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Abstract

Let R be a ring and U a left R-module with S =End(gU). The aim of this paper is to characterize
when S is coherent. We first show that a left R-module F is Ty-flat if and only if Homg (U, F) is a flat
left S-module. This removes the unnecessary hypothesis that U is X-quasiprojective from Proposition 2.7
of Gomez Pardo and Hernandez [‘Coherence of endomorphism rings’, Arch. Math. (Basel) 48(1) (1987),
40-52]. Then it is shown that S is a right coherent ring if and only if all direct products of Ty -flat left
R-modules are Ty -flat if and only if all direct products of copies of rU are Ty -flat. Finally, we prove that
every left R-module is Ty -flat if and only if S is right coherent with wD(S) < 2 and Uy is FP-injective.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are
unitary modules. For a ring R, rM (Mpg) denotes a left (right) R-module. In what
follows, U is a left R-module and S = End(gU). We denote by add rU the category
consisting of all left R-modules isomorphic to direct summands of finite direct sums of
copies of gU and by pres(U) the category of all finitely U-presented left R-modules,
that is, of all left R-modules M admitting an exact sequence U" — U™ — M — 0
with m, n positive integers. Here H denotes Homg (U, —) and T means U Qs —.
Given a left R-module M and a left S-module A, define vy, : TH(M) — M and ny4 :
A— HT(A)viavyy(u ® f) = f(u)andna(a)(u) =u Q aforanyu e U, f € H(M)
and a € A. For a module M, M' (M®) is the direct product (sum) of copies of M
indexed by a set I, pd(M) denotes the projective dimension of M, and the character
module Homyz(M, Q/Z) is denoted by M*. As usual, we use wD(S) to denote
the weak global dimension of a ring S. General background material can be found
in[l1,7, 13, 16].
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Gomez Pardo and Hernandez [11] have given conditions under which § is a
coherent ring assuming that gU is (X-)quasiprojective. Our aim is to characterize
when § is coherent for a general left R-module RrU. We start by proving that a left
R-module F is Ty-flat if and only if H(F) is a flat left S-module. This removes the
unnecessary hypothesis that U is X-quasiprojective from [11, Proposition 2.7]. Then
itis shown that § is a right coherent ring if and only if all direct products of Ty -flat left
R-modules are Ty -flat if and only if all direct products of copies of gU are Ty-flat.
Moreover, if both gU and Uy are finitely presented, then we obtain that S is a right
coherent ring if and only if F*7 is Ty -flat for every Ty -flat left R-module F. Finally,
we prove that every left R-module is Ty-flat if and only if S is right coherent with
wD(S) <2 and Uy is FP-injective.

Next we recall some known notions and facts required in the paper.

A left R-module M is quasiprojective [1] if, for every quotient module L of M,
the canonical homomorphism Homg (M, M) — Homg(M, L) is epic. On the other
hand, M is called X-quasiprojective when every direct sum M) is quasiprojective. A
left R-module F is called Ty-flat (see [11]) if for every homomorphism f : K — F
with K € pres(U), there exist homomorphisms g : K — U™ and i : U" — F for some
integer n such that f = hg. Note that if U is a finitely generated projective generator
of the category of all left R-modules, the M is Tyy-flat if and only if M is flat.

Let C be a class of left R-modules and M a left R-module. A homomorphism
¢: M — F with F € C is called a C-preenvelope of M [8] if for any homomorphism
f: M — F’ with F’ € C, there is a homomorphism g : F — F’ such that g¢ = f.

A left R-module M is small [7, p. 6] if the covariant functor Hom(M, —) commutes
with arbitrary direct sums. It is well known that finitely generated modules are always
small.

A right S-module N is called FP-injective [14] if ExtIS(F , N)=0 for every
finitely presented right S-module F. When Sg is FP-injective, S is said to be right
FP-injective.

A ring R is right coherent [4] when every finitely generated left ideal of R is finitely
presented and left IF [6] when every injective left R-module is flat.

2. Coherence of endomorphism rings

Let U be a X-quasiprojective left R-module and F a left R-module, then H (F) is
a flat left S-module if and only if F is a Ty-flat module (see [11, Propsition 2.7]). In
fact, this result is true for any left R-module U as shown by the following proposition.

PROPOSITION 2.1. Let U be a module with S = End(rU) and F be a left R-module.
Then H(F) is a flat left S-module if and only if F is a Ty-flat module.

PROOF. Assume that H (F) is a flat left S-module. Let M € pres(U) and o : M — F
be an R-homomorphism. Then there is an exact sequence 0 — K — U — U! —
M — 0 with k, [ some positive integers. Let ¥ = Coker(H (U*) — H(U")), then
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Y is a finitely presented left S-module. The exactness of 0 - H(K) — H((U ky
H(U'") - Y — 0 induces the following commutative diagram with exact rows.

TH(U* —— THU") T(Y) 0
\LUU]( i Yyl la
Uk U! M 0

Note that vy« and vy are isomorphisms, and so the induced homomorphism o is
an isomorphism. Since H(F) is a flat left S-module, there exist homomorphisms
f:Y— 8" and g:S" — H(F) for some integer n such that H(x)H (o)ny = gf.
Note that vy ()T (ny) = 17(y) by [7, Equality 2.1, p. 13] and the diagram

TH TH
THT(Y) 2L THOM) L TH(F)

i VT (Y) lVM lVF
o

g

T(Y) M F

is commutative. Thus,

veT(T (o~ =vpT(gf)o™!
= vpT(H(@)H(o)ny)o ™
= vpTH()TH (o) T (ny)o !
= auyTH()T (ny)o !
= aovr T (py)o !

—aoo ' =a.

Clearly, T(f)o =" : M — T(S") and vpT(g) : T(S") — F are homomorphisms, and
T(S™)=ZU". So F is Ty-flat.

Conversely, suppose that F is Ty-flat and f : X — H(F) is an S-homomorphism
with X a finitely presented left S-module. Note that 7 (X) € pres(U), then there are
R-homomorphisms g : T(X) — U" and h : U" — F satistying vp T (f) = hg. Since
HWr)nur) = 1ar) by [7, Equality 2.1, p. 13], it follows that

H(h)(H(g)nx) = H(hg)nx = Hwp)HT (f)nx = Hwp)nuwr) f = 1,
and hence f factors through H(U™) = S". So H(F) is a flat left S-module. O

The following corollary is an immediate consequence of Proposition 2.1.

COROLLARY 2.2. Let U be a left R-module.

(1) &7, Fi is Ty-flat if and only if each F; is Ty-flat for any positive integer n.

(2) If rU is small, then @, _; F; is Ty-flat if and only if each F; is Ty-flat for any
index set I.

iel
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PROPOSITION 2.3. Let rU be a module with S =End(rU). The following are
equivalent.

(1) Every injective left R-module is Ty -flat.

(2) Forany M € pres(U), the injective envelope of M is Ty -flat.

(3) Any M epres(U) is finitely cogenerated by U.

Moreover, if S is right coherent, then the above conditions are equivalent to:
(4) Us is FP-injective.

PROOF. That condition (1) implies (2) is clear.

(2) = (3). Let M e pres(U) and i : M — E (M) be an injective envelope of M. By
condition (2), there exist homomorphisms & : M — U”" and § : U" — E (M) for some
positive integer n such that Ba = i. Note that « is monic, and so condition (3) holds.

(3) = (1). For any homomorphism ¢ : M — E with M € pres(U) and E injective,
by condition (3) there is a monomorphism M — U" for some integer n, and hence ¢
factors through U". So condition (1) follows.

Moreover, if S is right coherent, then by [13, Theorem 9.51] and the remark
following it, we have Ug is FP-injective if and only if H(E) is flat for any injective
left R-module E. So the equivalence of (1) and (4) follows from Proposition 2.1. O

Specializing Proposition 2.3 to the case pU = g R gives the following corollaries.

COROLLARY 2.4 (Part of [6, Theorem 1]). The following are equivalent for a ring R.

(1) R isleft IF.
(2)  The injective envelope of every finitely presented left R-module is flat.
(3)  Every finitely presented left R-module is a submodule of a free module.

COROLLARY 2.5 [12, Theorem 3.10]. If R is a right coherent ring, then R is left IF
if and only if R is right FP-injective.

Let M and N be left R-modules. There is a natural homomorphism

o = oy,y : Homg(M, U) Q) Homg (U, N) — Homg (M, N)
S

defined viao (f ® g)(m) = g(f(m)) forall f € Homg(M, U) and g € Homg (U, N),
meM.
It is easy to check that o/, x is an isomorphism if M € addgr U or N € addgr U.

LEMMA 2.6. The following are equivalent.

(1) A left R-module F is Ty-flat.
(2) For any left R-module M € pres(U), oy, F is an epimorphism (isomorphism).

PrOOF. (1) = (2). Let M epres(U) and F be Ty-flat. Then there is an
exact sequence U" — U™ — M — 0 with m,n some positive integers, and
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so 0— Homr(M,U) - S — §" and 0 — Homg(M, F) — Homg(U™, F) —
Homg (U™, F) are exact. Note that Homg (U, F) = H(F) is a flat left S-module by
Proposition 2.1, and hence we obtain the following commutative diagram with exact
TOWS.

0 — Homg (M, U) @4 Homg (U, F) — Homg (U, F)™ — Homg(U, F)"

Jowr lg l;

00— Homrp(M, F) ——— Homy (U™, F) — Homg(U", F)

Thus condition (2) follows.

(2) = (1). Let M epres(U) and o« € Homgp(M, F). By condition (2), there
are f; € Homg(M, U) and g; € Homg(U, F) for all i =1,2,...,n, such that
o =aM,F(Z:7:1 fi ® gi). Define f: M — U" via f(m) = (fi(m)) forany m e M
and g: U" — F via g((a;)) = Z?:] gi(a;) for all @; € U. 1t is easy to check that
a = gf, as required. O

LEMMA 2.7. Let U be a finitely presented left R-module. Then the class of Ty-flat
left R-modules is closed under pure submodules and direct limits.
PROOF. Let F be a Ty-flat left R-module and K a pure module of F, then there is an

exact sequence 0 — K L FSF /K — 0, where i is the canonical injection and 7 is
the canonical projection. For any left R-module M € pres(U) and any homomorphism
f M — K, there are homomorphisms g : M — U™ and h : U" — F for some integer
n such that i f = hg. Consider the following commutative diagram with exact rows:

M—Sspyn s Coker(g) — 0

fl V lh B«
£ /—'"n \

1

0 K F F/K

0

where « is the induced homomorphism. Note that Coker(g) is a finitely presented left
R-module, then there exists a homomorphism g : Coker(g) — F satisfying 78 = «.
It follows that there is a homomorphism y : U" — K such that yg = f, and so K is
Ty -flat.

Suppose that {F;};cs is a direct system of Ty-flat left R-modules over a directed
index set /. Let M € pres(U) and f : M — lim_, F; be a homomorphism. Since U is
finitely presented, so is M. By [10, Corollary 1.2.7], the epimorphism r : @, .; F; —
lim_, F; is pure. Thus, there is g: M — @, F; with f =mg. It follows that
lim_, F;is Ty-flat since @,.; F; is Ty-flat by Corollary 2.2(2). O
THEOREM 2.8. Let RU be a module with S =End(rU). The following are
equivalent.

(1) S isaright coherent ring.
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(2) All direct products of Ty -flat left R-modules are Ty -flat.
(3) All direct products of copies of gU are Ty -flat.

Moreover, if RU and Ug are finitely presented, then the above conditions are also
equivalent to the following.

(4) Every left R-module has a Ty -flat preenvelope.
(5) F*tis Ty-flat for every Ty -flat left R-module F.

PROOF. (1) = (2). Let {F;};c; be a family of Ty -flat left R-modules. Then

H(l_[ Fi) = Homg (U, ]_[ Fi) ~ ]_[ Homg(U, F,) = ]_[ H(F))

iel iel iel iel

is a flat left S-module by Proposition 2.1 and condition (1). Thus, []
by Proposition 2.1 again.

The implication (2) implies (3) is clear.

(3) = (1). Note that, for any index set /, ST = Hompg (U, U') is a flat left S-module
by Proposition 2.1 and condition (3). So condition (1) follows.

(2) = (4). Let N be any left R-module. By [9, Lemma 5.3.12], for any
homomorphism f : N — M where M is Ty-flat, there is a cardinal number &, and
a pure submodule L of M such that Card(L) <R, and f(N)C L. Note that L is
Ty-flat by Lemma 2.7, and so N has a Ty-flat preenvelope by condition (2) and [9,
Proposition 6.2.1].

4) = (1). Let M e pres(rU). Then M has a Ty-flat preenvelope f: M — F
by condition (4). It follows that there are homomorphisms o : M — U and 8 : U — F
such that f = Ba with U € addg U. It is easy to check that o : M — U is just an
addg U-preenvelope of M. Thus condition (1) holds by [2, Proposition 5].

(1) = (5). Let F be a Ty-flat left R-module. Then Hompg (U, F) = H(F) is a
flat left S-module by Proposition 2.1. Since S is right coherent by condition (1),
Homg (U, F)™" is also a flat left S-module by [5, Theorem 1]. Note that
Homg (U, F™) = (FT ®g U)T ZHomg (U, F)*T, and hence FT* is Ty-flat by
Proposition 2.1 again.

(5) = (3). Note that U is Ty-flat by Corollary 2.2, then (UD)*+ is Ty -flat
by condition (5). Since (UT)!) is a pure submodule of (U1)!, (UT)D)* is a
direct summand of (UT)!)T = (UD)*+. It follows that (UtH)! = (UH)U)* is
Ty-flat by Corollary 2.2 again. Note that U/ is a pure submodule of (U+)! by [5,
Lemma 1(2)], so U! is Ty-flat by Lemma 2.7. O

F; is Ty-flat

iel

REMARK 2.9. Recall that a module gU is called a generalized tilting module [15]
(now it is also called a Wakamatsu tilting module [3]) if it has the following properties:

(T1) there exists an exact sequence
~-—>Pl'—>'~-—>P1—>P0—>U—>O

with each P; finitely generated and projective for i > 0;
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(T2) RrU is self-orthogonal, that is, EXtiR(U, U)=0fori > 1,
(T3) there exists a Homg (—, U) exact sequence

O—-grR—-Uy—>U — - - —-U —---

where each U; € add rU fori > 0.

Wakamatsu [15] proved that pU is a Wakamatsu tilting module with S = End(zrU)
if and only if Ug is a Wakamatsu tilting module with R = End(Ug). So, for a
Wakamatsu tilting module gU, both gU and Uy are finitely presented.

REMARK 2.10. Let pU = gR in Theorem 2.8, one obtains some known equivalent
conditions for a ring to be right coherent.

We conclude this paper with the following theorem.

THEOREM 2.11. Let U be a module with S =End(rU). The following are

equivalent.

(1)  Every left R-module is Ty -flat.

(2) Every finitely U-presented left R-module belongs to add rU.

(3) If sA is finitely presented, then HT (A) is a finitely generated projective left S-
module.

(4) S is right coherent with wD(S) < 2 and Uy is FP-injective.

PROOF. The equivalence of (1) and (2) holds by definition.

(2) = (3). Let s A be finitely presented. Then T (A) is finitely U-presented, and so
T (A) € addg U by condition (2). Thus, HT(A) is a finitely generated projective left
S-module.

(3) = (2). Let M be a finitely U-presented left R-module, then there is an exact
sequence 0 > K — U" — U™ — M — 0 with n, m positive integers. Note that
HU™) = S8" and H(U™) = S™, then we obtain an exact sequence 0 - H(K) —
S§" — 8™ of left S-modules. Thus, D = Coker(S"” — S§™) is a finitely presented left S-
module, and so HT' (D) is a finitely generated projective left S-module by condition (3).
It follows that THT (D) € addg U. Since there is the commutative diagram with exact

rows:
u" un M 0
F R
u" um (D) 0

we have M =T(D). Note that T (D) is a direct summand of THT(D) by [7,
Equality 2.1, p. 13], so M € addr U.

(2) = (4). Since condition (2) is equivalent to condition (1) by the foregoing proof,
every left R-module is Ty-flat. So S is right coherent by Theorem 2.8. Thus, Ug is
FP-injective by Proposition 2.3. Let Ag be finitely presented, then there is an exact
sequence S¥ — S — A — 0 of right S-modules with k, [ positive integers. Now we
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obtain an exact sequence 0 — Homg(A, U) — U I 5 Uk of left R-modules which
induces a commutative diagram with exact rows:

0 K Sk s!

P

0 —— Homg (D, U) —— Homg(U*, U) —— Homg (U', U)

where K = Ker(S¥ — §'), D = Coker(U' — U*) and h is the induced homo-
morphism. Thus, K = Homg(D, U). Note that D is a finitely U-presented left
R-module, then D € addg U by condition (2). It follows that K is a finitely
generated projective right S-module, and hence pd(As) < 2. Therefore, wD(S) =
sup{pd(Ags) | Ag is finitely presented} < 2 by [14, Theorem 3.3].

(4) = (1). Let M be any left R-module and E the injective envelope of M, then
there is an exact sequence 0 - M — E — C — 0 which induces the following exact
commutative diagram.

0—HWM)— H(E) H(C) D 0

K
Since wD(S) < 2, there are exact sequences

0 — Tor3 (A, H(M)) — Tor5 (A, H(E)) —

Tor5 (A, K) — Tor} (A, H(M)) — Tor} (A, H(E))(*)

0 — Tor5 (A, K) — Tor3 (A, H(C)) (%)

for any right S-module A. Since S is right coherent and Uy is FP-injective, E
is Ty-flat by Proposition 2.3. Hence, H(E) is flat by Proposition 2.1. Thus,
Tor*zg(A, H(M))=0 and Torg(A, K= Torf(A, H(M)) by the exactness of the
sequence (). Similarly, we have Torg(A, H(C)) =0. Thus, Torg(A, K) =0 by the
exactness of the sequence (), and hence Torf (A, H(M)) =0. It follows that H (M)
is flat, and so M is Ty -flat by Proposition 2.1. O
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