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We construct a description of ion-temperature-gradient (ITG)-driven localised linear
modes which retains both wave–particle and magnetic drift resonant effects while
capturing the field-line dependence of the electrostatic potential. We exploit the smallness
of the magnetic drift and the strong localisation of the mode to resolve the problem
with a polynomial–Gaussian expansion in the field-following coordinate. A simple
semianalytical formula for the spectrum of the mode is shown to capture long wavelength
Landau damping, ion-scale Larmor radius stabilisation, weakening of Larmor radius
effects at short wavelengths and magnetic-drift resonant stabilisation. These elements
lead to linear spectra with multiple maxima as observed in gyrokinetic simulations in
stellarators. Connections to the transition to extended eigenfunctions and those localised
by less unfavourable curvature regions (hopping solutions) are also made. The model
provides a clear qualitative framework with which to interpret numerically simulated
ITG modes’ linear spectra with realistic geometries, despite its limitations for exact
quantitative predictions.

Keywords: fusion plasma

1. Introduction

The ion temperature gradient (ITG) is one of the primary modes driving turbulence in
magnetic confinement fusion devices (Rudakov & Sagdeev 1961; Coppi, Rosenbluth &
Sagdeev 1967; Terry, Anderson & Horton 1982). As such, much literature exists devoted
to understanding this type of instability. The most basic understanding of this mode can
be gained by studying the linear response of the system, as described by the linearised
gyrokinetic (GK) equation (Connor, Hastie & Taylor 1980; Romanelli 1989) used to
evaluate quasineutrality. Extending our understanding of the mode and its response to
the geometry is particularly important in the context of stellarator physics.

Linear studies of the ITG-driven mode, either analytical or numerical, are numerous
in the literature, but they are all fundamentally traceable to the review of Kadomtsev &
Pogutse (1970b). Analytical progress often requires some simplifying assumptions. These
occur at two levels. First, by considering separately the various destabilising mechanisms
in the problem. Second, by reducing the complexity of the magnetic field along field lines

† Email address for correspondence: eduardo.rodriguez@ipp.mpg.de

https://doi.org/10.1017/S0022377824001120 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1418-0466
https://orcid.org/0000-0003-2617-3658
mailto:eduardo.rodriguez@ipp.mpg.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377824001120&domain=pdf
https://doi.org/10.1017/S0022377824001120


2 E. Rodríguez and A. Zocco

(e.g. curvature, flux compression or the magnetic field magnitude), often described as
constant. Our knowledge of the ITG builds on consideration of special cases that respond
to different approximations of the first kind (Zocco et al. 2018). When the bad curvature,
together with the temperature gradient, drives the mode to being unstable, we have a
toroidal ITG (Terry et al. 1982). When destabilisation does not require curvature, but
is enabled by the propagation of density along the field lines, with a specific relative
phase with respect to temperature (Cowley, Kulsrud & Sudan 1991), we have a slab
ITG (Rudakov & Sagdeev 1961; Kadomtsev & Pogutse 1970b). While any simplified
perspective helps shed light on the physics of the ITG mode, the selective treatment
of the physics can hinder their scope. A pressing case of this is the overlooking of the
mode localisation along the field line in the toroidal branch (Terry et al. 1982), where
the presence of bad curvature is paramount. Magnetic fields generally exhibit alternating
regions of good and bad curvature every connection length.

A simple theoretical description of the inhomogeneity along the magnetic field line, and
the consequent behaviour of the ITG mode, is approachable through a fluid description
(Horton, Choi & Tang 1981; Hahm & Tang 1988; Romanelli 1989; Plunk et al. 2014).
Assuming particle parallel streaming to be small (slow ion transit time), a strong drive
and small curvature drift, one can describe the ITG through a second-order ordinary
differential equation (ODE) along the field line. Such a description incorporates key
physics ingredients to the problem, and crucially couples the behaviour of the instability
to its structure along the field line. However, while localisation seems so important for a
mathematical characterisation of the fluid branches (Wesson & Campbell 2011; Zocco
et al. 2016) and interpretation of numerical results, its analytical treatment becomes
increasingly intricate when Landau damping and the magnetic drift resonance are
included. Without a consistent inclusion of these kinetic elements, the fluid description
suffers from fundamental shortcomings in describing the behaviour of microinstabilities
at small scales (either large perpendicular wavenumber or small parallel scale). This
limitation can lead to wrong expectations in the mode response to changes in geometry.
But the latter being of crucial importance, especially in the context of current activities
such as stellarator optimisation, we need to integrate all elements together. While much
progress has been made in this direction for the development of the theory of geodesic
acoustic modes (Zonca, Chen & Santoro 1996; Sugama & Watanabe 2006a,b; Qiu, Chen
& Zonca 2018), a manageable kinetic theory that retains resonant effects and includes
geometric localisation is desirable. We address this problem in this work.

In this article we introduce a formal approach to the GK equation to describe localised
ITG modes and their structure in a simple geometry with good and bad curvature alongside
kinetic effects, both resonant (due to particles parallel streaming and magnetic drift)
and non-resonant (due to Larmor radius effects). In § 2 we start from the linearised GK
equation and transform it into a linear system of equations, introducing the key ordering in
the curvature drift and localisation of the mode. In the following section, § 3, we focus on
constructing the dispersion equation for a model simple Gaussian-shaped mode, and detail
its derivation and numerical solution. Section 4 then studies the physical elements of the
model constructed, including the roles of Landau damping, finite Larmor radius (FLR)
stabilisation and the curvature drift resonance. Estimates for important features such as
critical temperature gradients are also given. Section 5 then discusses the behaviour of
other modes other than those with the simplest Gaussian structure, to end with some
numerical GK simulations. Although the model is too simple to be quantitatively correct,
we show it serves as a blueprint to interpret the results from the simulations. We use this
to make connections to the presence of delocalised (slab) and hopping modes.
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Kinetic ITG localisation 3

2. Localised description of the GK equation
2.1. Rewriting the GK equation

The starting point of our model construction is the linear GK equation for the ions, which
we write as follows:

iv‖∂�g + (ω − ω̃d)g = qi

Ti
F0iJ0(ω − ω̃�)φ. (2.1)

The equation is to be understood as a first-order ODE in � (Taylor 1976), the distance along
a field-line, for the non-adiabatic part of the distribution function, denoted by g, which is
a perturbation with respect to the background ion Maxwellian F0i. To write the equation
in this one-dimensional form, the ballooning transform has been considered (Taylor 1976;
Connor, Hastie & Taylor 1978; Tang, Connor & Hastie 1980; Antonsen & Lane 1980) so
that k⊥ = kα∇α + kψ∇ψ . Here α and ψ are defined to be the straight field line Clebsch
variables (D’haeseleer et al. 2012), such that B = ∇ψ × ∇α and the toroidal magnetic
flux is 2πψ . The response of the system is coupled to the electrostatic potential φ, and is
modulated by the geometry of the magnetic field. Elements of the geometry are present
in ω̃d and J0. The former represents the ion magnetic particle drifts, which in the small
β limit may be written as ω̃d = ωd(x2

‖ + x2
⊥/2), where ωd = vD · k⊥ = vTiρiκ × B · k⊥/B,

where x‖ = v‖/vTi and x⊥ = v⊥/vTi are velocities normalised to the ion thermal speed
vTi = √

2Ti/mi, and ρi = mivT/qiB is the ion Larmor radius, where Ti, qi and mi are the ion
temperature, charge and mass. For simplicity, we will focus on the simpler limit kψ = 0.
The second element of geometry is included in the FLR term J0 = J0(x⊥

√
2b), where J0

is the Bessel function of the first kind, and b = (k⊥ρi)
2/2. The drive of the instability

is included in the diamagnetic drift, represented here by ω̃� = ω�[1 + η(x2 − 3/2)],
where η = d ln Ti/d ln ni is the ratio of ion temperature to ion density gradients, and
ω� = (kαTi/qi)(d ln ni/dψ).

Because the GK equation is a first-order ODE, a solution for g can be written in its most
general form using an integrating factor, as originally presented by Connor et al. (1980).
However, the resulting integral expressions, in their generality, do not always manifest
clearly the role played by the different physical elements in the problem. After imposing
quasineutrality, the relation between the mode structure and the degree of instability is not
clear, as an involved integral eigenvalue problem ensues (Romanelli 1989). To circumvent
this complexity, we present here an approach that makes the resonant kinetic problem as
close as possible to a second-order ODE, much in the way that it occurs in the fluid limit.1

To that end, we first invoke symmetry arguments to simplify the construction of the
solution as much as possible. Given the explicit involvement of v‖ in the GK equation, it
is convenient to separate g into even and odd parts in v‖, namely

ge(�, v) = 1
2

[
g(v‖)+ g(−v‖)

]
, (2.2a)

go(�, v) = 1
2

[
g(v‖)− g(−v‖)

]
. (2.2b)

1Some classes of integral eigenvalue equations can be easily related to linear differential problems (Tricomi 1985),
but this is not straightforward in our kinetic case.
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4 E. Rodríguez and A. Zocco

With these well-defined parity functions, the original GK equation, which had mixed
parity, can be separated into two coupled first-order differential equations,

iv‖∂�go + (ω − ω̃d)ge = qi

Ti
F0iJ0(ω − ω̃�)φ, (2.3a)

iv‖∂�ge + (ω − ω̃d)go = 0. (2.3b)

The latter is used to eliminate go(�, v) from the former, to give an equation that only
involves the even part of g in v‖,2

v‖∂�

[
v‖

ω − ω̃d
∂�ge

]
+ (ω − ω̃d)ge = qi

Ti
F0iJ0(ω − ω̃�)φ. (2.4)

We must not forget that the linearised GK equation, (2.1), does not come on its own. First,
ge must satisfy vanishing boundary conditions at � → ±∞ for a physically reasonable
ballooning solution of the equation (Connor et al. 1978). Second, it must be complemented
by the quasineutrality condition, the condition preventing charge separation from building
up in the system. This imposes an additional relation between the velocity-space function
ge and the real space function φ, which is necessary to complete theω-eigenvalue equation.
As the velocity-space average of the odd go vanishes due to parity, the quasineutrality
condition reduces to ∫

J0ge d3v = n̄(1 + τ)φ, (2.5)

where τ = Ti/ZTe and n̄ is the equilibrium density. We are taking the electron response
to be adiabatic here. Equations (2.4) and (2.5), describing our ion response, will be our
starting point.

2.2. Approximations: localisation and weak curvature
So far, the problem defined by (2.4) and (2.5) is as general as the standard form of the
linearised GK equation. To proceed, we introduce a number of simplifying assumptions
that will make it tractable while retaining the main physical elements of the problem.

2.2.1. Simplified geometry
The first element of simplification in the problem is the geometry along the field line.

We restrict all the inhomogeneity in the field to the � dependence of the curvature drift
ωd(�). Doing so lets us capture the key aspect of having good and bad curvature regions
along the field line. On physical grounds (Terry et al. 1982), we expect the unstable toroidal
mode to have a tendency to localise around bad curvature regions, which are energetically
favourable, while being repelled from good curvature ones.

To introduce a sense of this feature, we describe a single region of bad curvature, taken to
be symmetric in � and to have a finite extent,Λ, beyond which the curvature changes sign.
In the usual jargon, this length scale may be deemed the connection length, and the region
within can be thought as a bad curvature well. We model the well as a two-parameter
simple symmetric quadratic function in �, where the parameters represent its depth and

2A word of caution should be raised about the presence of the resonant denominator ω − ω̃d . The GK equation
(2.1) can be understood as a Laplace transformed version of the its original time dependent form. It is thus well defined
for Im{ω} > 0 (the usual Bromwich contour), which avoids the ‘division by zero’. The extension to the remainder of
ω-space is treated in § 3.2. Retaining the resonance is important, especially as it can generate a finite imaginary part of a
marginally stable fluid limit.
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Kinetic ITG localisation 5

width. The magnitude of the bad curvature at the origin is defined to be −ω̄d < 0. The
curvature remains bad, i.e. negative, in the region |�| < Λ. We then write ωd as

ωd = ω̄d

[(
�

Λ

)2

− 1

]
. (2.6)

Because Λ is the only existing length scale along the field line, as both B and k⊥ρi are
assumed to be constant, we shall use it to normalise lengths and write �̄ = �/Λ.

Before moving on, we should reflect on the consequences of our simplified geometry.
Choosing the magnetic field magnitude to be flat along the field line eliminates any
contribution from trapped ions, which do not exist in our model. The physics associated
with the variation of k⊥ρi are also lost, and with it the possible modulation of FLR effects.
In particular, this approximation erases the effects of global magnetic shear, which would
have appeared as a secular term in k⊥. The global shear can become important especially in
localising significantly extended, slab-like modes, and thus forcing the correct behaviour
of g at � → ±∞. Instead, in our problem, in the limit of large |�̄| we have a strongly
positive good curvature. Physically, we expect this to play a stabilising role for the
typical toroidal ITG that precludes modes from becoming completely delocalised. In that
sense, our model of ωd(�) mimics in part the action of global shear.3 Unavoidably, this
simplification couples the local and global behaviour of the system. All the simplifications
considered will render less accurate a quantitative comparison of the analytical results with
real fields, but will serve as an important qualitative and semiquantitative tool. We prove
numerically that this particular approximation gives excellent results for the real geometry
of the quasisymmetric (Boozer 1983; Nührenberg & Zille 1988; Rodríguez, Helander &
Bhattacharjee 2020) HSX (helically symmetric experiment) stellarator (Anderson et al.
1995).

Reducing all the field inhomogeneity to ωd is a significant formal simplification, making
the differential operator ∂� commute with everything in (2.4) except g (we shall drop the
superscript e describing parity for simplicity), φ and ωd. The assumption of a constant B
is of particular importance here. The partial derivative respect to � is meant to be taken
keeping the velocity-space variables μ = miv

2
⊥/2B and E = miv

2/2 constant. Only when
B is constant is v‖ independent of real space.

With this observation, (2.4) becomes, upon commutation of the differential operator

(1 − ω̃d/ω)
−1 v

2
‖
ω2
∂2
�g +

(
1 − ω̃d

ω

)
g + v2

‖
ω2

∂� (ω̃d/ω)

(1 − ω̃d/ω)
2 ∂�g = qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
φ.

(2.7)

We have a second-order ODE in which all the explicit spatial dependence can be expressed
in terms of polynomials in �.

2.2.2. Weak curvature drift, strong drive and strong localisation
It is clear from the above equation that the drift frequency in this scenario plays a central

role in prescribing the behaviour of the instability. The mode will adapt to the geometry
described by ωd(�̄), and thus to make the treatment more manageable, it is natural to
order the drift. We introduce the ordering parameter δ ∼ ω̄d/ω � 1. Such a restriction
is not completely artificial, and it is particularly appropriate in scenarios in which the

3The unbounded behaviour of the curvature drift appears in this context as a rather artificial construct. However,
note that in the GK equation ωd has in fact a secular piece in �. This piece is proportional to the global magnetic shear.
However, the secularity of ωd is not quadratic in �, but rather linear, as follows from k⊥ ∼ kα∇α ∼ −ι′kαϕ∇ψ .

https://doi.org/10.1017/S0022377824001120 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001120


6 E. Rodríguez and A. Zocco

turbulence is strongly driven, namely, in cases where the ω� drive (either in its density or
temperature gradient form) is much larger than ωd. We shall be focusing on this strongly
driven scenario.

Note, however, that ordering ω̄d/ω is not enough to simplify (2.7). Although ω̄d/ω may
be small, this is only its value at the bottom of the bad curvature well. Thus, there always
exists a sufficiently large value of �̄ such that ωd/ω � 1. This appears hopeless for an
approximated approach to (2.7). However, we must not consider ωd on its own when doing
so, but rather alongside g and φ. If the distribution function and the potential are finite only
over some finite length scale, then the effective value of �̄ should reflect that finite extent.
Considering a Gaussian-like envelope of the form ∼ e−λ�̄2/2, so that g and φ have length
scales ∼ 1/

√
Re{λ}, where Re{λ} denotes the real part of λ which is generally complex,

we limit this problem with a new ordering parameter,

ε = 1
Re{λ}

ω̄d

ω
� 1. (2.8)

The parameter ε restricts the following construction to modes that are sufficiently
localised. Thus, modes may have some degree of delocalisation, but limited by the
ordering parameter δ. We will then consider two simultaneous ordering assumptions,
namely δ, ε � 1. The precise implications of these orderings and how we proceed with
them is detailed in what follows.

First, let us employ the newly introduced approximations to simplify (2.7). Expanding
the equation to, and keeping, order O(ε, δ),

2
(ωtx‖
ω

)2
∂2
�̄
g +

(
1 − ω̃d

ω
(�̄2 − 1)

)
g + 4ω̃d

(ωtx‖
ω

)2
�̄∂�̄g = qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
φ,

(2.9)

where allowing some looseness in the notation, ω̃d = ω̄d(x2
‖ + x2

⊥/2) here, and ωt is the
transit frequency defined as

ωt = vTi

Λ
√

2
. (2.10)

The consistent ordering of ωt/ω will be explicitly discussed later. For now, we take it to
be order 1, but consider ω̄d/ω corrections to the first term in (2.9) small.

Localised solutions to a second-order ODE like (2.9) may be approximated by
considering a representation of g and φ in a Taylor–Gauss basis,

g =
∞∑

n=0

gn�̄
n

N(n)
e−λ�̄2/2, (2.11)

where N(n) = √
n!/Re{λ}n is a normalisation factor. The Taylor part of the basis (i.e.

the expansion in powers of �̄) naturally describes the mode near the bottom of the well,
while the Gaussian part provides an overall envelope that localises the mode. The latter
requires Re{λ} > 0, although it is consistent with having a non-zero imaginary part.4 The
normalisation factor includes powers of Re{λ} to account for the scale associated with

4It could be tempting to use Hermite polynomials instead of unpaired powers of �̄ as has been done to deal with
velocity space in the literature (Zocco & Schekochihin 2011; Zocco et al. 2015; Loureiro et al. 2016; Mandell, Dorland &
Landreman 2018). However, the Taylor form is more convenient here with the consideration of the solution in the limit
�̄ → 0 in mind.
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Kinetic ITG localisation 7

the monomial �̄n. Note that the higher the mode considered, the increasingly hollower the
shape of the mode is, providing a characteristic length scale

√
n/Re{λ}n/2.

Once we have this basis representation, the ODE (2.9) becomes an infinite set of coupled
algebraic linear equations on {φn} and {gn}. The benefit of the particular basis used is the
simplicity of the form that the operations in (2.9) take. The product by �̄2 in the second
term of (2.9) simply upshifts the mode number by two, making the regularising role of ε
manifest. It restricts the coupling of the different {gn} and {φn} modes, and thus is critical
in achieving a useful truncation of the linear system of equations. Differentiation plays a
similar, albeit more involved, coupling role (see Appendix A).

2.3. The Taylor–Gauss form of the GK equation
We are now in a position to resolve (2.9) in the new basis of (2.11). This can be achieved
by substituting the expansion in (2.11), and applying the coupling rules in (A1) given in
the Appendix A. Upon substitution, the resulting equation takes the form

∞∑
n=0

En

√
Re{λ}n

n!
�̄ne−λ�̄2/2 = 0, (2.12a)

where, the general expression for the nth mode equation is

En = 2Re{λ}
(ωtx‖
ω

)2√
(n + 2)(n + 1)gn+2

+
[

1 + ω̃d

ω
− 2λ(2n + 1)

(ωtx‖
ω

)2
+ 4n

ω̃d

ω

(ωtx‖
ω

)2
]

gn

+ 2
Re{λ}

[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω
− 2λ

ω̃d

ω

(ωtx‖
ω

)2
]√

n(n − 1)gn−2

− qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
φn. (2.12b)

For (2.9) to be true, (2.12a) must hold for all �̄, meaning that each of the equations En
must vanish separately. Hence, the original ODE becomes an infinite-dimensional system
of linear equations, {En = 0}, as promised.

An inspection of the structure of this equation shows two important features. First, even
and odd modes in �̄ are completely decoupled. This is a direct consequence of the original
form of the equation having well-defined parity. Unless otherwise stated, we shall consider
the even set, of which its most basic form is a Gaussian mode. The results follow similarly
for the odd set. Second, within each of these subspaces, the system has a tridiagonal
structure. That is, the equation couples every mode to the immediately adjacent ones.

3. Gaussian mode model of kinetic ITG

The resolution of the original equation into the Taylor–Gauss basis leaves us with an
infinite set of algebraic equations to solve in phase space (i.e. in v and �). It is our goal
now to truncate this hierarchy down to obtain a useful model of the problem.

3.1. Constructing the dispersion function
Let us start first by understanding what the structure of the set of equations is when we
truncate the system at order N. That is, when we set all gn, φn = 0 for n > N. In that case
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the finite set of equations we are left with is

{E0(0, 2), . . . ,En(n − 2, n, n + 2), . . . ,EN(N − 2,N),EN+2(N)}, (3.1)

where each element must vanish and the numbers in parenthesis denote the modes (both
in g and φ) involved in the equations. This system of equations may be rewritten by
rearranging the first N/2 + 1 equations to solve explicitly for {gn : n ≤ N} in terms of
{φn : n ≤ N} by appropriate linear combinations. This is generally possible, and an explicit
construction to order O(ε2) is provided in Appendix B following (2.12b). We then write

gn(v) =
N∑

m=0

D
(N)
nm (v)φm (n ≤ N),

gN(v) = D̄N(v)φN,

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where Dnm and D̄N are known functions of velocity space. The last isolated equation
on gN , coming from EN+2, is a result of the truncation at a finite N, and leads to gN
satisfying two equations simultaneously. The lack of degrees of freedom to salvage this
overdetermination in velocity space is indicative of our failure to satisfy the original
equation exactly with a finite number of modes. After all, we are attempting an
approximate solution. We must therefore assess what is the error made by relaxing this
last constraint. To do so, consider M to be the dominant mode in the system, which is
taken to be O(1). As shown in Appendix B, since the mode coupling terms are order ε, we
expect the magnitude of the error made by dropping that last equation to be ∼ ε(N−M)/2.
The error made is thus small provided we restrict ourselves to M � N � Nε = 1/ε. The
upper bound Nε is set to preserve the presumed smallness of ε as it is amplified by the
mode number of the solution to our system of equations. If N is chosen to be sufficiently
large, the matrix elements D

(N)
nm should then become largely independent of N, and we

may drop the (N) superscript. Having a model that is approximately independent of the
truncation is appropriate, and we shall see that a special choice of λ enacts this truncation
most snugly.

Our GK problem is now reduced to the main linear system of equations in (3.2). To
complete the problem, we apply quasineutrality, (2.5). Taking the appropriate velocity
moment of Dnm, and defining

Dnm = 1
n̄

Ti

qi

∫
J0Dnm(v) d3v, (3.3)

the resulting eigenvalue problem becomes

N∑
j=0

Mijφj = 0, (3.4a)

Mij = (1 + τ)δij − Dij. (3.4b)

Once we solve this system of equations, we may then construct gn for n < N,
acknowledging the order εN−M error made as described above.

We now illustrate our way forward for the M = 0 mode (the approach for a general M
is given in Appendix B). This is to take the Gaussian centred about the bad curvature to
be our dominant mode; formally, φ0 ∼ O(1). Following the principle of staying as distant
as possible from the truncation point of the system, we may ask when the solution to the
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problem is consistent with φn = 0 for all n > 0. We call this a pure mode, in so much as it
is consistent with a ‘complete’ decoupling from higher mode numbers.

To order ε, the system describing this ‘pure’ n = 0 mode reduces to the following two
equations:

D20 = 0, (3.5a)

1 + τ − D00 = 0, (3.5b)

where the expressions for D00 and D20 to order ε are

D20 = 1
n̄

2
√

2
Re{λ}

∫
d3vJ2

0F0i

(
1 − ω̃�

ω

)[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω

]
, (3.6a)

D00 = 1
n̄

∫
d3vJ2

0F0i

(
1 − ω̃�

ω

)
1

1 + ω̃d

ω
− 2λ

(ωtx‖
ω

)2
. (3.6b)

Both of these expressions constitute the governing dispersion relation for our mode. It
might appear that these make the problem overconstrained;however, we must bear in mind
that ω is not the only unknown here. The localisation λ is as well, and it must be chosen
alongside the frequency of the mode. This is analogous to what happens in the fluid limit
(Hahm & Tang (1988); R.J. Hastie, private communication, 2013; Connor, Hastie & Zocco
(2013); Zocco et al. (2016)). In fact, a closed form for λ may be obtained from satisfying
(3.6a). For simplicity, considering the small b limit and the leading-order form of the
expression in δ, ε,

D20 ≈
√

2
Re{λ}

[
1 − ω�

ω
(1 + η)

] [
λ2 − ω̄dω

ω2
t

]
≈ 0,

∴ λ =
√
ωω̄d

ω2
t

. (3.7)

For physically meaningful modes, and to restrict ourselves to Re{λ} > 0, we define the
square root in (3.7) with its branch cut along the negative real axis in the complex plane
(its conventional definition). The mode envelope λ indicates a balance between the parallel
streaming, ω2

t , and the curvature drift ωd, as is well known to be behind the localisation
mechanism in the fluid limit of the ITG (Hahm & Tang 1988; Connor et al. 2013;
Zocco et al. 2016). Upon approaching marginal stability, the mode will tend to become
increasingly delocalised, with an oscillating mode structure when it corotates with ions.

The basic scaling of λ together with the ordering of ε implies that ξ = ωt/ω follows
δ1/2ξ ≤ ε � 1. It is convenient then to take for the ordering arguments ξδ1/2 ∼ ε. This
is consistent with the assumptions made to reach this point. Although such consistency
is reassuring, the precise form of λ in (3.7) is a direct consequence of the assumption
of a ‘pure’ mode. This purity assumption is, however, not whimsical, but particularly
representative. Not only is it consistent with the ordering, but it also brings an elegant
and efficient closure to our system of equations (see a discussion on this in Appendix B),
as well as granting the correct asymptotic fluid limit of the dispersion equation, as we
shall later discuss. The choice of λ may thus be interpreted as a ‘fluid’ choice, with all
the approximations that this involves. However, as one may check upon lifting the purity
assumption, this remains a simplifying choice. In fact, such a relaxation eliminates in our
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case the D20 = 0 constraint, leaving λ undetermined.5 Future work may be devoted to
improving the model by determining λ in some other way, perhaps by treating it as a free
parameter to optimise in order to maximise the growth rate of the ITG. However, in this
first work we willingly sacrifice a precise quantitative prediction for simplicity. We will
illustrate this expected quantitative mismatch comparing the model with some example
GK simulations. Nevertheless, it will be seen that the model remains a highly useful tool
to interpret complicated linear turbulence spectra.

With this simple form for λ as a function of ω, we then interpret (3.6b) as a dispersion
relation for ω,

D = 1 + τ + ζ

n̄

∫
J2

0

(
1 − ω̃�

ω

)
F0i

x2
‖ − ζ

(
1 + ω̄d

2ω
x2

⊥

) d3v, (3.8)

where

ζ = 1
2

[
λ
(ωt

ω

)2
− ω̄d

2ω

]−1

, (3.9a)

or using the form of λ in (3.7),

ζ = ω2

2λ(1 − λ/2)ω2
t

. (3.9b)

The parameter ζ can be interpreted as a measure of the kinetic effects, being important
for |ζ | ∼ 1. Equation (3.9a) includes resonant kinetics that can come in either through a
Landau-type resonance involving the structure along the field line (the λ piece), or the
magnetic drift resonance. The relative importance of these terms will depend on the scale
of the mode structure along the field line, i.e. the magnitude of |λ|.

3.2. Simplifying the dispersion function
To evaluate the dispersion relation in (3.8) we must perform the necessary velocity-space
integrals, which includes resolving a resonant denominator. We shall deal with it by
first performing the integral over x‖ (and ignoring the resonance in x⊥, as detailed in
Appendix C). To that end, we need to resolve integrals of the following form:

I‖,β(ζ ) = 1√
π

∫ ∞

−∞
x2β

‖
e−x2

‖

x2
‖ − ζ

dx‖. (3.10)

Using the difference of two squares for the denominator, we rewrite the integral

I‖,β(ζ ) = 1
∗√ζ

1√
π

∫ ∞

−∞

x2β
‖ e−x2

‖

x‖− ∗√ζ dx‖, (3.11)

which will soon be related to the plasma dispersion function (Fried & Conte 2015). Here,
∗√ζ denotes a choice for a branch cut of the function f (ζ ) = √

ζ that maps the portion
of the ω-plane Im{ω} → ∞ to Im{ ∗√ζ } > 0. This choice is important for the problem
to be consistent with the time-dependent description and the inverse Laplace transform.
For large positive growth rates this avoids pole contributions to the Bromwich contour

5A straightforward way of seeing this is by taking the determinant of M to vanish. To order ε this is equal to the
product of the principal diagonal. The M = 0 mode thus simply requires vanishing of (3.5b).
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(a)
(i) (ii)

(i) (ii)

(b)

FIGURE 1. Branch cuts for ∗√ζ . Two different Riemann sheets are shown (a,b) for ∗√ζ in
complex ω-space. Panels (a i,b i) and (a ii,b ii) show the real and imaginary parts of ∗√ζ ,
respectively. The plots in (a) represent the natural Laplace continuation choice for the branch
cuts, while (b) is the choice that represents localised solutions everywhere in the ω plane
(Re{λ} > 0). The branch cuts are denoted by the red wiggly lines across which the function is
discontinuous. The function has an integrable singularity at ω = 4ω2

t /ωd as indicated in the text.
Frequency is normalised to ωt and ωt/ωd = 1/2 is chosen for illustration, with the colormaps
normalised for appropriate visualisation.

(and thus to the plasma dispersion function), making the inverse Laplace transform well
defined. To evaluate the latter it is convenient to deform the complex plane contour from its
original position in the positive imaginary part of the plane downwards. Thus, in addition
to the choice regarding the sign of Im{ ∗√ζ }, it is convenient to construct a Riemann sheet
by placing branch-cuts southwards.

To enforce the above, we choose two branch cuts in ω-space originating from the
critical points λ = 0 and λ = 1. The latter is, in addition to a branch point, also a singular
point, ∗√ζ ∼ 1/

√
1 − λ/2. The branch points represented will lead to some secular time

dependence for damped modes (Kuroda et al. 1998; Sugama 1999) which we shall not
explore further in this work. With these branch points localised, the natural branch-cut
choice in figure 1(a) is problematic, as the branch cut emanating from ω = 0 is directly
linked to the definition of λ, (3.7), and the vertical choice of the cut does not guarantee
the physical requirement of localised Re{λ} > 0 modes. To avoid this, one must place the
branch cut along the real line, as in figure 1(b). Although this changes the continuation of
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12 E. Rodríguez and A. Zocco

the Bromwich contour to the negative Im{ω} < 0 part of the plane, it should not affect the
description of unstable modes, which is our main concern here.

With either definition in our hands, we proceed and write

I‖,β(ζ ) = (−1)β
∗√ζ ∂βs

[
Z
(√

s ∗
√
ζ
)]

s=1
, (3.12)

where Z(·) is the well-known plasma dispersion function (Fried & Conte 2015) analytical
continuation of the integral

Z(a) = 1√
π

∫ ∞

−∞

e−x2

x − a
dx, (3.13)

beyond Im{a} > 0. The introduction of s as a dummy parameter in (3.12) follows from the
application of the Feynman trick (Woods 1926, Ch. VI) to compute the integral in (3.11)
in terms of (3.13).

We then have, after integration over x⊥ (see the details in Appendix C),

D = 1 + τ + F0(b)
[(

1 − ω�

ω
+ 3

2
ωT
�

ω

)
∗
√
ζZ( ∗
√
ζ )− ωT

�

ω
ζZ+

]
− ωT

�

ω
F2(b) ∗

√
ζZ( ∗
√
ζ )

+ ω�ω̄d

4ω2

{
F2(b)

[
η

(
3
2

+ ζ

)
− 1 +

(
1 + 2ζ + η

(
2ζ(ζ − 2)− 3

2

))
Z+

]

+ F4(b)η
[
(1 + 2ζ )Z+ − 1

] }
, (3.14)

where the Larmor radius functions are encapsulated in the functions

F0(b) = Γ0, (3.15)

F2(b) = (1 − b)Γ0 + bΓ1, (3.16)

F4(b) = 2
[
(1 − b)2Γ0 +

(
3
2

− b
)

bΓ1

]
, (3.17)

with Γn = e−bIn(b), and In is the modified Bessel function of the first kind (Abramowitz
& Stegun 1968, § 9.6). We use the shorthand notation Z+ = −Z′/2 = 1 + ∗√ζZ( ∗√ζ ).
In this form of the dispersion relation, we have presented all the terms that are, at least
explicitly, order 1 or larger, taking ω�/ω ∼ ω/ω̄d in ordering. Additional terms in the
expansion could be included (see table 1 in Appendix C), although these would stretch
the original ordering in δ and ε and do not include any additional physics. This dispersion
relation describes the behaviour of a linear localised ITG mode responding to a quadratic
magnetic curvature with both a good and bad curvature. The dispersion is obtained through
ordering of the localisation and the magnetic drift, which are taken to be strong and weak,
respectively. In addition, to reach such simple form, we consider what we refer to as a
‘pure’ mode, which simplifies the localisation response of the mode.

3.3. Computing the dispersion function and finding unstable modes
Some elements of the dispersion relation are reminiscent of the common local, slab
(Kadomtsev & Pogutse 1970a) or local, short wavelength ITG (Smolyakov, Yagi &
Kishimoto 2002) limits. We extend on these by a more careful consideration on mode
localisation.
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(a) (b) (c)

FIGURE 2. Dispersion function D in ω space. The plots show |D| as a function of complex
ω for different combinations of ω̄d and ωT

� (all frequencies normalised to the transit frequency
ωt = vTi/Λ

√
2). The set of three panels can interpreted as the change in the instability due to

an increase in Λ, the width of the bad curvature region, where the positive Im{ω} part of the
plane denotes instability: (a) ωd/ωt = 1 × 10−3 and ωT

� /ωt = −1; (b) ωd/ωt = 1 × 10−2 and
ωT
� /ωt = −10; (c) ωd/ωt = 1 × 10−1 and ωT

� /ωt = −100. In this case we have chosen b = 0,
τ = 1 and ω� = 0 for simplicity. The red line represents one of the branch cuts; the vertical
branch cut is not present in the domain plotted, as the unstable modes live near ω = 0 as shown.

FIGURE 3. Diagram sketching the procedure to find the most unstable mode. This algorithm is
used when numerical roots of D are required.

The information about the linear stability of our localised mode is encoded in the
solutions to the dispersion relation D = 0. In general, this constitutes a complicated
transcendental equation whose solutions need to be found numerically. The function D(ω)
can be evaluated numerically in ω-space using the definition of ∗√ζ above, and using one
of the many efficient implementations of the plasma dispersion function (in this case, we
use the function wofz (Johnson 2024) in scipy.special). We accept as valid roots the values
of ω for which |D| = 0, which holds true when both its real and imaginary parts vanish.
In figure 2 we show some examples of what the dispersion function looks like in ω-space
for some particularly simple cases in which no Larmor-radius effects are present.

A single unstable mode with Re{ω} < 0 is seen in the plots of figure 2. As the drift and
diamagnetic frequencies are varied, the mode location evolves in ω-space. In fact, if we
interpret the plots in figure 2(a–c) as the change due to increasing Λ, the width of the bad
curvature region along the field line, we see that decreasing Λ below a certain threshold
appears to lead to the unstable mode eventually vanishing. The evolution of this instability
with Λ and the other parameters is what we are ultimately interested in, and shall be
the main focus of our study in the following section. To automate the root-find of D and
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be able to study the various interesting mode dependencies, we implement the following
approach: (i) we evaluate |D| in a coarse-grained ω-space roughly bounded by ωT

� ; (ii) we
find the regions of lowest |D| residual; (iii) we perform local least-squares minimisation
around them; and (iv) from the multiple roots found we select the most unstable one (see
diagram in figure 3).

4. Physics and features of the localised kinetic ITG mode

In this section we investigate the behaviour of the localised ITG mode, including
kinetic effects, by exploring (3.14). By inspection, the modes can depend on the
following parameters: the diamagnetic driveω� and ωT

� (density and temperature gradients,
respectively); the curvature drift magnitude ω̄d; the transit frequency ωt = vTi/Λ

√
2; the

poloidal wavenumber kα; and the ratio of electron to ion temperature τ .
The frequencies and length scales will be normalised to a reference transit frequency,

ωt0. That is, the frequency characteristic of the motion of a thermal ion over a distanceΛ0

along the field line, ωt0 = vTi/Λ0

√
2. We take this length scaleΛ0 to normaliseΛ as well.

The normalisation of the poloidal wavenumber is somewhat more complicated. Let us
recall the definition of kα from the covariant form of the wavevector k⊥ = kα∇α + kψ∇ψ .
We took for simplicity kψ = 0, so that k⊥ = kα∇α. The parameter kα is dimensionless,
leaving us with the uncomfortable situation of kαρi having units of length. When we write
kαρi in what follows we adopt the convention of meaning kαρi = kαρi|∇α| (we will often
drop the overbar notation, but it should be clear when we do so). The Larmor radius
parameter becomes b = (kαρi)

2/2, which does not exactly match the convention in other
works in which the minor radius scale a is chosen to normalise kαρi.

We now construct the linear spectrum of the localised ITG mode as a function of kαρi,
as the width of the bad curvature region is changed. Some examples are presented in
figures 4 and 5. For these cases we have chosen a strongly driven scenario, ωT

� /ω̄d = 102,
in the presence of no density gradient.

4.1. General features and assessment of the approximation
The linear spectra obtained have four distinctive features that are most clear in the limit of
a wide bad curvature region. At small kαρi, as both the diamagnetic drive and the bad
curvature diminish (given that they are linear functions of it), so does the instability,
figure 4(a). The mode remains corotating with the diamagnetic frequency, figure 4(b),
but eventually, for small enough frequency, it reaches what we may call the Landau
threshold. This occurs when, at some critical kαρi, the frequency matches the parallel
transit frequency leading to Landau damping. As this threshold is approached and kinetics
becomes more relevant (|ζ | → 1), the ITG mode structure tends to be increasingly
stretched over the field line (|λ| decreases). As it does so, the ever-increasing good
curvature of our model (which serves a role similar to that which the magnetic shear
would play) dictates its behaviour, as the key approximation Re{λ}|ω/ωd| ∼ 1/ε  1
fails. This naturally lends to the possibility of the behaviour in this limit being dominated
by delocalised, slab-like ITG modes such as Floquet modes (Zocco et al. 2016). The
precise value of kαρi at which the threshold for the localised mode occurs cannot be
expected to be exactly described by the model, but we may use its trends as an informative
guide.

As the poloidal wavenumber increases, the diamagnetic and curvature drifts drive the
ITG more vigorously. The growth rate increases as the mode becomes more localised;
the gains from becoming localised about the bad curvature energy source overcome the
effects of increasing the effective k‖ that invigorates Landau damping. A larger kαρi does,
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(a) (b)

FIGURE 4. Evolution of the linear spectrum of unstable ITG with the bad curvature region
size, Λ. The plots show (a) the growth rate and (b) the negative real frequency of the most
unstable mode as a function of kαρi and Λ. The frequencies are normalised to ωt0 = vTi/Λ0,
where Λ0 is some reference length. We only plot points when the mode satisfies the conditions
γ > 0 and |ωd/ω| < 1. The plots are constructed for the choice ωT

� /ωt0 = −10, ωd/ωt0 = 0.1,
ω�/ωt0 = 0.0 and τ = 1.

(e) ( f )

(b)(a)

(d )

(c)

FIGURE 5. Properties of the unstable modes as a function of the bad curvature region size, Λ,
and kαρi for γ > 0 and |ωd/ω| < 1. The plots show (a) the growth rate γ , (b) the frequency
−ωr, (c) the Gaussian envelope scale |λ|, (d) the small scale |ωd/ω|, (e) the kinetic measure |ζ |
and ( f ) the approximation scale Re{λ}|ω/ωd|. Panels (a,b) can be interpreted as top views of
figure 4. The red broken line in (d) is the estimate of the Landau threshold as detailed in § 4.3.
The blue region in ( f ) shows where we expect our localised mode approximation to break down.
Here ωT

� /ωt0 = −10, ωd/ωt0 = 0.1, ω�/ωt0 = 0.0 and τ = 1.
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however, also enhance FLR effects. At the same time, the stabilisation effects of the
geometry can suppress the ITG mode. This leads to the small-kαρi peak (kαρi � 1) in
the spectrum, figure 4(a). One can think of this as the standard ITG peak, and refer to the
threshold (or dip) to its right as the FLR stabilisation threshold.

Interestingly, increasing kαρi does not continue to reinforce the stabilising effect of the
field geometry (in our case what one can refer to as flux compression |∇α| ∼ 1/|∇ψ |).
There is some point at which the instability drive beats the FLR effects again, and the mode
starts to become more and more unstable. This threshold we refer to as the FLR weakening
threshold. As the mode keeps growing, it becomes increasingly localised near the bad
curvature region, with its characteristic mode frequency rising sharply to settle to a roughly
constant value, figure 4(b). Eventually, the mode reaches a last critical kαρi threshold. This
corresponds to the situation in which the mode resonates with ω ∼ −ω̄d, figure 5. We
call this the ωd threshold. Once again, as the kinetic effects grow and the threshold is
approached, the fidelity of the model falters, in this case primarily because |ω̄d/ω| ∼ 1.
This leads to a second ‘hump’ in the linear spectrum of the ITG instability. Such behaviour
has been previously studied in the context of the so-called short-wavelength-ITG (SWITG)
instability in tokamaks (Hirose et al. 2002; Smolyakov et al. 2002; Gao et al. 2003).

These features and their location evolve as the width of the bad curvature region
changes. As the bad curvature region narrows, the two instability peaks move towards each
other, merge and eventually, below a certain critical Λ, disappear. That is, the localised
mode is stabilised by sufficiently shortening the bad curvature region. Unfortunately,
and as it occurred near the kαρi threshold, as Λ becomes smaller, the mode becomes
increasingly delocalised, and our description tends to break down, We may expect
delocalised modes to gain prominence and persist in this limit (Zocco et al. 2015).

4.2. Fluid limit
Let us start a more quantitative analysis by checking what we obtain in the fluid limit, that
is, when all resonances can be neglected. This will prove useful in two ways. First, because
it serves as a good check that the dispersion relation reproduces a correct asymptotic limit.
Second, because many of the features of our linear spectra may be explained in the simplest
of terms through the fluid perspective, as we shall see.

With this in mind, our fluid limit will be derived from the |ζ |  1 expansion of D in
(3.14), when the kinetic Landau resonance is negligible. Since (Fried & Conte 2015)

Z(x) ≈ −1
x

[
1 + 1

2x2
+ 3

4x4
+ · · ·

]
, (4.1)

for large argument, then

D ≈ 1 + τ − F0(b)
[
1 − ω�

ω
(1 − η)

]
+ ωT

�

ω
F2(b)− 1

2ζ

[
F0(b)

(
1 − ω�

ω

)
− ωT

�

ω
F2(b)

]

− ω�ω̄d

2ω2
[(1 − η)F2(b)+ ηF4(b)] , (4.2)

where

1
2ζ

=
(
ωt

√
λ

ω

)2

− ω̄d

2ω
= ω̄

1/2
d ωt

ω3/2
− ω̄d

2ω
. (4.3)
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We obtain,

D ≈ (1 + τ − Γ0)+ ω�

ω
[F0(b)(1 − η)+ ηF2(b)] + ω̄dω�

ω2

[
−Γ0 + b

2
(Γ0 − Γ1)− η

2
F4(b)

]

+
(
ω̄d

ω

)1/2
ωtω�

ω2
[F0(b)+ ηF2(b)] , (4.4)

where we have dropped terms that are order ω̄d/ω. This is an algebraic equation
whose roots can be found straightforwardly. Presented in this form of (4.4), the
dispersion function may appear obscure, however, it agrees with Connor et al. (1980)
(see Appendix D). This evidences the particular significance of λ, which provides our
construction with the correct fluid limit.

It is commonplace to consider the case of a vigorously temperature-gradient driven limit
(namely, ωT

� /ω  1), with small Larmor radius effects, b � 1. Then, a direct comparison
with (Romanelli 1989, equation (19)) is possible,6

τω3 − bωT
� ω

2 − ω̄dω
T
� ω + ωT

� ωt

√
ωω̄d ≈ 0. (4.5)

The fluid limit of the dispersion function in (3.14) is therefore correct. Given this
connection, we may extend the common nomenclature distinguishing between the slab
and toroidal ITG modes interpreted as follows (Wesson & Campbell 2011; Zocco et al.
2016). Let the mode in which the streaming terms are negligible7 be referred to as the
toroidal ITG mode; and let the slab ITG mode correspond to the reverse. Formally, this
distinction is dictated by the relative importance of the last two terms in (4.5), which is
simply |λ|. Thus, when the mode has significant structure within the bad curvature well
(|λ| > 1), we shall refer to the mode as toroidal (note that this mode is not necessarily
strongly localised, which would be a statement about Re{λ}). The slab modes will tend to
be delocalised and thus care mostly about the larger |�̄| good curvature part of the problem.

4.3. The Landau threshold
We discussed qualitatively the presence of a cutoff at long wavelengths kαρi � 1 in the
linear ITG mode spectrum. We argued that this threshold was indicative of a stabilisation
of the mode by Landau damping; that is, that the localised mode near the threshold
becomes resonant with the parallel streaming frequency. Although very near the threshold
the construction of the dispersion relation in (3.14) is not formally valid and delocalised
modes may exist, we may nevertheless use the model to estimate where this threshold
for the localised modes occurs, and how it is affected by the various properties of the
field.

We thus need to find a real frequency solution to the equation D(ω) = 0 (i.e. the mode
that as in figure 2 is just touching the ω-space real axis). Typically, such as in the standard
local slab ITG, the real nature of the frequency makes the arguments of the plasma
dispersion functions real, and separating the real and imaginary parts of the dispersion
relation becomes straightforward, without the requirement of solving any transcendental
equation. In the present case, though, the argument of the plasma dispersion function,
(3.14), involves the square root of ω. As the mode is driven by the temperature gradient,

6More precisely, for a fair comparison, one should pick for the ordering ω/ωT
� ∼ ω̄d/ω ∼ (ωt/ω)

2 ∼ b ∼ δ. These
are the assumptions in Plunk et al. (2014). Note that there is a difference in the sign of ω̄d between the two from their
respective definition. In fact, this very same limit is achieved even if one ignores the ω�ω̄d term in the dispersion function,
(3.14), although one would not agree with the full Larmor radius expressions in Appendix D.

7Specific orderings were given by Zocco et al. (2016).
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ωT
� , ω < 0 at the threshold, and thus Z(

√
ζ ) has both mixed real and imaginary parts. This

makes solving a transcendental equation unavoidable.
We thus proceed by employing a physically motivated approach. As mentioned above,

the Landau threshold corresponds to the resonance of the mode with the transit frequency,
Re{ω} ∼ ωt. To be more precise, we have ζ ≈ 1, and considering the mode to be slab-like
in the region near the Landau threshold (i.e. rather elongated along the field line compared
with the bad curvature region Λ), we use, following (3.9a),

Re{ω} ≈ ωt

√
2λ = vTi

Λ/
√
λ
, (4.6)

where Λ/
√
λ is the characteristic longitudinal scale of the mode structure. The

dependence of λ on Re{ω} is known from (3.7). So what we ultimately need is some
notion of the mode frequency, Re{ω}.

To estimate Re{ω}, we crudely assume that the kinetic effects mainly affect the stability
of the mode, but leave the mode frequency to a large extent unaltered. Assuming a
sufficiently large Λ and ωT

� /ω̄d, we use the slab branch of the fluid model to estimate
Re{ω}, from (4.5),

Re{ω} ≈ (kαρi)
3/5ω̂

1/5
d

(
ωtω̂

T
�

τ

)2/5

cos
(

4π
5

)
, (4.7)

where the root with a negative real frequency must be chosen given the branch cut choice
of the square root. The hat notation is meant to indicate that we have taken the kαρi
dependence of ω̄d and ωT

� out explicitly. Although this might appear complicated, and
the one-fifth powers odd, the expression just found is precisely the frequency of a standard
slab ITG mode with k‖ = √

λ/Λ,8 the characteristic length scale of the mode. The main
difference is that in our problem we have explicit field line dependence, while the pure
slab ITG does not (other than an oscillating delocalised solution).

With this expression for the real frequency, we can reconsider (4.6), to write

(kαρi)Landau ≈ 12.5τ
ωt

ω̂T
�

(
τ ω̂d

ω̂T
�

)1/2

. (4.8)

As shown in figure 5, this is a fair estimate of the Landau threshold for the parameters
considered, and most importantly, it shows the correct Λ scaling. The threshold value
increases as the bad curvature region becomes smaller, kαρi ∼ 1/Λ. Narrowing down the
bad curvature well produces a narrower mode structure (the mode width goes like �� ∼
Λ3/5), Landau damping becomes more effective, and thus the threshold increases. If the
instability is driven more vigorously (i.e. we increase the temperature gradient drive, |ωT

� |),
then the parallel dynamics has a harder time stabilising the mode. The dependence on
the temperature gradient of (4.8) is also in agreement with the numerical solution (see
figure 6). Interestingly, increasing the curvature drift, and with it the magnitude of the bad
curvature, does not worsen the threshold, but rather improve it. The reason is that the effect
of ω̄d in narrowing the mode is, in this limit, stronger than its direct drive of the instability.
In this limit in which the mode is rather delocalised, both ω̄d and Λ should be interpreted
to represent more ‘global’ properties of the geometry, as the (global) shear would.

8The precise critical threshold that one could estimate using the local slab ITG, using for the mode structure the
expression for λ in (3.7), is kαρi ≈ 2

√
2(1 + τ)(ωt/ω̂

T
� )
√
τ ω̄d/ωT

� . As emphasised in the text, this presents the same
basic parameter dependence.
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(e) ( f )

(b)(a)

(d )

(c)

FIGURE 6. Properties of the unstable modes as a function of the temperature-gradient driven
diamagnetic frequency, ωT

� , and kαρi. The plots show (a) the growth rate γ , (b) the real frequency
−ωr, (c) the Gaussian envelope scale |λ|, (d) the small scale |ω̄d/ω|, (e) the kinetic measure
|ζ | and ( f ) the approximation scale Re{λ}|ω/ω̄d|. The red broken line in (d) is the estimate of
the Landau threshold as detailed in § 4.3. The blue region in ( f ) shows where we expect our
localised mode approximation to break down. This means that the precise instability threshold
in Λ cannot be fully trusted. We only plot points when the mode satisfies the conditions γ > 0
and |ω̄d/ω| < 1. The plots are constructed for the choice ω̄d/ωt = 1.0, ω�/ωt0 = 0.0 and τ = 1.

Of course, near this threshold, the possibilities of other delocalised modes dominating
the dynamics increases (Zocco et al. 2018, 2022; Podavini et al. 2024). In addition, the
exact occurrence of the threshold will depend on the precise form of λ, which we have
already acknowledged the current model to only approximate. Thus, the particular scaling
of the critical kαρi and its value may change, but the main physical interpretation of its
origin and dependence should remain.

4.4. The FLR stabilisation
The next noteworthy feature in the kαρi spectrum is the stabilisation of the ITG mode as
the FLR becomes relevant. The result is the appearance of a characteristic peaked linear
spectrum, with typical values of kαρi � 1. This feature is not resonant-kinetic, and its
presence in figure 5 for large Λ indicates it forms part of the fluid description of the
instability.

In the fluid picture, the FLR stabilisation feature of the linear ITG spectrum results
from the competition between the increased drive of the toroidal ITG and the increased
stabilising efficiency of FLR effects with increased poloidal wavenumber. Ignoring the
streaming term in (4.5), the threshold can be shown to occur when

(
ωT
� b

2τ

)2

+ ωT
� ω̄d

τ
≈ 0. (4.9)
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The critical poloidal wavenumber is then

(kαρi)FLR ≈ 2
(
τ ω̄d

ωT
�

)1/4

. (4.10)

From the physical picture above, we expect this stabilisation threshold to have a value close
to kαρi ∼ 1. A sign of this is the weak dependence on both the drift and the temperature
gradient. In addition, this mechanism is not directly linked to the mode structure, and
hence independent of Λ. This latter resilience is apparent in figure 5. Only a small
correction term may be observed within the fluid description of the mode by treating
perturbatively the streaming contribution in (4.5), δ(kαρi)FLR ≈ τωt/2|ωT

� |.
This resiliency of the FLR stabilisation threshold clashes with the rather fundamental

dependence of the Landau threshold on Λ. As a result, we expect the space in kαρi
available to the localised ITG mode to narrow down as the bad curvature region is
squeezed. Eventually, the first peak in the linear spectrum would be eliminated, as in
figure 4(a), and thus at long wavelengths only extended ITG modes could remain present
in the system. From the above, we may estimate the critical width of the bad curvature
region, Λ, at which this occurs. Extrapolating the behaviour of the threshold and the FLR
stabilisation, (4.8) and (4.10), the balance (kαρi)Landau ∼ (kαρi)FLR yields

Λcrit ∼ 6τ
vTi

ω̂T
�

(
τ ω̂d

ω̂T
�

)1/4

. (4.11)

This critical Λ could also be rewritten in terms of a critical temperature gradient
(ωT

� )crit ∼ 4τ(ω4
t ω̄d)

1/5. Given the pre-eminence of the Landau damping physics, the
critical temperature gradient threshold below which only extended modes are left at
long wavelengths is particularly sensitive to the width of the bad curvature region. This
emphasis in controlling the longitudinal spread of the mode aligns with some previous
work on critical thresholds (Jenko, Dorland & Hammett 2001; Roberg-Clark, Plunk &
Xanthopoulos 2022a).

4.5. The FLR weakening
The above considerations of the kinetic threshold and FLR stabilisation explain the
presence of a peak in the linear spectrum of the mode in kαρi. However, as is clear
from figure 4, the ITG starts growing unstable once again at larger values of the poloidal
wavenumber. This might appear surprising at first, because it is natural to think of FLR
effects increasing monotonically with kα, and thus after the FLR threshold, its stabilising
effect to continue to exceed the increase in the turbulent drive. However, this picture is not
correct.

The FLR effects become weakened at large kαρi, when the relevant perpendicular
scale starts to become significantly smaller than the Larmor radius. Larmor radius effects
become inefficient, as they were for small kαρi. Formally, one can ascribe this weakening
of the FLR effects to the large argument behaviour of the Bessel functions introduced
in the GK equation by the gyroaveraging. The small b expansion of the Fn(b) functions
fails in this limit, and thus so does the fluid equation written in its typical form of (4.5).
Retaining the appropriate behaviour leads to a critical FLR weakening threshold beyond
which the mode grows back up.9 This type of ITG activity is referred to in the literature as
SWITG (Hirose et al. 2002; Smolyakov et al. 2002; Gao et al. 2003).

9At this scale, the ion dynamics can more efficiently interact with electrons, which in principle should be retained
kinetically. We will not explore these aspects in this work.
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We shall then consider the large b limit of the fluid equation, (4.4) using the large
argument asymptotics of the Bessel functions (Abramowitz & Stegun 1968, § 9.7),

√
2πb(1 + τ)+ ω�

ω

(
1 − η

2

)
− 3

4
ω�ω̄d

ω2

(
1 + η

2

)
+
(
ω̄d

ω

)1/2
ωtω�

ω2

(
1 + η

2

)
≈ 0.

(4.12)

In the limit of |λ| being large (which is indeed the behaviour at large kα, see figure 5), we
expect the streaming term in (4.12) to be small, and thus we are left with, once again, a
quadratic in ω. The threshold then occurs when its discriminant vanishes, which gives

(kαρi)weak ≈ 1
3
√
π(1 + τ)

ω�

ω̄d

(1 − η/2)2

1 + η/2
. (4.13)

A more refined version of this threshold keeping higher orders in 1/ζ yields for a flat
density (kαρi)weak ≈ (0.642 − 0.032ωT

� /ω̄d)/(1 + τ). The exact numerical value here is,
however, not important, especially given the ordering in δ and ε considered. The key is
its dependence on the relative magnitude of the diamagnetic and curvature drift, which
is quite strong compared with the FLR threshold (kαρi)FLR ∼ (ω̄d/ω

T
� )

1/4, (4.10). Then,
as the curvature of the field is increased or the driving temperature gradient reduced, the
weakening FLR threshold will approach the FLR stabilisation threshold. Through a simple
balance between (kαρi)FLR ∼ (kαρi)Weak, we expect to find the two regions merging (see
figure 4) when |ωT

� |/ω̄d ∼ 27(1 + τ)4/5τ 1/5. This is a rather large value of ωT
� , meaning

that having two distinct peaks in the linear spectrum requires a strongly driven regime
(compared with the drift).

In figure 6 we illustrate some of these linear spectra dynamics as a function of a
changing temperature gradient.

4.6. The ωd threshold
At even larger kαρi we clearly have another stabilisation effect that leads to the appearance
of an instability threshold. The responsible mechanism is not captured in the fluid picture,
and is kinetic in nature, as the value of |ζ | in figure 5 suggests. It could be tempting
from our previous discussion on the Landau threshold to suggest that a similar Landau
damping mechanism is present here as well. However, as the threshold is approached, the
ITG mode does not seem to exhibit a clear tendency to relax its longitudinal structure. In
fact, as |λ|  1 the mode retains a fine structure. What is then the mechanism in action?
To answer the question it suffices to look back at the definition of ζ in (3.9a), which in this
limit gives ζ ≈ −ω/ω̄d. Thus, kinetic effects at large kαρi are dominated by the resonance
of the mode rotation with the bad curvature of the field. Note that this resonance has been
retained even in our expansion in ω̄d/ω ∼ δ � 1, as can be recognised by inspection of
our kinetic equation (3.6b).

With the dominant mechanism identified, we may estimate at what wavenumbers the
mode frequency balances the drift frequency. The large kαρi limit of the fluid equation
(4.12) yields a roughly constant real frequency for the mode, which will eventually be
matched by the magnetic drift, which grows with the wavenumber ω̄d ∝ kαρi. Using the
higher-order cubic version of (4.12), the balance Re{ω} ∼ −ω̄d gives

(kαρi)ω̄d ≈ 1
2

1
1 + τ

∣∣∣∣ωT
�

ω̄d

∣∣∣∣ . (4.14)

The multiplicative factors in front depend on the details of the approximation of the model,
but what is key is the dependence of the threshold on the ratio ωT

� /ω̄d (which correctly
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describes the behaviour in figure 6). The behaviour of this threshold suggests a narrowing
of the linear spectrum that shall reach a critical narrow range (kαρi)

crit when

ωT
�

ω̄d

∣∣∣∣
crit

≈ 2(kαρi)
crit (1 + τ) , (4.15)

or in tokamak notation R/LT , which is compatible with the results of Romanelli (1989)
and Guo & Romanelli (1993), with a visual estimate obtained from figure 2 of Biglari,
Diamond & Rosenbluth (1989), with the Jenko–Dorland–Hammett formula (Jenko et al.
2001) and other critical gradient estimates (Roberg-Clark et al. 2022a).

In this consideration there appears not to be any direct involvement of the parallel
streaming dynamics. However, as the curvature well is narrowed the two kinetic elements
in the problem become mixed. Signs of this behaviour are seen in the apparent
decorrelation between the ω/ω̄d ratio and the threshold in figure 5 when Λ starts having
an effect on the mode. In fact, in the above description of a critical temperature threshold,
we considered some reference critical value of (kαρi)crit. Following figure 6 though, one
can expect at some point the ω̄d threshold to become close to the Landau threshold, and
not just an arbitrarily chosen wavenumber. When this occurs, we may say that there will
be no more localised ITG modes. In this case the threshold would scale as

(ωT
� )crit ∼ (ω̄3

dω
2
t )

1/5. (4.16)

Thus, the threshold changes because we can affect it not only by making the resonance
with ω̄d appear at longer wavelengths, but also by amplifying the effects involved in the
Landau threshold. As a result, increasing the bad curvature or the parallel scale both will
have a positive effect on reducing the ITG, although extended modes may persist. The
particular scaling obtained by balancing the two physics ingredients goes beyond Biglari
et al. (1989) and R/LT ∼ O(1), where R is the major radius. In our case, the balance yields
R/LT ∼ 1/q0.6, involving the safety factor q, in relation to the connection length. The
importance of the parallel physics in determining the critical gradients has been recognised
by many authors (Hahm & Tang 1988; Jenko et al. 2001; Roberg-Clark et al. 2022a), and
here we see is involved quite explicitly. Often parallel dynamics are associated with the
global shear, which our model does not explicitly treat. However, as discussed with the
Landau threshold, the dependence on ωt can be related to the role played by global shear
when the modes become rather delocalised. The exact form of the scaling with q will
depend on the exact behaviour of the mode that is becoming delocalised and thus should
be taken with a pinch of salt (especially given the weak spot of the model determining λ).
We shall not forget that although increasing the Landau threshold helps in this endeavour
of erasing localised modes, one could of course leave behind delocalised modes that could
also be deleterious (Zocco et al. 2018, 2022).

5. The role of higher harmonics

The kinetic considerations above have focused on the behaviour of a localised mode
whose shape is in its simplest form described by a Gaussian envelope. That is, by the ‘pure’
zeroth order in our Taylor–Gauss expansion. Shapes of the modes are seldom so simple,
and in the way that we expect multiple modes as solutions to a Schrödinger equation (and
in fact also the fluid equation (Hahm & Tang 1988)), we may also expect to find possible
solutions to our problem in which the mode has larger n.

A dominant ‘pure’ M mode can be described in a way rather analogous to that
considered above for n = 0. It may be shown, see Appendix B, that the resulting equations
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(b)

(a)

FIGURE 7. Growth and frequency of the ITG mode for different structure. Plots showing the
growth rate and real frequency of the ITG mode for the mode numbers n = 0, 1, 2 using
the approximate generalisation of ζ . The plots are computed using Λ/Λ0 = 10, ω̄d/ωt = 0.1,
ωT
� /ωt = −30, ω� = 0 and τ = 1.

are identical to the n = 0 case with the only modification,

ζn=M = 1
2

[
λ(2M + 1)

(ωt

ω

)2
− ω̄d

2ω

]−1

. (5.1)

The only change is the different contribution of the streaming term, formally equivalent to
an increased ωt → (2M + 1)ωt. How can such a scaling be physically interpreted? Let us
picture the change to the mode structure as one increases mode number. The mode looks
like a pair of peaks pushed against the Gaussian envelope. The larger the M, the harder
they are squeezed, which leads to the width of the peaks to roughly go like ��̄ ∼ 1/

√
M,

as can be explicitly shown by computing the standard deviation. This linear scaling is what
leads to the form in (5.1).

The main effect of M is thus to change the parallel structure of the mode, and thus any
of the phenomena that are directly linked to this feature of the instability. The Landau
threshold will be most readily affected, but also the particulars of critical thresholds
where ζ ∼ 1 and |λ| is not exceedingly large. With the effective ωt scaling, we may write
(kαρi)Landau ∼ 2M + 1, showing that Landau damping becomes more prominent for the
higher modes. This means that we expect to see the lowest modes excited first, as well
as those to be most sensitive to stabilisation through squeezing of the connection length,
Λcrit ∼ 2M + 1. The change in the ωd threshold with M may appear shocking, given that
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(b)(a)

FIGURE 8. Linear mode spectrum for HSX GK simulations. The growth rates (a) and real
frequencies (b) are shown for linear HSX GK simulations with a/LT = 2.5 and a/Ln = 0, and
adiabatic electrons. The dashed line corresponds to the simulations performed with the same
gradients but a modified geometry in which the only spatial dependence in the problem is ω̄d,
and this is modelled as a truncated quadratic well. The coloured shade show the variation in the
latter half of the simulation of the mode frequency, giving a sense of trust of the spectra (blue
and red for the HSX and model geometries, respectively). The vertical lines correspond to the
predicted FLR stabilisation threshold and the ωd stabilising resonance.

this we argued is rather insensitive to parallel scales. However, as M is increased, the ωd
threshold mixes with the Landau threshold, as follows directly from ζ , (3.9a). Similar
behaviour to what we find here, figure 7, may be interpreted from the work of Gao et al.
(2005). Thus we expect close to marginality the first localised mode to go unstable to be
the n = 0 mode.

To study the changes on the magnitude of the growth rate, we write the Mth mode
generalisation of (4.5), which can be shown to match other treatments of the fluid
equation (Hahm & Tang 1988). In this fluid case, it is clear that increasing mode number
enhances the growth rate of our ITG, which is increasingly of a more slab character,
γslab ∼ (2M + 1)2/5. The fluid picture is unbound! Only through the regularising role
played by the kinetic effects is the hierarchy regulated. There is a competition then
between larger modes tending towards larger growth rates (in the fluid limit), but also
becoming more effectively stabilised by Landau damping. The results of such competition
are presented for some example parameters in figure 7.

These modifications that occur in the model provide us with a flavour of the kind of
changes that one would expect when our ‘pure’ mode assumption is relaxed and the
true value of λ is different. While the main qualitative features shall remain, we expect
quantitative differences to exist. Overall scalings can be understood as in figure 7, but
other more sophisticated dependences of λ on kαρi could also lead to additional features
in the linear spectrum. The model should help us distinguish between these as well.

6. Qualitative comparison with simulations

In this section we consider by way of an example the linear spectrum of ITG modes in a
realistic but nonetheless simple stellarator geometry. We use this as way of illustration of
how the lessons learnt from our model can be applied in practice to understand behaviour
in more complex situations, but also its limitations. The example presented is the linear
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ITG mode spectrum along a flux tube of the HSX (Anderson et al. 1995) stellarator, a
quasisymmetric stellarator (Boozer 1983; Nührenberg & Zille 1988; Rodríguez et al. 2020)
with helical symmetry. The latter means that |B| has a direction of symmetry to prevent
fast loss of trapped particles, which implies a particularly simple, quasiperiodic curvature
along field lines. This simplicity, together with a reduced global magnetic shear, makes
this example suitable for the comparison. The electrostatic mode in the GK simulations
is driven by an ion temperature gradient a/LT = 2.5, keeping the density flat and treating
electrons adiabatically. The linear GK simulations are conducted with the STELLA code
(Barnes, Parra & Landreman 2019), of which the details are available at https://doi.org/10.
1017/S0022377824001120. The resulting linear spectrum is presented in figure 8, where
the poloidal wavenumber and frequencies have been normalised following the notation in
this paper. For comparison with this HSX simulation, an equivalent simulation has also
been carried out with a modified geometry in which all field quantities are constant along
the field line except the curvature, which is modelled like a single quadratic well (modelled
with parameter ω̄d corresponding to the value of bad curvature at the bottom of the central
well, and Λ as the distance from the centre of the well to the first zero curvature crossing
point), truncated at a finite good curvature to prevent spurious modes as discussed later.

The first noticeable conclusion from the comparison between these two simulations
(solid and dashed lines in figure 8) is that the simplified geometry appears to capture
the behaviour of the ITG mode exceptionally well. This strongly backs the approach
and geometric approximations considered in this paper, and supports our view on the
key role played by the curvature in localising the ITG mode. Thus, we are allowed to
describe realistic linear stellarator spectra from our theoretical perspective, even though
we notice that the ‘pure’ mode assumption (and perhaps others such as a vigorous drive)
does not provide a good quantitative description, in particular requiring somewhat larger
temperature gradients in order to match magnitudes of mode frequency and growth rate of
simulation results. We show an example of this lack of agreement in figure 9, where we
include the analytical model prediction for the parameters characterising HSX, and one
with a 27 % larger temperature gradient.

We can still investigate the key physical principles we have explored through our model
to interpret the linear spectrum observed. Let us start from the rightmost part of the
spectrum, where we expect to find our ωd threshold. In fact, and as shown in figure 8 and
predicted, this stabilisation point does occur approximately at Re{ω} ∼ −ω̄d (numerically
within 6 %). Our interpretation of the nature of this threshold enables us to understand
how the spectrum should change as the bad curvature of the field or the temperature
gradient are varied. The spectrum would narrow as the curvature is increased or the
gradients decreased. Such a simple perspective can explain the narrowing of spectra
observed in recent efforts to optimise stellarators for improved temperature gradient
thresholds (Roberg-Clark, Xanthopoulos & Plunk 2024b). In the comparison between the
full geometry simulation and that of the reduced geometry, we see that the latter seems
to exhibit an additional unstable branch at smaller poloidal wavelengths. This branch
corresponds to an anti-ionic-temperature-driven instability (i.e. rotating in the electronic
direction, but not due to kinetic electrons, since their response is adiabatic) that exists in the
region of good curvature of the modified geometry. This behaviour is an interesting case
study for the future: if anti-ionic modes localise in good curvature regions, attempting to
stabilise the ITG mode by increasing the good curvature in the field could be problematic.

The region beyond the ωd threshold in the HSX case considered here does not exhibit
other significant instabilities. However, less symmetric geometries such as those in
quasi-isodynamic stellarators (Podavini et al. 2024), often exhibit linear spectra with
additional structure beyond this point. How can this be framed within our description?
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(b)

(a)

FIGURE 9. Comparison of the simulation to the analytic model showing quantitative
discrepancies. The plot shows a comparison between the growth rate (a) and frequency (b) of
the dominant linear ITG mode in the simulation of figure 8 (solid line) and the analytic model
developed in the paper. The dashed line corresponds to the model prediction for ω̄d/ωt = 1.95
and ωT

� /ωt = −18, parameters obtained from the main well of the HSX geometry. The dot–dash
line corresponds to the analytical prediction with a 27 % larger temperature gradient, with the
shade representing ±5 % variation. This shows that the model suffers as a quantitative predictor.
This suggests consideration of the model mainly as a physical qualitative framework to interpret
linear spectra behaviour.

That is: How can the ITG mode escape stabilisation by the ωd resonance? It is not the
localisation of the mode that is suppressing the mode, as it may occur at small kαρi, thus
delocalising the mode is not a solution.10 The alternative left is for the mode to localise in
a different well, what we might call a hopping mode. Moving to a well that is a priori less
unstable because it has better curvature, or milder FLR effects, may, however, be beneficial
for the mode because it may be sufficient to make Re{ω} �= −ω̄d and avoid stabilisation
through the ωd resonance. Such a jump of the localised mode could occur more than once
and we hypothesise, could lead to additional growth rate peaks in the spectrum. These
changes on localisation are reminiscent of changes that occur to modes with finite kψ
(Parisi et al. 2022). The global behaviour of the localised mode including the possibility
of living at different wells could be understood by constructing one spectrum like that
in figure 8 for each well, with the corresponding change in the model parameters; more
precisely, the magnitude of the drift, the well width and the FLR effect (with the latter
strongly affecting the scale of kαρi). The study of this is left for future work, but is an
attractive way forward to understanding the behaviour of kinetic ion instabilities.

Our physics interpretation of the occurrence of the dip in the linear spectrum of figure 8
from FLR stabilisation and then weakening appears to be also correct. The dotted line
in the figure corresponds in fact to the simple expression derived above in (4.10). This
relative stabilisation of Larmor radius effects can also be observed in the response of
the mode eigenfunction. We present some example structures from the simulations in

10Close to marginality, where the kinetic difference between the ωd and Landau damping as explored in previous
sections becomes less definite, delocalisation may also become a relevant mechanism even on this side of the spectrum.

https://doi.org/10.1017/S0022377824001120 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001120


Kinetic ITG localisation 27

(b)(a)

FIGURE 10. Mode structure for HSX GK simulations. The plot shows the parameters λr and
λi describing the localisation and oscillation of the modes in figure 8. Here λr is obtained
by fitting a Gaussian exp[−λr�̄

2/2] to the absolute value of the electrostatic potential φ. The
mode is not a pure exponential with generally wider tails. Three examples of the modes in
the simplified geometry are provided in (b). The λi parameter is obtained by reading the main
oscillation frequency of Re{φ}/|φ|. Both these measures are inspired by the Gaussian basis used
in this paper. The qualitative behaviour observed is fully consistent with the behaviour of our
model. That is, λi monotonically increases with the poloidal wavenumber while the localisation
decreases near the Landau threshold (kαρi ∼ 0), the FLR stabilisation threshold and the drift
resonance.

figure 10. We use the structure from the STELLA simulations of the simplified geometry
for better clarity. The figure also presents a measure of the localisation of the mode, λr,
and its structure, λi. Numerically, we compute λr by fitting a Gaussian exp[−λr�̄

2/2] to
|φ|. Note that the wavefunctions are not really pure Gaussians; in fact, they appear to fit
closer to a Gaussian in the centre and a weaker exponential decay farther away. Of course
the precise behaviour depends on the details of the geometry. Larger λr denotes a more
localised mode. If one takes Re{φ}/|φ|, the mode then exhibits a clear periodicity (other
than in the middle region). We define λi to be the main frequency of the that oscillatory
behaviour in �̄. As it is clear in figure 10, as predicted by our treatment, as FLR stabilises
the ITG, the mode becomes less localised, while keeping the scale of its mode structure
(i.e. λi unchanged). Note also that the behaviour near the ωd resonance gives us some
intuition that the ‘pure’ mode form of λ does not fully hold there, as the mode only weakly
delocalises.

We are then left with the behaviour at the longest poloidal wavelength. As predicted
by our theory, the mode becomes increasingly delocalised at lower kαρi. In terms of
our Landau threshold picture, this occurs while Landau stabilisation becomes less and
less effective. A causality relation between the lack of localisation and growth rate
maximisation could perhaps be established via an energetic argument. Of course, at
some point the model ceases to be valid, and the linear spectrum becomes dominated by
completely delocalised modes. These very extended modes we may refer to as Floquet or
slab-like modes (Zocco et al. 2018, 2022; Podavini et al. 2024). The difference in growth
rate between the two GK simulations in figure 8 at long wavelengths can be explained
to be due to the pre-eminence of these modes. The presence of such elongated structures
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make the simulations rather challenging, as long flux tubes are necessary. Their behaviour
lies outside the realm of the present model.

We thus understand the very distinct nature of the ITG mode for large and small
wavelengths, where the kinetic stabilising mechanisms are different, and thus so is
the mode response. This enables one to elucidate the meaning of the linear spectrum
presented, and offers, as given, a way forward to interpreting linear spectra and their
physical meaning in more complex geometries.

7. Conclusions

In this work, we have proposed a theory of the kinetic ITG-driven mode which
features resonant kinetic effects, with a localised mode structure induced by the
field-line-dependent geometry. We focused on the localising action of the magnetic drift,
allowing for general conclusions that apply both in a tokamak and stellarator context.

The magnetic drift spatial dependence models good and bad curvature regions,
introduced with a local well quadratic model. The mathematical description of the
problem is based on a power series expansion of the eigenfunctions in the field-following
coordinate, mitigated by a Gaussian envelope. This generates a hierarchy of coupled
eigenvalue problems which for small magnetic drift frequency, strong drive and localised
modes, can be truncated. A relatively simple dispersion relation is constructed by
considering the simplifying assumption of a singly dominant mode, which we refer to
as ‘pure’. The resulting description features long-wavelength Landau damping, arbitrary
Larmor radius effects and a regularising resonant action of the magnetic drift for short
wavelength modes. All these salient physical features are demonstrated to be numerically
observed in realistic stellarator geometry, although the simplicity of the model limits
quantitative comparisons with numerical results. Venues for improving the model are also
proposed for future work.

The model is also used to provide a prediction for the resonant stabilisation of the
toroidal branch of the ITG mode without tacitly assuming constant (along the field
line, and thus unrealistic) eigenfunctions. The result is insight into how to tailor the
field-line dependence of the magnetic drift in order to suppress the ITG instability. By
enforcing that all scales are either Landau damped (at long wavelengths) or kinetically
suppressed by the magnetic drift resonance (at short wavelengths) one obtains a critical
gradient for ITG destabilisation that scales with a/LT ∝ 1/(q0.6R). This explains why large
inverse aspect-ratio devices feature small critical thresholds (as is well known), but also
indicates a beneficial effect in having a small safety factor q, or more generally short
connection length. This final aspect is of particular interest, since it is synergistic with
the field-line-bending stabilisation of magnetohydrodynamic instabilities (Bernstein et al.
1958; Greene & Johnson 1962; Mercier 1962; Correa-Restrepo 1978; Connor et al. 1978).
These expectations, scalings, synergies and behaviour alongside magnetohydrodynamic
stability will be the subject of careful analysis and simulation in a future work (Rodríguez
& Zocco 2024).
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Appendix A. Taylor–Gauss expansion of GK equation

In this appendix we detail the Taylor–Gauss expansion of the GK equation. Our starting
point is the GK equation, (2.9), which we write as

2
(ωtx‖
ω

)2
∂2
�̄
g +

(
1 − ω̃d

ω
(�̄2 − 1)

)
g + 4ω̃d

(ωtx‖
ω

)2
�̄∂�̄g = qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
φ.

(2.9)

To obtain our Taylor–Gauss resolution of the equation we then substitute

g(�̄, v) =
∞∑

n=0

gn(v)

√
Re{λ}n

n!
�̄ne−λ�̄2/2, (2.11)

and likewise for φ, into the equation. Note that the normalisation is chosen here in such a
way that the magnitude of the basis (i.e. the terms multiplying gn) are considered roughly
of order one.

The action of the second derivative on this basis yields

∂2
�̄

g(�̄, v) =
∞∑

n=0

gne−λ�̄2/2

√
Re{λ}n

n!

[
n(n − 1)�̄n−2 − (2n + 1)λ�̄n + λ2�̄n+2

]

=
∞∑

n=0

λ�̄n

N(n)
e−λ�̄2/2

[√
(n + 2)(n + 1)

Re{λ}
λ

gn+2 − (2n + 1)gn +
√

n(n − 1)
λ

Re{λ}gn−2

]
.

(A1)

In this notation it should be interpreted that gn = 0 for n < 0, and likewise any negative
power of �̄ in the summation should be taken to be zero.

For the terms that present a product with the drift frequency, and thus with a second
power of �̄2, we simply have

�̄2g(�̄, v) =
∞∑

n=0

�̄ne−λ�̄2/2

√
Re{λ}n

n!
1

Re{λ}
√

n(n + 1)gn−2, (A2)

and

�̄∂�̄g =
∞∑

n=0

�̄ne−λ�̄2/2

√
Re{λ}n

n!

(
ngn − λ

Re{λ}
√

n(n − 1)gn−2

)
. (A3)
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Similar expressions would be obtained if a Hermite basis was used instead. With these
expressions and collecting terms, we get the general equation

En = 2Re{λ}
(ωtx‖
ω

)2√
(n + 2)(n + 1)gn+2

+
[

1 + ω̃d

ω
− 2λ(2n + 1)

(ωtx‖
ω

)2
+ 4n

ω̃d

ω

(ωtx‖
ω

)2
]

gn

+ 2
Re{λ}

[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω
− 2λ

ω̃d

ω

(ωtx‖
ω

)2
]√

n(n − 1)gn−2

− qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
φn, (2.12b)

presented in the main text, and to be interpreted as

∞∑
n=0

En�̄
ne−λ�̄2/2

√
Re{λ}n

n!
= 0. (A4)

It is clear that for an exact solution to the system we need to satisfy {En = 0} for all n, if
the equation is to be satisfied for all �̄.

Appendix B. Details on dispersion construction and higher-order modes

In this appendix we show the details on how the construction of the dispersion function
in the text is done, including the generalisation to other modes other than the simplest
Gaussian n = 0.

B.1. General structure of the problem
To obtain the dispersion relation of whichever mode we are interested in investigating, it
is necessary to construct the matrix D in (3.2). That is, we must make the appropriate
combinations of the coefficients in (2.12b) to bring the set of equations to the form
considered in (3.2). Because we are dealing with a system of equations with dimension
N, our truncation number, we would like some systematic way in which to construct the
relevant entries in the matrix. In particular, we would like to exploit our ordering in δ and
ε to simplify the procedure before explicitly constructing the equations.

To that end, let us write the system of equations defined by the first N/2 + 1 equations
in matrix form,

Gijgj = Φ ijφj, (B1)

where the vectors g and φ contain the modes from n = 0 to N, and the matrices can
be constructed following the general expression for En in (2.12b). Because the system
considers separately the even and odd orders, we shall restrict these matrices to the even
or odd parts of the problem separately. The arguments to follow are independent of which
class we consider (with minor changes), but we choose the even part of the solution (just
because one must be chosen).

Because we are about to invoke some ordering considerations to simplify the system
of equations, we shall fairly represent the order of each mode. We shall treat first each
gn and φn in an unordered fashion, and thus only consider the ordering of the factors we
have explicitly in (2.12b). For simplicity, and in hindsight of what will end up later being
considered, we shall take the following consistent scaling for λ ∼ √

δ(ω/ωt). By itself it
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FIGURE 11. The FLR corrections to λ. Correction factor to λ due to FLR effects for a number
of different temperature gradient drives, ωT

� /ω, for an ionic unstable mode. The effects of FLR
on λ are moderate at large diamagnetic drive, but become very significant near b ∼ 1 at lower
drives.

is not ordered in any particular way (it simply cannot be too small), but λ(ωt/ω)
2 ∼ O(ε)

and λ2(ωt/ω)
2 ∼ O(δ). With this in mind it is straightforward to picture the ordering of

each element in the matrices

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ε
ε 1 ε

ε 1 ε
. . .

. . .
. . .

ε 1 ε
ε 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

1
. . .

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (B2a,b)

We note that G is a tridiagonal matrix while Φ only has non-zero entries in the main and
lower diagonals. And importantly, hopping off-diagonal terms are ordered like ε, which
shall allow us to simplify the problem significantly. To order these matrix elements the
way we have done, we must note that the hopping terms as considered do not only bring
ε, but are also proportional to the mode number n. Thus, to preserve the ordering ε of the
off-diagonals we shall limit the truncation N � Nε = 1/ε.

With these matrices set up, we may now attempt the approximate construction of D =
G−1Φ to the correct order O(ε2). Fortunately, the inversion of a tridiagonal matrix can be
expressed succinctly in the following form by Usmani (1994). Defining the elements along
the main diagonal as ai from i = 1, . . . ,N/2,11 and the upper and lower diagonals as bi
and ci, respectively, (also starting at n = 1) for matrix G, the inverse may be written as

(G−1)ij =
{
(−1)i+jbi . . . bj−1θi−1φj+1/θn, (i ≤ j),
(−1)i+jcj . . . ci−1θj−1φi+1/θn, (i > j),

(B3)

where θi = aiθi−1 − bi−1ci−1θi−1 with θ0 = 1 and θ1 = a1, and φi = aiφi+1 − biciφi+2 with
φN/2+1 = 1 and φN/2 = aN/2. Now, recall we are interested in the construction to order
O(ε), and thus, we may drop any term that is higher order. In particular, this implies
dropping in the iteration expressions the terms involving products of b and c, which as we
indicated above, are each order ε. As a result, θi = ai . . . a1 and φi = aN/2 . . . ai. Finally,

11If we were considering the truncated system for the odd parts, then we would end at (N + 1)/2.
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restricting the products of b and c involved in (B3) not to surpass the correct order, we
may write the inverse succinctly as follows:

(G−1)ij = 1
ai
δij − bi

aiai+1
δi,j−1 − ci−1

aiai−1
δi,j+1. (B4)

Define now the diagonal elements of Φ ij = pjδij; the matrix product is then, to leading
order,

D2i,2j = (G−1Φ
)

ij = pi

ai
δij − cjpj

aiaj
δi−1,j − bipj

aiaj
δi+1,j. (B5)

To further simplify, let us be more explicit on the various coefficients of G and Φ. Reading
the expressions off (2.12b) to the correct order

pn/2 = qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
, (B6a)

an/2 ≈ 1 + ω̃d

ω
− 2λ(2n + 1)

(ωtx‖
ω

)2
, (B6b)

bn/2 = 2Re{λ}
(ωtx‖
ω

)2√
(n + 2)(n + 1), (B6c)

cn/2−1 = 2
Re{λ}

√
n(n − 1)

[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω

]
. (B6d)

With these, we may write, at once,

Dnn = qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
1

1 + ω̃d

ω
− 2λ(2n + 1)

(ωtx‖
ω

)2
, (B7a)

Dn,n−2 = −qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
2

Re{λ}
√

n(n − 1)
[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω

]
, (B7b)

Dn,n+2 = −qi

Ti
F0iJ0

(
1 − ω̃�

ω

)
2Re{λ}

√
(n + 1)(n + 2)

(ωtx‖
ω

)2
, (B7c)

as the only relevant matrix elements to order ε.
With this matrix in place, we are in a position to apply quasineutrality to construct the

system of equations on φn in (3.4a). Let us be explicit in the construction of this system
by writing

N∑
j=0

Mijφj = 0, (3.4a)

and write with Dnm = (Ti/qin̄)
∫

d3vJ0Dnm,

Mnm = (1 + τ − Dnn)δnm − Dn,n−2δn−2,m − Dn,n+2δn+2,m. (B8)

B.2. Solving for a ‘pure’ Mth mode
Let us now focus on the problem when there is a dominant Mth mode, with M � N. That
is, let us take φM ∼ O(1). In addition we make the choice φn = 0 for n > M, with which
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we deem the description of a ‘pure’ mode (more comments on this to follow later). We
may then write the equations one by one starting from the Mth mode down,

−DM+2,MφM = 0,

(1 + τ − DMM)φM − DM,M−2φM−2 = 0,

(1 + τ − DM−2,M−2)φM−2 − DM−2,M−4φM−4 − DM−2,MφM = 0,

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B9)

This system of equations can be straightforwardly solved to O(ε) by taking the following
ordering for the various modes of φ: φM ∼ O(1), φM−2 ∼ O(ε) and φM−2k ∼ O(εk). In that
case, the consistent solution to the problem is the following dispersion relation condition
on ω and λ:

1 + τ − DMM = 0, (B10a)

DM+2,M = 0, (B10b)

together with

φM−2 = DM−2,M

1 + τ − DM−2,M−2
, (B11)

which is order ε. Thus for studying the Mth mode, we must solve (B10).
Let us start first by investigating the second condition, namely DM+2,M = 0. Dropping

unimportant factors from (B7b), we are left with the integral condition∫
d3vJ2

0e−v2/v2
Ti

(
1 − ω̃�

ω

)[
λ2
(ωtx‖
ω

)2
− ω̃d

2ω

]
= 0. (B12)

To perform the integrals over velocity space, we use ω̃� = ω�[1 + η(x2
‖ + x2

⊥ − 3/2)] and
ω̃d = ω̄d(x2

‖ + x2
⊥/2), and for simplicity, drop the FLR contributions to the integral, so that

λ =
√
ωω̄d

ω2
t

. (B13)

This is the characteristic localisation of the Mth mode. Note that it is actually
M-independent, meaning that the differences between modes arise from the other
expression in (B10). We shall refer to this equation as the Mth mode dispersion relation,
and we may explicitly write it as

D = 1 + τ + ζ

n̄

∫
J2

0

(
1 − ω̃�

ω

)
F0i

x2
‖ − ζ

(
1 + ω̄d

2ω
x2

⊥

) d3v, (3.8)

where

ζ = 1
2

[
λ(2M + 1)

(ωt

ω

)2
− ω̄d

2ω

]−1

, (B14)

for any 0 ≤ M � N, and both for even and odd M without distinction. The mode
number solely enters the problem through the equations in the kinetic parameter ζ , and
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in particular, in its streaming contribution. The larger the mode number, the larger the
contribution from the streaming term.

Note that one could argue that this particular ‘pure’ solution to the problem is not the
only one. In particular, and following the ordering argument of φM ∼ O(1) and φM−2 ∼
O(ε), one could consider constructing a solution in a more symmetric way around the
Mth mode, where the φn for n > M are not exactly zero, but ordered like O(ε(n−M)/2). In
that instance, the description to order ε would leave us with a single dispersion equation,
namely (B10a). Thus, even if λ should at least have an ordering like that in the ‘pure’
mode, its precise form would not be constrained. In what sense is then the ‘pure’ mode an
illustrative choice? There are two important arguments to defend the pre-eminence of the
‘pure’ mode, albeit not fully conclusive. The first, is that by making the choice of λ above,
and as explicitly shown, we make, to order ε, the lower off-diagonal terms of D vanish. As
such, the connection of modes to higher harmonics is broken, in a sort of closure scheme,
preventing problems with factors of increasing mode numbers and isolating the solution
from the truncation point. Second of all, this choice of λ leads to an agreement of our
system with the fluid limit in the limit of the latter. Other choices of λ would not do so.
And finally, it is the simplest choice to make. All this invites us to study the ‘pure’ modes
in this paper. However, in doing so we expect to find discrepancies with the full problem,
which likely involves a more subtle involvement of λ. Evidence of this is shown in the
numerical comparison with simulations. Although many of the qualitative features of the
spectra can be well captured and explained, predicting the exact form and dependence a
priori is out of reach. Although this treatment of λ is the weakest point of the treatment,
understanding the ‘pure’ mode behaviour is highly insightful. Future work may be devoted
to improving the model by perhaps allowing λ as a free parameter to optimise to extremise
the growth rate of the ITG (much like a ballooning parameter).

B.2.1. The FLR corrections to λ
To give a flavour of variations that λ may be subject to even within the ‘pure’ mode

framework, let us show how to include the FLR corrections in (B12). The full-FLR form
of the localisation parameter λ takes the form

λ =
√
ωω̄d

ω2
t

[1 − F(b)], (B15)

where

F(b) = b
2

(Γ0 − Γ1)

(
1 − ω�

ω
+ 2

ωT
�

ω
(b − 1)

)
− ωT

�

ω
Γ1

Γ0

(
1 − ω�

ω
+ ωT

�

ω
(b − 1)

)
− b

ωT
�

ω
Γ1

. (B16)

It follows from this form that, indeed, in the limit of a small FLR, F → 0, and thus
we recover the simple limit λ ∼ √ωω̄d/ω2

t . In the opposite limit, we find that λ ≈
(
√

3/2)λb=0, which is roughly a ∼ 13 % reduction; i.e. the longitudinal scale of the mode
will increase by roughly a ∼ 7 % with respect to the no-FLR expectation. The maximum
deviation tends to occur when b ∼ 1, corresponding to the point where the FLR effects are
most efficient. At moderate values for ωT

� /ω note that the amplification can be significant
following the potentially resonant denominator (see figure 11). In the strong drive limit the
simple ‘pure’ mode should nevertheless be an appropriate qualitative description even if
we do not include the variation of λ. There would be no point in keeping a significant added
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complication to a description through the ‘pure’ mode which is already a convenience
choice.

Appendix C. Expressing the dispersion in terms of the dispersion function

In this appendix we detail the construction of the final form of the dispersion function
D. We start from

D = 1 + τ + ζ

n̄

∫
J2

0

(
1 − ω̃�

ω

)
F0i

x2
‖ − ζ

(
1 + ω̄d

2ω
x2

⊥

) d3v, (3.8)

and recall from the main text that we first considered the integral over x‖. In doing such an
integral, we can write the problem in terms of plasma dispersion functions. However, given
the form of I‖,β , (3.11), we need to spell out the powers of x‖ in the problem explicitly. To
do so we must recall the definitions of ω̃d and ω̃�. With that, the numerator of the integrand,(

1 − ω̃�

ω

)
=
[

1 − ω�

ω
+ ωT

�

ω

(
3
2

− x2
⊥

)]
− ωT

�

ω
x2

‖

= A + Bx2
‖. (C1)

With this x‖ dependence made explicit, we may perform the first integral over x‖ in (3.8).
Writing the velocity-space measure explicitly as

d3v → 2π(vT)
3x⊥ dx⊥ dx‖, (C2)

we have

I = 1
n̄

∫
F0iJ2

0

(
1 − ω̃�

ω

)

x2
‖ − ζ

(
1 + ω̄d

2ω
x2

⊥

) d3v (C3)

= 2
∫ ∞

0
J0

(
x⊥

√
2b
)2

x⊥e−x2
⊥
[
AZ0(ζ̄ )+ BZ1(ζ̄ )

]
(C4)

where

ζ̄ = ζ

(
1 + ω̄d

2ω
x2

⊥

)
, (C5)

Z0(x) = Z( ∗√x)
∗√x

, (C6)

Z1(x) = (1 + ∗√xZ( ∗√x)
)
, (C7)

Z2(x) = 1
2

[
1 + 2x(1 + ∗√xZ( ∗√x))

]
. (C8)

It is now the time for performing the integral over x⊥. The main difficulty here is that x⊥
appears in the arguments of the plasma dispersion functions over which we need to be
integrating. Integrals of this form for small FLR effects have been recently found in exact
form by Ivanov & Adkins (2023), but full FLR effects are sought here. To that end, we
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proceed by exploiting the ω̄d/ω � 1 assumption, together with the exponential exp[−x2
⊥]

that limits the values of x⊥ from becoming much larger than one, and expand the functions
in the integrand. Application of Taylor expansion and the chain rule will yield different
powers of x⊥ in the integrand. This procedure is straightforward, and may be efficiently
calculated with the aid of computer algebra. Note that by performing this expansion, we
are losing the ωd resonance in x⊥ while we have kept its x‖ part. The ωd resonance effects
are thus only partially captured.

Integrals over powers of x⊥ with the other factors in the integrand of (C3) are well known
(Kadomtsev & Pogutse 1970a; Gradshteyn & Ryzhik 2014, equation (6.615)). Thus, all we
need to do is collect powers of x⊥ and collect terms. Terms corresponding to a particular
power of x⊥ will be multiplied by the appropriate FLR factor that results from the integral.
The relevant x⊥ integrals are

F0(b) = 2
∫ ∞

0
J0

(
x⊥

√
2b
)2

x⊥e−x2
⊥ dx⊥ = Γ0(b), (C9a)

F2(b) = 2
∫ ∞

0
J0

(
x⊥

√
2b
)2

x3
⊥e−x2

⊥ dx⊥ = (1 − b)Γ0(b)+ bΓ1(b), (C9b)

F4(b) = 2
∫ ∞

0
J0

(
x⊥

√
2b
)2

x5
⊥e−x2

⊥ dx⊥ = 2
[
(1 − b)2Γ0(b)+

(
3
2

− b
)

bΓ1(b)
]
.

(C9c)

The resulting D can be written as

D = 1 + τ +
∑

T(α,β,γ )
ω̄αdω

β
�

ωα+β Fγ (b). (C10)

Some of the leading order T(α,β,γ ) terms are shown in table 1 for reference. Many of the
terms included are not necessary. They are not with regards to explaining the physical
behaviour of the mode, and are in addition higher order in δ and ε than originally devised
for. Nevertheless, it may be helpful in analysing the behaviour of the dispersion equation.

Appendix D. Full Larmor radius form of the ITG fluid equation

In this appendix we sketch the derivation of the full-Larmor-radius form of the ITG fluid
equation. We follow closely the work of Connor et al. (1980), and where possible we shall
simply quote this work. Let us remind ourselves about the set-up of the fluid ITG problem.
We start by assuming that the transit time is long compared with the characteristic time of
the instability (ωt/ω ∼ ε � 1), so that we may consider expanding our solution to the GK
equation ignoring any kinetic resonance there.

The general solution to the GK equation in (2.1) for passing particles can be written
using an integrating factor (Connor et al. 1980, equations (15) and (16))

gp = −iσ(ω − ω̃�)
q
T

F0

∫ �

−σ∞

J0φ

|v‖|eiσM(�′,�), (D1)

and

M(a, b) =
∫ b

a

ω − ω̃d

|v‖| d�, (D2)

with σ the sign of v‖. In writing the solution for gp we implemented the usual vanishing
conditions for Im{ω} > 0. We will be considering the contribution from passing ions,
treating the electron response to be adiabatic.
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As the function M(�′, �) in the exponent of the integrand scales like ∼ ω/ωt, the
exponent is large. We may then approximate the whole integral integrating by parts
(Bender & Orszag 2013), and keeping terms up to order O(ε). In doing so we assume
that ∂�φ ∼ φ/ε and ωd to be ordered like ω or smaller.

Once expanded, we must then integrate gp over velocity space and apply the
quasineutrality condition (Connor et al. 1980, equation (19a)). Upon careful explicit
evaluation of the integrals over v‖ we obtain plasma dispersion functions (resonance
coming purely from the velocity dependence of ω̃d), and we may write the resulting
quasineutrality condition as equations (35)–(37) in Connor et al. (1980) after some algebra.

To derive the much simpler-looking eigenvalue equation in the fluid limit of papers
such as Plunk et al. (2014) and Zocco et al. (2016), one must, in addition to assuming
the smallness of the streaming contribution to the mode, also assume the smallness
of the drift frequency ωd/ω � 1. This particular ordering allows us to ignore the drift
frequency resonance that led to the appearance of plasma dispersion functions, as in the
large argument limit, ignoring this resonance simply incurs in an exponentially small error.
With this expansion, the integral over x⊥ left to be done simply become standard, and we
shall use the same notation as in the text, (3.15–3.17), for these integrals, Fn(b). Keeping
the leading-order terms it can be shown then that one has

(
1 + τ − α

T

)
φ − B∂�

[
β

BT
∂�φ

]
= 0, (D3a)

α

T
= Γ0

[
1 − ω�

ω
(1 − η)− ωdω�

2ω2

]
− F2(b)

(
ωT
�

ω
+ ω�ωd

2ω2

)
− ωT

� ωd

2ω2
F4(b), (D3b)

β

T
= v2

Tiω
T
�

ω3
F2(b). (D3c)

As a note of caution, here we took m = 1 for the mass. Putting these all together in a more
succinct way, and taking for simplicity ω� = 0 but ωT

� �= 0, for our problem in which B
is constant, and the only spatial dependence in the field is in the drift frequency, we may
write [

(1 + τ − Γ0)− ωT
�

ω
b(Γ0 − Γ1)+ ωT

� ωd

2ω2
F4(b)

]
φ − ω2

t ω
T
�

2ω3
∂2
�̄
φ = 0, (D4)

where we have defined the transit frequency ωt using the thermal velocity of the ions
(which this equation attempts to describe) and some reference parallel length scale. This
full-FLR form of the fluid equation is consistent with the fluid asymptotic limit of the
dispersion function, (4.4), discussed in this paper. The small b limit is precisely (upon
relaxing ω� = 0) of the form employed in Plunk et al. (2014) and Zocco et al. (2016).

Appendix E. Notation glossary

In table 2 we summarise the notation employed in the paper for reference. Many of the
variables used are standard in gyrokinetics.
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� Length along the field line �̄ Normalised length along the
field line

α Straight field line field line label ψ 2π times the toroidal magnetic
flux (surface label)

qi Ion charge Ti Ion temperature
n̄ Density ρi Ion Larmor radius
vTi Thermal speed of ions ω Mode frequency
γ Mode growth rate ω̄d Negative of the drift frequency at

bottom of bad curvature well
(2.6)

ω� Density gradient driven
diamagnetic drift

(2.1) ωT
� Temperature gradient driven

diamagnetic drift
η Ratio of temperature to density

gradient
ω̃d Drift frequency (with velocity

dependence)
ω̃� Diamagnetic frequency (with

velocity dependence)
ωt Transit frequency (2.10)

Λ Half width of bad curvature
region

(2.6) v‖ Parallel velocity

x‖ Normalised parallel velocity σ Sign of v‖
v⊥ Perpendicular velocity x⊥ Normalised perpendicular

velocity
kα Poloidal wavenumber (2.1) kψ Normal wavenumber (2.1)
k⊥ Perpendicular wavevector b Finite Larmor radius parameter (2.1)
F0i Leading order ion Maxwellian

distribution
g Non-adiabatic perturbed

distribution function
gn n-th Taylor–Gauss mode of g (2.11) φ Electrostatic potential
φn n-th Taylor–Gauss mode of φ (2.11) τ Ratio of ion to electron

temperature
(2.5)

λ Exponential envelope parameter (2.11) ζ Kinetic parameter (3.9a)
δ Small drift ordering parameter ε Mode localisation ordering

parameter
(2.8)

TABLE 2. Glossary of notation. Table including the symbols employed throughout the paper
and their informal meaning.
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