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The Weibel instability, driven by a temperature anisotropy, is investigated within
different kinetic descriptions based on the semi-Lagrangian full kinetic and relativistic
Vlasov–Maxwell model, on the multi-stream approach, which is based on a
Hamiltonian reduction technique, and finally, with the full pressure tensor fluid-type
description. Dispersion relations of the Weibel instability are derived using the three
different models. A qualitatively different regime is observed in Vlasov numerical
experiments depending on the excitation of a longitudinal plasma electric field
driven initially by the combined action of the stream symmetry breaking and weak
relativistic effects, in contrast with the existing theories of the Weibel instability based
on their purely transverse characters. The multi-stream model offers an alternate way
to simulate easily the coupling with the longitudinal electric field and particularly
the nonlinear regime of saturation, making numerical experiments more tractable,
when only a few moments of the distribution are considered. Thus a numerical
comparison between the reduced Hamiltonian model (the multi-stream model) and
full kinetic (relativistic) Vlasov simulations has been investigated in that regime.
Although nonlinear simulations of the fluid model, including the dynamics of the
pressure tensor, have not been carried out here, the model is strongly relevant even
in the three-dimensional case.
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1. Introduction
The Weibel instability (WI) is one of the most basic and long-studied collective

plasma processes. This instability, which is a purely growing non-resonant
electromagnetic mode (Re(ω) = 0), produces strong magnetic fields in plasmas
by releasing the free energy stored in the temperature anisotropy. A fraction of the
kinetic energy of the plasma is thus converted into the generation of strong quasi-static
magnetic fields through the redistribution of currents in space. This instability was
first predicted by Weibel (1959). A simple physical interpretation provided the same
year by Fried (1959) showed the equivalence of a strongly anisotropic distribution
with a two-stream configuration of a cold plasma. This second kind of instability is
usually referred as the Current Filamentation Instability (CFI). In CFI the instability
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is driven by the momentum anisotropy instead of the temperature anisotropy such as
in the WI.

There has been a significant revival in theoretical studies of the WI because it is
viewed as highly relevant to at least two areas of science: astrophysics of gamma-
ray flares (see Cerruti et al. 2014) and cosmological magnetic field generation (see
Schlickeiser & Shukla 2003; Medvedev, Silva & Kamionkowski 2006; Lazar et al.
2009; Schoeffller et al. 2016) and the fast ignition scenario for inertial confinement
fusion (see Silva et al. 2002; Shvets et al. 2009). In contrast to standard geometry
implicated in WI, recent theoretical studies of Bret (2009, 2010), Bret, Gremillet &
Dieckman (2010) have also shown the importance of oblique modes.

Relying on the similarity between WI and CFI instabilities, we have recently built
a new theoretical tool starting from the possibility of representing the temperature
anisotropy by means of a finite number of counter-streaming streams (see Inglebert
et al. 2012; Ghizzo & Bertrand 2013; Ghizzo 2013a). This model, which we have
called the multi-stream model, turns out to be of more general importance and not
limited to the Weibel instability.

However the mechanism behind magnetic field generation and the resulting particle
trapping, as well as the life span of these magnetic structures are still unknown
issues, which can only be definitively addressed in a kinetic framework. While
kinetic effects in wave–particle interactions seem to play a major role in WI, recent
theoretical studies, based on a fluid approach, such as the work of Basu (2002) or the
recent work of Sarrat, Del Sarto & Ghizzo (2016a), lead to remarkable results. The
resulting macroscopic description, based on the moment equations, including the full
pressure tensor dynamics, seems to provide a quite complete and accurate picture of
WI (a kinetic description of linear Weibel instability being quite cumbersome from
an analytical point of view). This somewhat paradoxical result seems to indicate
that only a few moments of the distribution function are necessary to give a global
picture of the instability. This assumption merits validation (or invalidation). Doing so
requires to understand the subtle plasma physics of the interactions among particles
and the magnetic field. A systematic way to make progress is to test this assumption
in the framework of the multi-stream model with direct comparison with the full
kinetic Vlasov simulations.

If the fluid treatment leading to the derivation of the dispersion relation shows that
the pressure tensor Π plays a crucial role in the growth of the instability, one may
expect that a small number of streams in the multi-stream description is sufficient to
recover the main features of the instability – the number of streams fixes indeed the
number of free parameters which determine the equivalence between the multi-stream
and the full Vlasov model up to a certain moment of the distribution function f – see
Inglebert et al. (2011), Sarrat et al. (2016a). If this requirement of a small number
of streams (or of the ‘equivalent’ moments of f , in a sense which we will discuss
next) was to emerge as consistently valid for a large set of numerical and physical
parameters, this would strengthen the robustness of the fluid-like description for such
a type of instability (WI) and justify the use of reduced models for the tested regimes.
In this spirit, we have studied the Weibel instability by making numerical comparisons
between the full kinetic Vlasov–Maxwell simulations and the Hamiltonian reduction
technique – the multi-stream model – for a different number of streams. Both models
are kinetic in nature and it is then possible to obtain, in both considered descriptions,
a picture of the dynamics of trapped particles in phase space, a picture usually not
available in the fluid approach. We have then performed an analytical comparison
between the fluid model based on a full pressure tensor dynamics and the fluid
approximation of the multi-stream model.
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The advantage of the fluid formalism, when accounting for a kinetic pressure tensor,
obviously lies in its analytical tractability. What we show in this paper is that, whether
we consider the kinetic dispersion relation for transverse WI, or the fluid model
including the dynamics of the pressure tensor, both yield a maximum growth rate
that is still 25 % too high in comparison of Vlasov–Maxwell numerical experiments.
A better agreement with full kinetic Vlasov simulations is finally achieved through the
multi-stream model, when the coupling of the WI with the longitudinal electrostatic
branch is realized. One of the major merits of the multi-stream model is the possibility
of gaining a comprehensive understanding of the magnetic field generation and its
feedback mechanism on the longitudinal electric field generation. The barrier goes
beyond the difficulty of taking strong relativistic effects into account, to the challenge
of bridging the two separate worlds that are the kinetic and fluid approaches.

The paper is organized as follows. In § 2 we briefly present the basic equations of
the different models. In § 3 a numerical simulation has been performed using a 2D2V
(two spatial dimensions plus two dimensions in momenta) semi-Lagrangian Vlasov–
Maxwell solver to study WI. Comparisons with the case of the 1D2V situation were
also carried out. Comparisons with the multi-stream model are presented in § 4 for
different sets of initial streams. Finally we draw our conclusions in § 5.

2. Basic equations
2.1. The relativistic Vlasov–Maxwell system

The kinetic evolution of the collisionless electron plasma is described by the Vlasov
equation, which in a two-dimensional space (with two momenta, i.e. in a 2D2V
description) takes the form

∂F
∂t
+ px

mγ
∂F
∂x
+ py

mγ
∂F
∂y
+ e

(
Ex + pyBz

mγ

)
∂F
∂px
+ e

(
Ey − pxBz

mγ

)
∂F
∂py
= 0 (2.1)

self-consistently coupled to the Maxwell equations, which for the transverse electric
(TE) component of the electromagnetic field write as

∂Ex

∂t
= c2 ∂Bz

∂y
− Jx

ε0
(2.2)

∂Ey

∂t
=−c2 ∂Bz

∂x
− Jy

ε0
(2.3)

∂Bz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
. (2.4)

Here γ =
√

1+ (p2
x/m2c2)+ (p2

y/m2c2) denotes the Lorentz factor. The electron
current density J is given by

J=
∫∫

dpx dpy
pF
mγ

. (2.5)

In our numerical experiments, we use normalized quantities: time t, space coordinates
x, y and momentum coordinates px, py are respectively normalized to the inverse
plasma frequency ω−1

p , the electron skin depth de and mc (the product of the electron
rest mass times the light velocity in the vacuum). The electric field components Ex,
Ey are normalized to mωpc/e while the magnetic part Bz is normalized to mωp/e. We
adopt periodic boundary conditions in both x and y directions. Details of the numerical
code can be found in Ghizzo, Huot & Bertrand (2003) and in the forthcoming paper
of Ghizzo et al. (2017) for a hybrid OpenMP- MPI parallelized version of the code.
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2.2. The (non-relativistic) pressure tensor fluid model
We now briefly recall a fluid model for the description of WI based on the inclusion
of the full pressure tensor dynamics, which allows for a simple interpretation of
some physical features of WI, notably the role played by kinetic effects in the
non-relativistic regime. Recently, the linear analysis first performed by Basu (2002)
has been extended by Bret & Deutsch (2006) and Sarrat et al. (2016a) to include the
coupling between WI and CFI and in Sarrat, Del Sarto & Ghizzo (2016b), the onset
of the time-resonant WI has been also studied in this extended fluid model. The fluid
set of equations we consider here for electrons in a neutralizing static ion background
has previously been considered to study the propagation, when ion pressure anisotropy
is allowed, of electromagnetic waves perpendicular to an equilibrium magnetic field
(see Del Sarto, Pegoraro & Tenerani 2015) and to show how a sheared velocity field
may generate a long standing non-gyrotropic pressure anisotropy from an initially
isotropic configuration (see Del Sarto, Pegoraro & Califano (2016) for more details).
Let us recall the basic equations we need here. By writing the first three moments
of the non-relativistic Vlasov equation, we have

∂n
∂t
+∇ · (nu)= 0 (2.6)

∂u
∂t
+ u · ∇u= e

m
(E+ u×B)− ∇ ·Π

nm
(2.7)

∂Π

∂t
+∇ · (uΠ)+∇u ·Π + (∇u ·Π)T = e

m
(Π ×B+ (Π ×B)T)−∇ ·Q. (2.8)

Here apex ‘T’ denotes the matrix transpose and Π = nm(〈vv〉 − uu) is the pressure
tensor and Q=mn〈(v− u)(v− u)(v− u)〉 is the heat flux tensor where 〈·〉 denotes an
average operation in the velocity coordinate v with respect to the distribution function.
A dispersion relation of WI, providing a relatively simpler analytical framework
than the kinetic description, can be derived in the linear regime by considering the
perturbed quantities of the pressure tensor Π (1)

xy . Linearization of (2.6)–(2.8) and of the
corresponding Maxwell’s equations is straightforward. Starting from an homogeneous
state characterizing an equilibrium full pressure tensor of the kind:

Π(0) =

Π
(0)
xx 0 0
0 Π (0)

yy 0
0 0 Π (0)

zz

 (2.9)

the following set of linearized equations describing the dynamics along y is obtained:

u(1)y =
ie

mω
E(1)y +

k
mn(0)ω

Π (1)
xy (2.10)

Π (1)
xy =

k
ω

u(1)y Π
(0)
xx +

ie
m

Π (0)
yy −Π (0)

xx

ω
B(1)z (2.11)

B(1)z =
k
ω

E(1)y (2.12)

−ikB(1)z = eµ0n(0)u(1)y −
iω
c2

E(1)y . (2.13)

Superscripts (0) and (1) in (2.10) to (2.13) stand respectively for equilibrium and
perturbed quantities and perturbations of type ei(kx−ωt). Thus the initial configuration
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is unstable to a pure Weibel mode and the condition det(c2D)= 0, where c2D is the
standard dispersion matrix, gives two branches. The first one is the classic Bohm–
Gross dispersion relation obtained from

Dxx =ω2 − (ω2
p + 3k2a2

x)= 0 (2.14)

and the second is linked to the excitation of a transverse electromagnetic mode:

Dzz = Dyy =ω2 − k2c2 −ω2
p

ω2 + k2(a2
y − a2

x)

ω2 − k2a2
x

= 0. (2.15)

Here we have introduced

a2
x =

Π (0)
xx

mn(0)
and a2

y =
Π (0)

yy

mn(0)
(2.16a,b)

corresponding to thermal velocities. We focus now our attention on condition (2.15),
which can be rewritten in the form of a polynomial of degree four where ω2

k =ω2
p +

k2c2:
ω4 −ω2(ω2

k + k2a2
x)+ k2ω2

ka2
x − k2ω2

pa2
y = 0. (2.17)

Solving (2.17) leads to the WI growth rate,

ΓWI =
(√

∆

2
− (ω

2
p + k2(a2

x + c2))

2

)1/2

(2.18)

and the standard cutoff in wavenumber kc is recovered in the form:

kcc
ωp
=
√

a2
y

a2
x

− 1, (2.19)

where ∆= (ω2
k − k2a2

x)
2 + 4ω2

pk2a2
y > 0. A few features, more extensively discussed in

Sarrat et al. (2016a), shall be pointed out:

(i) The growth rate ΓWI in (2.18) was found to be stronger than the kinetic value
obtained from the kinetic relation, which writes as:

ω2 = k2c2 +ω2
p

(
1+ a2

yW(ξ)

a2
x

)
, (2.20)

where W(ξ) = −(1 + ξZ(ξ)), Z(ξ) being the plasma dispersion relation of
argument ξ = ω/√2kax and ax and ay stand here for the thermal velocities in
the x and y directions, in agreement with the notation of (2.16). Both dispersion
relations (2.15) and (2.20) give the same cutoff wave vector.

(ii) A small number of moments is necessary to recover the main features of WI.
(iii) In contrast to the full kinetic treatment, the derivation of the fluid-type dispersion

relation shows that the pressure tensor perturbation Π (1)
xy plays a crucial

role in the instability. In (2.11) the contribution of the second term related
to the anisotropy of the distribution function allows for the propagation of
low-frequency waves.
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(iv) The last point concerns the closure condition, we have used here (∇ · Q = 0),
which differs from the choice made by Basu (2002) to keep this heat flow but
to assume that thermal effects remain weak, leading to the condition that ε =
kax/ω� 1. In that case, (2.15) reduces to

Dyy =ω2 − k2c2 −ω2
p

(
1+ k2a2

y

ω2

)
= 0 (2.21)

which corresponds indeed to the condition of hydrodynamic limit of the kinetic
dispersion relation of the WI (note however than in this hydrodynamical limit
the contribution of the heat flux gradient vanishes). The consistent result obtained
with the pressure tensor model, while a priori neglecting ∇ ·Q, agrees with the
successful description of the WI by means of only three initial streams in velocity
space, as we will see later, at least in the linear regime of WI.

The analysis we have summarized could be in principle adapted to the relativistic
regime, in which reasoning in terms of dynamical pressure forces may be easier than
in terms of temperatures as far as the anisotropy is concerned. This is however a
subject of further study and for the purposes of the present discussion we will restrict
the comparison with the kinetic and multi-stream models to the non-relativistic regime.

2.3. The multi-stream model
2.3.1. The Hamiltonian reduction technique of the Vlasov equation

Here we restrict our analysis to plane waves propagating along x. The Hamiltonian
of a relativistic particle reads as

H =mc2(γ − 1)+ eφ(x, t). (2.22)

In (2.22) φ denotes the electrostatic potential. The multi-stream model is a
Hamiltonian reduction technique linked to the fact that y does not appear explicitly.
Therefore the corresponding Hamilton equation writes as

dPcy

dt
=−∂H

∂y
= 0 (2.23)

since the Hamiltonian H is assumed to depend only the longitudinal spatial coordinate
x. From (2.23) it is then possible to reduce the dimension of the global phase space
by using the invariance of the generalized canonical momentum (here along y) defined
as

Pcy = py + eAy(x, t)= const.=Cj. (2.24)

Here Ay is the y-component of the potential vector. Without loss of generality we
can consider a plasma where the particles are divided into 2N + 1 ‘bunches’ of
particles (here called ‘streams’), where each stream noted j (for |j|6 N) constitutes a
class of exact solution of the Vlasov equation, having the same initial perpendicular
momentum along py denoted by the quantity Cj. We can now define, for a population
j, a reduced Vlasov-type equation and a corresponding distribution function fj(x, px, t).
The Hamiltonian of one particle of the stream j is then given by Hj=mc2(γj− 1)+ eφ,
where the new expression of the Lorentz factor, defined for the stream j, is given by:

γj =
√

1+ p2
x

m2c2
+ (Cj − eAy(x, t)2)

m2c2
(2.25)
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and fj satisfies the reduced Vlasov equation:

∂fj

∂t
+ px

mγj

∂fj

∂x
+
(

eEx − 1
2mγj

∂

∂x
(Cj − eAy)

2

)
∂fj

∂px
= 0. (2.26)

Thus for each population j, we now define the stream density as nj=
∫

fj dpx and the
current density

Jy,j = e
m
(Cj − eAy)

∫ +∞
−∞

fj

γj
dpx = e

m
(Cj − eAy)ρj(x, t). (2.27)

Finally the reduced Vlasov-type equations (2.26) are coupled, in a self-consistent way,
to the Poisson equation:

∂Ex

∂x
= e
ε0

(
N∑

j=−N

nj(x, t)− n0

)
(2.28)

and to the potential vector equation given by

∂2Ay

∂t2
− c2 ∂

2Ay

∂x2
= 1
ε0

N∑
j=−N

Jy,j(x, t). (2.29)

At this step, two remarks are due:

(i) It is possible to generalize the model to a two-dimensional x, y plasma and
to replace the kinetic pz component of the momentum by its corresponding
canonical invariant Pcz = pz + eAz(x, y, t) = const. = Cj (for more details see
Begue, Ghizzo & Bertrand 1999). Thus the necessary condition for applying
the conservation of the transverse canonical momentum is the possibility of
separating both electrostatic and electromagnetic contribution in the electric field.

(ii) In the work of Inglebert et al. (2012), we have shown that the concept of
temperature can be recovered in the perpendicular direction (here py) by
considering the first moments of the distribution function.

2.3.2. The linear dispersion relation in the multi-stream description
We now focus on the possibility of deriving a generalized dispersion relation for WI

in the multi-stream model. By assuming hot streams, initially at equilibrium located
on Cj in the momentum coordinate, the reduced distribution function can be linearized
in the standard way:

fj(x, px, t)= n0αjF0j(px)+ δfj(k, px, ω)ei(kx−ωt). (2.30)

In the case of a linear normal mode analysis of the set of (2.26), (2.28) and (2.29), in
the non-relativistic regime, we assume that Ay= δAyei(kx−ωt) and Ex= δExei(kx−ωt) where
δ denotes a perturbation field. Equation (2.26) gives (using the notation vx= px/m):

δfj =
eδEx + ik

Cj

m
eδAy

i(ω− kvx)
n0αjF′0j(px), (2.31)
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where F′0j denotes the derivative of the initial distribution function F0j(px) over px. αj

(given by nj/n0) and Cj verify the normalization condition
∑

j αj = 1 and the total
current

∑
j (αjCj/m)= 0.

Using (2.31), and Poisson’s equation (2.28), the perturbation term δEx can be
expressed as:

ikδEx = e
ε0

+N∑
j=−N

∫ +∞
−∞

dpx

eδEx + ikCj

m
eδAy

i(ω− kvx)
n0αjF′0j(px). (2.32)

Finally we obtain the relation

δEx

(
ik+ imω2

p

+N∑
j=−N

αj

∫ +∞
−∞

dpx
F′0j(px)

ω− kvx

)

− δAy

(
kmω2

p

+N∑
j=−N

αj
Cj

m

∫ +∞
−∞

dpx
F′0j(px)

ω− kvx

)
= 0. (2.33)

By now by linearizing (2.29) we obtain

iδExmω2
p

+N∑
j=−N

αjCj

m

∫ +∞
−∞

dpx
F′0j(px)

ω− kvx

+ δAy

(
−ω2 +ω2

p + k2c2 − kmω2
p

+N∑
j=−N

αj
C2

j

m2

∫ +∞
−∞

dpx
F′0j(px)

ω− kvx

)
= 0. (2.34)

Then assuming, for each stream j, a Maxwellian F0j of thermal velocity ax,j (with the
usual definition a2

x,j = (kBTx,j)/m) (2.33) and (2.34) lead to the dispersion relation

DxxDyy − D2
xy = 0, (2.35)

where

Dxx =ω2

(
1+ ω

2
p

k2

+N∑
j=−N

αj
(1+ ξjZ(ξj))

a2
x,j

)
(2.36)

Dyy =ω2 −ω2
p − k2c2 +ω2

p

+N∑
j=−N

αjC2
j

m2

(1+ ξjZ(ξj))

a2
x,j

(2.37)

and finally

Dxy = Dyx =
ωω2

p

k

+N∑
j=−N

αjCj

m
(1+ ξjZ(ξj))

a2
x,j

(2.38)

Z(ξj) being the usual plasma dispersion function of argument ξj = ω/
√

2kax,j and
αj a normalization constant. Since each stream j has its own temperature along x
(given by its thermal velocity ax,j), the two longitudinal (2.36) and perpendicular
(2.37) modes are now coupled by (2.38). The decoupling is possible when Dxy = 0,
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Vlasov models for kinetic Weibel-type instabilities 9

or equivalently, when each stream has the same longitudinal temperature, thus the
term (1+ ξjZ(ξj))/a2

x,j becomes independent of j and we recover the usual relation∑+N
j=−N (αjCj/m)= 0 indicating that the total current is zero. In that case (2.37) leads

to the standard dispersion relation of WI given previously by (2.20), which now
writes (with ξ =ω/√2kax):

ω2 −ω2
p − k2c2 +ω2

p
(1+ ξZ(ξ))

a2
x

+N∑
j=−N

αjC2
j

m2
= 0. (2.39)

The comparison with (2.20) allows us to define a transverse temperature given by
(2.41). It must be pointed out, that in a previous works (Ghizzo & Bertrand 2013), a
similar result has been obtained by using a water-bag description in the longitudinal
description px (where several ‘bags’ aj were used) while keeping the multi-stream
approach in py. Thus in the limit where relativistic effects are negligible, we recover
the dispersion relation for WI, which now reads as

ω2 −ω2
p − k2c2 −ω2

pk2
+N∑

j=−N

αjC2
j

m2(ω2 − k2a2
j )
= 0 (2.40)

which corresponds to the expression (2.15) in the pressure tensor model.

2.3.3. The hydrodynamic limit of the multi-stream model and comparison with the fluid
model

As shown in the previous example of three non-relativistic beams (cf. § 2.3.2),
the accuracy with which the initial multi-stream model distribution approximates the
initial complete model single-particle distribution depends on the number of beams:
this gives the number of parameters whose values are fixed by the comparison with
the fluid moments of the full (Vlasov) kinetic description. Generally speaking, as two
parameters are available for each beam {αj, Cj} an initial configuration of N beams
can be made to match a Vlasov initial distribution by setting an exact equivalence
up to their first 2N velocity moments (counting as first moment that of order zero in
velocity that is the fluid density). We note in this regard that any initially symmetrical
distribution centred around a null average velocity implies all the odd-order fluid
moments to be initially zero: an important implication is, for example, that if this
symmetry is respected by the global initial multi-stream distribution, the odd-order
fluid moments of the multi-stream model remain zero for the whole evolution. Thus
in (2.39) we are capable of defining a perpendicular temperature by assuming that
the thermal velocity is given by

a2
y

c2
=
+N∑

j=−N

αjC2
j

m2c2
. (2.41)

For this purpose it is necessary to initialise the system with a distribution of the kind

F(px, py)= n0F0(px)

+N∑
j=−N

αjδ(py −Cj). (2.42)

Let us now restrict ourselves to the case of three streams only ( j = −1, 0, 1).
Assuming symmetry C−1 = −C1 and C0 = 0, as is usually used in such an analysis,
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the normalization constant αj (for j varying from −1 to 1) can be directly computed
by considering the first moments of the distribution function. Thus we have

M(2) = n0

+1∑
j=−1

αjC2
j =
∫∫

p2
yF(px, py) dpx dpy = n0m2a2

y (2.43)

M(4) = n0

+1∑
j=−1

αjC4
j =
∫∫

p4
yF(px, py) dpx dpy = 3n0m4a4

y . (2.44)

The case of three streams only, symmetrical in py, provides a reduced kinetic
description which necessitates us initially to know the two first (non-null) M(2)

and M(4) moment components. Indeed the resolution of the system of (2.43) and
(2.44) requires the determination of {αj, Cj} using symmetry. Thus we obtain
α1 = α−1 = 1/6 and α0 = 2/3 (with the normalization condition

∑+1
j=−1 αj = 1)

and finally to C−1 = −C1 = −
√

3may. Thus the ratio of (2.44) over (2.43) writes
as C2

1/m
2 = 3Π (0)

yy /mn0. The latter condition expresses the equivalence with the fluid
pressure description, at least in the non-relativistic regime. The ensemble {αj, Cj}
depends from the dynamics of the process under description.

The comparison between results obtained from the multi-stream and from the
complete Vlasov model can therefore provide information about the role played by
the fluid moments neglected in the multi-stream approach in the dynamics of the
phenomenon considered. It is therefore of interest to inquire about the comparison
between the multi-stream and the full pressure tensor-based fluid model in describing
Weibel-type instabilities. Even if this subject deserves dedicated study, we make
here some general remarks by restricting ourselves to the non-relativistic regime
of the pure WI (the extensibility to the full pressure tensor description in the
non-relativistic regime requiring indeed further work). For this purpose we first recall
the hydrodynamic limit of the multi-stream model, as first introduced in Inglebert
et al. (2011).

The multi-fluid model can be obtained by taking the moments of the reduced Vlasov
equation (2.26). We can introduce, for each stream j, a density denoted nj and a mean
velocity uj. In the assumption where relativistic effects are negligible, for each stream
j, the continuity equation and the Euler-like equation write

∂nj

∂t
+ ∂

∂x
(njuj)= 0 (2.45)

∂uj

∂t
+ uj

∂uj

∂x
= eEx

m
+ 1

2m2

∂

∂x
(Cj − eAy)

2 (2.46)

coupled to (2.28) and (2.29) using Jyj = enjuj. Thus approximating the system as
a finite number of streams or in other words, as a summation over an ensemble
of Dirac distributions. Note that this system of equations is closed with no need
of a further equation for the second-order fluid moment. Its evolution is therefore
completely determined by the two equations above. We have then obtained a ‘fluid’
description equivalent to (2.6) and (2.7), formally including the information about the
pressure tensor but also on the moments of order 4 in velocity (again expressible in
terms of nj and uj), and of order 3 and 5 (which shall be null in the case of a WI
initialised with a Maxwellian distribution in vx).
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2.4. Connection between the multi-stream model and the pressure tensor dynamics
For completeness, we have investigated the connection between both reduced models,
the multi-stream model and the fluid model which takes into account the dynamics of
the pressure tensor. To do this, we retain the concept of ‘stream’ in the framework of
a ‘multi-fluid’ approach by introducing, for each stream j, a pressure tensor Π ( j)

αβ . This
highlights the importance of a correct (and pedagogical) modelling of the nonlinear
interaction between streams, where the possibly relevant ingredients, such as the
global pressure tensor are retained. Moreover, the approach presented here can give
insights into the coupling between WI and CFI. The challenge is to understand how
the coupling between CFI and WI gets started at all, leading to the excitation of the
electrostatic field component. Since the physical mechanisms of WI and CFI are very
similar, the amplification of the longitudinal plasma field has to be found again in the
symmetry breaking of streams. In the multi-stream approach, each particle ‘bunch’,
of density nj(x, t), for a given j, can indeed be represented by Π ( j)

αβ , where α and β
denote labels to be taken in {x, y, z}. Thus it is possible to write the global pressure
tensor Παβ in the following form:

Παβ

mn
=
+N∑

j=−N

Π
( j)
αβ

mnj
−
+N∑

j=−N

∑
k 6=j

njnk

n2
u( j)
α u(k)β , (2.47)

where u( j)
α denotes the mean density of ‘stream’ j and u( j)

α = (1/nj)
∫ +∞
−∞ vαfj dpx

and vα = vα(x, px, Cj) is the velocity term which may depend explicitly of Cj, after
integration over py. Here

Π
( j)
αβ

mnj
=
∫ +∞
−∞

dpxvαvβ fj − nj

n
u( j)
α u( j)

β . (2.48)

Let us now consider the example of the coupling of WI and CFI. Indeed WI can
be described, in the multi-stream approach, by the set of 2N− 1 particle ‘bunches’ or
streams, while only two particle ‘bunches’ are required for CFI, say the streams noted
±N. This example can be reformulated in the pressure tensor dynamics by choosing
two streams of momentum C±N having different temperatures in px and described by
the quantities Π (±N)

αβ (C±N), while the bulk of the plasma is characterized by a diagonal
pressure tensor of type (2.9). Thus (2.47) reads now

Παβ

mn
=
+N−1∑

j=−N+1

Π
( j)
αβ

mnj
+ Π

(N)
αβ

mnN
+ Π

(−N)
αβ

mn−N
−
+N∑

j=−N

∑
k 6=j

njnk

n2
u( j)
α u(k)β . (2.49)

In (2.49) the first term describes the behaviour of the WI, the second and third terms
the CFI and the last term the nonlinear interaction between streams. Thus, in the linear
regime, a little algebra yields (see Sarrat et al. (2016a) for more details) a dispersion
relation of the same type as (2.35) where

Dxx =ω2 −ω2
∑

j∈{−N,+N}

ω2
pe,j

ω2 − 3k2a2
x,j

(2.50)

Dyy =ω2 − k2c2 −
∑

j∈{−N,+N}
ω2

pe,j

(
ω2 + k2(a2

y,j − a2
x,j)

ω2 − k2a2
x,j

+ k2C2
j

ω2 − 3k2a2
x,j

)
(2.51)
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Dxy =−ω2
∑

j∈{−N,+N}

kCj

ω

ω2
pe,j

ω2 − 3k2a2
x,j
, (2.52)

where ω2
pe,j = nje2/mε0 is the square of the plasma frequency of each stream of

CFI. Here the Dxx contribution is related to the Bohm–Gross oscillations, inherently
electrostatic in nature, which for Dxy 6= 0, couple to the transverse electromagnetic
modes related to Dyy. Furthermore it must be pointed out that Dxy vanishes only if
a2

x,N = a2
x,−N or equivalently when the two beams constituting CFI have the same

temperature (the symmetry in that case being preserved).

3. Physical features of the Weibel instability driven by an initial temperature
anisotropy

3.1. The 2D2V full kinetic semi-Lagrangian Vlasov–Maxwell simulations
We now illustrate the physical mechanism for the thermal anisotropy-driven Weibel
instability. We have performed simulations of the WI with a 2D2V semi-Lagrangian
Vlasov – Maxwell code. We present detailed results in figures 1–5 for a simulation
with a relatively short box of length Lx = 2π/k0 ' 3.590cω−1

p corresponding to
a wave vector of k0c/ωp = 1.75 and Ly = 4πcω−1

p in the perpendicular direction.
Motivated by direct numerical comparisons, the case of a linear polarization of the
electromagnetic field only is considered here. The phase space sampling for the
full 2D2V Vlasov simulation (two dimensions in space plus two dimensions in
momentum) is NxNyNpx Npy = 2562× 1282 and we choose a time step of 4tωp= 0.005.
The code uses a semi-Lagrangian scheme which is fully parallelized and uses local
spline interpolation techniques with 256 processors and 4 threads by processor.
Details of the numerical scheme can be found in the forthcoming paper of Ghizzo
et al. (2017). The initial condition is a standard bi-Maxwellian distribution with a
temperature anisotropy corresponding to Tx = 1 keV and Ty = 50 keV.

The initial condition is given by

f (x, y, px, py, t= 0)= Fmax(px, py)

(
1+

3∑
n=0

3∑
m=0

ε cos(nk0xx) cos(mk0yy)

)
, (3.1)

where Fmax is the Maxwell–Boltzmann distribution function and ε = 10−4 is a small
perturbation.

Here we consider a single mode k0 and assume that only electrons take part
in the dynamics. This assumption is valid since the electrons provide the source
of free energy which initially causes the instability. Then the system evolves on
the relatively fast electron time scale and ions may be considered as an infinitely
massive neutralizing background. Although in general WI can occur within a range of
wavenumber k, considering a numerical box ‘short’ in the x direction (of length 2π/k0

with k0 being the most linearly unstable mode) is not only an excellent opportunity
to compare the analytic theory with numerical simulations but may also provide a
detailed insight of how a more realistic multi-mode plasma evolves and saturates.

In figure 1(a), we have plotted the time evolution of the mean relativistic kinetic
energy εkin = mc2

∫∫
(γ − 1) dpx dpy (dotted line), the total magnetic energy εm,z and

their mutual sum εm,z + εkin, which is very close to the total energy of the system
because the electric contribution of the electromagnetic energy εe,x + εe,y remains
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(a)

(b)

FIGURE 1. (a) The time evolution of the kinetic energy εkin, and of the magnetic energy
εm,z plus their mutual sum εkin+ εm,z, which is conserved at saturation. (b) The growth rate
Γ/ωp as a function of kc/ωp for a purely transverse WI, using the kinetic treatment (in
solid line) or the fluid approach including the pressure tensor dynamics (in dashed line).
For transverse WI, the multi-stream model gives exactly the same result as the kinetic
treatment, while the Vlasov numerical experiment gives a somewhat smaller value.

negligible. We have introduced the following notation (respectively for the magnetic,
and for the x and y components of the electric part):

εm,z = 1
LxLy

∫ Lx

0

∫ Ly

0

B2
z

2µ0
dx dy (3.2)

εe,x = 1
LxLy

∫ Lx

0

∫ Ly

0

ε0E2
x

2
dx dy and εe,y = 1

LxLy

∫ Lx

0

∫ Ly

0

ε0E2
y

2
dx dy. (3.3a,b)

The magnetic field energy saturates at approximately tωp ' 60. It can be seen that
the growth of the magnetic field energy compensates for the decrease of the kinetic
energy in the same measure, thus conserving the total energy. In figure 1(b), we
have represented the growth rate Γ/ωp as a function of kc/ωp using the fully kinetic
dispersion relation using the standard (2.20) for a purely transverse WI in solid line,
while the fluid dispersion relation, taking into account the pressure tensor dynamics,
is plotted in the dashed line (which corresponds to (2.15). Both kinetic and fluid
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FIGURE 2. Time evolution, on a logarithmic scale, of the magnetic energy εm,z, of the
electrostatic part εe,x and the electric contribution εe,y of the electromagnetic energy. We
observe that εm,z and εe,y grow at the same rate but εe,y breaks down at saturation
indicating that εm,z has a magnetostatic nature. The growth rate of the electrostatic part
εe,x is twice. The results shown here have been obtained from the 2D2V Vlasov solver.

models overestimate the growth rate. A detailed calculation shows indeed that there
is a coupling with the electrostatic field component, as indicated by (2.35). Thus
choosing a short length of the system allows us to excite the most unstable mode
on the fundamental mode with an expected growth rate of Γmax/ωp ' 0.24 (the other
harmonics may also occur since their growth rates are not negligible).

The different energy components, as a function of time, are plotted in figure 2
in a logarithmic scale. We observe that the electric field energy εe,y also grows, at
the same growth rate in comparison to the magnetic energy εm,z, but its amplitude
remains very small when compared to the longitudinal electrostatic part εe,x. In the
one-dimensional case, Ey has a purely electromagnetic contribution, while the nature
of the longitudinal Ex counterpart is electrostatic. While both Ey and Bz components
of the electromagnetic field exhibit the same linear growth rate close to Γnum/ωp '
0.192, the electrostatic part increases at a growth rate approximately twice as fast
(dEy/dt)Ey∼ 2Γnum' 0.384 in its linear stage, followed by fast oscillations close to a
frequency of ω∼ 1.18ωp. However, it is interesting to note that the amplitude of the
electrostatic energy εe,x, although weak in comparison to the magnetic one, is higher
than εe,y.

In many aspects, the numerical results presented here confirm the key role played
by two processes: the magnetic trapping and the electrostatic activity. The magnetic
trapping is shown to produce a topologically symmetric structure of the distribution
function in the form of a rotating magnetic vortex, on the mode k0, and located in
the region of momentum of small density coupled with an electrostatic structure, on
a mode twice of k0, located on the bulk of the distribution.

Furthermore a critical role in the complex interaction between magnetic trapping
structures and plasma is expected to be played by the presence of an electrostatic
activity. However without perturbation, the plasma is strictly homogeneous in y and
the two-dimensional simulation afforded by the Vlasov–Maxwell code gives the same
results than those obtained in a one-dimensional treatment. We have just verified
that no oblique mode was excited when a small perturbation in the direction y
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was introduced, a coupling which is in principle possible for a strong anisotropy in
temperature or in the strong relativistic regime of the interaction, but which is not
relevant in the considered case here.

In three-dimensional (3D) systems, the multi-stream model cannot be applied (since
it is not possible to find a ‘lacking’ variable and then a corresponding canonical
invariant). However the fluid approach including the pressure tensor dynamics is
still possible, showing that such an analysis is particularly relevant in 3D systems,
provided that the closure condition is known. The multi-stream model can play a
major role in this case, even in a reduced geometry, to test the validity of the closure
condition.

Let us consider now a population of magnetically trapped particles, located at a
specific value of py. Although they are a minority in number, these trapped particles
of the ‘stream py’ contribute significantly to the saturation process. They experience
a bounce motion with a frequency given by

ωb

ωp
=
√

k0c
ωp

py

mc
eBz,max

mωp
. (3.4)

However the situation is somewhat different in the bulk of the distribution since py∼ 0
and thus the magnetic bounce frequency tends to zero in (3.4). As a consequence,
there is a change in the nature of the electron dynamics in the bulk of the plasma.
Now the longitudinal electric field can be driven nonlinearly by charge effects (the
plasma exhibiting inhomogeneous trapping structures) and it is the self-consistent field
that can accelerate individual particles, as can be seen in figure 3 at time tωp = 75.
Note the presence of the dominant mode 2k0 at the saturation time tωp ' 56.25.

Secondly, as revealed by global 1D2V Vlasov simulation in Ghizzo (2013b) (see
figure 1) and in the papers of Palodhi, Califano & Pegoraro (2009, 2010), the isolated
‘streams’ can be formed in an asymmetric way in space, but located respectively in
positive and negative values of py. This results in the well-known Y-shape of the
distribution in the x–py phase space. An example of such behaviour is reproduced in
figure 4 using the 2D2V Vlasov simulation. The numerical results of the nonlinear
Vlasov simulation not only show that the saturation is governed by strong magnetic
trapping, as expected, but evidence that the concept of ‘stream’ is important in WI.
As already indicated in Lemons, Winske & Gary (1979), Innocenti et al. (2011)
and Inglebert et al. (2012), these particle streams are connected to the property of
invariance of the canonical momentum in the perpendicular direction and allow to
provide a physical picture of WI.

A question remaining to be answered is the role played by the electrostatic
fluctuations at the saturation of WI. It is not yet clear whether the ‘isolated stream’
observed for large values of py is stable or whether several streams are excited (see
the asymptotic state in figure 4 at time tωp = 150). At the moment the electrostatic
field energy is thought to occur in the self-reorganization of the magnetic field in
term of an inverse-type cascade process or in the occurring of a secondary instability,
such as the two-stream process invoked by Kaang, Ryv & Yoon (2009), Innocenti
et al. (2011). The latter however is a scenario we cannot take into account here
since a single mode dominates throughout the simulation. However the observed
fluctuations of the electrostatic field can provide the necessary seed for the growth of
the secondary instabilities.
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FIGURE 3. Phase-space representation in the x–px plane. Results of a simulation
performed by the 2D2V semi-Lagrangian (SL) Vlasov solver. The plots have been
obtained by integrating the distribution over the py and y variables.

3.2. Comparison with 1D2V full kinetic Vlasov–Maxwell simulations
The assumption of translation invariance along y (y being a lacking variable) is
necessary to build the multi-stream model since it is a reformulation of the invariance
property of the canonical momentum in the y direction. We observe in figure 5, where
we have plotted the electron density in space, that perturbations in y maintain a very
weak amplitude, indicating that the plasma behaves almost as a one-dimensional
system. Thus we can explore this regime of WI directly by using a 1D2V version of
the code.

We performed a second simulation using now the 1D2V version of the code
with the same physical (and numerical) parameters as those used in the 2D2V case,
except this time we chose to increase the resolution in the momentum space up to
Npx Npy = 2572. Numerical comparison is shown in figures 6 and 7. While figure 6
shows the time evolution of the magnetic energy εm,z for the 2D2V numerical
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FIGURE 4. Phase-space representation in the x–py plane. Results obtained from a
simulation performed by the 2D2V SL Vlasov solver. The plots have been obtained by
integrating the distribution over the px and y variables.

experiment (on thick line) and the 1D2V case (on thin line) superimposed on
the same plot. The electrostatic component εe,x of the electric energy is shown
in figure 7 (again the corresponding results obtained from the 2D2V and 1D2V
versions are shown respectively on thick and thin lines). Compared to the 2D case,
the magnetic and (longitudinal) electric components energies exhibit an identical
behaviour though with a small shift in time. It must be pointed out that the oscillating
behaviour of both energies, after the saturation of WI, is clearly recovered by both
models. Indeed we may estimate the magnetic bounce frequency ωb to be close
to ωb ' 0.284ωp by considering the first two successive peaks in the temporal
evolution of the magnetic energy. From the analytic expression (3.4), choosing
k0c/ωp = 1.75, eBz,max/mωp ' 0.12, a typical value of the maximum of the magnetic
field after saturation, we obtain, for the perpendicular momentum of the stream of
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FIGURE 5. Electron density representation in the x–y plane, obtained from the 2D2V SL
Vlasov solver. Electron density fluctuations remain weak in y indicating that the plasma
behaves as a one-dimensional system.

trapped particles, py ∼ 0.2842/(1.75 × 0.12) ∼ 0.38mc, which is close to the thermal
momentum may = 0.312mc.

The help of the high resolution phase space diagnostics and the high accuracy
afforded by the semi-Lagrangian solver, allow us to give a physical picture of the
saturation of WI. To illustrate the process, figures 8–10 show the representation of
the distribution function of f̃ (x, px), f̃ (x, py) and the corresponding distribution of the
‘beam’ located at py = 2may. Here f̃ (x, px) and f̃ (x, py) have been averaged over py

and px respectively. The time evolution of these quantities corresponds to half of the
magnetic bounce period τbωp ' 11.20. As first discussed in Palodhi et al. (2010), the
electrostatic mode is excited by the deformation of the distribution function due to
the differential rotation (rotation depending on py) of magnetically trapped electrons
in phase space as can be seen in figure 10.
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FIGURE 6. Time evolution of the magnetic energy εm,z, along the z direction, obtained
from the 2D2V Vlasov solver on thick line. The result obtained from a 1D2V simulation,
shown in thin line, has been superimposed on the plot; showing the same temporal
behaviour.

FIGURE 7. Continuing results of figure 6, the time evolution of the electrostatic energy
εe,x obtained from both models: 2D2V on thick line and 1D2V on thin line, superimposed
on the plot, showing that fast oscillations are recovered.

The growth of the magnetic field Bz is first accompanied by the growth of Ex.
However when Bz reaches its maximum (represented by arrows in figures 8 and 9),
the electrostatic field breaks down. Furthermore the oscillating behaviour of εe,x is
characterized, after saturation, by the beating of two frequencies 2ωb (twice of ωb
since we consider the electrostatic energy) with its harmonics 4ωb, as indicated on
top panel in figure 7.

Figures 8 and 9 show the dynamics of the plasma during the first magnetic bounce
period. Figure 8(a), at time tωp= 60 corresponds to the maximum of εe,x, figure 8(b),
at time tωp= 63.75, is plotted when εe,x tends to zero. Finally figure 8(c) corresponds
to the occurrence of the second peak in the plot of the electrostatic energy. One point
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(a)

(b)

(c)

FIGURE 8. Phase-space representation of the averaged distribution function f̃ (x, px)
afforded by the Vlasov solver in its 1D2V version. The region of high intensity of the
magnetic field are indicated by arrows.

is especially significant here. The magnetic trapping structure exhibits a dominant
mode k0. Particles are steadily accelerated due to the rotation and the resulting rotating
arms, observed in the stream of trapped particles at py = 2may in figure 10, give rise
to the advection motion of plasma observed in figure 9. While the distribution in x–px

(a) exhibits an asymmetry near the region of high magnetic field, such asymmetry has
disappeared at time tωp=63.8, leading to the formation of a ‘bump’ in the distribution.
During this cycle, when the magnetic field energy grows again at time tωp = 75, the
electrostatic energy increases also and a particle acceleration takes place in region
where Bz tends to zero, as can be seen in figure 11, where thin filaments of fast
electrons are formed.
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(a)

(b)

(c)

FIGURE 9. Corresponding representation of the distribution function in the x–py plane,
the function being integrated over px. Results are obtained from the 1D2V version of
the Vlasov–Maxwell solver. The distribution exhibits the well-known Y-shape linked to
magnetic trapping.

4. Simulations based on the multi-stream model

To further investigate the central role played by ‘particle streams’ observed in full
kinetic Vlasov simulations, we now focus on numerical experiments afforded with the
reduced multi-stream code. The use of the canonical invariants allows us to find out
a broad class of exact solutions of the Vlasov–Maxwell system. In the full kinetic
description, introduced in previous sections, an accurate description of streams of high
velocity (and therefore of very low densities) becomes difficult from a numerical point
of view. In the 1D2V Vlasov code, although noise and accuracy are not severe limits,
the resolution in momentum in the py direction, required for an accurate description
of streams of very weak densities can impose a severe computation burden from a
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(a)

(b)

(c)

FIGURE 10. Phase-space plots of the 3-D distribution function located in the queue of the
distribution in py at py ' 2may, ay being the thermal velocity. We observe the formation
of a vortex driven by the magnetic trapping.

computational point of view. The situation is probably worsened in Particles-In-Cell
(PIC) codes, due to their inherent numerical noise. An alternative is then to consider
the multi-stream approach. To show the possibilities of this reduced kinetic model,
we choose to start with the case of only three streams (or equivalently with N = 1).
Numerical simulations using the multi-stream code have been performed using
k0c/ωp = 1.75 and the same temperature anisotropy of Tx = 1 keV and Ty = 50 keV.
We have used here a phase space sampling of NxNpx = 257 × 513. We have also
introduced a small perturbation in the magnetic field in the form δBz=B0 sin k0x. The
initial condition, for the distribution function, corresponds here to

F(x, px, py, t= 0)=
+1∑

j=−1

αjFMax(px)δ(py −Cj)(1+ ε cos(2k0x)). (4.1)

Here FMax(px) is the standard Maxwellian distribution in px. The amplitudes of
perturbation are eB0/mωp = 10−5 and ε = 10−4. Together with the central stream

https://doi.org/10.1017/S0022377816001215 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001215


Vlasov models for kinetic Weibel-type instabilities 23

FIGURE 11. Continuing the plot of f̃ (x, px) showed in figure 8 when the particle
acceleration takes place leading to the formation of thin filaments. Results obtained from
the 1D2V Vlasov solver.

located at C0 = 0 and of density α0 = 2/3, we have introduced two other streams at
C1 =

√
3mc and C−1 =−C1 (with equal densities of α1 = α−1 = 1/6) using the strict

equivalence of the models in the sense of moments (see (2.43) and (2.44) in § 2).
Figure 12(a) exhibits the corresponding time evolution of the magnetic energy. In

figure 12(b), we have plotted the same quantity in a logarithmic scale.
Due to the exact treatment of invariants and the noiseless character of the

semi-Lagrangian approach, our multi-stream model can give important insights into
the understanding of kinetic processes arising in the full kinetic Vlasov simulations.
In the initial stage of the Weibel instability, the kinetic energy is transferred to the
magnetic field. The coupling with the longitudinal electric field is here induced at the
beginning of the interaction by weak relativistic effects and the resulting asymmetry
in the transverse momentum direction. However part of the energy stored in the
electromagnetic field is also transferred back to the stream particles leading to a
strong heating of the population of trapped particles, which increases the asymmetry.
Thus the bunch of particles (of a given stream) become trapped by the combined
action of a weak electric potential and the magnetic field. The magnetic bounce
frequency is clearly present in figure 12 (or in figure 16 later). Because several
bunches of such magnetically trapped particles can involve phase mixing, the bounce
frequency is less pronounced in figure 6 than in figure 12.

As expected, we observe the expected linear phase for 0 6 tωp 6 60) in which the
magnetic field energy grows exponentially in time with a numerical growth rate of
2Γnum/ωp' 0.39 (the corresponding growth rate of the magnetic being half this value
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(a)

(b)

FIGURE 12. (a) The magnetic energy εm,z versus time, using the multi-stream model with
only three streams. (b) The same data in a logarithmic scale versus time, exhibiting an
exponential growth in the linear step before saturation.

i.e. Γnum/ωp' 0.195), followed by the nonlinear saturation stage with the characteristic
oscillation in time at the magnetic bounce frequency ωb'0.38ωp plus a weak damping
of oscillations till saturation. The linear phase of WI can be recovered using only
three streams, a remarkable result, although the numerical value of ωb is found to be
somewhat too high in comparison to the expected value obtained in Ghizzo (2013a)
(part II) reproduced below (in the non-relativistic case):

ωb

ωp
=
√√√√k0c
ωp

+1∑
j=−1

αjCj

mc
eBz,max

mωp
. (4.2)

Using k0c/ωp= 1.75, the different previous parameters of the streams and a maximum
value of the magnetic field of eBz,max/mωp ' 0.12 (a typical value observed in
simulation), we obtain using (4.2) an estimation of ωb ' 0.348ωp for the mean
bounce frequency. In figure 13 we show the global distribution function

∑+1
j=−1 fj in

phase space at two different times of during the beginning of the saturation. We see
clearly the formation of thin filaments of accelerated electrons, a process similar to
that observed in figure 11.

To explore the physics of the multi-stream model, we increase now the number
streams to five (i.e. N = 2). The physical parameters of streams are Cj = jmay,
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FIGURE 13. The x − px representation of the global distribution built from the three
different streams described by the distributions f−1, f1 and f0. We see clearly the formation
of thin filaments linked to the particle acceleration process for particles of distributions
f±1(x, px, t).

for |j| 6 2; α0 = 1/2, α1 = α−1 = 1/6 and α2 = α−2 = 1/12. Figure 14 shows the
corresponding results, equivalent to those of figure 13. We see now the occurring
of two different processes of acceleration leading to the formation of decoupled
filaments, which get thinner as time goes on. Details of the central region are also
shown here. In the nonlinear phase, each stream with a large value of px is subject to
the same acceleration mechanism. This scenario is confirmed by figure 15 where we
have plotted the mean distribution F(px)=

∫
(dx/Lx)

∑+2
j=−2 fj(x, px, t) at two different

times tωp = 30 and tωp = 60, which exhibits clearly the two different populations of
high energies in the global heating process of WI in the longitudinal px direction.

Figure 16 shows the corresponding time evolution of the magnetic energy
εm,z obtained in the case of five streams. While the magnetic energy increases
exponentially with the same growth rate Γnum/ωp' 0.4, its amplitude reaches a value
smaller in comparison with the full kinetic code. After saturation, the energy oscillates
for a few cycles, decreases in amplitude and the numerical bounce frequencies is
close to ωb ' 0.28ωp, while (4.2) gives ωb = 0.21ωp.

Thanks to the possibility of separating the dynamics of the two streams, the model
provides the opportunity of more accurate picture of the instability with respect to
the full kinetic modelling. The last example we present are the results obtained with
a simulation performed with 2N + 1 = 7 (seven streams). In figure 17 we focus on
the streams’ distribution located at Cj = 2may obtained in both codes, at the same
time of tωp = 67.5. While in figure 17(a) the distribution of trapped electrons has
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FIGURE 14. x–px phase space for the global distribution function
∑+2

j=−2 fj(x, px, t), at two
different times, obtained from the multi-stream model using now five streams located on
Cj= jmay. We see the occurring of two filaments for px > 0, each filament being associated
with a given stream.

been obtained in the case of the 1D2V Vlasov code, figure 17(b,c) correspond to the
case of the multi-stream model using 2N + 1 = 5 and 2N + 1 = 7 respectively. We
observe the formation of the rotating trapping structure in the x–px phase space and
the appearance of ‘arms’. The results obtained with the multi-stream model for 2N +
1 = 5 and with 2N + 1 = 7 are very similar. Figure 17 shows that the dynamics is
correctly described by the reduced model where only a small number of symmetrical
streams is considered. Although the number of streams is restricted, these streams are
however described with a high level of accuracy allowing to recover the dynamics
of trapped particles. By selecting appropriate initial particle ‘stream’, depending on
the problem of interest, the phase space trapping vortices can be thus isolated and
examined in detail. Figure 18 shows the dynamics of the last stream located at C3 =
3may, obtained from the multi-stream model using now seven streams (the streams
being initially put on values Cj= jmay with densities αj determined with a Maxwellian
weight).

The idea to highlight such magnetic trapping structures was already be considered
by Innocenti et al. (2011) using PIC simulations. In the semi-Lagrangian model,
the code is accurate enough to exhibit locally such trapping structures without any
smoothing technique. Furthermore the size of such magnetic vortices depends on their
location in the py momentum space, thus any type of average on py can smooth the
information. For that reason we have adopted here to just observe, in a first step, the
occurring of the magnetic trapping structures in global Vlasov–Maxwell simulations.

https://doi.org/10.1017/S0022377816001215 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001215


Vlasov models for kinetic Weibel-type instabilities 27

FIGURE 15. The corresponding plot of the mean distribution F(px) integrated data of∑
j fj(x,px, t) over the x variable, at two times, showing that each stream is associated with

a (local) longitudinal ‘heating’ process. The results have been obtained from the multi-
stream model with five streams (2N + 1= 5).

FIGURE 16. Magnetic energy εm,z versus time obtained from the multi-stream model in
the case of five streams (2N + 1= 5).

Owing to the very good resolution in phase space afforded by the semi-Lagrangian
scheme, one can begin to understand the wave–particle interaction in greater details.
Again the dynamics of the selected particle stream is driven by the self-reorganization
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(a)

(b)

(c)

FIGURE 17. x–px phase-space representation of the particle stream located at the
momentum value of py = 2may (ay being the thermal velocity in py corresponding
to a temperature of Ty = 50 keV) and obtained from different models: (a), the full
kinetic 1D2V Vlasov–Maxwell solver, (b), a view of the same particle stream from
the multi-stream model with five streams, (c), the last case with seven streams. In
both simulations, the formation of the rotating magnetic structure, with thin ‘arms’ are
recovered. However note that the global form is somewhat different in the multi-stream
approach.

of the magnetic field component Bz in term of magnetic trapping. This process is
clearly visible in figure 18. We see that rotating filaments get thinner due to several
rotations of the central trapping structure. Furthermore the distribution exhibits also a
weak modulation on the mode 2k0 as a result of the presence of the Lorentz force.
At time tωp = 60, one sees the beginning of the formation of the magnetic trapping
structure, which remains till the end of the simulation, strengthening the conjecture of
a quasi-stationary solution in the asymptotic limit.

Our investigation reveals that it is the magnetic trapping which is here the dominant
mechanism of saturation, although the longitudinal electric field energy is not null
but nevertheless remains at a very low level. It is the perpendicular component of
the kinetic energy (located in particle ‘streams’) which is transferred to the magnetic
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FIGURE 18. x–px phase-space representation of the particle stream, of very low density,
initially located at py = C3 = 3may, at different times during the evolution. After several
rotations, a weak modulation on the mode 2k0 is also occurring linked to the growth of
the Lorentz force. Note also the occurrence of a phase-space mixing, at time tωp = 150,
due to the rotation of ‘arms’. This simulation has been carried out with the multi-stream
model with seven streams.

field and into the longitudinal direction in momentum (giving rise to a longitudinal
plasma heating). Thus the distribution function with the initial temperature anisotropy
becomes unstable to WI whose consequence is to reduce the initial anisotropy.
Figure 19 shows the two quantities T⊥ (a) and T‖ (b) determined as follows:

T⊥
mc2
=
+N∑

j=−N

C2
j

m2c2

∫∫
fj

γj
dpx dpy and

T‖
mc2
=
+N∑

j=−N

∫∫
p2

x

m2c2

fj

γj
dpx dpy. (4.3a,b)

Results shown in figure 19 have been obtained from a simulation performed by
the multi-stream code with five streams. We observe that T‖ follows the temporal
evolution of the magnetic energy shown in figure 16. A closer look at the dynamics
of the ‘streams’ reveals an even richer, but also more puzzling picture. The first
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(a)

(b)

FIGURE 19. (a) The evolution of kBT⊥/mc2 versus time while the normalized parallel
temperature kBT‖/mc2 is plotted in (b) (kB was omitted in the notation). We observe clearly
that T‖ follows the time evolution of the magnetic energy εm,z, plotted in figure 16. Results
were obtained from the multi-stream model with five streams.

striking feature is the occurring of a dephasing between the streams j and −j of type
f−j(x, px, t)= fj(x+ Lx/2, px, t) a feature observed in all simulations, even in the 2D
full kinetic model. This implies that the quantity ρj(x, t) defined in (2.27) verifies
also the condition ρ−j(x, t)= ρj(x+ Lx/2, t). It turns out that the total current Jy can
be written in the following form, by separating the different contributions of j:

Jy(x, t) =
−1∑

j=−N

Jy,j(x, t)+ Jy,0(x, t)+
+N∑
j=1

Jy,j(x, t)

=
N∑

j=1

e
m
(−Cj − eAy(x, t))ρ−j(x, t)+ Jy,0(x, t)

+
+N∑
j=1

e
m
(Cj − eAy(x, t))ρj(x, t). (4.4)

If one assumes that C−j =−Cj; eAy� Cj and that Jy,0 tends to zero, we see clearly
that, it is this breaking in symmetry of type f−j(x, px, t)= fj(x+ Lx/2, px, t) that allows
the generation of a non-zero current density between the components Jy,j and Jy,−j.
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Indeed a symmetry of type ρ−j(x, t)= ρj(x, t) might lead to a zero contribution when
Ay is negligible, i.e. at the beginning of the simulation, forbidding the start-up of the
instability because the initial seed is not present. In addition since particles of the
central stream experience a quasi-zero magnetic trapping (because C0= 0), we expect
that the dominant mode is the one driven by the Lorentz force which leads then to
the excitation of the electrostatic field and to the modulation on the mode 2k0.

By developing the term (Cj − eAy)
2 we find, without difficulty, that the dominant

term is −2eAy(x, t)Cj for all streams Cj with Cj 6= 0, while for the central stream,
assuming that C0 = 0, it is the Lorentz force ∼e2∂x(A2

y) that becomes dominant,
leading to the growth of the mode 2k0 by nonlinear effects. This situation is naturally
encountered in regions of the bulk of the distribution in full kinetic simulations or
in the central stream dynamics for the multi-stream model. Although the Ex field
is much weaker in intensity when compared with the Bz component, its presence
might nevertheless be very important, since it could accelerate particle to high energy
through the growth of a plasma wave or drive secondary instabilities, a mechanism
important in the relativistic regime.

Figure 20 shows the advection motion of fast electrons in phase space, associated
with the formation of thin filaments. The simulation was carried out with the 1D2V
Vlasov solver. The initial ‘stream’ population was chosen at py = 0.50may, an
intermediate position, a chosen value for which this set of parameter corresponds
to the coupling between the two physical mechanisms present in the system: the
vortex rotation induced by the magnetostatic field Bz (the Ey contribution usually
has disappeared at that time) and the weak acceleration of electrons driven by the
electrostatic component Ex.

In the case of the multi-stream model, we have recovered that a small fraction of
the magnetic energy is also converted in the electrostatic field. The diagnostics in
phase space shows, as evidenced in figure 21, that particles of the central stream
(with C0 = 0) are accelerated in region of the X-point where the magnetic field Bz

(or equivalently Ay) tends to zero. Due to the combined action of the Lorentz force,
the resulting coupling between the electric potential on mode 2k0 and the magnetic
trapping on mode k0 seems to be the dominant process at saturation in the bulk of
the plasma.

It is clear in figure 2 that the magnetic energy is the dominant part in comparison
with the longitudinal electric part. What shows the multi-stream model is that the
‘particle stream’ of the high canonical momentum experiences a strong magnetic
trapping in comparison to the ‘central’ stream. However for larger systems or if
the dominant mode differs from k0, a reorganization of the plasma can be observed,
even in presence of a weak electrostatic activity. Thus it has been observed by
Ghizzo (2013b), that a self-reorganization of the plasma begins at saturation with a
symmetry-breaking instability of pairwise merging of phase space vortices, where the
plasma adjusts itself in wavenumber to give a stable state dominated now by trapping
of mixed magnetic and electrostatic nature.

5. Conclusion

The multi-stream model appears to be an interesting alternative to the usual Vlasov
kinetic description of the Weibel instability, driven by a temperature anisotropy. After
recovering the key mechanisms in the saturation regime of WI and making the
connection with the dynamics of ‘isolated’ streams, it is a natural question to ask
whether the features of WI can be recovered by using a small number of streams.
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FIGURE 20. Phase-space representation of a given particle population ‘bunch’, initially
located at the momentum value of py = 0.5may, an intermediate position, for which the
coupling with the Lorentz force takes place and leads to the advection motion of fast
particles. Results presented here have been obtained from the 1D2V version of the Vlasov
code.

The results of our investigation, based on both analytic treatment and numerical
experiments, reveal that not only three streams are sufficient to reproduce the linear
growth rate of WI, but also that a new physical insight may be allowed in the
nonlinear regime by the model with at least five streams.

What emerges from the theoretical analysis and also from numerical investigations
is the direct action on particle dynamics, of interaction between streams. An
interesting consequence is the presence of a symmetry breaking leading to a dephasing
of the fields allowing us to explain the well-known Y-shape form of the plasma
distribution in py leading to the start-up of the instability.

One of the major merits of reduced models such as the multi-stream model
or the fluid description with inclusion of the full pressure tensor dynamics is to
provide a comprehensive understanding of the magnetic field generation and its
feedback mechanism on the electrostatic field generation, usually implicated into the
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FIGURE 21. Behaviour of the central stream with C0 = 0 in the x–px phase space from
the multi-stream model with five streams. We observe the importance of the mode 2k0 as
already shown in figure 20 in the case of the full kinetic 1D2V Vlasov code.

self-reorganization of the magnetic field in term of inverse-cascade (magnetic vortex
coalescence) already observed in PIC or Vlasov simulation.

The philosophy used in the multi-stream model is reminiscent of the reduction
procedure met in Hamiltonian theory or in particular of the multiple water-bag model
in which the choice of special conditions allows us to reduce the full kinetic Vlasov
equation into a set of hydrodynamical equations. Certainly, the study of realistic
problems for instance, would require more sophisticated models. In particular,
one would want to investigate three-dimensional geometries, endowed with more
complicated topological properties (without translation invariance for instance). In that
case the multi-stream model must be ruled out, since it would imply the translation
invariance

Although this will be the object of further work, we remark that these first results
may provide an interesting basis for a quantitative comparison between both kinds
of reduced models – the multi-stream model and the fluid description including
the pressure tensor dynamics – still missing despite these two models are largely
regarded as complementary in the physical description of collisionless plasmas due
to the respective kinetic and fluid nature.
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