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On the roots of polynomials with
log-convex coefficients
María A. Hernández Cifre , Miriam Tárraga, and Jesús
Yepes Nicolás
Abstract. In this paper, we consider the family of nth degree polynomials whose coefficients form a
log-convex sequence (up to binomial weights), and investigate their roots. We study, among others,
the structure of the set of roots of such polynomials, showing that it is a closed convex cone in the
upper half-plane, which covers its interior when n tends to infinity, and giving its precise description
for every n ∈ N, n ≥ 2. Dual Steiner polynomials of star bodies are a particular case of them, and so
we derive, as a consequence, further properties for their roots.

1 Introduction

The volume of a measurable set M ⊂ R
n , i.e., its n-dimensional Lebesgue measure, is

denoted by vol(M) and, in particular, we write κn ∶= vol(Bn) for the volume of the
n-dimensional Euclidean unit ball Bn .

For two convex bodies (i.e., nonempty compact and convex sets) K , E ⊂ R
n and a

non-negative real number λ, the volume of the Minkowski sum K + λE is a polynomial
of degree at most n in λ, and it is written as

vol(K + λE) =
n
∑
i=0

(n
i
)Wi(K; E)λ i .(1.1)

This expression is called the Steiner formula of K and E. The coefficients Wi(K; E)
are the relative quermassintegrals of K w.r.t. E, and they are a special case of the
more general mixed volumes, for which we refer to [17, Section 5.1]. In particular,
W0(K; E) = vol(K) and Wn(K; E) = vol(E).

If we regard the right-hand side of (1.1) as a formal polynomial in a complex variable
z ∈ C, the study of its roots has been investigated in several papers [4, 6–9, 11, 12]:
topology of the cone of roots, monotonicity with respect to the dimension, stability,
and so on. We emphasize that most of these results are based on the characterization of
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the relative quermassintegrals via the well-known Aleksandrov–Fenchel inequalities

Wi(K; E)2 ≥ Wi−1(K; E)Wi+1(K; E), i = 1, . . . , n − 1

(see, e.g., [17, (7.66)]). This characterization problem was solved in [18] and [8]: any
given set of n + 1 non-negative real numbers W0 , . . . , Wn ≥ 0 satisfying the inequali-
ties W2

i ≥ Wi−1Wi+1, 1 ≤ i ≤ n − 1, arises as the set of relative quermassintegrals of two
convex bodies. Such a tuple (W0 , . . . , Wn) is called log-concave. Therefore, Steiner
polynomials are precisely those ones whose coefficients, up to the combinatorial
numbers, form a log-concave tuple.

As a natural counterpart to the above issue, we consider the family of those nth
degree polynomials whose coefficients (up to the combinatorial numbers) form a log-
convex sequence. From now on, n ≥ 2.

Definition 1.1 We say that a polynomial has log-convex coefficients if it is of the form

fω(z) =
n
∑
i=0

(n
i
)ω i z i

with ω i ≥ 0 and ω = (ω0 , ω1 , . . . , ωn) a log-convex tuple, i.e., satisfying ω2
i ≤ ω i−1ω i+1

for all 1 ≤ i ≤ n − 1.

As in the case of the Steiner polynomials, we are interested in investigating the
structure and behavior of the set of roots of these log-convex coefficients polynomials.

In order to state our main results, we note first that if ω = (ω0 , ω1 , . . . , ωn) is a
log-convex tuple, then
• either ω i > 0 for all 0 ≤ i ≤ n
• or ω1 = ⋅ ⋅ ⋅ = ωn−1 = 0 and ω0 , ωn ≥ 0.
Indeed, if ω i = 0 for some i ∈ {0, . . . , n}, then ω i+1 = 0 if i ≤ n − 2 because ω2

i+1 ≤
ω i ω i+2 = 0, and ω i−1 = 0 if i ≥ 2 (now ω2

i−1 ≤ ω i−2ω i = 0). Thus, we can distinguish
two families of log-convex finite sequences: let

Ln = {ω = (ω0 , . . . , ωn) log-convex ∶ ω i ≥ 0, i = 0, . . . , n, ω ≠ (0, . . . , 0)},
Ln
>0 = {ω = (ω0 , . . . , ωn) ∈ Ln ∶ ω i > 0, i = 0, . . . , n}.

Clearly, Ln can be expressed as the disjoint union

Ln = Ln
>0
⋅∪{ω = (ω0 , 0, . . . , 0, ωn) ∶ ω0 , ωn ≥ 0, ω ≠ (0, . . . , 0)}.(1.2)

From now on, we will write Re(z), Im(z), ∣z∣ and z̄ to represent the real and imaginary
parts, the modulus and the complex conjugate of z ∈ C, respectively. Let C+ = {z ∈ C ∶
Im(z) ≥ 0}, and for n ≥ 2 let

RL(n) = {z ∈ C+ ∶ fω(z) = 0 for some ω ∈ Ln} and
RL>0(n) = {z ∈ C+ ∶ fω(z) = 0 for some ω ∈ Ln

>0}.

It is known (see [8]) that the set of roots of all log-concave coefficients (i.e., Steiner)
polynomials in C

+ is a closed convex cone containing the non-positive real axis R≤0.
In this paper, we show that log-convex coefficients polynomials share these properties.
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Theorem 1.1 RL(n) is a convex cone containing the non-positive real axis R≤0.
RL>0(n) is a convex cone containing the negative real axis R<0.

As usual in the literature, we represent by int M, cl M, bd M, and conv M, the
interior, closure, boundary, and convex hull of M, respectively. We also stress that,
from now on, any topological issue concerning subsets of C must be understood with
respect to the standard topology.

Theorem 1.2 The cone RL(n) is closed. Moreover, clRL>0(n) = RL(n) and
intRL>0(n) = intRL(n).

These theorems will play a key role in order to get the precise description of the
cones RL(n) and RL>0(n). When n = 2, it can be directly obtained from results in
[1]:

RL>0(2) = {z ∈ C+ ∶ Re(z) < 0}

(see [1, Proof of Proposition 4.2]). Here, for arbitrary n ∈ N, n ≥ 3, we describe the
cones RL>0(n) and RL(n), and show that they are determined by the nth roots of −1:

Theorem 1.3 Let n ≥ 3. Then

RL>0(n) = {a + b i ∈ C+ ∶ b > tan(π/n)a} and
RL(n) = {a + b i ∈ C+ ∶ b ≥ tan(π/n)a}.

A prominent subset of this family of polynomials is the one consisting of the well-
known dual Steiner polynomials (see Section 2 for its explicit definition), which have
been also studied thoroughgoingly in the last years. So, many properties of this general
family of log-convex coefficients polynomials will apply to the dual Steiner ones.

The paper is organized as follows: Section 2 is devoted to a brief introduction on the
dual Steiner polynomials and its connection with our general family of polynomials;
the main results that we obtain in this setting are also presented. Next, in the brief
Section 3, we collect the classical properties on polynomials that will be needed in the
proofs of our results. In Section 4, we study the structure of the set of roots of all log-
convex coefficients polynomials, showing, among others, that it is a closed convex
cone in the upper half-plane (Theorems 1.1 and 1.2), monotonic with respect to n,
which covers its interior when n tends to infinity. We also give its precise description
for all n ∈ N, n ≥ 3 (Theorem 1.3), and derive some consequences for dual Steiner
polynomials. Finally, in Section 5, we get bounds for the roots of these polynomials in
terms of the coefficients. Here, we also obtain a characterization of the Euclidean ball
as the only star body such that all the roots of its dual Steiner polynomial have equal
real part.

2 A brief tour on dual Steiner polynomials

An outstanding extension of the classical Brunn–Minkowski theory is obtained by
replacing convex bodies and the classical Minkowski addition, by another family of
sets and a different additive operation: the dual Brunn–Minkowski theory (see, e.g.,
[17, Section 9.3]), introduced by Lutwak in [13, 14], and based on the radial addition
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x+̃y for x , y ∈ Rn , where

x+̃y = { x + y, if x , y are linearly dependent,
0, otherwise.

In general, the radial sum K+̃E = {x+̃y ∶ x ∈ K , y ∈ E} of two convex bodies K , E is
not a convex set, but the radial sum of two star bodies is again a star body. In order
to define star bodies, we call a nonempty set S ⊂ R

n starshaped (with respect to the
origin) if the segment [0, x] ⊂ S for all x ∈ S. For a compact starshaped set K its
radial function ρK ∶ Sn−1 �→ R≥0 is defined by ρK(u) = max{ρ ≥ 0 ∶ ρu ∈ K}, where,
as usual, Sn−1 represents the (n − 1)-dimensional sphere. If this function is positive
and continuous then K is called a star body. In particular, any star body has nonempty
interior and any convex body containing the origin in its interior is a star body. We
denote by Sn

0 the set of all star bodies in R
n .

It is easy to see that, for K , E ∈ Sn
0 and λ ≥ 0, the volume of the radial sum K+̃λE =

{x+̃λy ∶ x ∈ K , y ∈ E} is also expressed as a polynomial of degree n in λ (see, e.g., [17,
p. 508]), the so-called (relative) dual Steiner formula, which is written as

vol(K+̃λE) =
n
∑
i=0

(n
i
)W̃i(K; E)λ i .(2.1)

The coefficients W̃i(K; E) are the (relative) dual quermassintegrals of K and E, and
they are special cases of the dual mixed volumes, which were introduced by Lutwak
in [13] (see also [17, Section 9.3]). Since star bodies have nonempty interior, it
is easy to see that W̃i(K; E) > 0 for all i = 0, . . . , n. Dual quermassintegrals also
satisfy that W̃0(K; E) = vol(K) and W̃n(K; E) = vol(E), and furthermore, they are
homogeneous of degree n − i (respectively, degree i) in the first (respectively, second)
argument. When E = Bn , we write for short W̃i(K) = W̃i(K; Bn).

It is well-known that for K , E ∈ Sn
0 ,

W̃i(K; E)2 ≤ W̃i−1(K; E)W̃i+1(K; E), 1 ≤ i ≤ n − 1,(2.2)

which are the “dual” counterpart to the classical Aleksandrov–Fenchel inequalities
(see, e.g., [17, (9.40)]). Equality holds in (2.2) if and only if K and E are dilates.

Regarding again the right-hand side of (2.1) as a formal polynomial in a complex
variable z ∈ C, which we denote by

f̃K ;E(z) =
n
∑
i=0

(n
i
)W̃i(K; E)z i ,

structural properties of the set of roots of dual Steiner polynomials are investigated in
[1]. Most of these results are based on a characterization of those tuples (ω0 , . . . , ωn) of
real numbers for which there exist K , E ∈ Sn

0 with W̃ j(K; E) = ω j , j = 0, . . . , n, which
is also proved in [1]. This characterization is, however, much more involved than the
one describing the classical quermassintegrals (see [1, Theorems 1.1 and 2.2]): now,
the dual Aleksandrov–Fenchel inequalities are, in general, not enough in order to
characterize dual quermassintegrals.

At this point we make a key observation. It arises from [1, Lemma 2.2] that one of
the star bodies in the above mentioned characterization is always an Euclidean ball.
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Therefore, and without loss of generality, we will always take the relative star body E =
Bn . Furthermore, those results in which the dual quermassintegrals characterization
is not used are equally valid for an arbitrary E ∈ Sn

0 without additional considerations,
and so, for the sake of simplicity, we will always work with the dual quermassintegrals
W̃i(K).

Thus, we write

R̃(n) = {z ∈ C+ ∶ f̃K ;Bn(z) = 0 for some K ∈ Sn
0}

to represent the set of roots of all dual Steiner polynomials in the upper half-plane,
which is known to be a convex cone containing the negative real axis R<0 (see [1,
Theorem 1.3]). Since the dual quermassintegrals fulfill W̃i(K) > 0 for all i = 0, . . . , n
and every K ∈ Sn

0 , and they satisfy the dual Aleksandrov–Fenchel inequalities (2.2),
dual Steiner polynomials are particular cases of log-convex coefficients polynomials,
and thus

R̃(n) ⊂ RL>0(n).(2.3)

But since the dual Aleksandrov–Fenchel inequalities do not characterize, in general,
dual quermassintegrals, the inclusion (2.3) may be strict. However, both cones are
known to coincide when n = 2 (see [1, Proposition 4.2]):

R̃(2) = RL>0(2) = {z ∈ C+ ∶ Re(z) < 0} .

Singular cases turn out to be dimensions n = 2, 3, where the dual Aleksandrov–
Fenchel inequalities do characterize dual quermassintegrals (see [1, Proof of Proposi-
tion 4.2]) and [10, Corollary 3.1], respectively). We collect both results in the following
theorem:

Theorem 2.1 Given ω0 , ω1 > 0, there exists a star body K ∈ S2
0 such that W̃i(K) = ω i ,

i = 0, 1, if and only if either they verify the strict dual Aleksandrov–Fenchel inequality
ω2

1 < ω0ω2, or ω i = λ2−iκ2 for some λ > 0 and i = 0, 1, and in this case K = λB2.
Given ω0 , ω1 , ω2 > 0, there exists a star body K ∈ S3

0 such that W̃i(K) = ω i , i =
0, 1, 2, if and only if either they verify the strict dual Aleksandrov–Fenchel inequalities
ω2

1 < ω0ω2 and ω2
2 < κ3ω1, or ω i = λ3−iκ3 for some λ > 0 and i = 0, 1, 2, and in this case

K = λB3.

Remark 2.1 In dimension n = 4 it is easy to see that the dual Aleksandrov–Fenchel
inequalities do not characterize the dual quermassintegrals. In fact, taking ω0 =
(4π2 − 6)/(π2 − 2), ω1 = 2 and ω2 = ω3 = 1, one gets

ω2
1 − ω0ω2 =

−2
π2 − 2

, ω2
2 − ω3ω1 = −1, ω2

3 − ω2κ4 = 1 − π2

2
.

However, using the characterization given in [1, Theorem 2.2] via some properties
of particular Hankel matrices, one can see that the above numbers are not dual
quermassintegrals of any star body: indeed, it is a straightforward computation to
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check that the Hankel matrix

⎛
⎜
⎝

κ4 ω3 ω2
ω3 ω2 ω1
ω2 ω1 ω0

⎞
⎟
⎠

is not positive definite because its determinant vanishes.

Accordingly, the results satisfied by second/third-degree log-convex coefficients
polynomials will have a more or less direct translation for dual Steiner polynomials
of planar/three-dimensional star bodies, not so when n ≥ 4. An example of this fact
arises in the following consequence of Theorem 1.3:

Corollary 2.1 R̃(3) = {a + b i ∈ C+ ∶ b >
√

3 a}.

Its proof can be found in Section 4. Another of our main results for dual Steiner
polynomials, which cannot be derived from results for log-convex coefficients polyno-
mials, is the following characterization of the Euclidean ball. Its proof will be collected
in Section 5.2:

Theorem 2.2 Let K ∈ Sn
0 for n ≥ 3, let γ i , i = 1, . . . , n, be the roots of f̃K ;Bn(z) and let

a > 0. Then Re(γ i) = −a for all i = 1, . . . , n if and only if K = aBn .

3 Background on polynomials

Since many of our results are strongly based on specific properties which are satisfied
by the roots of polynomials, in order to make the reading of the manuscript easier,
we devote this brief section to those results on polynomials that will be needed in the
subsequent proofs.

An important well-known result establishes that the roots of a (complex) polyno-
mial are continuous functions of its coefficients:

Theorem 3.1 [15, Theorem (1,4)] Let

f (z) = a0 + a1z + ⋅ ⋅ ⋅ + anzn = an
r
∏
i=1
(z − z i)m i , an ≠ 0,

F(z) = (a0 + ε0) + (a1 + ε1)z + ⋅ ⋅ ⋅ + (an−1 + εn−1)zn−1 + anzn

be complex polynomials, and let 0 < rk < min ∣zk − z i ∣ for i = 1, . . . , k − 1, k + 1, . . . , r
and all k = 1, . . . , r. Then there exists ε > 0 such that, if ∣ε i ∣ ≤ ε for i = 0, . . . , n − 1, then
F(z) has precisely mk roots in the disk {z ∈ C ∶ ∣z − zk ∣ < rk}, k = 1, . . . , r.

The following results provide bounds for the modulus of the roots of a polynomial:

Proposition 3.1 [15, p. 137, Exercise 2] Let f (z) = a0 + a1z + ⋅ ⋅ ⋅ + anzn be a real
polynomial with a i > 0, i = 0, . . . , n. Then its roots lie in the ring

min
0≤i≤n−1

a i

a i+1
≤ ∣z∣ ≤ max

0≤i≤n−1

a i

a i+1
.
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Proposition 3.2 [15, p. 126, Exercise 7] Let g(z) = zn + b1zn−1 + ⋅ ⋅ ⋅ + bn be a complex
polynomial with roots z1 , . . . , zn , and let M = maxi=1, . . . ,n ∣z i ∣. Then

M ≥ 1
n

n
∑
i=1

�����������

b i

(n
i)

�����������

1/i

.

Theorem 3.2 [15, Theorem (33,3)] Let r ∈ {1, . . . , n − 1}. A complex polynomial of
the form g(z) = 1 + brzr + ⋅ ⋅ ⋅ + bnzn with br ≠ 0 has at least r roots in the disk
{z ∈ C ∶ ∣z∣ ≤ ((n

r)/∣br ∣)
1/r}.

An important tool will be the well-known Lucas theorem on the location of the
roots of the derivative (critical points) of a polynomial (see, e.g., [15, Theorem (6,1)]):

Theorem 3.3 (Lucas’ theorem) All the critical points of a (nonconstant) complex
polynomial f (z) lie in the convex hull C of the set of roots of f (z). Moreover, if the
roots of f (z) are not collinear, then no critical point of f (z) lies on the boundary of C
unless it is a multiple root of f (z).

Next property provides with a relation between the imaginary parts of the roots of
the derivative of a polynomial and of the polynomial itself.

Theorem 3.4 [16, Theorem 1.4.1] Let the complex polynomial f (z) of degree n > 1 have
the roots z1 , . . . , zn , and let w1 , . . . , wn−1 be those of f ′(z). Then

1
n − 1

n−1
∑
i=1
∣Im(w i)∣ ≤

1
n

n
∑
i=1
∣Im(z i)∣.

The last result, known as the Davenport–Pólya theorem, deals with the convolution
of two log-convex sequences.

Theorem 3.5 (Davenport–Pólya’s theorem [3]) Let (a i)n
i=0 and (b i)n

i=0 be log-convex
sequences of positive numbers. Then the sequence (v i)n

i=0 given by

v i = a0b i + (
i
1
)a1b i−1 + (

i
2
)a2b i−2 + ⋅ ⋅ ⋅ + a i b0

is also log-convex.

4 The sets of roots of log-convex coefficients polynomials

In this section, we prove our main results regarding the structure of the set of roots
of log-convex coefficients polynomials. We start with Theorem 1.1, for which we need
the following auxiliary result:

Lemma 4.1 Let ω ∈ Ln(respectively, ω ∈ Ln
>0). Then:

(i) for every λ > 0, there exists ω′ ∈ Ln(respectively, ω′ ∈ Ln
>0) such that fω(λz) =

fω′(z) and
(ii) for all a > 0, there exists ω′ ∈ Ln(respectively, ω′ ∈ Ln

>0) such that fω(z + a) =
fω′(z).
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Proof Let ω = (ω0 , . . . , ωn) ∈ Ln . To see (i), it suffices to consider the tuple ω′ =
(ω0 , λω1 , . . . , λn ωn), and the result follows.

To prove (ii), we have to distinguish whether ω ∈ Ln
>0 or ω ∈ Ln/Ln

>0. First
we assume that ω ∈ Ln

>0. Taking into account that also the reversed tuple
(ωn , ωn−1 , . . . , ω0) ∈ Ln

>0 and that (1, a, a2 , . . . , an) ∈ Ln
>0, we construct the new tuple

υ i =
i
∑
k=0

( i
k
)ak ωn−i+k , 0 ≤ i ≤ n,

given by their binomial convolution, which is also a log-convex sequence as an
application of Davenport–Pólya’s theorem (see Theorem 3.5). So, ω′ = (υn , . . . , υ0) ∈
Ln
>0, and since (n

i)(
n−i

k ) = ( n
i+k)(

i+k
i ), we get

fω′(z) =
n
∑
i=0

(n
i
)υn−i z i =

n
∑
i=0

(n
i
)(

n−i
∑
k=0

(n − i
k

)ak ω i+k) z i

=
n
∑
i=0

(
n−i
∑
k=0

( n
i + k

)(i + k
i
)ak ω i+k) z i

=
n
∑
i=0

(
n
∑
l=i

(n
l
)(l

i
)a l−i ω l) z i =

n
∑
j=0

(n
j
)ω j

⎛
⎝

j

∑
r=0

( j
r
)a j−rzr⎞

⎠

=
n
∑
j=0

(n
j
)ω j(z + a) j = fω(z + a).

Finally, we assume that ω = (ω0 , 0, . . . , 0, ωn) with ω0 , ωn ≥ 0, ω ≠ (0, . . . , 0) (see
(1.2)). If ωn = 0, the result is trivial, and so we assume that ωn > 0. Then fω(z) =
ω0 + ωnzn and taking

ω′ = (ω0 + ωn an , ωn an−1 , ωn an−2 , . . . , ωn a, ωn) ∈ Ln ,

we have

fω′(z) = (
n
∑
i=0

(n
i
)an−i z i)ωn + ω0 = ωn(z + a)n + ω0 = fω(z + a). ∎

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let γ ∈ RL>0(n). Then there exists ω ∈ Ln
>0 such that fω(γ) =

0, and Lemma 4.1 (ii) ensures that, for all a > 0, γ − a is a root of fω(z + a) = fω′(z)
for some ω′ ∈ Ln

>0. Therefore, γ − a ∈ RL>0(n).
Furthermore, by Lemma 4.1 (i), we know that, for any λ > 0, λγ is a root of the

polynomial fω(z/λ) = fω′′(z) for some ω′′ ∈ Ln
>0, and hence, λγ ∈ RL>0(n). These

two properties imply that RL>0(n) is a convex cone. The proof concludes by noting
that the tuple (1, 1, . . . , 1) ∈ Ln

>0, and so −1 ∈ RL>0(n); therefore, R<0 ⊂ RL>0(n).
In the case of Ln , the argument is analogous. We just have to observe that now the

tuple (0, . . . , 0, ωn) ∈ Ln for ωn > 0, and thus 0 ∈ RL(n). ∎

Remark 4.1 At this point, we would like to stress the pertinence of working
with polynomials of the form fω(z) = ∑n

i=0 (n
i)ω i z i instead of just considering

∑n
i=0 ω i z i for ω ∈ Ln

>0 (or Ln). The combinatorial numbers play a key role if
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one aims to have analogous properties to the ones of the Steiner polynomials
(e.g., convexity or monotonicity). Indeed, it is an easy computation to check that
the set of roots of all the second-degree polynomials ω0 + ω1z + ω2z2, with ω ∈
L2
>0, is {a + b i ∈ C+ ∶ −b ≤

√
3 a < 0}, and hence convex; however, for the third-

degree polynomials ∑3
i=0 ω i z i , ω ∈ L3

>0, the set of roots is contained in the union
{a + bi ∈ C+ ∶ b >

√
3 ∣a∣} ∪R<0, and hence, since it trivially contains the set R<0 ∪

{bi ∶ b > 0}, the convexity, for instance, is lost. Of course, further research can be
developed for them.

Next, we investigate the topological properties of the cones RL(n) and RL>0(n):
we prove Theorem 1.2.

Proof of Theorem 1.2 Let γ ∈ bdRL(n), and let (γm)m∈N ⊂ RL(n) be a sequence
such that limm→∞ γm = γ. Then, for every m ∈ N, there exists ωm = (ωm

0 , . . . , ωm
n ) ∈

Ln such that fωm(γm) = 0.
Since fωm(1) > 0 because ωm ≠ (0, . . . , 0), without loss of generality we may

assume that fωm(1) = 1; otherwise one might take the tuple ωm/ fωm(1) ∈ Ln . Thus,
from fωm(1) = ∑n

i=0 (n
i)ωm

i , we get ωm
i ∈ [0, 1] for every i = 0, . . . , n and all m ∈ N.

Thus, a subsequence of each sequence (ωm
i )m∈N converges to a point ω i , 0 ≤ i ≤ n,

and without loss of generality we assume that limm→∞ ωm
i = ω i for all i = 0, . . . , n.

Moreover, since (ωm
i )2 ≤ ωm

i−1ωm
i+1 for all m ∈ N, the same inequality holds

for the limit values, i.e., (ω i)2 ≤ ω i−1ω i+1, 1 ≤ i ≤ n − 1. We also note that ω ≠
(0, . . . , 0) because fωm(1) = 1 for all m ∈ N; hence ω = (ω0 , . . . , ωn) ∈ Ln . Finally,
since fωm(γm) = 0 for every m ∈ N, also fω(γ) = 0, and so γ ∈ RL(n).

Next, we show the identities of the statement. First, we observe that the set
differenceRL(n)/RL>0(n) ⊂ {z ∈ C+ ∶ zn + a = 0 for some a ≥ 0}. Moreover, the set
in the right-hand side is the (finite) union of those rays determined by the nth roots
of −1 which are contained in the upper half-plane C+. Then, taking into account that
both RL(n) and RL>0(n) are convex cones (Theorem 1.1) and that they only differ, at
most, in the above finite union of rays, we may conclude that intRL>0(n) = intRL(n)
and clRL>0(n) = clRL(n) = RL(n). ∎

Using the previous results, in the next subsection, we will determine RL>0(n) and
RL(n).

4.1 Describing the cones RL(n) and RL>0(n)

Before the proof of Theorem 1.3, we need several lemmas and additional notation.
First, we introduce and study particular polynomials that will be crucial in the proof

of our main result. The classical De Moivre formula states that, for any x ∈ R and m ∈
Z, (cos(x) + sin(x) i)m = cos(mx) + sin(mx) i (see, e.g., [2, p. 5]). Then, for any x ∈
(0, π/m], m ∈ N with m ≥ 3, we have

0 ≤ Im(cos(mx) + sin(mx) i) = Im((cos(x) + sin(x) i)m)

=
m
∑
i=1

i odd

(m
i
)(−1)(i−1)/2 cosm−i(x) sini(x),
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and dividing by cosm(x) > 0 we get
m
∑
i=1

i odd

(m
i
)(−1)(i−1)/2 tani(x) ≥ 0.

Thus, for any m ∈ N, the formal polynomial in a real variable t ∈ R

pm(t) ∶=
m−1
∑
i=0

i even

( m
i + 1

)(−1)i/2 t i

satisfies the following basic but crucial property:

Lemma 4.2 Let m ∈ N. Then pm(t) ≥ 0 for all t ∈ [0, tan(π/m)], and equality holds,
for m ≥ 3, if and only if t = tan(π/m).

Next lemma establishes an important relation for these polynomials that will be
needed later.

Lemma 4.3 Let m ∈ N. For all t ∈ R,

(1 + t2)pm(t) = 2pm+1(t) − pm+2(t).

Proof From the definition of pk(t), for k = m, m + 1, m + 2, we have

(1 + t2)pm(t) =
m−1
∑
i=0

i even

( m
i + 1

)(−1)i/2 t i +
m−1
∑
i=0

i even

( m
i + 1

)(−1)i/2 t i+2

=
m−1
∑
i=0

i even

( m
i + 1

)(−1)i/2 t i +
m+1
∑
i=2

i even

( m
i − 1

)(−1)i/2−1 t i

= m +
m−1
∑
i=2

i even

[( m
i + 1

) − ( m
i − 1

)] (−1)i/2 t i + S1 ,

where

S1 = {
m(−1)m/2−1 tm if m is even,
(−1)(m−1)/2 tm+1 if m is odd,

and

2pm+1(t) − pm+2(t) = 2
m
∑
i=0

i even

(m + 1
i + 1

)(−1)i/2 t i −
m+1
∑
i=0

i even

(m + 2
i + 1

)(−1)i/2 t i

=
m
∑
i=0

i even

[2(m + 1
i + 1

) − (m + 2
i + 1

)] (−1)i/2 t i + S2 ,

where

S2 = {
0 if m is even,
(−1)(m−1)/2 tm+1 if m is odd.
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Clearly, the constant terms m and 2(m+1
1 ) − (m+2

1 ) coincide in the two above polynomi-
als. Also the leading coefficients in both cases, m even and odd, are equal: m(−1)m/2−1

and (−1)(m−1)/2, respectively. Furthermore, since

( m
i + 1

) − ( m
i − 1

) = (m + 1)! (m − 2i)
(m − i + 1)!(i + 1)!

= 2(m + 1
i + 1

) − (m + 2
i + 1

),

for all i = 2, . . . , m − 1, we get the required identity. ∎
Next, we define a (finite) sequence of functions ck ∶ [0, tan( π

k+3)]�→ R>0, k =
1, . . . , n − 3, recursively by

ck(t) =
⎧⎪⎪⎨⎪⎪⎩

1+t2

2 if k = 1,
2c1(t)

2−ck−1(t)
if k = 2, . . . , n − 3.

In order to assure that they are well-defined, we have to see that ck(t) ≠ 2 for all k =
1, . . . , n − 3 in its domain. This will be a direct consequence of the following lemma,
which will be needed in the proof of Theorem 1.3.

Lemma 4.4 For every k = 1, . . . , n − 3 we have

ck(t) ≤ 3 − t2

2
for all 0 ≤ t ≤ tan( π

k + 3
) .

Equality holds if and only if t = tan (π/(k + 3)). In particular, ck(t) < 2 for 0 ≤ t ≤
tan (π/(k + 3)) and all k = 1, . . . , n − 3.

Proof We notice that it is enough to show that the functions ck(t) can be expressed
as

ck(t) = 3 − t2

2
− pk+3(t)

2pk+1(t) , k = 1, . . . , n − 3,(4.1)

for all 0 ≤ t ≤ tan(π/(k + 3)). Indeed, since pk+3(t) ≥ 0 for all 0 ≤ t ≤ tan(π/(k + 3))
with equality if and only if t = tan(π/(k + 3)) (see Lemma 4.2) and, in this range,
pk+1(t) > 0 because (tan(π/m))∞m=2 is a decreasing sequence and so tan(π/(k +
3)) < tan(π/(k + 1)), then the result follows. As usual, we are using the convention
tan(π/2) = ∞.

We prove (4.1) by induction on k. Clearly,

3 − t2

2
− p4(t)

2p2(t) =
3 − t2

2
− 4 − 4t2

4
= 1 + t2

2
= c1(t).

So, let k > 1 and we assume that (4.1) holds for k − 1. Then,

2 − ck−1(t) = 2 − 3 − t2

2
+ pk+2(t)

2pk(t) = 1 + t2

2
+ pk+2(t)

2pk(t) ,

and using Lemma 4.3, we get

ck(t) = 2c1(t)
2 − ck−1(t) =

2(1 + t2)pk(t)
(1 + t2)pk(t) + pk+2(t) = (1 + t2) pk(t)

pk+1(t) .
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The identity (4.1) is now obtained using again Lemma 4.3 twice:

ck(t) = (1 + t2) pk(t)
pk+1(t) =

4pk+1(t) − 2pk+2(t)
2pk+1(t)

= 4pk+1(t) − pk+3(t) − (1 + t2)pk+1(t)
2pk+1(t) = (3 − t2)pk+1(t) − pk+3(t)

2pk+1(t) .

This concludes the proof. ∎

Now, we are in a position to prove our main result.

Proof of Theorem 1.3 We state the result for RL>0(n); the description of the cones
RL(n) is achieved just noticing that RL(n) = clRL>0(n) (see Theorem 1.2).

First, we observe that since

1 + tan(π
n
) i ∈ {z ∈ C+ ∶ zn + a = 0} ⊂ RL(n),

where a = cos−n(π/n), and RL(n) is a convex cone containing R≤0 (Theorem 1.1), we
have from Theorem 1.2 that

{a + b i ∈ C+ ∶ b > tan(π
n
) a} ⊂ intRL(n) ∪R<0

= intRL>0(n) ∪R<0 ⊂ RL>0(n).

So, we have to prove the reverse inclusion. Let n ∈ N with n ≥ 3, and we take a +
b i ∈ RL>0(n). We may suppose that a > 0, otherwise the inequality is satisfied, and
hence, using Lemma 4.1 (i), we assume without loss of generality that a = 1. Let
ω = (ω0 , . . . , ωn) ∈ Ln

>0 be such that fω(1 + b i) = 0.
From fω(z) = ωn(z2 − 2z + 1 + b2) (zn−2 +∑n−3

i=0 a i z i) we obtain the following
identities: if n = 3, we get

ω0

ω3
= a0(1 + b2), 3 ω1

ω3
= 1 + b2 − 2a0 , 3 ω2

ω3
= a0 − 2,

whereas for n ≥ 4, we have
ω0

ωn
= a0(1 + b2), n ω1

ωn
= a1(1 + b2) − 2a0 ,

(n
i
) ω i

ωn
= a i(1 + b2) − 2a i−1 + a i−2 for i = 2, . . . , n − 3,

(n
2
) ωn−2

ωn
= 1 + b2 − 2an−3 + an−4 and n ωn−1

ωn
= an−3 − 2.

Since ω i > 0 for all i = 0, . . . , n, we have a0 > 0 and

(i) a1(1 + b2) > 2a0 , (ii) 1 + b2 + an−4 > 2an−3 ,
(iii) a i(1 + b2) + a i−2 > 2a i−1 for i = 2, . . . , n − 3,
(iv) an−3 > 2.

(4.2)

Note that for n = 3, there are no inequalities (ii) and (iii), being a1 = 1; for n = 4, there
is no inequality (iii). In both cases, the conclusion in this argument will be obtained
directly.
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We assume now that b = tan(π/n), and we will get a contradiction. From (ii) and
(iv) in (4.2) we immediately get that

3 − tan2 (π
n
) < an−4 .(4.3)

Next, we consider the recursive (finite) sequence of numbers

ck =
⎧⎪⎪⎨⎪⎪⎩

1+tan2( π
n )

2 for k = 1,
2c1

2−ck−1
for k = 2, . . . , n − 2,

which is well-defined by Lemma 4.4: note, on the one hand, that tan(π/n) ≤
tan(π/(k + 3)) for all k = 1, . . . , n − 3 and, on the other hand, that cn−3 < 2, which
ensures that cn−2 can be defined. Using (4.2)(i), we get a0 < c1a1, and together with
(iii) for i = 2, we obtain

a1 < c1a2 +
a0

2
< c1a2 +

c1a1

2
, i.e., a1 <

2c1

2 − c1
a2 = c2a2

because c1 < 2 (see Lemma 4.4). An inductive procedure yields, using (iii) for any 2 ≤
i ≤ n − 3,

a i−1 < c1a i +
a i−2

2
< c1a i +

c i−1a i−1

2
,

and so we get

a i−1 < c i a i for all i = 2, . . . , n − 3

because c i−1 < 2 (see Lemma 4.4). Finally, the above relation for i = n − 3 together with
(4.2)(ii) gives

an−4 < cn−3an−3 < cn−3 (c1 +
an−4

2
) ,

and hence, since cn−3 < 2 (see Lemma 4.4), we have

an−4 <
2c1

2 − cn−3
cn−3 = cn−2cn−3 .

From the equality case of Lemma 4.4, we get

cn−3 =
3 − tan2 ( π

n )
2

and cn−2 =
2c1

2 − cn−3
=

1 + tan2 ( π
n )

2 − 3−tan2( π
n )

2

= 2,

and so

an−4 < cn−2cn−3 = 3 − tan2 (π
n
) ,

which contradicts (4.3). Therefore, since RL>0(n) is a convex cone containing R<0,
it must be b > tan(π/n), which shows the reverse inclusion RL>0(n) ⊂ {1 + b i ∈ C+ ∶
b > tan(π/n)}. This concludes the proof. ∎

Note that, surprisingly, the proof of the inclusion RL>0(n) ⊂ {a + b i ∈ C+ ∶ b >
tan(π/n)a} in Theorem 1.3 does not make use of the log-convexity property of the
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tuple ω = (ω0 , . . . , ωn): just the positivity ω i > 0, for all i = 0, . . . , n, is needed. This
shows the following property:

Corollary 4.1 There exists no nth degree real polynomial a0 + a1z + ⋅ ⋅ ⋅ + anzn with
a i > 0 for all i = 0, . . . , n, having 1 + tan(π/n) i as a root.

As a direct consequence of Theorem 1.3, we get that the cones RL>0(n) and RL(n)
are strictly monotonic with respect to n, and also that they cover the whole upper half-
plane C+, except R≥0, when n tends to infinity. For simplicity, we state the result just
for RL>0(n); the case of RL(n) is analogous.

Corollary 4.2 RL>0(n) ⊊ RL>0(n + 1). Moreover, for all γ ∈ C+/R≥0, there exists n0 ∈
N such that γ ∈ RL>0(n) for all n ≥ n0.

Proof The first assertion is obvious from the description of RL>0(n) given in
Theorem 1.3. Finally, for a given γ ∈ C+/R≥0, since limn→∞ tan(π/n) = 0 then there
exists n0 ∈ N such that γ ∈ {a + b i ∈ C+ ∶ b > tan(π/n)a} = RL>0(n) for all n ≥ n0.
This concludes the proof. ∎

As another consequence of Theorem 1.3, we can prove Corollary 2.1. Indeed, since
the dual Aleksandrov–Fenchel inequalities characterize the triples (ω0 , ω1 , ω2) of
positive numbers that can be the dual quermassintegrals W̃i(K) of some star body
K ∈ S3

0 (see Theorem 2.1), with a slight extra effort we easily get that R̃(3) = RL>0(3):

Proof of Corollary 2.1 The inclusion R̃(3) ⊂ RL>0(3) is clear. In order to prove
the reverse inclusion, let γ ∈ RL>0(3), which we suppose not to be real, otherwise
the assertion holds. Then there exists ω ∈ L3

>0 such that fω(γ) = 0. Note that we may
assume, without loss of generality, that ω = (ω0 , ω1 , ω2 ,κ3). If

ω2
1 < ω0ω2 and ω2

2 < ω1κ3 ,

then Theorem 2.1 ensures that fω(z) is a dual Steiner polynomial of some star body,
and therefore γ ∈ R̃(3).

If, on the contrary, some of the above inequalities is an equality, we consider the
4-tuple

ω′ = (ω′0 , ω′1 , ω′2 ,κ3) ∶=
κ3

κ3 + ε
(ω0 + ε, ω1 , ω2 ,κ3 + ε)

for fixed ε > 0. Clearly ω′ ∈ L3
>0, and it is straightforward that the inequalities (ω′1)2 <

ω′0ω′2 and (ω′2)2 < ω′1κ3 hold. Hence, by Theorem 2.1, there exists a star body K ∈ S3
0

such that fω′(z) = f̃K ;B3(z) is a dual Steiner polynomial.
Let δ > 0 be fixed. Since the roots of a polynomial are continuous functions of the

coefficients of the polynomial (see Theorem 3.1), if ε > 0 is small enough, then there
exists γ′ ∈ C+ with fω′(γ′) = 0, i.e., γ′ ∈ R̃(3), such that ∣γ − γ′∣ < δ. This shows that γ ∈
cl R̃(3), i.e., that RL>0(3) ⊂ cl R̃(3). Since both RL>0(3) and R̃(3) are convex cones,
the proof is then concluded from the inclusion R̃(3) ⊂ RL>0(3) jointly with the fact
that the upper ray of the boundary of RL>0(3), i.e., bdRL>0(3)/R<0, is not included
therein. ∎
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Unfortunately, since the dual Aleksandrov–Fenchel inequalities do not characterize
dual quermassintegrals (cf. Remark 2.1), Theorem 1.3 does not provide us with a
description for R̃(4).

4.2 Further properties of the cones of roots

An immediate outcome of Theorem 1.3 is the fact that, when n ≥ 3, a pure imaginary
complex root always exists in RL>0(n), since it is a convex cone. Indeed, for n =
3, there are log-convex coefficients polynomials all whose complex roots are pure
imaginary. However, when n ≥ 4, not all the roots can be of that type. More precisely,
we have:

Theorem 4.1 For n ≥ 4, n ≠ 5, there does not exist ω ∈ Ln such that all the roots of
fω(z) are imaginary pure complex numbers (excluding the real root always existing
for odd degree). When n = 5, the only 6-tuples satisfying the above condition are
ω = λ(c5 , c4/5, c3/5, c2/5, c/5, 1) ∈ L5 for λ > 0 and c > 0, and in this case fω(z) =
λ(z + c) (z2 + c2)2.

In order to prove the theorem, we need the following auxiliary result:

Lemma 4.5 For any n ≥ 5, let x1 , . . . , xr > 0, r ≥ 2, be positive real numbers, such that

x1 + ⋅ ⋅ ⋅ + xr ≤
3
2

n − 1
n − 2

.

Then
1
x1

+ ⋅ ⋅ ⋅ + 1
xr

≥ 3
2

n − 1
n − 2

,(4.4)

and equality holds if and only if n = 5, r = 2 and x1 = x2 = 1.

Proof For the sake of simplicity, we write an ∶= 3(n − 1)/(2(n − 2)). Clearly a5 = 2,
and since an is a decreasing sequence in n, it can be easily seen that an < 2 for all n > 5,
and so an ≤ 4/an with equality if and only if n = 5.

We assume that ∑r
i=1 x i ≤ an , and first we show the result for r = 2. Let m ∶= x1 +

x2 ≤ an . Since m − x1 = x2 > 0, inequality (4.4) can be expressed as m ≥ an x1(m − x1),
or equivalently,

an x2
1 − an mx1 + m ≥ 0.(4.5)

Using that an ≤ 4/an , the discriminant of the second-degree polynomial (in x1) in the
left-hand side satisfies that

D = an m(an m − 4) ≤ an m ( 4
an

an − 4) = 0.

Therefore, an x2
1 − an mx1 + m ≥ 0, and thus (4.4) holds. Note, moreover, that if n > 5

then D < 0 and (4.4) holds strictly.
Now, we assume that r > 2 and consider the positive numbers

x ∶=
r−1
∑
i=1

x i and y = xr ,
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which satisfy x + y ≤ an . We observe that since r > 2 and 1/x is a convex function, then

1
∑r−1

i=1 x i
< 1

1
r−1 ∑

r−1
i=1 x i

≤
r−1
∑
i=1

1
r − 1

1
x i

<
r−1
∑
i=1

1
x i

.(4.6)

If we assume that ∑r
i=1 1/x i ≤ an holds, (4.6) would yield

an ≥ (
r−1
∑
i=1

1
x i
) + 1

xr
> 1
∑r−1

i=1 x i
+ 1

xr
= 1

x
+ 1

y
,

in contradiction to the case r = 2 previously proved. This shows that for r > 2, inequal-
ity (4.4) holds strictly.

For the equality case, we assume that (4.4) holds with equality. We already know
that then, necessarily, r = 2, otherwise the inequality (4.4) would be strict. Therefore,
the equality in (4.4) is equivalent to the identity an x2

1 − an mx1 + m = 0 (cf. (4.5)). But
in this case, they must be n = 5 and D = 0, otherwise (4.5) would hold strictly. Finally,
notice that D = 0 (when n = 5) occurs if and only if m = 2. Thus,

0 = a5x2
1 − a5mx1 + m = 2x2

1 − 4x1 + 2 = 2(x1 − 1)2

if and only if x1 = 1 and so x2 = 1. ∎
Now, we are in a position to show Theorem 4.1.

Proof of Theorem 4.1 First, we note that if ω = (ω0 , 0, . . . , 0, ωn) ∈ Ln/Ln
>0 then

fω(z) = ω0 + ωnzn , all whose roots cannot be imaginary pure complex numbers
(aside from the real root if n is odd) for any values of ω0 , ωn ∈ R≥0. So, we will consider
only tuples in Ln

>0.
Let n be even, and we assume there exists ω = (ω0 , . . . , ωn) ∈ Ln

>0 such that all the
roots of fω(z) are {±b j i, j = 1, . . . , n/2}, with b j ∈ R>0. Then

fω(z) = ωn

n/2

∏
j=1
(z2 + b2

j ),

which would imply, in particular, that ω2i+1 = 0 for all i = 0, . . . , (n − 2)/2. Thus ω i =
0 for every i = 1, . . . , n − 1, and so fω(z) would be of the form fω(z) = ωn(zn + a), a
contradiction.

Now let n be odd. Let ω = (ω0 , . . . , ωn) ∈ Ln
>0 be such that the roots of fω(z) are

{−c,±b j i, j = 1, . . . , (n − 1)/2}, with c, b j ∈ R>0. From

fω(z) = ωn(z + c)
(n−1)/2

∏
j=1

(z2 + b2
j ),

we get

c
(n−1)/2

∑
j=1

b2
j = (

n
3
)ωn−3

ωn
,

(n−1)/2

∑
j=1

b2
j = (

n
2
)ωn−2

ωn
, c = n ωn−1

ωn
,

(n−1)/2

∏
j=1

b2
j = n ω1

ωn
, c

(n−1)/2

∑
j=1

∏
i≠ j

b2
i = (

n
2
)ω2

ωn
,

(n−1)/2

∑
j=1

∏
i≠ j

b2
i = (

n
3
)ω3

ωn
.
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Since ω is log-convex, it must be, in particular, ω2
n−2 ≤ ωn−3ωn−1 and ω2

2 ≤ ω1ω3,
which are equivalent to the relations

2
n − 1

1
c2

(n−1)/2

∑
j=1

b2
j ≤

3
n − 2

and 2
n − 1

c2
(n−1)/2

∑
j=1

∏
i≠ j

b2
i ≤

3
n − 2

(n−1)/2

∏
j=1

b2
j ,

i.e.,
(n−1)/2

∑
j=1

b2
j

c2 ≤ 3
2

n − 1
n − 2

and
(n−1)/2

∑
j=1

c2

b2
j
≤ 3

2
n − 1
n − 2

,(4.7)

respectively. Lemma 4.5 ensures that, when n > 5, the above two inequalities cannot
hold simultaneously, which gives the desired contradiction.

If n = 5, then (4.7) becomes

b2
1

c2 + b2
2

c2 ≤ 2 and c2

b2
1
+ c2

b2
2
≤ 2,

and Lemma 4.5 ensures that both inequalities hold simultaneously if and only if b1 =
b2 = c. Therefore, fω(z) = ω5(z + c) (z2 + c2)2, which concludes the proof. ∎

For dual Steiner polynomials, the property provided by Theorem 4.1 is slightly more
restrictive.

Corollary 4.3 For n ≥ 4, there does not exist a star body K ∈ Sn
0 such that all the roots

of f̃K ;Bn(z) are imaginary pure complex numbers (excluding the real root always existing
in odd dimension).

Proof Since all dual Steiner polynomials are log-convex coefficients polynomials,
Theorem 4.1 ensures that when n ≥ 4, n ≠ 5, there does not exist K ∈ Sn

0 such that all
the roots of f̃K ;Bn(z) are imaginary pure complex numbers.

So, we set n = 5. Theorem 4.1 ensures that the only possible log-convex coefficients
polynomial, all whose roots are pure complex numbers (excluding the existing real
root), is of the form λ(z + c)(z2 + c2)2, for λ, c > 0. However, it cannot be a dual
Steiner polynomial for any star body K ∈ S5

0. Indeed, if this was the case, it should be

W̃0(K) = λc5 , W̃i(K) = λ c5−i

5
for i = 1, . . . , 4, W̃5(K) = λ

for some K ∈ S5
0, which would verify the dual Aleksandrov–Fenchel inequalities (2.2).

But since, for instance,

W̃2(K)2 − W̃1(K)W̃3(K) = c6

25
λ2 − c4

5
λ c2

5
λ = 0,

the equality case in (2.2) would imply that K is a suitable dilation of B5, and so, all dual
Aleksandrov–Fenchel inequalities should hold with equality. This is however not the
case, because W̃4(K)2 − W̃3(K)W̃5(K) = −4λ2c2/25 < 0. It concludes the proof. ∎

With respect to real roots, a comparable result to Theorem 4.1 can be obtained: not
all the roots can be real numbers, unless they coincide. For completeness, we include
its proof, following the argument of [1, Proposition 4.4], where it was shown that in
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the case of the more restrictive family of dual Steiner polynomials, not all their roots
can be real unless they all are equal. For the proof we need the following notation: for
complex numbers z1 , . . . , zr ∈ C let

si(z1 , . . . , zr) = ∑
J⊂{1,. . . ,r}

#J=i

∏
j∈J

z j

denote the ith elementary symmetric function of z1 , . . . , zr , i = 1, . . . , r, with
s0(z1 , . . . , zr) = 1.

Proposition 4.1 Let ω ∈ Ln . If ω = (ω0 , . . . , ωn) ∈ Ln
>0, then all the roots of fω(z) are

real if and only if ω = ωn(an , an−1 , . . . , a, 1) for some a > 0, i.e., if and only if fω(z) =
ωn(z + a)n ; therefore, all the roots are equal.

If ω = (ω0 , 0, . . . , 0, ωn) ∈ Ln , then all the roots are real if and only if ω0 = 0, i.e., if
and only if all the roots are equal 0.

Proof If ω = (ω0 , 0, . . . , 0, ωn) ∈ Ln , then fω(z) = ω0 + ωnzn , and the thesis follows
trivially.

So we assume that ω = (ω0 , . . . , ωn) ∈ Ln
>0, and let γ1 , . . . , γn ∈ R<0 be the roots of

fω(z). Then, its coefficients can be expressed in terms of the elementary symmetric
functions of the roots, namely,

si(γ1 , . . . , γn) = (−1)i(n
i
)ωn−i

ωn
, i = 0, . . . , n.

We know that the elementary symmetric functions satisfy the Newton inequalities
(see, e.g., [5, Theorem 51]), i.e.,

⎛
⎝

si(γ1 , . . . , γn)
(n

i)
⎞
⎠

2

≥ si−1(γ1 , . . . , γn)
( n

i−1)
si+1(γ1 , . . . , γn)

( n
i+1)

, i = 1, . . . , n − 1,

and thus we get ω2
n−i ≥ ωn−i+1ωn−i−1, for all i = 1, . . . , n − 1. Since ω is a log-convex

tuple, we must have the equalities ω2
n−i = ωn−i+1ωn−i−1 for every i = 1, . . . , n − 1, and

hence, setting a = ωn−1/ωn , we have that ωn−i = a i ωn for all i = 0, . . . , n. Therefore,
fω(z) = ωn(z + a)n , as required. ∎

5 Bounds for the roots of log-convex coefficients and dual Steiner
polynomials

In this section, we investigate additional properties for the roots of dual Steiner
polynomials, providing, among others, bounds for them and a new characterization
of the Euclidean ball. Again, some of these results will be obtained as consequences of
the corresponding ones for log-convex coefficients polynomials. We start with some
bounds for the moduli of the roots of these general polynomials.

Proposition 5.1 Let ω = (ω0 , . . . , ωn) ∈ Ln
>0 and let γ i , i = 1, . . . , n, be the roots of the

polynomial fω(z). Then,
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(i) The roots are bounded by
ωn−1

nωn
≤ ∣γ i ∣ ≤

nω0

ω1
.

(ii) Moreover,
ωn−1

ωn
≤ max

1≤i≤n
∣γ i ∣ and min

1≤i≤n
∣γ i ∣ ≤

ω0

ω1
.

Proof In order to prove (i), we follow the ideas of [6, Proposition 2.1]. Using
Proposition 3.1, we just have to find the minimum and maximum of the quotient
(n

i)ω i/(( n
i+1)ω i+1), i = 0, . . . , n − 1. The log-convexity of the tuple (ω0 , . . . , ωn), and

since ω i > 0 for all i = 0, . . . , n, implies that
ω0

ω1
≥ ω1

ω2
≥ ⋅ ⋅ ⋅ ≥ ωn−1

ωn
,(5.1)

whereas (n
i)/(

n
i+1) is increasing. So we get

ωn−1

nωn
≤

(n
i)ω i

( n
i+1)ω i+1

≤ nω0

ω1

for i = 0, . . . , n − 1.
Next, we use Proposition 3.2: for fω(z) it is b i = ( n

n−i)ωn−i/ωn , and hence the
biggest (with regard to modulus) root of fω(z) satisfies

max
1≤i≤n

∣γ i ∣ ≥
1
n

n
∑
i=1

(ωn−i

ωn
)

1/i
.

Now, from (5.1) and taking geometric means, we get that

( ωn−i

ωn−i+1

ωn−i+1

ωn−i+2
. . . ωn−2

ωn−1
)

1/(i−1)
≥ ωn−1

ωn
, i = 1, . . . , n,

and thus ωn−i ≥ ω i
n−1/ω i−1

n for all i = 1, . . . , n. Therefore,

max
1≤i≤n

∣γ i ∣ ≥
1
n

n
∑
i=1

1
ω1/i

n

ωn−1

ω(i−1)/i
n

= ωn−1

ωn
.

Finally, to show the second bound in (ii), we note, on the one hand, that γ i are also
roots of the polynomial fω′(z) for ω′ = (1, ω1/ω0 , . . . , ωn/ω0) ∈ Ln

>0. On the other
hand, Theorem 3.2 for r = 1 ensures that

min
1≤i≤n

∣γ i ∣ ≤
ω0

ω1
.

This concludes the proof. ∎
Next, we get bounds for the real and the imaginary parts of the roots.

Proposition 5.2 Let ω = (ω0 , . . . , ωn) ∈ Ln
>0 and let γ i , i = 1, . . . , n, be the roots of the

polynomial fω(z). Then, the following properties hold:
(i) There exists i0 ∈ {1, . . . , n} such that ∣Re(γ i0)∣ ≤ ω0/ω1.

(ii) ∑n
i=0∣Re(γ i)∣ ≥ nωn−1/ωn , and equality holds if Re(γ i) ≤ 0 for all i = 1, . . . , n.

(iii) max1≤i≤n ∣Im(γ i)∣ ≥ (1/ωn)
√

ωn ωn−2 − ω2
n−1.
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Proof Since fω(z) = ωn ∏n
i=1(z − γ i) we have

(−1)n ω0 = ωn
n
∏
i=1

γ i and (−1)n−1nω1 = ωn
n
∑
i=1

∏
j≠i

γ j .

Thus, we get

−n ω1

ω0
=

n
∑
i=1

1
γ i

=
n
∑
i=1

Re( 1
γ i
) .

Therefore, there exists a root γ i0 such that Re(1/γ i0) ≤ −ω1/ω0, i.e., such that
∣Re(1/γ i0)∣ ≥ ω1/ω0, and hence ∣Re(γ i0)∣ ≤ ω0/ω1. It proves (i).

Next, since

ωn
n
∑
i=1

γ i = −nωn−1 ,

we have

n ωn−1

ωn
= ∣

n
∑
i=1

γ i ∣ = ∣
n
∑
i=1

Re(γ i)∣ ≤
n
∑
i=1
∣Re(γ i)∣.

Furthermore, if all the roots have non-positive real part, we even have
n
∑
i=1
∣Re(γ i)∣ = ∣

n
∑
i=1

Re(γ i)∣ ,

which shows (ii).
Finally, we prove (iii). Denoting by γ( j)

i , j = 1, . . . , n − 2 and i = 1, . . . , n − j, the
roots of the jth derivative f ( j)

ω (z), Theorem 3.4 yields

n
∑
i=1
∣Im(γ i)∣ ≥

n
n − 1

n−1
∑
i=1

∣Im(γ(1)
i )∣ ≥ n

n − 1
n − 1
n − 2

n−2
∑
i=1

∣Im(γ(2)
i )∣

≥ n
n − 1

n − 1
n − 2

. . . 3
2

2
∑
i=1

∣Im(γ(n − 2)
i )∣ = n

2

2
∑
i=1

∣Im(γ(n − 2)
i )∣ .

Since f (n − 2)
ω (z) = (n!/2)(ωn−2 + 2ωn−1z + ωnz2), the roots of f (n − 2)

ω (z) are given by

γ(n − 2)
1 , γ(n − 2)

2 = −ωn−1

ωn
±
√

ωn ωn−2 − ω2
n−1

ωn
i,

and then we get

n
∑
i=1
∣Im(γ i)∣ ≥ n

√
ωn ωn−2 − ω2

n−1
ωn

.

Therefore,

n max
1≤i≤n

∣Im(γ i)∣ ≥
n
∑
i=1
∣Im(γ i)∣ ≥ n

√
ωn ωn−2 − ω2

n−1
ωn

. ∎
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5.1 Bounds for the roots of dual Steiner polynomials

Using Propositions 5.1 and 5.2, we directly get bounds for the moduli and real parts of
the roots of dual Steiner polynomials depending on the dual quermassintegrals. We
are also interested in obtaining bounds in terms of additional functionals related to
star bodies.

We define the inner and outer radii, r(K) and R(K), of a star body K as

r(K) = max{r > 0 ∶ rBn ⊂ K}, R(K) = min{R > 0 ∶ K ⊂ RBn},

and we will use the inequalities

r(K)W̃i+1(K) ≤ W̃i(K) ≤ R(K)W̃i+1(K)(5.2)

for i = 0, . . . , n − 1: since r(K)Bn ⊂ K and K ⊂ R(K)Bn , the above inequalities are a
direct consequence of the monotonicity of the dual mixed volumes. We stress that the
functionals r(K) and R(K) are different from the classical inradius and circumradius,
because here the balls are taken to be centered at the origin; indeed, since dual
quermassintegrals are not translation invariant, inequalities (5.2) would be in general
not true for the classical inradius and circumradius.

We start considering the two-dimensional case. By the dual Aleksandrov–Fenchel
inequalities (2.2), the roots of the polynomial f̃K ;B2(z), namely,

γ i = −
W̃1(K)

π
±
√

πvol(K) − W̃1(K)2

π
i, i = 1, 2,

are always nonreal complex numbers (unless K = λB2), with modulus ∣γ i ∣ =√
vol(K)/π; hence, using (5.2), we get the bounds

−R(K) ≤ Re(γ i) ≤ −r(K) and r(K) ≤ ∣γ i ∣ ≤ R(K).

In arbitrary dimension, we can get the following bounds for the moduli and real parts
of the roots. They are obtained as direct consequences of Propositions 5.1 and 5.2, and
using (5.2):

Proposition 5.3 Let K ∈ Sn
0 and let γ i , i = 1, . . . , n, be the roots of the dual Steiner

polynomial f̃K ;Bn(z). Then the following properties hold:

(i) The roots are bounded by

r(K)
n

≤ ∣γ i ∣ ≤ nR(K).

Furthermore,

r(K) ≤ max
1≤i≤n

∣γ i ∣ and min
1≤i≤n

∣γ i ∣ ≤ R(K).

(ii) There exists i0 ∈ {1, . . . , n} such that ∣Re(γ i0)∣ ≤ R(K).
(iii) Moreover, if Re(γ i) ≤ 0 for all i = 1, . . . , n then ∑n

i=0∣Re(γ i)∣ ≤ nR(K).
(iv) ∑n

i=0∣Re(γ i)∣ ≥ nr(K).
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Remark 5.1 Following the argument of the proof of (i) in Proposition 5.2, we can
also write the inequality

−n 1
r(K) ≤ −n W̃1(K)

vol(K) =
n
∑
i=1

Re( 1
γ i
) .

Thus, one may conclude the existence of a root γ j with Re(1/γ j) ≥ −1/r(K). This
would provide a bound for the real part of the root γ̃ j = 1/γ j of the dual Steiner polyno-
mial f̃Bn ;K(z). Indeed, since W̃i(K) = W̃n−i(Bn ; K)we have f̃K ;Bn(z) = zn f̃Bn ;K(1/z),
and thus, the roots of f̃Bn ;K(z) are precisely 1/γ i , i = 1, . . . , n.

5.2 A characterization of the ball via the roots of the dual Steiner polynomials

As we have seen, for any dual Steiner polynomial there always exists a root γ with
real part lying in the interval [−R(K), R(K)] (cf. Proposition 5.3 (ii)), and indeed,
there are star bodies such that all the real parts of the roots of f̃K ;Bn(z) lie in the above
interval, as the following example shows.

Example 5.1 We consider the positive numbers (2, 1, 1). Since they satisfy the dual
Aleksandrov–Fenchel inequalities, Theorem 2.1 ensures the existence of K ∈ S3

0 such
that vol(K) = 2 and W̃1(K) = W̃2(K) = 1. Then, by numerical computations, one can
check that the real parts of the roots of the dual Steiner polynomial f̃K ;B3(z) = 2 + 3z +
3z2 + (4π/3)z3 lie in the interval

(−2, 2) = (− vol(K)
W̃1(K)

, vol(K)
W̃1(K)

) ⊂ (−R(K), R(K)),

where the last inclusion follows from (5.2).

However, the interval (−R(K), R(K)) cannot be reduced to the one determined
by the inner radius, as Corollary 5.1 shows. This will be an easy consequence of the
characterization of the Euclidean ball given in Theorem 2.2, which we prove next.

Proof of Theorem 2.2 If K = aBn , then f̃K ;Bn(z) = κn(z + a)n , and hence it has an
n-fold real root, namely, γ1 = ⋅ ⋅ ⋅ = γn = −a. So we assume that Re(γ i) = −a for i =
1, . . . , n, and we prove the assertion by induction on the dimension.

Let n = 3, and we suppose that K is not a ball. Let γ1 = −a, γ2 = −a + bi and γ3 =
−a − bi, where b > 0 because K ≠ aB3. Then f̃K ;B3(z) = κ3(z3 + 3az2 + (3a2 + b2)z +
a(a2 + b2)), and hence

W̃2(K) = κ3a, W̃1(K) = κ3

3
(3a2 + b2), vol(K) = κ3a(a2 + b2).(5.3)

Since K is not a ball, the dual Aleksandrov–Fenchel inequalities must hold strictly; in
particular one has W̃1(K)2 < vol(K)W̃2(K), or equivalently, using (5.3), we have

κ2
3

9
b2(b2 − 3a2) < 0.

Since b ≠ 0, the above inequality holds if and only if b <
√

3 a. But this is a con-
tradiction, because, as we have proved in Corollary 2.1, if −a + bi is a root of a
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three-dimensional dual Steiner polynomial then b >
√

3 a. Therefore, K = aB3, which
concludes the proof in the case n = 3.

Now let n > 3, and we assume that the assertion is true in dimension n − 1. Again,
we suppose that K is not a ball. It is known that the derivative of f̃K ;Bn(z) is also a dual
Steiner polynomial (see [1, Proposition 4.1]). Hence, there exists K′ ∈ Sn−1

0 such that

f̃ ′K ;Bn
(z) =

n
∑
i=1

(n
i
)iW̃i(K)z i−1 =

n−1
∑
i=0

(n − 1
i
)nW̃i+1(K)z i

= nκn

κn−1

n−1
∑
i=0

(n − 1
i
)W̃i(K′)z i = nκn

κn−1
f̃K′ ;Bn−1(z),

where W̃i(K′) = (κn−1/κn)W̃i+1(K), i = 0, . . . , n − 1. On the one hand, since K is
not a ball, the dual Aleksandrov–Fenchel inequalities (2.2) hold strictly for the dual
quermassintegrals W̃i(K), and therefore, the same occurs for W̃i(K′); so, K′ is not
an (n − 1)-dimensional ball.

On the other hand, denoting by γ′i , i = 1, . . . , n − 1, the roots of f̃ ′K ;Bn
(z), Lucas’

theorem (see Theorem 3.3) ensures that

γ′1 , . . . , γ′n−1 ∈ conv{γ1 , . . . , γn},

and hence Re(γ′i) = −a for all i = 1, . . . , n − 1. Since we are assuming that the assertion
is true in dimension n − 1, we get the desired contradiction. This concludes the
proof. ∎
Corollary 5.1 Let K ∈ Sn

0 and let γ i , i = 1, . . . , n, be the roots of the dual Steiner
polynomial f̃K ;Bn(z). If Re(γ i) ∈ [−r(K), r(K)) for all i = 1, . . . , n, then γ i = −r(K)
for all i = 1, . . . , n, and hence K = r(K)Bn .

Proof We assume there exists j ∈ {1, . . . , n} such that Re(γ j) > −r(K). Then
∑n

i=1∣Re(γ i)∣ < nr(K), which is not possible (see Proposition 5.3 (iv)). Therefore
Re(γ i) = −r(K) for all i = 1, . . . , n and Theorem 2.2 gives the result. ∎
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