left path explicitly.
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the high-level architecture of the network, in which an image is 
passed through multiple blocks composed of the same pattern 
of mathematical operations. As the image passes through the 
left-hand side of the network, it is downsampled, or reduced in 
size, as it is convolved with the values of the network. Once it 
enters the right-hand side, the outputs of the earlier layers of 
the network are added through skip connections, a junction 
that relays low-level features to preserve fine-scale detail that 
would otherwise be lost by the downsampling operations. Each 
upsampling, or increase in input/image size, on the right side 
slowly steps the image back up to its original scale, but having 
been extensively transformed.

Each resblock module contains the pattern of mathemati-
cal operations shown in Figure 2, a set of batch normaliza-
tions and nonlinear functions known as the rectified linear 
unit (ReLU) followed by convolutions [9]. Batch normalization 
speeds up the training time because it scales the inputs down 
to reduce variance. The ReLU activation function adds nonlin-
earity to the network, allowing the model to learn fine details. 
Within each residual block, the original input is added to the 
output of the convolutional elements, allowing the block to 
learn a transformation without having to remember the origi-
nal image.

The initial, truncated residual block 
of Figure 1 uses 64 filters in each convolu-
tion. The next two residual blocks use 128 
and 256 filters, respectively, followed by the 
central block with 512 filters. The decoder 
follows the symmetrically opposite pattern: 
256, 128, then 64 filters. Each filter learns a 
shape or texture that is relevant to discerning 
nuclear from non-nuclear regions in the cell.

Training. Following previous work 
[9], a variant of mini-batch gradient 
descent was used to optimize the values 
within the network with a binary cross-
entropy loss function equation:

L y y y y y y( , ) ( ) ( )� � �= − − − −log log1 1 	 (1)

where y records the number and location 
of each ground truth pixel labeled as the 
nucleus and y�  accounts for the number 
of pixels predicted to be the nucleus along 
with their positions. The Adam optimiza-
tion method with a batch size of 2 was run 
for 30 epochs with a learning rate of 10−5 
[10]. The dice coefficient, given by Equation 
2, was then applied to monitor the quality 
of the segmentation.
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The dice coefficient records the number of 
pixels the algorithm correctly guesses to 
be part of the nucleus, divided by the total 
number of pixels labeled as the nucleus in 
the predicted and ground truth images. 
Thus, it ranges from a value of 1.0, when 
the algorithm perfectly predicts the labels, 

to 0.0. To examine how the algorithm behaves on unseen data, 
a test set of 75 examples was withheld for evaluation purposes 
(held out test data). For each experiment, 5, 10, 25, 50, 150, and 
300 training examples were used.

Image augmentation was implemented using the open source 
OpenCV package in which each image was rotated, scaled, and 
translated by a random direction and magnitude before being fed 
into the network for training. Thus, at each training step a unique 
augmented image was used for training. The code written for this 
study is open to the public and can be accessed at https://github.
com/avdravid/TEM_cell_seg and https://github.com/khujsak. The 
model was implemented in the open source library Keras with a 
Tensorflow backend on a custom-built desktop computer equipped 
with a Core i7 CPU (Intel Corporation, Santa Clara, CA), 32 GB of 
RAM, and a GTX 1080 (NVIDIA, Santa Clara, CA), resulting in an 
average training time of 30 minutes.

Results
Manual segmentation. Example images and hand seg-

mentations are shown in Figure 3 to highlight the difficulty of 
the cheek cell nuclei segmentation task. A variety of cells with 
unique nuclear morphologies were present. In addition, the 
fact that the sample may be sectioned at an arbitrary angle and 

Figure 3:  Manual segmentation. TEM images of cheek cells (A,B) and the binary masks (C,D) constructed 
by hand tracing the outlines of the nuclei. Images of nuclei can often be quite contorted because of the 
angle at which they were sectioned. Image contrast of the nuclei with respect to the cytoplasm may vary 
because of the specimen preparation or the exposure conditions of the microscope. Hand segmentation 
is labor intensive and may be subjective among different operators.
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position with respect to the nucleus may result in a series of 
varying shapes and contrast features depending on the section 
of the nucleus present.

Performance tests of the model. To understand whether the 
Deep ResUnet model was really learning to perform the nuclear 
segmentation task and not just remembering oddities or specif-
ics of the training data, the accuracy of the model was assessed 
by comparing results from the model with 
held-out test data. The latter were additional 
images and hand segmentations that the 
model did not get to see or use during train-
ing. Although a relatively large number of 
hand-segmented images was used in this 
work, because they were part of a long-run-
ning project, most investigators who might 
use this deep learning algorithm would have 
considerably less data to work with.

The performance of the model was 
examined on the held-out test data while 
varying the amount of input training data. 
Figure 4 shows the impact of data augmenta-
tion on the effectiveness of the segmentation. 
Two experimental sets were trained with the 
same training set sizes, one with augmenta-
tion and one without. For both experimental 
sets, the performance drops off nonlinearly 
as the size of the training set is reduced. Since 
the model had no prior information about 
cells and nuclei, it learned exclusively by 
example. Overfitting can cause poor perfor-
mance on unseen data. Clever regularization 
and optimization methods may not com-
pletely ameliorate this issue, so it is useful 
to determine a threshold for the number of 
training examples needed to achieve a qual-
ity prediction. Figure 4 shows that for two 

different performance assessments the threshold was about 150 
training examples.

The predicted segmentation for any arbitrary image can 
be obtained by passing a new image through the network and 
recording the output. Figure 5 shows that, again, 150 training 
examples appears to be the threshold for an acceptable auto-
mated segmentation.

Figure 4:  Performance of the Deep Residual U-Net model with and without data augmentation for automatic segmentation of human cheek cell nuclei. Data augmenta-
tion synthesizes “new” images from a small training set by introducing transformations (rotation, scaling, cropping) and noise to help the network learn information to aid 
predictions on unseen data. (A) Dice Loss test: pixels correctly determined divided by the total pixels, as a metric for segmentation quality versus the number of training 
examples. Data augmentation during training yields a better result regardless of the number of training examples. (B) Accuracy of auto-segmentation: model predic-
tions compared with manual segmentation versus the number of training examples. The threshold for quality segmentation appears to be about 150 training examples.

Figure 5:  After training with data augmentation and various numbers of training examples, two test images were 
passed through the network to get predictions. The model calculates the probability of a pixel being inside the 
nucleus. The image was then thresholded such that values higher than 0.6 were labeled “1”, while all other pixels 
were labeled “0”.. Effective segmentations can be produced for a variety of nuclei with different textures/shapes 
with 150 example training images.
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Discussion
For all training set sizes in Figure 4, the model trained 

using data augmentation achieved a lower dice loss and a 
higher accuracy than the model trained without it. This sug-
gests that augmentation is playing a significant role in forcing 
the model to learn generalizable information about the differ-
ence between cell cytoplasm and the nuclear envelope.

Figure 5 shows that even for the smallest number of train-
ing examples the deep network can either provide a crude 
localization of the nuclei or a skeletonized outline, assuming 
strong contrast for the nuclear membrane over the cytoplasm. 
The segmentation for the 150 training examples and above is 
strikingly similar to the hand segmented masks, demonstrat-
ing the power of deep learning for complex image processing 
tasks. The result from such fully trained networks requires 
no additional processing before use, allowing the model to 
operate as a “one-stop-shop” for end-to-end image process-
ing. The data processing and machine learning strategy in this 
article may accelerate future work on more complicated image 
segmentation tasks, where even fewer training examples are 
available.

One complicating factor in this work is the heterogeneous 
nature of the cheek cell data-set, which is composed of many 
shapes of cells that present morphologically distinct nuclei, as 
seen in Figure 3. It is expected that for less complicated image 
processing tasks, the number of training images may be con-
siderably fewer, since each image contains much more infor-
mation regarding the population of example nuclei. In such 
cases where there exist several distinct “classes” of images 
within one dataset, it may be advantageous to split the data 
along such lines to simplify the training process.

Future work will examine the relative tradeoffs between 
training a single model on a large heterogeneous dataset ver-
sus several smaller homogenous classes. Overall, modern 
encoder-decoder architectures appear to be robust models 
for image processing tasks. Since the prediction takes place 
in milliseconds, these models make attractive solutions for 
handling the deluge of data currently emerging from modern 
microscopes. It is expected that as awareness of deep learning 
methods spread within the microscopy community, standards 
for recording and processing data will further leverage their 
scalability.

Conclusion
This article further establishes that automated segmen-

tation of micrograph image features is feasible. Methods are 
shown for improving deep learning as an image processing 
framework for biological imaging. The use of image augmenta-
tion, in which a small number of hand-labeled images is trans-
formed into a larger set through image transformations, allows 
strong performance even with the small numbers of images 
common to research environments. Such methods are not lim-
ited to TEM imaging; they should be equally applicable to X-ray 
microscopy and light microscopy. This work may inspire the 
application of deep learning methods in the imaging commu-
nity in situations where conventional methods struggle.
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