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COMPACT OPERATORS IN REDUCTIVE ALGEBRAS 

EDWARD A. AZOFF 

Let J ^ be a Hi lber t space and denote the collection of (bounded, l inear) 
operators o n j f by ££ (ffl). Th roughou t this paper, the te rm 'algebra ' will 
refer to a subalgebra of J£ $f) ; unless otherwise s ta ted , it will no t be assumed 
to contain I or to be closed in any topology. 

An algebra is said to be transitive if i t has no non-trivial invar iant subspaces. 
T h e following lemma has revolutionized the s tudy of t ransi t ive algebras. For 
a proof and a general discussion of its implications, the reader is referred to [5]. 

L E M M A 1 (Lomonosov). Suppose 21 is a transitive algebra and K is a non-zero 
compact operator. Then there exists an A Ç 31 such that the operator AK has 1 
as an eigenvalue. 

COROLLARY 2 [5]. Let %be a transitive algebra containing a non-zero compact 

operator. Suppose moreover that 21 is weakly closed and contains I. Then 21 = ^ Ç?if) (> 

T h e purpose of this paper is to prove a generalization of this corollary. T o 
describe it, we first need two definitions. 

Definition [6]. An algebra 21 is called reductive if it is weakly closed and every 
invariant sub space for 21 reduces 21. 

Definition. Let 21 be a reduct ive algebra and denote by Se, the von N u e m a n n 
algebra generated by 21. Then for A Ç 21, we define the central support of A 
to be the smallest (self-adjoint) projection P in the center of Se such t h a t 
AP = A. 

T H E O R E M 3. Let Hi be a reductive algebra containing a compact operator K. 
Then the central support P of K belongs to 21 and P2LP is self-adjoint. 

Before embarking on the proof of the Theorem, it seems appropr ia te to make 
several observations. First , note t h a t Theorem 3 contains Corollary 2 as a 
special case. Indeed, in a t ransi t ive algebra, every non-zero operator has 
central suppor t / , and the von N e u m a n n double -commutan t theorem assures 
us t h a t J?f Çtf?) is the only t ransi t ive von N e u m a n n algebra. 

In fact, Theorem 3 is, in a sense, the best result one could hope for. Th is is 
because ( / — P ) 2 l ( I — P) is a reduct ive algebra abou t which we know 
nothing (i.e., it could be any reduct ive a lgebra) . 

Finally, we single ou t two corollaries of Theorem 3. Corollary 5 was pointed 
ou t to the au thor by F rank Gilfeather. 
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COROLLARY 4 [7]. Suppose % is a reductive algebra containing an infective 
compact operator K. Then 21 is self-adjoint. 

Proof. T h e central support of an injective operator is I. 

COROLLARY 5. Let %be a reductive algebra and suppose the supremum of the 
central supports of the compact operators in 21 is I. Then 21 is self-adjoint. 

Proof. Let 38 be the von Neumann algebra generated by 21. Applying Zorn 's 
lemma, we find a maximal orthogonal family 3P of central projections in 38 
such t h a t 38P C 21 for each P G 3P. Let P 0 = E ^ - Then the weak closure 
of 21 shows t h a t 38 P^ C 21. Note t ha t if I ^ P 0 , then 21(1 - P 0 ) would contain 
a non-zero compact operator. In view of the theorem, this contradicts the 
maximali ty of 3P. T h u s I = P 0 and the proof is complete. 

In proving Theorem 3, it will be convenient to isolate two lemmas. Lemma 6 
is a slight variat ion of Corollary 2 and its proof uses several a rguments found 
in [5]. 

LEMMA 6. Let 21 be a transitive algebra and J a norm closed, two-sided ideal 
in 21. Suppose J contains a non-zero compact operator. Then J contains all 
compact operators. 

Proof. Let K be a non-zero compact operator in J. By Lomonosov's lemma, 
there exists an A £ 21 such t h a t AK belongs to J and has a fixed point . Note 
t ha t the span of J^ and 7 is a Banach algebra. T h u s by applying an appro­
priate analyt ic function to AK, we find a non-zero finite rank idempotent J 
in the span of J and I. In fact, there is a sequence of polynomials {pn} for 
which pn(AK) —> J. Since the distance from I to the compacts is 1, we conclude 
t h a t pn(0) —* 0 and hence t ha t / actually belongs to J'. 

Note t ha t JJ'J^n j = J 21 Jinan j - is a subalgebra of «êf ( R a n / ) . Since 
J%J acts transit ively on R a n / we conclude t h a t J^J\n&nj = = 5 f ( R a n J ) 
(Burnside's theorem). In part icular J J J (and hence J) contains a rank one 
operator . T h e lemma now follows by the t ransi t ivi ty of 21. 

LEMMA 7. Let %be a reductive algebra and suppose J is a finite rank idempotent 

in 21. Then /2I/ |R a n J is self-adjoint. 

Proof. Suppose M is invar iant under J2U| R a n j . Then {%M)~ is invar iant 
under 21 and J(tyLM)~ = M. The algebra 21 being reductive, we see t h a t 
(2lif)-L is also invar iant under 21. Since J G 21, it follows tha t J(%M)L is 
contained in (2W)- 1 and hence J^M)1- C ML. T h u s Ran / is the orthogonal 
direct sum of M and J^M)1-. Since / (2 IM)- 1 is invar iant under / 2 l / | R a n J, 
we see t h a t J2U|Ran J is reductive. 

This completes the proof since it is known ([1, p . 127, Theorem 4] or [6, 
Theorem 2]) t h a t a reductive algebra acting on a finite-dimensional space 
must be self-adjoint. 
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Proof of Theorem 3. Let "V be the von Neumann algebra generated by 31. 
We are going to show there is a non-zero self-adjoint projection Q S P in the 
center of ^ such that "fi'Q Q SI. This will complete the proof since a standard 
maximality argument then gives"VP C 21, i.e., P 6 SI and P2LP = *VP. 

Consider the von Neumann algebra 38 — ^\n&n p- Note that the central 
support of K\Rm p in 38 is / . Applying [4, Proposition 1], we conclude that the 
center of 38 is atomic. Let Q be a minimal central projection in 38. Since 
^Uan Q is non-zero, it follows that 3$\RSiIi Q is a type 1 factor. 

We now apply [2, Corollary 3, p. 124] to 38\R2LXX Q. Thus we find Hilbert 
s p a c e s ^ and^K such that 38\^^ Q is unitarily equivalent to j£f (^#) 0 C.^. 
The compactness of i£|Ran Q shows that^/K must be finite-dimensional. In the 
sequel, we will i d e n t i f y ^ and JV with subspaces of Ran Q. 

Note that SI a n d i ^ have the same invariant subspaces. Since^# r e d u c e s ^ , 
the same is true of SI|^ and °^\M- Thus 3l|^ is a transitive subalgebra of 
<if («/#) containing the non-zero compact operator i£ |^ . By Lomonosov, there 
exists an A 6 SI such that A\MK\JI has a fixed point. Taking an appropriate 
analytic function of AK, we find a finite rank idempotent J in SI for which 
AM * 0. 

The restricted algebras JSl/|Ran J and J'Y J|Ran ./ have the same invariant 
subspaces. Moreover, by Lemma 7, they are both self-adjoint. Thus by the 
double-commutant theorem, they coincide. In particular, QJ is a non-zero, 
finite-rank operator in 731/ (and hence in SI) supported on Ran Q. 

Denote by *$ the collection {A £ 3I|̂ 4 is supported on Ran Q} and set 
^ = ^\ji' Then J, considered as a two-sided ideal over SI|^ satisfies the 
hypothesis of Lemma 6. Thus «/ = «if (ytt) (</ is weakly closed) and hence 
^ — ^Q- This shows i^Q Ç SI and completes the proof of the Theorem. 
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