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The present work aims at clarifying the effects of a solid boundary on the salt fingers
in the wall-bounded double diffusive convection turbulence driven by the salinity and
temperature differences between the top and bottom plates. The fluid properties are the
same as the seawater, and two-dimensional direct numerical simulations are conducted
over a wide range of the thermal and salinity Rayleigh numbers which measure the
strength of driving salinity difference and stabilising temperature difference. We find that
the bulk density ratio Λb, defined by the mean temperature and salinity gradients at the
bulk, controls the flow morphology. As Λb exceeds unity, the bulk flow shifts from wide
convection rolls to slender salt fingers. Two different regimes are further identified for the
cases of salt-finger type. One is the confined salt-finger regime where the characteristic
height of salt fingers is comparable to the bulk height and the influences of the solid
boundary are noticeable. The other is the free salt-finger regime where the salt fingers are
much shorter than the bulk height. In this latter regime, the transport properties versus Λb
are in quantitative agreement with those obtained in the fully periodic domain (e.g. Traxler
et al., J. Fluid Mech., vol. 677, 2011, pp. 530–553). For a limited range of density ratio
at the highest salinity Rayleigh number considered here, multiple states can be obtained
from different initial conditions. The large-scale secondary instability and spontaneous
formation of staircase from finger layers are not observed in the current study.

Key words: double diffusive convection, turbulent convection

1. Introduction

When fluid density depends on two scalar components with different molecular
diffusivities, double diffusive convection (DDC) may occur if the stratifications of scalar
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components are in a suitable configuration. In the ocean, DDC is omnipresent as the
vertical gradients of temperature and salinity favour DDC instability in many regions
(You 2002). Note that temperature diffuses about 100 times faster than salt, and very rich
dynamics can be excited due to this huge difference in diffusivity. Two different types
of DDC are usually found in different regions. In the polar region, cold fresh water lies
above warm salty water in the upper layer, and DDC occurs in the diffusive type (Kelley
et al. 2003). In the (sub)tropical ocean, both temperature and salinity usually decrease with
depth in the upper water, where DDC happens mainly in the fingering regime (Schmitt
1994). In fingering DDC (FDDC) the salinity gradient drives the fluid motion, while the
temperature gradient stabilises the flow. FDDC can develop when the overall density is
stably stratified (Stern 1960) and plays an important and unique role in oceanic mixing. For
instance, FDDC can generate enhanced diapycnal mixing (Schmitt et al. 2005), and may
attenuate the effects of climate change on large-scale temperature and salinity distributions
in the ocean (Johnson & Kearney 2009).

Numerous efforts have been undertaken to understand the physical mechanisms and
transport properties of FDDC. Reviews of early observations, experiments, simulations
and theoretical models can be found in Schmitt (2003), Yoshida & Nagashima (2003),
Kunze (2003) and the book of Radko (2013). Since FDDC represents a small-scale
phenomenon in the ocean, it is challenging to obtain detailed information of the
momentum and scalar fields in field measurements. Nonetheless, field observation has
been rapidly advanced, revealing the important role of FDDC in various oceanic regions
(e.g. Schmitt et al. 2005; Buffett et al. 2017; Sun, Yang & Tian 2018; Durante et al.
2019; Ashin et al. 2022). Experiments are also challenging in the sense that two scalar
components must be controlled and measured simultaneously. For the convenience of
experimental set-up, different scalar combinations have been employed in past other
than the heat–salt system (Huppert & Turner 1981; Taylor & Bucens 1989), such as the
heat–sugar system (Linden 1973), the salt–sugar system (Linden 1978; Radko & Stern
2000; Krishnamurti 2003) and the heat–copper-ion system (Hage & Tilgner 2010; Kellner
& Tilgner 2014), to name a few. For these different combinations, the ratio of the molecular
diffusivity of fast diffusing component to that of slow diffusing component can range from
approximately 3 for the salt–sugar system to about 300 for the heat–sugar system. And
experimental measurements of the instantaneous scalar fields are relatively rare.

In numerical simulations, though, it is highly convenient to precisely control flow
conditions and obtain comprehensive information of the flow fields. One major difficulty
in simulations is how to deal with the very small molecular diffusivity of salinity,
which is typically three orders of magnitude smaller than viscosity. Scalar with small
diffusivity requires very fine resolution to be fully resolved. In many numerical studies,
therefore, salinity is replaced by a scalar with larger diffusivity. A frequent choice is
to keep using heat as the fast diffusing component and reduce the ratio of molecular
diffusivity to 3 which is similar to the salt-sugar system used in experiments (see, for
example, Stellmach et al. 2011; Paparella & von Hardenberg 2012). Another technique is
the multiple-resolution method as developed in our previous work (Ostilla-Mónico et al.
2015), in which salinity is solved on a refined mesh. With the help of this efficient method,
very large Rayleigh numbers have been achieved for the same fluid properties as seawater
in fully three-dimensional (3D) simulations (Yang, Verzicco & Lohse 2016b).

Different configurations of flow domains have been employed in existing numerical
investigations of FDDC. One type is the so-called ‘run-down’ configuration, in which
two homogeneous layers are separated by an interface (Sreenivas, Singh & Srinivasan
2009), and the system is isolated without any heat or salt exchange with the outside. The
top layer has both higher temperature and salinity so that salt fingers develop around the
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Wall-bounded model of fingering double diffusive convection

initial interface. This configuration is identical to many early experimental set-up, such as
Turner (1967), Linden (1973) and Schmitt (1979). Since the total potential energy is fixed
by the initial field, the system undergoes continuous transition until the available energy is
completely consumed, i.e.the flow cannot reach a statistically steady state.

In order to maintain a statistically steady state, a constant driving force should be
introduced. Two typical choices have been utilised. The first employs constant background
temperature and salinity gradients and simulates the temperature and salinity deviated
from this background field. Then, a fully periodic domain can be used, and the flow
quantities can be numerically solved efficiently by using the standard pseudo-spectral
scheme (Stellmach et al. 2011; Traxler et al. 2011). Another choice is the wall-bounded
model, which is commonly used in thermal convection (Ahlers, Grossmann & Lohse
2009). In this configuration, a fluid layer is bounded from top and bottom by two
parallel plates which usually have constant temperature and salinity. Therefore, constant
differences in temperature and salinity are maintained across the layer. Wall-bounded
FDDC has been investigated in both experiments and numerical simulations (Radko &
Stern 2000; Krishnamurti 2003; Hage & Tilgner 2010; Kellner & Tilgner 2014; Yang et al.
2015, 2016b; Rosenthal, Lüdemann & Tilgner 2022).

One inevitable question about the wall-bounded FDDC model is the influence of the
solid plates which are not present in the oceanic FDDC. The free-slip condition can be
used to eliminate the viscous drag along the two plates, but the effects of non-penetration
condition still exist. Our previous study indeed shows that wall-bounded FDDC with
free-slip and no-slip boundary conditions exhibit very similar behaviours in flow structures
and transport properties (Yang, Verzicco & Lohse 2016c). In the triply periodic domain,
the domain size needs to be large enough to remove the numerical constraints on finger
length scales (Traxler et al. 2011). However, if the domain is too large, secondary
large-scale instabilities can develop and drive the system away from pure finger state to
staircase state (Radko 2003; Stellmach et al. 2011). In the wall-bounded domain, multiple
final statistically steady states, including pure finger state and staircases with different layer
configurations, can be established for the exact same control parameters, i.e.the salinity
Rayleigh number and the density ratio (defined as the ratio between the density change
caused by temperature difference and that caused by salinity difference) (Yang et al.
2020). Therefore, both the fully periodic model and the wall-bounded model have provided
valuable insights into the dynamics and evolution of fully developed FDDC staircases. It
is also worth mentioning that the so-called ‘elevator modes’ which grow exponentially in
the triply periodic Rayleigh–Bénard (RB) convection (Calzavarini et al. 2006) are exactly
the tall-finger modes in triply periodic FDDC (Schmitt 1979; Radko 2013). Apparently,
such elevator modes are prevented by the two solid plates in wall-bounded FDDC.

Nevertheless, in the wall-bounded FDDC model, boundary layers always develop
adjacent to the two plates in the momentum, temperature and salinity fields. The
appearance of boundary layers and their interaction with the salt fingers in the bulk
usually affect the flow dynamics and transport behaviours (Radko & Stern 2000; Yang
et al. 2016b). One of the most direct impacts is that the density ratio measured away from
the boundary layers differs greatly from the value set by the scalar differences between
the two plates. Theoretically, salt fingers only occur when the density ratio is greater
than 1, but previous wall-bounded experiments and numerical simulations have found that
the flow morphology can shift from wide convection rolls to slender salt fingers when
the density ratio is less than 1 (Hage & Tilgner 2010; Kellner & Tilgner 2014; Yang,
Verzicco & Lohse 2016a). The contradiction here comes from the fact that the parameter
that actually controls the salt-finger behaviours should be the density ratio defined in the
bulk area rather than the density ratio between the two plates. Our recent work (Yang et al.
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2020) indeed discovered that, for fingering layers which either are parts of staircases or
occupy the whole bulk, their heat and salinity fluxes and the flux ratio are very similar to
those measured from salt fingers in fully periodic domains (Stellmach et al. 2011) if all
parameters are defined by the local scalar gradients of finger layers.

Therefore, this paper aims to thoroughly investigate the dependence of salt-finger
behaviours on the density ratio measured in the bulk area, and clarify the parameter range
where transport behaviours are determined intrinsically by salt fingers and independent
of boundary. To achieve these, we conduct systematic simulations of FDDC using
fluid properties identical to those of seawater. We define the bulk density ratio by the
temperature and salinity gradients measured away from the boundary layers and examine
its relationship with the characteristic length scales and vertical transport properties.
Furthermore, to fully understand the influences of solid boundary on FDDC, we investigate
the flow evolution together with the final possible multilayer states.

The rest of paper is organised as follows. The governing equations and numerical
methods are detailed in § 2. The flow evolution is discussed in § 3. The characteristic
length scales and the transport properties are discussed in §§ 4 and 5, respectively. The
conclusions are given in § 6.

2. Governing equations and numerical methods

We first introduce the dimensional governing equations for FDDC, which take the same
form in each model. We employ a linear equation of state as ρ∗ = ρ∗

0 (1 − βTθ∗ + βSs∗).
Here ρ∗ is density, with the subscript ‘0’ denoting the value at the reference state, θ∗ and
s∗ are the temperature and salinity with respect to the corresponding reference values,
βT is the thermal expansion coefficient and βS is the coefficient of haline contraction,
respectively. Hereafter, the asterisk denotes the dimensional quantity. Then, under the
Oberbeck–Boussinesq approximation, the governing equations read

∂tu∗ + u∗ · ∇u∗ = −∇p∗ + ν∇2u∗ + g(βTθ∗ − βSs∗)ez, (2.1a)

∂tθ
∗ + u∗ · ∇θ∗ = κT∇2θ∗, (2.1b)

∂ts∗ + u∗ · ∇s∗ = κS∇2s∗, (2.1c)

∇ · u∗ = 0. (2.1d)

Here, u∗ is velocity, p∗ is pressure, g is the gravitational acceleration, ez is the unit vector
in the vertical z direction, ν is viscosity and κ is molecular diffusivity, respectively. Note
that density has been absorbed into pressure.

2.1. Wall-bounded model
In the wall-bounded model, we consider a fluid layer bounded by two parallel plates from
top and bottom. The two plates are perpendicular to the gravity and separated by a height
H, which are set as non-slip walls with constant temperature and salinity. The top plate has
higher temperature and salinity so that the system is in the FDDC regime. In the horizontal
directions, periodic boundary conditions are applied. The boundary conditions then read

u∗ = 0, s∗ = ΔS, θ∗ = ΔT , at z∗/H = 1, (2.2a)

u∗ = 0, s∗ = 0, θ∗ = 0, at z∗/H = 0. (2.2b)

Here the fluid at bottom plate is chosen as the reference state, and ΔT and ΔS are the
constant temperature and salinity differences between the two plates, respectively.
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Wall-bounded model of fingering double diffusive convection

The governing equations (2.1) are then non-dimensionalised by the height H, the
constant temperature and salinity differences ΔT and ΔS between the two plates and
the free-fall velocity

√
gHβSΔS, respectively. The control parameters include the Prandtl

number, the Schmidt number and two Rayleigh numbers, which are defined respectively
as

Pr = ν

κT
, Sc = ν

κS
, RaT = gβTΔTH3

νκT
, RaS = gβSΔSH3

νκS
. (2.3a–d)

Throughout this study, we fix Pr = 7 and Sc = 700, which are the typical values for
temperature and salinity in the ocean. The Lewis number, i.e. the ratio between the two
diffusivities, is then Le = Sc/Pr = 100. The relative strength of the temperature difference
to the salinity difference can be measured by the density ratio as

Λ = βT ΔT

βS ΔS
= Sc RaT

Pr RaS
= Le RaT

RaS
. (2.4)

Then the non-dimensional governing equations are

∂tu + u · ∇u = −∇p + Sc1/2Ra−1/2
S ∇2u + (Λθ − s)ez, (2.5a)

∂tθ + u · ∇θ = Sc1/2Ra−1/2
S Pr−1 ∇2θ, (2.5b)

∂ts + u · ∇s = Sc−1/2Ra−1/2
S ∇2s, (2.5c)

∇ · u = 0, (2.5d)

with the boundary conditions

u = 0, s = 1, θ = 1, at z = 1, (2.6a)

u = 0, s = 0, θ = 0, at z = 0. (2.6b)

2.2. Fully periodic model
In the fully periodic model, periodic boundary conditions are applied in both vertical
and horizontal directions. Constant salinity and temperature gradients are sustained as
the background state and drive the flow. The scalar fields are separated as

s∗ = S̄∗
z z∗ + s′∗, θ∗ = T̄∗

z z∗ + θ ′∗. (2.7a,b)

Here, S̄∗
z and T̄∗

z are the constant vertical gradients of salinity and temperature, and s′∗
and θ ′∗ are the deviations from the background state, respectively. For the velocity field,
the background state is set to zero, i.e. u′ = u. Usually in the fully periodic model the
expected finger scale is used as the characteristic length scale, which is defined as (Stern
1960)

d =
(

κTν

gβTT̄∗
z

)1/4

. (2.8)
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The corresponding time scale is d2/κT , and the salinity and temperature scales are defined
as (βT/βS)T̄∗

z d and T̄∗
z d, respectively. Then the non-dimensional governing equations read

∂tu + u · ∇u = Pr(−∇p′ + ∇2u + (θ ′ − s′)ez), (2.9a)

∂tθ
′ + u · ∇θ ′ = −w + ∇2θ ′, (2.9b)

∂ts′ + u · ∇s′ = − w
Λ̄

+ 1
Le

∇2s′, (2.9c)

∇ · u = 0. (2.9d)

Here p′ is the pressure deviation with respect to the hydrostatic equilibrium, and w is the
vertical velocity. The constant background density ratio Λ̄ is defined as

Λ̄ = βTT̄∗
z

βSS̄∗
z

. (2.10)

Note that Λ̄ is constant over the entire domain and does not change during simulations
for the fully periodic model. In wall-bounded model, Λ represents the total density ratio
between the two plates. Hereafter, we refer to the control parameters of the wall-bounded
model as the global parameters to distinguish them from the local ones measured at
different heights.

2.3. Numerical method
Direct numerical simulations (DNS) are conducted for FDDC with the wall-bounded
model. For comparison, the theoretical and numerical results of the fully periodic
model are directly adopted from previous works including Schmitt (1979), Traxler et al.
(2011) and Stellmach et al. (2011). The non-dimensional governing equations (2.5) are
numerically solved by using our in-house code, which employs a finite-difference scheme
and a fractional time-step method (Ostilla-Mónico et al. 2015). In particular, the code
utilises a dual-resolution technique to deal with the salinity field which has a very high
Schmidt number. A base mesh is used for the momentum and temperature fields, while
a refined mesh for the salinity field. For example, when the refinement factors are two in
both the horizontal and vertical directions, there are four mesh cells for the salinity field in
one base cell for the temperature or velocity fields. A local mass-conserved interpolation
method is developed to interpolate the velocity field from the base mesh to the refined
mesh. The code has been applied extensively to FDDC in our previous works (Yang et al.
2015, 2016b,c), and validated by one-to-one comparisons with experiments (Yang et al.
2015). Still, fully 3D DNS with Pr = 7 and Sc = 700 are very challenging for a systematic
study. Here we confine ourselves to two-dimensional (2D) simulations and explore a wide
range of the salinity Rayleigh number and the density ratio (see the Appendix).

It is important to note that the transport efficiency is different for 2D and 3D salt
fingers due to the different shapes of horizontal cross sections. The 3D fingers usually
have circular cross section, whereas the 2D fingers are planar and have infinite length in
the third directions. At Λ = 2, the 3D heat and salinity fluxes are approximately twice of
those in 2D cases (Stern, Radko & Simeonov 2001). Nevertheless, when all the fluxes are
normalised by the values of the case with smallest Λ considered in this study, their overall
trends versus Λ are quite similar to our previous 3D simulations (Yang et al. 2016a) at
small RaS (see figure 11). Therefore, we believe that 2D simulations can still provide
valuable insights into the physics of FDDC. Another concern about 2D simulations is
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the zonal flow characterised by the horizontal shear layers, which does not exist in 3D
cases (Van Der Poel et al. 2014). It usually happens at small Pr and small aspect ratio. In
the current work, once the zonal flow is observed, we increase the domain width and rerun
the case. For all the simulations considered here, the shear layers or the zonal flow do not
emerge during the final statistically steady stage.

In the wall-bounded model, the flow morphology can shift from wide convection rolls
to slender fingers (Kellner & Tilgner 2014; Yang et al. 2016a; Rosenthal et al. 2022) for
different parameters. In order to consistently investigate the flow morphology, the salinity
Rayleigh number RaS, which measures the strength of driving force, is chosen as one
primary global control parameter. We simulate 5 different salinity Rayleigh numbers over
4 decades from 108 to 1012. The global density ratio Λ is then systematically changed
for each RaS. For the 4 lower Rayleigh numbers Λ increases from 0.001 up to 30. For the
highest RaS = 1012, the smallest density ratio is set as 0.003 due to computational resource
constraints. Note that we choose Λ starting at a value well below unity, since salt fingers
can develop in the bulk of wall-bounded domain even when the overall density is unstably
stratified (Hage & Tilgner 2010; Schmitt 2011), and the transition from wide convection
rolls to slender salt fingers happens at strongly unstable density stratification (Kellner &
Tilgner 2014; Yang et al. 2016a). The details about numerics and the global responses are
summarised in the Appendix.

Since the global density ratio Λ cannot properly characterise the bulk flow structures in
the wall-bounded domain, it is convenient to redefine the density ratio using the bulk
quantities when the flow reaches a fully developed state. Similar to the fully periodic
model, we measure the central vertical gradients of the temperature and salinity profiles
for all cases, which are denoted by Tz and Sz, respectively. Specifically, the slopes
are calculated from the mean profiles 〈θ〉h and 〈s〉h by a linear fitting over the range
0.25 � z � 0.75. Hereafter, the bracket 〈·〉h stands for the spatial average in the horizontal
direction. Then the bulk density ratio can be calculated as

Λb = βTT∗
z

βSS∗
z

= Λ
Tz

Sz
, (2.11)

where T∗
z and S∗

z represent the dimensional forms of Tz and Sz, respectively. Figure 1
displays the variation of the mean bulk density ratio Λ̄b versus the global density ratio
Λ. The overline denotes the temporal average. The error bars of Λ̄b are also plotted.
Hereafter, the error bars are calculated by the standard deviations of the time history.
In the logarithmic coordinate, the error bars which extend to the negative values are not
displayed. In general, Λ̄b increases from values very close to zero to around 53 as Λ

changes from 0.001 to 30. Negative Λ̄b appears in some cases with small Λ, which are not
shown in the figure. The error bars are large for small Λ, since Sz oscillates severely around
zero which is caused by large convection rolls. As Λ becomes larger, the wide convection
rolls are gradually replaced by slender salt fingers which generate more stable and positive
Sz, and the uncertainty of Λb reduces. In the ocean, the observed strong FDDC often has a
density ratio of 1 < Λ̄b < 2 (Schmitt et al. 2005; Durante et al. 2019), which corresponds
to a narrow range of Λ as shown in figure 1(b).

3. On the flow evolution

We first discuss the choice of initial conditions and the temporal evolution of the flow
fields. For all cases, the fluid is stationary at the beginning. For the simulations with RaS �
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10(b)(a)

RaS = 108 RaS = 109 RaS = 1010 RaS = 1011 RaS = 1012

Figure 1. The mean bulk density ratio Λ̄b versus the global density ratio Λ. (a) The whole dataset with error
bars except for the cases with negative Λ̄b. Some halves of error bars that extend to negative values are not
displayed either. (b) Enlarged view of the plot highlighting the cases with Λ̄b ∈ [1, 10].

1011, initially the temperature field is a linear distribution between the two plates, while
the salinity field is uniform and equals to the mean of the values at two plates, respectively.
Small perturbations are added to trigger the flow motions. These initial conditions are the
same as those in the experiments of Hage & Tilgner (2010) and our previous simulations
(Yang et al. 2015, 2016b). For the cases with RaS = 1012, to save computing time, the
initial fields are directly set as one set of fully developed fields from the previous case with
smaller Λ. Our previous work (Yang et al. 2020) reveals that for fixed Le = 3 and Λ = 1.2,
multiple equilibrium staircase states can be established from different initial distributions
for the same global control parameters when RaS is above certain critical value. Here
we first present the evolution of the salt fingers in the wall-bounded model with Le = 100,
and demonstrate that the initial conditions do not influence the final state for the cases with
RaS � 1011, but the multiple multilayer states emerge from different initial conditions for
RaS = 1012.

3.1. The single final state for RaS ≤ 1011

An additional case is run for RaS = 1010 and Λ = 0.1, and initially both scalars have a
vertically linear distribution, which we refer to as the linear initial condition. That with
linear temperature distribution and uniform salinity distribution is referred to as the mixed
initial condition. Figure 2 plots the time history of bulk density ratio Λb and Reynolds
number Re for the two cases with mixed and linear initial conditions. The Reynolds
number is defined as Re = U∗

rmsH/ν, in which U∗
rms is the dimensional root-mean-square

(r.m.s.) value of the velocity magnitude computed over the entire domain. We also show
the temporal evolution of the scalar profiles in figure 3. For the case with the mixed initial
condition, Λb is very large in the bulk at the beginning since Sz is close to zero. As plumes
grow from the top and bottom boundaries where the salinity field is strongly unstable, Re
increases rapidly and Λb decreases towards the values of final statistically steady state.
Figures 3(a) and 3(b) indicate that nearly linear profiles directly build up in the bulk as
buoyancy-driven motions develop with time.

The case with the linear initial condition exhibits a completely different initial
development. With Λ = 0.1, the density field is unstably stratified over the entire domain
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Λb

(b)(a)

Figure 2. Comparison of the temporal evolution of (a) bulk density ratio and (b) Reynolds number for the two
cases starting from the mixed initial condition (blue dashed lines) and the linear initial condition (red solid
lines). The global control parameters are RaS = 1010 and Λ = 0.1.

0 200

0.5z
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0.5z

1.0

0.45 0.50 0.55 0 0.5 1.0

0.5

1.0

400 600

t
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t
800 1000

0 200 400 600 800 1000 0 200 400 600 800 1000

(b)(a)

(c) (d )

Figure 3. Temporal evolution of the horizontally averaged scalar profiles starting from different initial
conditions for RaS = 1010 and Λ = 0.1. Panels (a,b) show the salinity and temperature profiles for the case
with mixed initial condition, respectively. Panels (c,d) show the same quantities for the case with linear initial
condition.

at the beginning, which results in complete overturn with respect to the middle height and
induces a sharp increase in Re, see figure 2(b). The overturn can be seen at the left part
of figure 3(c) where the heavy fluid with high salinity and the light fluid with low salinity
accumulate near the bottom and top boundaries, respectively. The bulk temperature then
homogenises faster than salinity due to larger diffusivity. During this stage the bulk density
ratio remains nearly zero due to the small value of Tz, as shown in figure 2(a). As plumes
emanate from both plates and transport heat and salinity into the bulk, linear mean profiles
with upward gradients are gradually established, which is accompanied by the change of
Λb from negative to positive values at approximately t = 380 in figure 2(a).

973 A37-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.781


J. Li and Y. Yang

(b)(a)

–0.04 0.040 –0.04 0.040 –0.02 0.020 –0.02 0.020

(c) (d )

Figure 4. The flow morphology depicted by the contours of vertical velocity for four cases with fixed
RaS = 1012 and (a) Λ = 0.20, (b) Λ = 0.23, (c) Λ = 0.25 and (d) Λ = 0.27, respectively. The initial condition
is the fully developed flow field at smaller Λ.

Despite the different initial conditions, both cases evolve towards the same final state
roughly after t = 500 with exactly the same Λb and Re, as indicated by figures 2 and
3. For the case with mixed initial condition, salt fingers first grow from the boundary and
extend to the bulk. In contrast, for the case with linear initial condition, fingers also directly
emerge at the bulk after the overturn of whole fluid layer. Eventually the salt fingers occupy
the whole bulk at the final state. It is then very likely that a complete fingering bulk will
be obtained regardless of the initial distribution, and the same final state can be achieved.

3.2. The possible multilayer states at RaS = 1012

At RaS = 1012, even 2D simulations are rather expensive. Therefore, for the cases with
the same domain width, the simulation is first run at smaller density ratio until the flow
reaches the statistically steady state. Then, an instantaneous flow field is used as the initial
field for the next simulation with a larger density ratio. For Λ ≤ 0.2, the bulk consists
of large convection rolls. A transition in flow morphology is observed over the 0.2 <

Λ < 0.3, which is illustrated in figure 4 by the instantaneous vertical velocity fields of
four cases with gradually increasing density ratio. As Λ increases from 0.20 to 0.27, the
characteristic width of the flow structures in the bulk decreases as the wide convection rolls
in figures 4(a) and 4(b) are replaced by slender finger-like structures in figures 4(c) and
4(d). Meanwhile, the plumes originated from two plates extend deeper into the bulk. Note
that at Λ = 0.25 the slender finger structures in the bulk have different width compared
with the slender plumes near the top and bottom boundaries. This difference is weaker at
Λ = 0.27. The transition of the bulk structures and the extension of the boundary plume
regions can be also seen in the variation of mean salinity profiles which are shown in
figure 5(a). As Λ increases, a linear segment first appears near the boundary in the profile
while at the bulk 〈s̄〉h is still very close to 0.5. This corresponds to the roll-like bulk with
extending plume regions near the boundary. As Λ further increases, the profile becomes
linear over the entire bulk and finger structures dominate.

The above observations indicate that during the transition from the roll-type bulk to
the finger-type one, multilayer structures with different characteristic widths may appear,
which resemble the thermohaline staircases (see, e.g., figure 1A of Schmitt et al. 2005).
The four cases with Λ = 0.22, 0.23, 0.24 and 0.25 are also run with the mixed initial
condition, and indeed different final states are obtained. The evolution of flow morphology
is very similar for these four cases, and figure 6 only shows the temporal evolution of
the case with Λ = 0.23 and starting from the mixed initial condition. At the final state,
the bulk consists of slender fingers, which is totally different from the state shown in
figure 4(b) with the same global parameters. More interestingly, the characteristic width
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Figure 5. (a) The time-averaged salinity vertical profiles for all the cases with RaS = 1012, coloured by the
global density ratio Λ. The dashed lines mark the four cases with Λ = 0.20, 0.23, 0.25 and 0.27 which are
shown in figure 4. (b) The instantaneous salinity vertical profiles for the case with RaS = 1012 and Λ = 0.23
at different times. The colour bar is determined by the simulation time t. In order to clearly demonstrate the
transition and due to the symmetry about z = 0.5, only the region with 0.5 � z � 1 and 0.5 � 〈s〉h � 0.56 is
shown.

(b)(a)

–0.01 0.010 –0.01 0.010 –0.01 0.010 –0.01 0.010

(c) (d )

Figure 6. The flow morphology depicted by the contours of vertical velocity for the case with RaS = 1012 and
Λ = 0.23 at four different simulation times: (a) t = 40, (b) t = 200, (c) t = 400 and (d) t = 3000. The mixed
initial condition is applied.

is smaller at the middle part of the bulk and larger at the two sides. Linear segments
with different slopes develop in the mean salinity profiles, as shown in figure 5(b). The
middle part with thinner fingers has a larger slope compared with that of the two regions
with thicker fingers. Comparing figures 5(a) and 5(b), such different final states strongly
suggest the existence of multiple equilibrium states based on our previous study at Le = 3
(Yang et al. 2020).

It should be pointed out that the multilayer state obtained here is the result of flow
evolution from the specific initial field, but not from the secondary instability of finger
layers which appears in the periodic domain (Stellmach et al. 2011). In addition, once the
whole bulk is occupied by salt fingers with uniform characteristic width, the final state
is unlikely to be affected by the initial conditions. A thorough investigation of multiple
equilibrium states requires more simulations at the relevant parameter range or at higher
Rayleigh number, which is beyond the scope of the current study. In the following we focus
on the salt-finger state.
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4. On the length scales

We now investigate the characteristic length scales of the structures in the bulk. The
horizontal width and the vertical height can be extracted by using the auto-correlation
functions of the vertical velocity w, which are calculated as

Rx(δx) = 〈w(x, z, t)w(x + δx, z, t)〉b

〈w2(x, z, t)〉b
, Rz(δz) = 〈w(x, z, t)w(x, z + δz, t)〉b

〈w2(x, z, t)〉b
. (4.1a,b)

Hereafter, 〈〉b denotes the spatial average over the bulk region 0.25 � z � 0.75. Figure 7
demonstrates the typical behaviours of Rx and Rz for cases with RaS = 1010. For all cases
Rx can always decrease to zero at certain horizontal distance δx, indicating the domain
width is large enough and the periodic boundary condition is adequate. For some cases
with small Λ, Rz remains positive for all δz, as the large-scale convection rolls occupy
the whole bulk. If the auto-correlation function decreases to zero, the location of the
first zero point can be treated roughly as a quarter of the corresponding wavelength. To
demonstrate this, we utilise the sinusoidal functions as model distributions, which have
been used frequently in the past (see, e.g., Stern (1960) and Schmitt (1979)). Specifically,
for the vertical velocity field of w = w0(t) sin((2π/λx)x) sin((2π/λz)z), in which λx and
λz are the respective horizontal and vertical wavelengths, the auto-correlation functions
(4.1a,b) vanish at δx = λx/4 and δz = λz/4, since

Rx(λx/4) =

〈
w2

0 sin2
(

2π

λz
z
)

sin
(

2π

λx
x
)

cos
(

2π

λx
x
)〉

b

〈w2(x, z, t)〉b
= 0, (4.2a)

Rz(λz/4) =

〈
w2

0 sin2
(

2π

λx
x
)

sin
(

2π

λz
z
)

cos
(

2π

λz
z
)〉

b

〈w2(x, z, t)〉b
= 0. (4.2b)

Therefore, λx and λz can be calculated as four times the locations of the first zero points of
Rx and Rz, respectively.

We first examine the horizontal wavelength λx. Figure 8(a) depicts the dependence of
λx on the mean bulk density ratio Λ̄b for all cases with Λ̄b > 0. For RaS ≥ 1010, λx is
close to 2 for Λ̄b < 1. Since the aspect ratio Γ of domain is 2 for these cases, λx = 2
indicates that a pair of large convection rolls dominates the bulk. At smaller RaS, Γ is
larger than 2 and several pairs of convection rolls appear, resulting in smaller λx at low
Λ̄b. For all RaS, λx starts to decrease at approximately Λ̄b = 1, indicating a transition
from rolls to fingers in the bulk. Before and during this transition, Λb fluctuates strongly
with time due to the fact that Sz is close to zero, and the error bars are large as shown in
figure 8(a). However, when S̄z > 0.01, the error bars becomes very small and negligible.
Consequently, we define the finger-type cases by the criteria Λ̄b > 1 and S̄z > 0.01, as
indicated by the vertical and horizontal dashed lines in figure 8(a). Meanwhile, when λx
is normalised by the finger scale d, all data of salt-finger cases collapse onto a single
curve, as shown in figure 8(b). The linear analysis of fully periodic model reveals that
the fastest-growing wavelength (FGW) normalised by d depends only on the background
density ratio (equivalent to the bulk density ratio of wall-bounded model) for given fluid
properties. This theoretical prediction (calculated by (13) of Schmitt 1979) is shown by
the dashed line in figure 8(b). The numerical results of the current wall-bounded model
show similar trends to those in the fully periodic model. For large Λ̄b, nonlinear results
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Figure 7. (a) The horizontal auto-correlation functions Rx versus the horizontal separation δx and (b) the
vertical auto-correlation functions Rz versus the vertical separation δz for all cases with RaS = 1010. The colours
are determined by Λ.

are quantitatively consistent with linear predictions. Apparent discrepancies exist when Λ̄b
is close to unity, because the salt-finger bulk is more turbulent and nonlinear effects are
stronger at this regime. The fact that the finger width in fully nonlinear flow shares similar
behaviour as in the linear regime has been reported by Traxler et al. (2011) in the fully
periodic simulations and recently also proposed by Middleton & Taylor (2020) through an
energy method.

Figure 8(b) indicates that λx/d is nearly constant for 5 < Λ̄b < 50. Recall the definition
(2.8), constant λx/d suggests a power-law scaling λx ∼ (T̄z)

−1/4. If we define the bulk
thermal Rayleigh number by using the bulk temperature gradient Tz as

Rab = gβTT∗
z H4

νκT
= TzRaT , (4.3)

then the scaling λx ∼ (Rab)
−1/4 should hold for intermediate bulk density ratio 5 <

Λ̄b < 50, which can be confirmed by figure 8(c). Indeed, the −1/4 scaling is observed
for high Λ̄b, and again the nonlinear effects attribute to the deviations for low Λ̄b.
Figure 8(d) plots the dependence of FGW/H on Rab, and nearly all data follow the scaling
FGW/H ∼ (Rab)

−1/4. It should be pointed out that in the periodic model large-scale
secondary instabilities develop when H ≥ 25FGW (Stellmach et al. 2011; Traxler et al.
2011), which is indicated by the horizontal solid line in figure 8(d). Here only a few
cases satisfy this criterion at large RaS and Λ̄b. Since the height of the fingering bulk
is smaller than H, the number of cases with Hbulk ≥ 25FGW is even smaller. Therefore, in
our simulations, the secondary instabilities are not observed.

We already identify the cases of finger type by Λ̄b > 1 and S̄z > 0.01. However, detailed
investigations reveal that two different types of flow morphology can be further identified
within the category of finger type. To demonstrate this, we calculate the joint probability
density functions (p.d.f.s) of w′ and s′ sampled in the region 0.25 � z � 0.75 for three
cases with RaS = 1010 and Λ = 0.01, 0.1, 1. The corresponding values of Λ̄b are 0.18,
2.16 and 10.1, respectively. These joint p.d.f.s are displayed in figure 9. When Λ = 0.01,
the p.d.f. has a peak ridge along the axis s′ = 0 and over a wide range of w′. This region
corresponds to low salinity anomaly with very different vertical velocity. There are also
occasions with large positive (negative) salinity anomaly s′ associated with large negative
(positive) vertical velocity w′, but the p.d.f. is much lower. All these behaviours of p.d.f.
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Figure 8. (a) The horizontal wavelength λx vs the mean bulk density ratio Λ̄b. The cases with negative Λ̄b
are not shown. The dashed lines characterise the salt-finger cases (Λ̄b > 1 and S̄z > 0.01). In (b–d) only the
salt-finger cases are shown. In (b), λx normalised by the finger scale d is plotted versus Λ̄b. The dashed line
indicates the linear fastest-growing wavelength (FGW) normalised by d (see (13) in Schmitt 1979). In (c), λx is
plotted versus the mean bulk Rayleigh number Rab. In (d), FGW normalised by H is plotted versus Rab with
the solid line indicating H = 25FGW. The dashed lines in (c,d) indicate the −1/4 power-law scaling. The error
bars of Λ̄b and Rab are also displayed (halves of bars that extend to negative values are not shown).

distribution in figure 9(a) are consistent with the large convection rolls at Λ = 0.01, which
are mainly driven by the plumes growing from the boundary, instead of the local salinity
anomaly in the bulk. In contrast, when Λ = 1 and the bulk is dominated by slender salt
fingers, the joint p.d.f. is basically along the straight line of w′/w′

max = −s′/s′
max, as shown

in figure 9(c). The strong anti-correlation between w′ and s′ implies that the vertical
velocity is mainly driven by the local salinity anomaly in the bulk which is carried by
salt fingers.

For Λ = 0.1, the bulk density ratio Λb is always larger than unity during time, indicating
that the flow structures in the bulk are more similar to salt fingers instead of large-scale
convection rolls. However, the joint p.d.f. in figure 9(b) exhibits a mixed nature of that
for convection rolls and that for salt fingers. Specifically, the peak region of p.d.f. is not
along the axis s′ = 0, meanwhile the overall pattern is not along the anti-correlation line
w′/w′

max = −s′/smax. Therefore, for Λ = 0.1, the bulk is in an intermediate state which is
not entirely the same as the salt-finger state, even though the dominant flow structures are
very similar to fingers.
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Figure 9. Joint probability of the vertical velocity anomaly and the salinity anomaly normalised by their
maximum values, respectively. The control parameters read RaS = 1010 and (a) Λ = 0.01 (Λ̄b = 0.18),
(b) Λ = 0.1 (Λ̄b = 2.16) and (c) Λ = 1 (Λ̄b = 10.1).

This intermediate state is related to the fact that the salt fingers are affected by the
vertical boundaries and can be demonstrated by looking at the vertical wavelength λz of
salt fingers. Figure 10(a) shows the dependence of λz on the mean bulk Rayleigh number
Rab for all the salt-finger cases with Λ̄b > 1. Interestingly, λz also follows a −1/4 scaling
law with Rab, implying that the ratio between λz and FGW should be constant. This result
is also reported in the fully periodic model, see figure 7 of Traxler et al. (2011). Note that
for small Rab, λz can be comparable to the domain height H. One can speculate that for
these cases, the boundary must affect the dynamics of salt fingers. Only those cases with λz
considerably smaller than H have negligible influences on salt fingers in the bulk from the
two boundaries. A practical threshold value for the current system is chosen as λz = 0.2
and marked in figure 10(a), which is equivalent to Rab ≈ 107. With this threshold value,
we further divide the salt-finger regime into the confined salt-finger (CSF) regime with
λz > 0.2 and the free salt-finger (FSF) regime with λz ≤ 0.2, respectively. In figure 10,
we characterise these two regimes by grey and coloured symbols. In the next section, we
demonstrate that these two regimes yield different transport properties.

Finally, the aspect ratio of salt fingers, measured by λx/λz, is plotted versus Λ̄b in
figure 10(b). As Λ̄b increases, the ratio gradually decreases and saturates. That is, the
salt fingers shift from the blob-like shape at small Λ̄b to the slender shape at large Λ̄b.
When Λ̄b is large enough, the aspect ratio is nearly constant with λz roughly twice the λx.
Several studies in the past reveal that the aspect ratio of salt fingers tends to unity when
the density ratio approaches one (Radko 2008; von Hardenberg & Paparella 2010). The
difference in the aspect ratio at density ratio close to one between our simulations and the
previous ones may be caused by the different Lewis numbers, which is 100 here and 3 in
both Radko (2008) and von Hardenberg & Paparella (2010), respectively.

5. On the transport properties

We now turn to the transport properties of the system. The key global responses include
two Nusselt numbers and the Reynolds number as

NuS =
∣∣∣∣ 〈w∗s∗〉h − κS∂z〈s∗〉h

κSΔSH−1

∣∣∣∣ , NuT =
∣∣∣∣ 〈w∗θ∗〉h − κT∂z〈θ∗〉h

κTΔTH−1

∣∣∣∣ , Re = U∗
rmsH
ν

.

(5.1a–c)
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Figure 10. (a) The vertical wavelength λz versus the mean bulk Rayleigh number Rab. The solid line denotes
λz = 0.2 and the dashed line denotes the −1/4 power-law scaling. (b) The aspect ratio of salt fingers versus the
mean bulk density ratio Λ̄b. The error bars of Rab and Λ̄b are also displayed. Only the salt-finger cases (Λb > 1)
are shown. The grey symbols indicate the confined salt-finger (CSF) cases, while the colourful symbols indicate
the free salt-finger (FSF) cases.
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Figure 11. The time-averaged (a) salinity Nusselt number, (b) temperature Nusselt number and (c) Reynolds
number with respective error bars versus the global density ratio, respectively. All quantities are normalised by
the values of the case with smallest density ratio within each group. The solid symbols denote the results from
3D simulations of Yang et al. (2016a) (see their figure 3).

Here 〈·〉h denotes the averaged value over some horizontal plane. When the flow reaches
the statistically steady state, Nu calculated by the above formula should be the same for
arbitrary height, since the mean salinity and temperature at arbitrary height do not change
with time and the flux through any horizontal plane is the same for each scalar component.
Here U∗

rms is the r.m.s. value of the magnitude of velocity vector, which is computed
over the entire domain. The dependences of these global responses averaged over time
on the global density ratio Λ are displayed in figure 11 for the five different RaS. Note the
quantities are normalised by the corresponding values of the smallest density ratio within
each group.

The overall behaviours are very similar to those reported in our previous 3D simulations
(see figure 3 in Yang et al. 2016a), as shown by the solid symbols in figure 11. It should be
pointed out that there exist quantitative differences between 2D and 3D fluxes, since the
cylindrical and planar fingers have different effective transport areas. The detailed study
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comparing 3D and 2D simulations is beyond the scope of this article. The enhancement
of salinity flux is caused by the large-scale convection rolls gradually being replaced by
the well-organised salt fingers which can transport salinity more efficiently (Kellner &
Tilgner 2014; Yang et al. 2016a). Moreover, for higher RaS the salinity-flux enhancement
is stronger. At RaS = 1012, the increment of NuS can be as high as about 50 %. The heat
flux and Reynolds number exhibit similar behaviours: they both first keep nearly constant
and then quickly decrease towards very small values. Recall that the temperature gradient
stabilises the flow, then it is natural to expect that flow motions become weaker as Λ

increases. Both NuT and Re decrease more abruptly for higher RaS.
To demonstrate the similarity between the results of the present wall-bounded model

and those of the fully periodic model for salt-finger cases, we redefine all non-dimensional
fluxes by quantities measured within the bulk region that are made as close as possible
to the corresponding definitions in the periodic model. We then compare these results
with those reported by Traxler et al. (2011) with the same fluid properties, namely Pr = 7
and Sc = 700. First, scalar fluxes non-dimensionalised by bulk scalar gradients can be
calculated as

FT =
∣∣∣∣ 〈w∗θ∗〉b

κTT∗
z

∣∣∣∣ =
√

RaSPr√
Le

∣∣∣∣ 〈wθ〉b

Tz

∣∣∣∣ , (5.2a)

FS =
∣∣∣∣βS〈w∗s∗〉b

βTκTT∗
z

∣∣∣∣ =
√

RaSPr

Λ
√

Le

∣∣∣∣ 〈ws〉b

Tz

∣∣∣∣ . (5.2b)

Here, 〈·〉b denotes the spatial average in the bulk region 0.25 � z � 0.75. In figure 12, both
statistical heat and salinity fluxes are plotted versus the mean bulk density ratio, together
with their error bars. The 2D and 3D results of Traxler et al. (2011) (see their figure 2)
are also included for direct comparison. Near-perfect agreement between two studies of
2D simulations is obtained over the common range of Λ̄b for both scalar fluxes, although
small mean deviations and large oscillations can be observed for CSF cases. That is, when
the salt fingers emerge in the wall-bounded flow and if all the quantities are expressed in
the measured bulk values, the same dependence of fluxes on density ratio applies to both
the wall-bounded model and fully periodic model. Note that there are also differences
between the 2D and 3D results in the fully periodic model, mainly because the 2D and 3D
salt fingers yield different transport areas, as we stated before. Figure 12 also demonstrates
that as Λ̄b increases from 1 to about 60, both the non-dimensional heat and salinity fluxes
decrease from above 102 to below 10−2, indicating that the main transport mode shifts
from turbulent convection to molecular diffusion.

For the sake of completeness, we present in figure 12(c) the dependence of the mean
bulk Reynolds number Reb on Λ̄b for all salt-finger cases. Here, Reb is calculated by the
r.m.s. velocity over the region 0.25 � z ≤ 0.75. Interestingly, if Reb is rescaled by Ra−1/3

S ,
a single dependence on Λ̄b can be obtained. This dependence is very similar to those for
F̄T and F̄S on Λ̄b.

We further examine the turbulent flux ratio, the total flux ratio and the Stern number
measured from the bulk as, respectively,

γ = FT

FS
, γtot = βT〈w∗θ∗ − κT∂zθ

∗〉b

βS〈w∗s∗ − κS∂zs∗〉b
, A = FS − FT

Pr(1/Λb − 1)
. (5.3a–c)

The turbulent flux ratio signifies the proportion of density flux generated by convective
heat transfer relative to that produced by convective salt transfer. The total flux ratio,
on the other hand, encompasses the diffusion component. The Stern number governs
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Λ̄b
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1
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(b)(a) (c)

RaS = 108 RaS = 109 RaS = 1010 RaS = 1011 RaS = 1012 Traxler 3D Traxler 2D

Figure 12. The mean (a) salinity flux and (b) heat flux non-dimensionalised by the bulk scalar gradients versus
the mean bulk density ratio, respectively. (c) The mean bulk Reynolds number Reb rescaled by Ra−1/3

S versus
the mean bulk density ratio. The dashed and solid lines denote the results from 3D and 2D periodic simulations
of Traxler et al. (2011) (see their figure 2). The CSF cases are marked by grey symbols and FSF cases are
marked by colourful symbols. The error bars for all quantities are also displayed.

the collective instability of salt-finger layers, which is a large-scale secondary instability
typically associated with gravity waves (Stern 1969; Stern et al. 2001). Figure 13(a)
illustrates the relationship between γ̄ and Λ̄b for all salt-finger cases. For the FSF type,
γ̄ initially decreases and then increases as Λ̄b diminishes and approaches unity. Then
γ̄ reaches its minimum at approximately Λ̄b = 10. This variation aligns with 2D periodic
simulations (see figure 2 in Traxler et al. 2011), as depicted by the solid line in figure 13(a).
For the CSF type, although the two fluxes F̄S and F̄T closely resemble those in periodic
simulations shown in figure 12, the variation of γ̄ deviates from the FSF trend as Λ̄b
decreases. The deviation commences at a higher value of Λ̄b for smaller RaS. This can be
attributed to the influence of energetic boundary plumes in the CSF state on salt fingers,
which results in slight alterations to F̄T and F̄S, but has a significant impact on their ratio.
Figure 13(b) illustrates the variation of γ̄tot with respect to Λ̄b. For the FSF type, γ̄tot
converges into a single curve for different values of RaS and increases monotonically with
Λ̄b, with the exception of the first three cases with RaS = 1012, which exhibit a decreasing
trend as shown in enlarged view of the plot in figure 13(d). This trend is consistent with
that observed in 3D periodic simulations (see figure 3 in Traxler et al. (2011), while they
did not show the corresponding 2D data), as indicated by the dashed line in the figure. Note
that small mean deviations and large oscillations persist for the CSF type. The dependence
of the mean Stern number Ā on Λ̄b follows the same trend as that of the scalar fluxes and
is in quantitative agreement with periodic simulations (Traxler et al. 2011), as shown in
figure 13(c).

The discussions confirm that when the wall-bounded FDDC enters the FSF regime, the
transport behaviours of salt fingers are identical to those in the periodic domain. However,
the solid boundary in the wall-bounded model can prevent the development of large-scale
secondary instabilities. In our simulations, neither collective instability nor γ instability
are observed, which do occur in the fully periodic model (Stellmach et al. 2011; Traxler
et al. 2011). According to the linear theory of Stern (1969), collective instability should
develop when A exceeds unity, a condition satisfied by some cases with high RaS in our
simulations as indicated by figure 13(c). Meanwhile, the γ instability should occur when
the total flux ratio decreases with the density ratio (Radko 2003). In our simulations, three
cases with RaS = 1012 and Λ̄b = 1.34, 1.81, 2.13 do satisfy this condition (see figure 13d).
The reason these two instabilities do not develop in our wall-bounded simulations may be
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Λ̄b

RaS = 108 RaS = 109 RaS = 1010 RaS = 1011 RaS = 1012 Traxler 3D Traxler 2D

(b)(a)

(c) (d )

Figure 13. The time-averaged (a) turbulent flux ratio γ̄ , (b) total flux ratio γ̄tot and (c) Stern number Ā versus
the mean bulk density ratio Λ̄b. (d) Enlarged view of the plot of (b) highlighting the cases with Λ̄b ∈ [1, 5].
The dashed and solid lines denote the results from 3D and 2D periodic simulations of Traxler et al. (2011)
(see their figures 2 and 3). The CSF cases are marked by grey symbols and FSF cases are marked by colourful
symbols. The error bars for all quantities are also displayed.

attributed to the limited height of the bulk region. In the periodic simulations of Traxler
et al. (2011) and Stellmach et al. (2011), large-scale secondary instabilities only occur
when the domain height H is greater than 25FGW. However, in the current study, the
three cases with γ̄tot decreasing as Λ̄b have domain heights smaller or close to 25 FGW
(see figure 8d). For instance, the case with RaS = 1012 and Λ̄b = 2.13 yields FGW/H =
0.036, i.e. H ≈ 28FGW. For the bulk region 0.25 � z � 0.75, only 14FGW exist. Thus,
the large-scale secondary instabilities are unlikely to develop in the bulk.

6. Conclusions

In summary, we have conducted systematic 2D DNS of the wall-bounded FDDC for
the same fluid properties of seawater and clarify some important aspects regarding the
influences of solid boundary. A wide parameter range has been explored on the RaS–Λ

phase plane, and changes in the flow morphology and transport properties have been
investigated. The bulk density ratio Λb, which was measured away from the boundary
layers, has been confirmed to be the key parameter that controls the behaviours of salt
fingers. In particular, through Λb we have established the quantitative correspondence
between the wall-bounded model and periodic model of FDDC. Different parameter
regimes are summarised in figure 14.
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0.20 0.25 0.30

1012

Figure 14. The parameter space on the Λ–RaS plane explored in the current study. An enlarged view of the plot
shown in the dashed box is shown in the right panel. The blue and red circles mark the cases of convection-roll
type and salt-finger type, respectively. The red open symbols denote the CSF regime, whereas the solid symbols
denote the FSF regime, as defined in figure 10. The star symbols at RaS = 1012 indicate the cases of the
multilayer state, while all other cases are at the single finger-layer state.

Three different flow regimes are identified. When the mean bulk density ratio Λ̄b is
smaller than unity, the flow is of RB type and the bulk is dominated by the large-scale
convection rolls. When Λ̄b ≥ 1, the dominant structures in the bulk is slender salt fingers.
Based on the vertical wavelength λ∗z , the finger regime can be further divided into the
CSF regime with λ∗z > 0.2H and the FSF regime with λ∗z ≤ 0.2H, respectively. In the
CSF regime the height of salt fingers is too large and the solid boundaries has noticeable
effects on the transport properties. In the FSF regime, however, the height of salt fingers
is much smaller compared with the domain height, and the influences of solid boundaries
are negligible. This is clarified by the fact that both length scales and vertical fluxes versus
Λ̄b are consistent with those found in the fully periodic model (Schmitt 1979; Traxler et al.
2011).

Therefore, the current study confirm that once the flow is in the FSF regime, the solid
boundary condition does not influence the dynamics of salt fingers in the bulk. Within
this regime the transport properties of bulk is set intrinsically by salt-finger structures, and
the findings should be applicable to the analysis and interpretation of the thermohaline
structures and fluxes measured form the salt-finger region in the ocean. However, several
open questions remain in the current study. First, we do not observe the spontaneous
formation of staircase from the salt-finger bulk nor the development of large-scale
secondary instabilities. Such processes may emerge at even higher Rayleigh numbers.
Second, we observe the multilayer states at very limited range of parameters in our current
simulations, which prohibits us for a detailed analysis of the related mechanism. These
questions are the subjects of future studies.
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Wall-bounded model of fingering double diffusive convection

Λ Γ Nx(mx) Nz(mz) NuS NuT Re Rez Rex Λ̄b S̄z T̄z tstat

0.001 8.0 720(4) 192(2) 28.14 3.459 5.593 4.583 3.200 −0.0335 −0.003 0.154 1000
0.003 8.0 720(4) 192(2) 28.20 3.426 5.594 4.461 3.370 −0.136 −0.004 0.159 1000
0.006 8.0 720(4) 192(2) 28.43 3.309 5.254 4.289 3.029 0.0231 −0.001 0.209 1000
0.01 8.0 720(4) 192(2) 28.62 3.191 4.992 4.113 2.824 −0.0651 −0.002 0.252 1000
0.02 8.0 720(4) 192(2) 29.05 2.883 4.474 3.713 2.492 5.882 −0.001 0.362 1000
0.03 8.0 720(4) 192(2) 29.24 2.581 4.029 3.346 2.241 −1.788 −0.001 0.467 1000
0.04 8.0 720(4) 192(2) 29.42 2.413 3.763 3.136 2.079 −5.993 −0.000 0.528 1000
0.06 8.0 720(4) 192(2) 29.41 2.083 3.326 2.795 1.801 7.119 0.002 0.651 1000
0.08 8.0 720(4) 192(2) 29.55 1.898 3.058 2.584 1.635 56.35 0.006 0.723 10 000
0.1 8.0 720(4) 192(2) 29.66 1.773 2.879 2.437 1.530 20.04 0.009 0.769 1000
0.2 8.0 720(4) 192(2) 29.87 1.464 2.396 2.061 1.220 11.87 0.017 0.873 1000
0.3 8.0 720(4) 192(2) 30.21 1.344 2.172 1.886 1.077 12.95 0.023 0.914 1000
0.6 8.0 720(4) 192(2) 30.79 1.199 1.866 1.634 0.9009 17.79 0.035 0.957 1000
1 8.0 720(4) 240(2) 30.89 1.132 1.658 1.443 0.8156 18.40 0.054 0.976 1000
3 8.0 720(4) 240(2) 30.49 1.050 1.282 1.124 0.6156 30.19 0.101 0.993 2000
10 8.0 720(4) 240(2) 26.18 1.015 0.8859 0.7738 0.4309 41.28 0.244 0.999 4000
30 8.0 720(4) 240(2) 14.29 1.003 0.4893 0.4165 0.2567 53.03 0.566 1.000 5000

Table 1. Numerical details and key responses for the group of cases with RaS = 108.

Λ Γ Nx(mx) Nz(mz) NuS NuT Re Rez Rex Λ̄b S̄z T̄z tstat

0.001 5.0 768(4) 288(2) 53.91 7.210 27.77 20.77 18.41 0.1478 −0.001 −0.024 500
0.003 5.0 768(4) 288(2) 54.51 7.203 26.29 19.25 17.89 0.0124 −0.001 −0.027 500
0.01 5.0 768(4) 288(2) 55.90 6.940 22.59 17.10 14.72 0.2052 0.000 0.015 600
0.02 5.0 768(4) 288(2) 57.54 6.499 18.04 14.50 10.70 1.913 0.001 0.079 800
0.03 5.0 768(4) 288(2) 58.43 5.772 15.04 12.38 8.527 3.998 0.003 0.208 600
0.04 5.0 768(4) 288(2) 59.13 5.228 13.34 10.93 7.646 −4.800 0.004 0.261 800
0.06 5.0 768(4) 288(2) 60.01 4.151 11.03 9.035 6.315 6.191 0.010 0.437 1000
0.1 5.0 768(4) 288(2) 60.63 3.128 8.768 7.214 4.980 3.590 0.017 0.575 800
0.15 5.0 768(4) 288(2) 61.16 2.501 7.469 6.209 4.149 4.395 0.025 0.712 1000
0.2 5.0 768(4) 288(2) 61.64 2.172 6.817 5.706 3.729 5.211 0.030 0.771 1000
0.3 5.0 768(4) 288(2) 62.02 1.821 5.956 5.053 3.151 6.909 0.038 0.859 800
0.6 5.0 768(4) 288(2) 62.84 1.454 4.955 4.266 2.520 10.67 0.054 0.936 1000
1 5.0 768(4) 288(2) 62.96 1.286 4.336 3.784 2.118 15.17 0.064 0.967 1200
3 5.0 768(4) 288(2) 61.21 1.103 3.262 2.883 1.525 26.25 0.115 0.992 2400
10 4.0 768(4) 384(1) 51.31 1.029 2.227 1.979 1.021 39.28 0.255 0.998 4000
30 4.0 768(4) 384(1) 26.50 1.006 1.211 1.061 0.5832 51.97 0.578 1.000 4000

Table 2. Numerical details and key responses for the group of cases with RaS = 109.

Appendix: Summary of numerical details

In Tables 1–5, we summarise the numerical details and key responses for all the
simulations. All the response quantities are time-averaged in the fully developed state.
Each table corresponds to one salinity Rayleigh number. Columns from left to right are
the global density ratio Λ defined by the temperature and salinity differences between the
two plates, the aspect ratio Γ of the domain, the resolution of the base mesh (Nx, Nz), the
refinement factors (mx, mz) of the refined mesh, the two Nusselt numbers NuS and NuT ,
the Reynolds numbers defined by the r.m.s. of total velocity Re, by the r.m.s. of z-velocity
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Λ Γ Nx(mx) Nz(mz) NuS NuT Re Rez Rex Λ̄b S̄z T̄z tstat

0.001 2.0 1024(4) 768(3) 97.74 13.77 131.5 91.62 94.29 0.0035 0.000 0.006 600
0.003 2.0 1024(4) 768(3) 98.85 13.75 127.9 89.26 91.65 0.3018 0.000 0.006 600
0.01 2.0 1024(4) 768(3) 101.3 13.42 121.7 84.69 87.43 0.1812 0.000 0.007 600
0.03 2.0 1024(4) 768(3) 115.9 12.60 92.54 65.05 65.74 2.320 0.001 0.005 800
0.04 2.0 1024(4) 768(3) 121.8 11.83 69.57 52.88 45.04 1.372 0.001 0.024 800
0.06 2.0 1024(4) 768(3) 125.9 9.449 43.64 34.80 26.23 2.724 0.008 0.168 800
0.1 2.0 1024(4) 768(3) 127.8 6.609 30.38 24.65 17.73 2.161 0.015 0.300 2800
0.15 2.0 768(4) 512(3) 128.7 4.856 23.33 18.94 13.60 2.799 0.026 0.475 1000
0.2 2.0 768(4) 512(3) 128.6 3.914 19.98 16.24 11.63 3.496 0.035 0.612 1000
0.3 2.0 768(4) 512(3) 128.4 2.946 16.72 13.76 9.490 4.598 0.050 0.764 1000
0.4 2.0 768(4) 512(3) 128.6 2.475 15.23 12.57 8.585 5.454 0.061 0.835 1000
0.6 2.0 768(4) 512(3) 128.2 2.002 13.17 11.06 7.136 7.622 0.071 0.896 1000
1 2.0 768(4) 512(3) 127.5 1.608 11.29 9.652 5.848 10.07 0.095 0.953 1600
3 2.0 768(4) 512(2) 121.9 1.206 8.259 7.285 3.889 19.60 0.152 0.989 2400
10 2.0 768(4) 768(1) 100.7 1.056 5.592 5.025 2.452 34.01 0.294 0.998 3200
30 2.0 768(4) 768(1) 48.72 1.010 2.925 2.616 1.306 49.09 0.611 1.000 5000

Table 3. Numerical details and key responses for the group of cases with RaS = 1010.

Λ Γ Nx(mx) Nz(mz) NuS NuT Re Rez Rex Λ̄b S̄z T̄z tstat

0.001 2.0 3072(4) 1280(3) 186.1 26.31 516.7 359.5 371.0 0.0080 0.000 0.007 500
0.003 2.0 3072(4) 1280(3) 187.0 26.13 501.8 349.4 360.2 −0.0125 0.000 0.006 500
0.01 2.0 2560(4) 1280(3) 189.9 25.90 487.6 339.5 349.9 0.1024 0.000 0.007 600
0.03 2.0 2560(4) 1280(3) 208.6 24.45 431.7 300.2 310.3 0.7237 0.001 0.011 600
0.06 2.0 2560(4) 1280(3) 246.5 21.34 335.8 234.2 240.7 1.136 0.001 0.010 800
0.1 1.0 1024(4) 1024(3) 269.5 14.80 157.5 116.6 105.1 1.064 0.006 0.064 1000
0.15 1.0 1024(4) 1024(3) 270.6 10.27 87.11 70.00 51.77 1.642 0.017 0.180 1000
0.2 1.0 1024(4) 1024(3) 268.5 7.828 63.06 50.64 37.55 2.156 0.038 0.405 1000
0.3 1.0 1024(4) 1024(3) 265.5 5.418 48.59 39.02 28.95 3.127 0.065 0.678 1000
0.6 1.0 1024(4) 1024(3) 257.2 3.092 35.55 29.05 20.49 5.056 0.106 0.896 1000
1 1.0 768(4) 864(3) 251.0 2.214 29.46 24.52 16.33 7.265 0.135 0.978 800
3 1.0 768(4) 864(3) 232.0 1.377 20.51 17.81 10.17 14.45 0.209 1.006 1200
10 1.0 768(4) 864(2) 182.9 1.097 13.34 11.92 5.989 27.29 0.367 1.002 2000
30 1.0 768(4) 864(2) 82.04 1.016 6.808 6.139 2.943 44.66 0.672 1.001 4000

Table 4. Numerical details and key responses for the group of cases with RaS = 1011.

Rez and by the r.m.s. of x velocity Rex, the density ratio measured in the bulk Λ̄b, the
vertical gradients of the mean salinity S̄z and temperature T̄z, and the statistical time tstat
in the fully developed state, respectively. For all cases the fluid properties of seawater are
used, namely Pr = 7 and Sc = 700.

973 A37-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.781


Wall-bounded model of fingering double diffusive convection

Λ Γ Nx(mx) Nz(mz) NuS NuT Re Rez Rex Λ̄b S̄z T̄z tstat

0.003 2.0 3072(8) 3072(3) 370.5 48.36 1883.0 1307.0 1355.0 0.0117 0.000 0.003 200
0.01 2.0 3072(8) 3072(3) 376.3 47.30 1903.0 1308.0 1381.0 0.1418 0.000 0.004 200
0.04 2.0 3072(8) 3072(3) 405.0 44.84 1626.0 1131.0 1167.0 0.6760 0.000 0.005 240
0.1 2.0 3072(8) 3072(3) 518.6 34.00 1092.0 762.3 781.7 −0.5205 0.001 0.008 400
0.15 2.0 3072(8) 3072(3) 549.7 24.32 748.7 514.7 541.8 1.174 0.001 0.007 400
0.2 1.0 2560(4) 3072(3) 553.6 18.08 671.3 473.5 466.1 1.161 0.003 0.012 800
0.22 1.0 2560(4) 2560(3) 564.9 16.78 554.9 401.2 379.0 1.455 0.003 0.016 800
0.23 1.0 2560(4) 2560(3) 561.9 15.92 523.5 389.3 348.5 40.89 0.003 0.014 800
0.24 1.0 2560(4) 2560(3) 562.6 15.10 481.5 340.2 338.5 1.007 0.005 0.022 800
0.25 1.0 2048(4) 2048(3) 561.5 13.67 247.5 185.2 163.8 1.337 0.022 0.115 1000
0.27 1.0 2048(4) 2048(3) 550.3 12.12 163.0 129.2 99.44 1.805 0.062 0.412 1000
0.3 1.0 2048(4) 2048(3) 543.4 10.72 143.8 114.6 86.91 2.132 0.082 0.582 1000
0.4 1.0 2048(4) 2048(3) 528.5 7.918 119.6 95.33 72.15 2.748 0.116 0.797 1000
0.6 1.0 2048(4) 2048(3) 507.8 5.325 97.33 77.65 58.67 3.572 0.151 0.898 1000
1 1.0 1536(4) 1728(3) 480.7 3.416 77.45 62.59 45.62 4.927 0.195 0.962 1000
3 1.0 1536(4) 1536(3) 421.2 1.709 50.42 42.70 26.80 10.15 0.295 0.997 1600
10 1.0 1024(4) 1536(2) 313.1 1.166 31.38 27.77 14.62 21.87 0.458 1.002 4000
30 0.5 768(3) 1536(2) 135.1 1.025 15.52 14.10 6.502 41.15 0.731 1.002 4500

Table 5. Numerical details and key responses for the group of cases with RaS = 1012.
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