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108.19 Countable lists of rational numbers by removing digits

It is well-known that the rational numbers are countable, with proofs shown
in [1], [2] and others. One way to list all the rationals between 0 and 1 is shown
on the website “An easy proof that rational numbers are countable“ [3]. The
demonstration shows rationals in a table where the fractions' numerators and
denominators correspond to row and column numbers. These rational numbers
are then ordered by a zig-zag diagonal pattern that proceeds through the table
while eliminating both duplicates and numbers greater than 1. The resulting
countable list, List A includes all unique rational numbers in the half-open
interval (0, 1]. The first ten rationals in List A are shown in the table below,
which gives both fractional and decimal forms. When a rational is in decimal
form, the digits to the right of the decimal point are referred to as the mantissa.
List A:

Position in List 1 2 3 4 5 6 7 8 9 10
Rational Number (as a fraction) 1

1
1
2

1
3

2
3

1
4

1
5

3
4

2
5

1
6

1
7

Rational Number (as a decimal) 0.9¯ 0.5 0.3¯ 0.6¯ 0.25 0.2 0.75 0.4 0.16̄ 0.142857
⎯ ⎯⎯⎯ ⎯

The complete list is countable since there is a one-to-one correspondence
between the natural numbers and the rationals. It is easy to create a new
countable list of these unique rationals by simply interchanging numbers in
the list. But is there another way to generate a new countable list of all
rationals in (0, 1] using List A?

Yes. As we show, we can generate another countable list of all the
rational numbers in (0, 1] by removing any fixed number of digits from the
mantissa of every rational number of List A.

This can be established by a proof by contradiction. List B can be
generated by removing a positive integer  number of digits from the
mantissa of every rational number in List A. Suppose, for the sake of later
contradiction, that List A has some rational number  which is not in List B.
This rational number can be expressed in decimal form as ,
where each  is a digit from 0 to 9 for positive integer . Note that List A
does not include 0, so not all of the digits of the mantissa are 0. List A
includes every rational in (0, 1], so it also includes the rational number

i

r1
r1 = 0.d1d2d3…

dk k

r2 = 0.000 … d1d2d3d4

which has 0 repeated for  digits after the decimal point, followed by the
mantissa from . Since  is in List A, then when the first  digits of its
mantissa are removed (all 0s), then it would become . This is a
contradiction showing that  must also be in List B. Accordingly, List B has
all the rational numbers that List A has.

i
r1 r2 i

r1
r1

As an example, we take the following simple case where 1 digit is
removed from the mantissa of List A to generate List B. The following
rational is in List A:

1
7 = 0.142857

⎯ ⎯⎯⎯ ⎯.
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Suppose, for the sake of later contradiction, that this rational was not in List
B. The following rational is also in List A:

1
70 = 0.0142857

⎯ ⎯⎯⎯ ⎯.
Eliminating the tenths place of the latter number shows that List B must
contain the former number, which contradicts the assumption, and shows
that the rational number  must be in List B. This example extends to any
rational number in List A, showing that List B contains every rational
number that List A has for the interval (0, 1].

1
7

Although List B has all the rationals from List A, it also contains an
infinite number of duplicate numbers. For example, List A must have the
following rational numbers , where  can be any digit from 0 to
9. List B, which has digit  removed, has rational number 0.20813 listed 10
times. In fact, every rational number in List A is listed 10 times in List B.
The infinite number of duplicates in List B can be removed by a process of
elimination starting with the first number in the list (as was done in [3]).

0.d120813 d1
d1

Of course, the process that was used to remove digits from List A can
also be used in List B by removing any part of its mantissa to create yet
another countable list of all rationals for (0, 1]. However, removing decimal
places from the mantissa and adding decimal places to the mantissa have
very different results. Notice that it is not possible to create a countable list
of rationals by inserting a decimal place in the mantissa of the unique
rationals of List A. In the following example, part of List A is on the top and
part of List C, with a new tenths place inserted, is on the bottom:

List A 0.5 0.333333… 0.666666… 0.25 0.2
List C 0.a5 0.b333333… 0.c666666… 0.d25 0.e2

In List C, any one digit can be chosen for , , ,  and . Say that you pick
 for 0.333333 (i.e. 0.1333333). List C cannot possibly have the

number 0.2333333 because the list cannot possibly have another number
with all 3's starting in the second decimal place. In fact, for each number in
List C, there are 9 rationals not in the list. So, all rationals in the interval
(0,1] cannot be obtained by adding digits to the mantissa. This shows that
removing decimal places from the mantissa and adding decimal places
produces very different results.

a b c d e
b = 1

To summarise: Starting with the countable list of all unique rationals in ,
another countable infinite list of all the rationals can be achieved by removing
the same number of decimal places from the mantissa of each original number.
However, adding digits to the mantissa produces a very different result; the
resulting list no longer has all rationals from the original interval.

(0,  1]
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108.20 Euler's totient theorem and Fermat's little  theorem
are generalisations of one another!

Let us consider a non-familiar converse for the obvious fact that if
, then  divides , which is also related to Fermat's little

theorem (briefly, Fermat's theorem). For example if  is prime, then by
Fermat's theorem,  divides  if, and only if, . In fact,

 if, and only if, . Indeed, for any natural
numbers , , if  then  and by applying an
induction on a natural number  we have . In the last
step of this induction, one may write 

a ≡ 1 (mod n) n an − 1
n = p

p ap − 1 a ≡ 1 (mod p)
a ≡ 1 (mod p) ap ≡ 1 (mod p2)

a n a ≡ 1 (mod n) an ≡ 1 (mod n2)
m anm ≡ 1 (mod nm + 1)

anm + 1
− 1 = (anm

− 1) (anm(n − 1) + anm(n − 2) +  …  + 1) ,
assuming , by the induction hypothesis, and noticing that
the sum in the previous parenthesis is divisible by  [note, still

], we then immediately infer that . In this
Note we like to formulate a few results related to the above non-familiar
converse and obtain some useful consequences including the unusual fact in
the title. Indeed, this fact is a rare occurrence between any two theorems in
mathematics, even between the equivalent ones (see my concluding
comments, briefly). Using the above simple facts, and invoking Fermat’s
theorem, one may observe that if we replace  by a prime number  in the
above congruences, then  if, and only if, .
In particular, if , then  if, and only if,  is odd,
where . We show that the latter two cases can be unified and
obtained as consequences of either Corollary 1 or Corollary 2, below.
Before presenting the results, let us recall that if  is the least prime divisor
of a natural number , then . Motivated by this we define a
quasi-prime number to be a natural number  such that ,
where  is any prime divisor of . It is evident that  is quasi-prime if, and

anm ≡ 1(modnm+1)
n

a ≡ 1(modn) anm + 1 ≡ 1(modnm+2)

n p
apm ≡ 1 (mod pm + 1) a ≡ 1 (mod p)

p = 2 a2m ≡ 1 (mod 2m + 2) a
m ≥ 1

p
n (n, p − 1) = 1

n (n, p − 1) = 1
p n n
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