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STRICT TOPOLOGIES FOR VECTOR-VALUED 
FUNCTIONS 

ROBERT A. FONTENOT 

This paper is motivated by work in two fields, the theory of strict topologies 
and topological measure theory. In [1], R. C. Buck began the study of the 
strict topology for the algebra C*(S) of continuous, bounded real-valued 
functions on a locally compact Hausdorff space S and showed that the topologi­
cal vector space C* (S) with the strict topology has many of the same topologi­
cal vector space properties as C0(S), the sup norm algebra of continuous real-
valued functions vanishing at infinity. Buck showed that as a class, the algebras 
C*(S) for 5 locally compact and C*(X), for X compact, were very much alike. 
Many papers on the strict topology for C*(5), where 5 is locally compact, 
followed Buck's; e.g., see [2; 3]. In [22], J. Wells extended some of Buck's 
work to C*(5 : E), the bounded, continuous functions from the locally compact 
space 5 into the locally convex space E. Buck's work was then generalized to 
the case where X is completely regular (for scalar-valued functions); e.g., see 
[5; 6; 17; 18; 20]. 

In [5] newly defined ''strict" topologies were shown to be connected with 
the field of topological measure theory. One of the classic papers in topological 
measure theory is [21]. Many papers followed Varadarajan's, in an attempt 
to answer questions raised in [21]; e.g. see [8-13]. 

In [5] and [17] it is shown that functional analytic, measure theoretic, and 
order theoretic techniques can, with skillful blending, lead to a deeper under­
standing of both topological measure theory and strict topologies. The author's 
work arose as the result of attempts to generalize topological measure theory to 
vector-valued measures and to extend the notion of strict topology to the spaces 
C* (X : E) where X is completely regular and E is a normed linear space. Some 
of the most interesting results, in the author's opinion, are 2.3, 3.2, 3.7, 3.12, 
and 3.13. 

1. Prel iminar ies . We first need to develop some measure theory. A good 
reference for this is [21]. Let X denote a completely regular topological space. 
The Baire algebra of X, denoted Ba* (X) is the smallest algebra of subsets of X 
containing the zero-sets of functions in C*(X). We use Ba(X) to denote the 
smallest o--algebra containing the zero-sets. In this paper, C*(X) always means 
bounded real-valued continuous functions and all linear spaces considered are 
real linear spaces. A positive Baire measure ju on X is a finite, non-negative real 
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valued, finitely-additive set function on Ba*(X) so that A G Ba*(X) => JJL(A) = 
sup \n(Z) : Z Ç i , Z a zero set of X). A Baire measure is the difference of two 
positive Baire measures. The collection of all Baire measures and positive Baire 
measures are denoted M(X) and M+(X) respectively. If m is a Baire measure, 
the set functions m+ (A) = sup {m(B) : B Ç A, B G B*(X)), îor A G •#«*(*), 
and m-(A) = - inf {m(B) : B G £ a*(X) and B Ç 4 } , for ^ G £ / ( X ) , are 
elements of M+(X) and m = m+ — m~. Let |m| = m+ + ra. Then |m| G i f + (X) 
and is called the absolute value of the Baire measure m. M(X) with the norm 
| | w | | = rn+{X) + m~(X) is a Banach space. There is an equivalent definition 
of M{X) that is sometimes useful. Let m b e a finitely-additive set function on 
Ba*(X). Then m G M(X) if and only if (1) \m{A)\ ^ C for some C > 0 and 
all A G £«*PO and (2) for any A G Ba*(X) and e > 0, there is a zero-set 
Z Ç A so that |w(£) | < e for all 5 C 4 \ Z . 

The Banach adjoint C*(X)' of C*(X) can be identified with M(X). If 
$ G C*(X)', there is a unique Baire measure m G M(X) such that $ ( f ) = 
Jfdm fo r / G C*(X). Conversely, if $ is defined by the preceding formula for 
m G M(X), then $ G C*(X)'. Furthermore, | | $ | | = \\m\\. The correspon­
dence is a vector space homomorphism and preserves order, that is, $ is a 
positive linear functional ( 3 > ( f ) ^ 0 f o r / ^ 0 i n C*(X)) if and only if m G 
M+(X) [21, Theorem 6]). 

We shall be particularly interested in three classes of measures on X. A Baire 
measure m is said to be a-additive if m(Zn) —» 0 for every sequence [Zn)n=i of 
zero-sets of X such that Zn+1 C Zw for all w and H"=i^n = <£ (we denote this 
by Zn l <f>). A measure m G M(X) is called r-additive if m(Za) ~> 0 for every 
net {Z«j of zero-sets of X such that Z« Ç Z^ for a ^ /3 and Pia^« = 0 (we 
denote this by Za j <£). The measure m G M(X) is called %A£ if for every 
e > 0, there exists a compact set i£e ^ X so that |m|*(X\i£e) < e, where for 
E Ç X , 

|m|*(£) = sup j |w|(Z) : Z is a zero-set of X and Z C £ J , 

If $ G C*(X)', <£ is called a-additive if 3>(fw)—»0 for every sequence 
{ in)n=\ in C*(X) such that fn+1 g /w for all w and /w —> 0 pointwise on X (we 
denote this hyfn [ 0). The functional $ G C*(X)' is called r-additive if $ ( f«) —> 
0 for every net { fa} Ç C*(X) such that/« ^ /^ for a ^ /3 and/ a —> 0 pointwise 
on X (we denote this by/« | 0). Finally, $ G C*(X)' is called tight if $( fa) -> 0 
for every net { f«j contained in the unit ball of C*(X) such that /« —> 0 uni­
formly on compact subsets of X. 

In [21], it is shown that if $ G C*(X)' and m G M(X) such that $ ( f ) = 
jfdm, then <I> is cr-additive (r-additive, tight) if and only if m is o--additive 
(r-additive, tight). Identifying functional and the corresponding Baire mea­
sures, we denote the class of o--additive, r-additive, and tight functionals 
((r-additive, r-additive, and tight Baire measures) by Ma(X), MT(X), and 
Mt(X), respectively. Note that Mt(X) C MT(X) C Ma(X). 

One of the big problems of topological measure theory is to determine when 
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MT(X) = M„(X). This problem is first mentioned in [21] and has been 
s tudied by many authors . Some good references for the interested reader are 
[5; 8-13; 17; 2 1 ; 23]. 

F . D. Sentilles and others have extended Buck's strict topology fi [1] to C*(X) 
for X completely regular (instead of the more restrictive requirement t ha t X 
be locally compac t ) ; a partial list of references is [5; 6; 17; 18; 19; 20]. 

Connections were established between these new "s t r ic t " topologies and 
some aspects of topological measure theory in the work of Sentilles and t ha t of 
Fremlin, Garling and Haydon. We shall describe some of the work of Sentilles 
as we are more familiar with his paper t h a t with t h a t of Fremlin et al. 

T h e topology j30 on C*(X) is defined to be the finest locally convex linear 
topology agreeing with the compact-open topology on norm bounded sets. 
Le t (3X denote the Stone-Cech compactification of X [4] and if / £ C*(X), l e t / 
denote the unique continuous extension of / to &X. For each compact set 
Q C 0X\X, let CQ{X) = { f G C*(X) :f = 0 on Q). Let fiQ be the topology 
on C*(X) defined by the s e m i n o r m s / - > | | /A | | f o r / £ C*(X) and h G CQ(X). 
Let j8 be the intersection of the topologies @Q, where Q varies through all 
compact sets in fiX\X. If we instead allow Q to vary through the zero-sets (of 
continuous functions defined on f$X) contained in /3X\X, the topology is called 
jSi. Let p denote the topology of pointwise convergence on X and C — Op t h a t 
of uniform convergence on compact subsets of X and || || the norm topology 
on C*(X). If T is any topology let C*(X)T denote C*(X) equipped with the 
topology T. 

Sentilles [17] makes a very impor tan t contribution when he calculates the 
adjoint spaces of C*(X) endowed with the topologies /30, fi, /3i. I t is this 
result which allows him to use the interplay between topological measure 
theory techniques and functional analytic techniques to obtain a deeper 
understanding of both topological measure theory and his strict topologies. 
Sentilles shows tha t C*(X)Po' = Mt(X), C*(X)Pl' = MV(X) and C*(X)fi' = 
MT(X) and t ha t Mff(X) = MT(X) if and only if /3i = j8. He also proves many 
other interesting results which we will list as needed. 

In the rest of this paper we extend many of the above mentioned results to 
vector-valued functions. 

In wha t follows E will always denote a real normed linear space (in most of 
the results, if not all of them, E could be any locally convex space, bu t we feel 
t h a t notat ion is made simpler by restricting ourselves to this case). Let X 
denote a completely regular topological space and let C*(X : E) denote the set 
of all bounded continuous functions from X to E. C*(X : E) is a real linear 
space. 

We define the topology 0O on C*(X : E) to be the finest locally convex linear 
topology agreeing with the compact-open topology on norm bounded sets. 
For Q a compact subset of fiX/X, the topology PQ on C* (X : E) is t h a t topology 
defined by the seminorms / —> \\hf ||, where h G CQ(X) and / G C*(X : E). 
Then /Si and 0 are defined as the intersection of topologies £Q, exactly as in the 
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scalar case. If T is a topology, by C*(X : E)T we mean the space C*(X : E) 
with the topology T. 

Note that we may restrict ourselves to nonnegative functions in CQ in 
defining the /3Q seminorms and the resulting topology in j3Q. Also note that if X 
is locally compact, then /3 = /30 and is the topology defined for C*(X : E) by 
Buck in [1] and studied in [22]. That jft0 coincides with Buck's topology in the 
case X is locally compact follows from [18]. 

1.1 Remark. Let W\ denote the topology on C*(X : E) given by the semi-
n o r m s / - ^ \\hf\\ fo r / G C*(X : E) where h is a nonnegative real-valued func­
tion such that {x G X : h(x) è e} is compact for all e > 0. Then j30 = W\. 
Sentilles notes a similar result in the case E is the reals and his proof goes 
through for arbitrary E. See [17, Theorem 2.4]. 

We also need several results of a somewhat different character. Let A be a 
Banach algebra with norm || ||. A Banach space V, with a norm also denoted 
|| ||, is called a left A-module if there is a mapping from AxV into F, whose 
value at the pair (a, Î>) in A X F is denoted a • y, satisfying the conditions 
that a - v is linear in a for fixed v and linear in v for fixed a and (ab) • i; = 
a • (6 • u) for a,b £ A and A G F. The left A -module V is said to be isometric if 
\\a • tt|| g ||a|| \\v\\ for all a G ̂ 4 and v £ V. A net {ea} C 4̂ is an approximate 
identity for .4 if ||ea|| ^ 1 for all a and 

||eaa — all—>0 and \\aea — a\\—-> 0 
a a 

for all a G ̂ 4. Suppose that {ea} is an approximate identity for A and F is a 
left A -module. Then V is called essential (the term is introduced in [15]) if 
\\ea • v — v\\ —> 0 for every v G F. The following theorem holds [7; 15; 24]: 

1.2 THEOREM. Le£ 4̂ &e a Banach algebra having an approximate identity and 
V a Banach space which is an isometric left A-module. Then V is essential if and 
only if for all e > 0 and v G F, there exists a £ A and w G F swc& / t o ||a|| rg 1, 
||i; — w|| < e awd a - w = v. 

2. The strict topologies 0 and 0i for vector-valued functions. As in 
Section 1, let £ be a real normed linear space, X a completely regular space, 
and C*(X : E) denote the real linear space of bounded continuous functions 
from X to E. When no other topology is explicitly mentioned C*(X : E) is 
assumed given the norm topology. We denote the norm dual of C*(X : E) by 
C*(X : E)f. If T is any other topology on C*(X : £ ) , C*(X : E)T

f denotes the 
dual of C*(X : E) with the topology T. 

2.1 Definition. Let $ f C * ( I : £ ) ' . Then <ï> is said to be a-additive if for every 
sequence { /„} C C*(X) such that/w J, 0, $(fng) —> uniformly for g in C*(X : E) 
of norm ^ 1. Similarly, 3> is said to be r-additive if, whenever {/a} is a net in 
C*(X) such that fa j 0, then $(fag) -> 0 uniformly for g in C*(X : E) of 
norm ^ 1. 
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2.2 Remark. The definitions in 2.1 generalize the usual ones. In order to see 
this, we need only show that if 0 G C* (X)f and 0 is a positive linear functional, 
then </> is c-additive (r-additive) in the sense of [21] implies it is c-additive 
(r-additive) in the sense of 2.1. This follows immediately from the Cauchy-
Schwarz inequality for positive linear functional [14, III, p. 187]. 

2.3 THEOREM. Let <t> G C*(X : £ ) ' . Then 
(a) 0 is a-additive if and only if <t> is /3i continuous on C*(X : E) ; 
(b) 4> is r-additive if and only if <j> is /3 continuous on C*(X : E). 

Proof, (a) Suppose that <j> is cr-additive. We wish to show that <j> G 
(C*(X : E)Piy. It clearly suffices to show that <t> G (C*(X : E)^Q)f for an 
arbitrary zero-set Q contained in (3X\X. Let Q be a zero-set of (3X such that 
Q C pX\X. Since Q is a compact G§, CQ(X) has a countable approximate 
identity {hn}n=i satisfying 0 g hn g 1 \/n and 1 — hn I 0 on X. Thus 
*((1 ~ en)g) -> 0 uniformly for g in C*(X : £ ) ' . C*(X : £ ) ' is a left Q ( X ) -
module in a natural way, i.e., if g G CQ(X) and 0 G C*(X : £ ) ' , g • 0(A) = 
<£(gA) for all A G C*(X : E). With this notation we have shown that 
\\en - <f> — <t>\\ —> 0. Thus 

0G W = { £ : £ G C*(X:E)'and \\en-p -p\\-*0}. 

Clearly W is a Banach space and an essential left CQ(X)-module in the lan­
guage of Section 1. By 1.2, if p G W, p = a • q where a G CQ(X) and q £ W. 
Clearly then W C (C*(X : £)/*) ' . Thus $ G (C*X : E ) ^ ) ' for each compact 
zero-set Q C /3X\X; hence 0 G (C*(X : E)Piy. 

Conversely, suppose that <j> is /3i continuous, ||#|| g 1, e > 0, and {fn) C 
C*(Z) such that || fn|| ^ 1 for all n and fn j 0 on X. For / G C*(X), let / 
denote the unique continuous extension of/ to (}X. Let 

Then X is a compact nonempty subset of PX\X and K is a countable inter­
section of zero sets; hence K is a zero-set of (3X. Since 0 G C*(X : E)^ there 
is by 1.2, a function 0 S h g 1 in CK(X) and ^ G C*(X : £ ) ' with ||^|| ^ 2 
so that <t> = h-xfr. Thus | * ( / )| = \$(hf)\ g 2 ||A/ || for a l l / G C*(X : E). Let 
0 = {/G/3X : £ ( / ) < e/2}. Then 0 is open, X Ç O , and j3X\0 is compact. 
Since O C X , there is an integer N so that {/ G PX : fn(t) ^ e/2} Ç O for 
7z è N. Then if g G C*(Z : E) and ||g|| g 1, 

l*( /^) l ^ 2 | | A / r f | | g2HV. l l < 6 

for n > N. Hence <t>(fng) —* 0 uniformly for g of norm g 1 in C*(X : E), i.e., 
0 is (j-additive. 

(b) The proof of this equivalence is similar to that given in (a) and so is 
omitted. 
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3. T h e topo logy fio o n C*(X:E). In this section we characterize the dual 
space C*(X : E)p0', show t h a t C*(X : E)p0 has the approximation proper ty if 
E has the metric approximation proper ty , and give a vector-valued measure 
representat ion for elements of C*(X : E)p0', generalizing a theorem in [22]. 
We also extend 2.3. 

3.1 Definition. Le t F 6 C*(X : £ ) ' . Then F is said to be tight if F(g a) -> 0 
for every net {ga} C C*(X : E ) such t h a t | |ga | | g 1 for all a and g« —> 0 
uniformly on compact subsets of X. 

3.2 T H E O R E M . Let F £ C*(X : E)r. The following statements are equivalent: 
(1) Fe C * ( X : £ W ; 
(2) F is tight; 
(3) The real linear functional T on C*(X) defined for f ^ 0 in C*(X) by the 

equation 

TU) = s u p { | F ( g ) | : | |g(*) | | ûf(x),forallxeX,ge C*(X : E)} 

and extended by linearity to all of C*(X) is tight; 
(4) if e > 0, there exists compact I É Ç I so that if f £ C*(X : E) and 

11/11 ^ 1, thenf = 0 on Ke implies that \F(f)\ < e; 
(5) F(fag) —» 0 uniformly for g £ C*(X : is) 0/ worm fg 1, /o r every net 

{ fa} Q C*(X) such that \\fa\\ ^ 1 for all a and fa —» 0 uniformly on compact 
subsets of X. 

Proof. (1) =» (2). Suppose F is j30 continuous and ga —> 0 uniformly on 
compact subsets of X . Since /30 agrees with the compact-open topology on 
norm bounded subsets of C*(X : E), ga —> 0 (30; hence F(ga) —» 0. 

(2) => (1). Since /50 is defined as the finest locally convex linear topology 
agreeing with the compact-open topology on norm bounded sets a linear 
functional F on C*(X : E) is /30 continuous if and only if its restriction to norm 
bounded subsets of C*(X : E) is continuous in the compact-open topology, 
i.e., if and only if F is t ight. 

( 5 ) ^ ( 3 ) . F o r / è 0 i n C * ( X ) d e f i n e r ( / ) = s u p { | F ( g ) | : | |g(*) | | < ; / ( * ) , 
for x 6 X). We first wan t to show t h a t we can extend T to a real linear func­
tional on C*(X). In order to establish this, all we need to show is t ha t T(f + g) 
= T(f) + r ( g ) , f o r / , g ^ 0 i n C * ( X ) . 

Let he C*(X : E) so t ha t ||A|| ^ / + g. For x £ X such t h a t / ( x ) + g(x) > 
0, define 

* ^ ) = 7 ^ X ^ and fcW=*. 

W / W + g(*0 = 0> l e t *i(*) = h2(x) = 0. Note t h a t hx and /z2 Ç C*(X : E) 
and HAxll ^ / and ||ft2|| g g. T h u s |F(A)| = |F(Ax) + F(h2)\ £T(f) + T(g). 
Taking the supremum over all such functions h, we get T(f + g) ^ T(f ) + 
T(g). For the other inequality, let e > 0 and /*i, A2 G C*(X : £ ) with |..|Ai[| ^ / , 
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I N I ^ g and 0 g F(A0 S TU) ^ F (h) + e/2 and 0 ^ F(A2) g 7 \g) g 
F(A2) + e/2. Then F ( / ) + T(g) £ F (h) + F(h2) + e = / ^ + h2) + e £ 
TU + g) + e. Since e > 0 is arbi t rary we get T ( / ) + T(g) g T ( / + g) . 
Hence T(f + g) = T(f) + T(g) and so T extends to a linear functional on 
C*(X) which is bounded. 

We now show T is tight. Suppose { fa] ÇZ C*(X), | | / a | | ^ 1 for all a, and 
/« —> 0 C — Op. We need to show T(fa) —> 0 so we may assume tha t fa ^ 0 
for all a. 

We first show tha t it suffices to show tha t T(fa
r) —> 0 for all positive r > 1. 

Assume, for simplicity, t ha t | | F | | ^ 1. Then 0 ^ T(f) g | | / | | for all / ^ 0 
in C*(X). From elementary calculus, we get tha t 

0 < sup / - f < 1 - -
o<Kl r 

for r > 1. Hence 0 ^ r ( / a - / a
r ) S | | /« - U\\ S 1 - 1/r for r > 1, and if 

T(U) -> 0 for each r > 1, then T(fa) -> 0. 
I t remains to be shown tha t T(fa

r) —> 0 for each real number r > 1. Fix 
r > 1, let e > 0 and pick a0 such tha t a ^ a0 implies \F(fah)\ < e for all 
h e C*(X : E) such tha t ||A|| g 1. If g G C*(X : £ ) , a ^ a0, and | |g|| ^ / / , 
let ft(x) = g{pc)/fa{x) if /a(x) T^ 0 and h(x) = 0 otherwise. Then \F(g)\ = 
| F ( / « / 0 | < e. Hence T(fa

r) S e for a è a0. Thus r ( / a
r ) -> 0 for each r > 1. 

(1) =» (4). Suppose F is /30 continuous and e > 0. By 1.1, there is a bounded 
nonnegative upper semicontinuous function g which vanishes a t infinity such 
tha t \F(f)\ ^ \\gf\\ for a l l / G C*(X : E). If | | / | | g 1 and / = 0 on Ke = 
{xeX:g(x) è e } , t h e n | ^ ( / ) < e. 

(4) =» (5). Suppose tha t (4) holds and tha t {/«} C C*(X), | | / a | | ^ 1 and 
/« —> 0 C — Op. We want to show tha t F(fag) —* 0 uniformly for g in C* (X : E) 
of norm ^ 1. Clearly, we may assume t h a t / a ^ 0 for all a and t ha t | | F | | ^ 1. 
Let e > 0 and let i£e be the compact subset of X given by (4). Choose a0 so 
t h a t a è «o implies 11 /«11.s:€ < e. Let /za = min { fa, e}. Then if g G C*(X : £ ) 
and ||g|| S 1, | ^ ( / a g — Aag)| < € for a ^ a0 since / a — ha = 0 on Kt. Thus , 
for a ^ a0, 

W«g)l ^ W««)l + l̂ (A«f)l < 2*. 
Hence F(fag) —> 0 uniformly for g in the uni t ball of C*(X : E). 

(3) => (1). Suppose tha t T is t ight. Then , by Sen tilles* result Mt = C*(X)^0
/ 

and 1.1, there exists a bounded nonnegative upper semicontinuous function h 
vanishing a t infinity such tha t | | r ( g ) | | g ||&g|| for all g £ C*(X). Let / e 
C*(X:E). Then | F ( / ) | ^ r ( | | / | | ) ^ | | | | / I | A | | = ||A/||; therefore F is /30 

continuous by 1.1 again. We have shown (2) => (1) => (2) and (1) ==> (4) => 
(5) =» (3) ==» (1), so the proof of 3.2 is complete. 

3.3 Remark. We have the following improvement of 2.3, whose proof is clear 
if we look a t 2.3 along with the proof of (5) => (3) in 3.2 and make the obser­
vat ion tha t (3) => (5) in 3.2 is trivial (although we did not prove 3.2 this way) . 
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3.4 THEOREM. Let F G C*(X : £ ) ' . 

(a) The following are equivalent: (1) F is a-additive; (2) F is 01 continuous; 
(3) i/ r is defined in terms of F as in 3.2, J1 is a-additive. 

(b) The following are equivalent: (l) F is r-additive; (2) F is j3 continuous; 
(3) if r i5 defined in terms of F as in 3.2, 7" is r-additive. 

The next topic we take up is the approximation problem in C*(X : E)$Q 

where we generalize a result in [5]. A topological vector space H is said to have 
the approximation property if the identity operator can be uniformly approxi­
mated by continuous finite-rank operators on all totally bounded subsets of H. 
If H is a normed space and the approximating finite-rank operators can be 
chosen with norms S 1, then H is said to have the metric approximation 
property. The proof of the following lemma is contained in [5, Theorem 10]. 

3.5 LEMMA. Let X be a completely regular space, C a compact subset of X,K a 
compact subset of C*(X)p0 and e > 0. Then there exists a finite partition of unity 
(see 3.6) {gi}"=i on X and points {ct\ 1 ^ i ^ n} in C so that if P is the linear 
operator on C* (X) defined by the equation 

Pf(x) = E ii(x)f(d), 

then P is /30 continuous, \\P\\ ^ 1, P is of finite rank and s\xpX£c\\Pf{x) — f(x)\\ 
< eforf e K. 

3.6 Definition. Let X be a completely regular space and {fa} C C*(X) such 
that 0 ^ fa ^ 1 for each a. The family { fa] is called a partition of unity on X 
if the supports of the fa form a locally finite cover of X and J2f« = 1 on I . 

If there is a covering A of X so that the support of fa is a subset of a for each 
a G A, then { fa\ is called a partition of unity subordinate to A. 

3.7 THEOREM. Let E be a normed linear space with the metric approximation 
property and X a completely regular Hausdorff space. Then C*(X : E)$0 has the 
approximation property. 

Proof. Let e > 0, J a /30-totally bounded subset of C*(X : E) and h a non-
negative bounded upper semicontinuous function on X which vanishes at 
infinity such that \\h\\ ^ 1. Since J is norm bounded, let us assume that J is 
a subset of the unit ball in C*(X : E). 

Let C = {x : h(x) ^ e/2}. Then C is compact. Note that D = 
{ f(x) - f £ J, x £ C} is a totally bounded subset of E. Hence there is a finite 
rank operator T on E, with | | r | | S 1, such that \\T(d) - d\\ < e/2 for all 
d G D. Since T is finite-rank, there is a finite set {̂ ^ : 1 ^ i ^ n) C £ ' and 
a finite set {e* : 1 ^ i ^ ^} Ç E so that ||é^|| ^ 1, 1 ^ i ^ w, and T(e) = 
Z W i W ^ for ^ G £ . Thus 

T(f(x))= £ (*«o/)(*)*, 
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for / G C*(X : E). Since the set {<Pi of:lSi^n,f£J} is a 0O totally 
bounded subset of C*(X), there is, by 3.5, a finite-rank operator P on C*(X) 
with | |P | | ^ 1, such that P is continuous for the f}0 topology on C*(X) and 
such that \\P(<ptof) - (<ptof)\\c < e/2rcfor/ G / and 1 ^ i g w. Further­
more, we may assume P is given by a formula such as that in 3.5. Let S be the 
linear operator on C*(X : E) defined for / G C*(X : E) by the equation 

n 

Sf(x) = £ P(<PiOf)(x)et for all x 6 Z . 

Note that 5 is p0 continuous and of finite rank. In order to compute |[5||, 
we write P more explicitly. As in 3.5, let {gj\l â j = ^} be a partition of 
unity on X and {cy : 1 ^ j ^ m] Q C so that P/(#) = J27=iêj(x)f(cj) f° r all 
/ G C*(X). If/ G C*(X : J3) and x G X, then 

W ri m 

Sf(x) = X) P(<piof)(x)ei= X) Z^ gj(x)((ptof(cj))ei 
i=l i=l j=l 

m / n \ m 

= E «,(*) I Z «>* o/(C,)eJ = £ gj(x)T(f(ct)). 
j=l \ i=l / j=l 

Thus 

| | 5 / ( * ) | | < max | | r ( / ( c , ) ) | | < 11/II 

and so | |5 | | S 1. 
What remains to be shown is that \\h(Sf - f )| | < e for / G Ç, If x G X\C, 

h(x) < e/2 so that 

||*(*)(S/(*) - / ( * ) ) | | < (e/2) ( 2 | | / ||) < € . 

If x G C, then 

| |S / (x ) - / (x ) | | < X) P(<Ptof)(x)ei— X) <PiOf(x)et 

+ ITO(*)) -/<*)!!< | + | = «. 

Thus, if x G C, | | ^ ( x ) ( 5 / - / ) ( x ) | | < e since | | / * | | ^ 1 . Hence | | A ( 5 / - / ) | | < e 
for all / G Q and the proof is complete. 

Our last results in Section 3 have to do with a vector measure representation 
for tight linear functionals on C*(X : E). 

3.8 Definition. Let X be a completely regular space and E a normed linear 
space. By M(X : E') we denote the set of all set functions m defined on 
Ba*(X), with range in E', which satisfy the following two conditions: (a) the 
measure m( • )e, defined for e G E by m( • )e(A) = m(A)(e), A G Ba*(X), 
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belongs to M(X) ; (b) there exists C > 0 so t ha t 

Ê \\m(At)\\ <c 

for every part i t ion of A" into sets At G Ba*(X). Let Ma(X : £')> M t ( X : E ' ) 
and M T ( X : Ef) denote the set of m G Jkf(X : £')> so t ha t for each e £ E, 
m{ • )e G i ¥ , ( X ) , Mt(X), and AfT(X), respectively. 

3.9 PROPOSITION. Let m G Af (X : £ ' ) and ,4 6 Ba*(X). Let 

C n 

\m\(A) = sup \ 5 ^ | |m(^4 *) 11 : {4 *} C f$a* (X) is a partition of A 

Then \m\ G M ( X ) . 1/ w Ç M„(X : E')(Mt(X : £ ' ) ) , ^ ^ M £ ^ a ( X ) 
( M , ( X ) ) . 

Proof. T h e proof of the first assertion is straightforward. 

Suppose t ha t m G M , ( X : E ' ) , A G £ a ( X ) and g G E . From [21, Theorem 
18] there is a unique countably addit ive (regular) measure me on Ba(X) which 
extends m(- )e. Let mf (A) = m€{A) for 4̂ G Ba(X). By regulari ty and 
uniqueness of extension m' G ikf(X : £ ' ) and \m\ = \m'\ on Ba*(X). Also w ' is 
countably addit ive in norm, i.e., if {An}n=i is a disjoint collection in Ba(X), 
then 

(£/•) E m'(An) 7°' 
Hence, by modifying s tandard arguments such as [16, Theorem 6.2], \m'\ is 
countably addit ive. Hence \m\ is c-additive. 

Next suppose t h a t m G Mt(X : Ef). We show t h a t \m\ G Mt(X). First , we 
need one additional bit of terminology. A set U C X is called a cozero set of X 
if X\U is a zero set of X , i.e., if there is a function / G C*(X) such 
t ha t f - 1 ( 0 ) = X\U. T h e following observation will be used in the rest of this 
proof: A measure /z G MiX) belongs to Mt(X) if and only if for all e > 0, there 
exists X Ç I (depending on e) such t h a t K is compact and if W is a cozero 
set of X which contains K, then | M | ( X ) < |ju(W0 + e. T h e proof of this 
observation is straightforward and is omit ted. 

We now proceed to prove t h a t m G Mt(X : E') implies t h a t \m\ G Mt(X). 
Let e > 0 and choose a finite disjoint collection of zero sets {Zi)n

i==i C X and 
a set of points {e*}*=i C £ , 11^*|| ^ 1, such t h a t 

M(X) < f + Z |w(zo(«i)|. 

For 1 ^ i g w, let mt denote the Baire measure m{ • )et and let pt denote the 
total variat ion of mt. 

According to the observation made earlier in this proof, choose for each 
1 ^ i ^ n a compact set Ht Ç X such t h a t if 1/T is a cozero set of X containing 
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Hif then pt(X) < e/6n + pt{W). Let Kt = HtC\ Zt and note that if W is 
a cozero set of X containing Ku then pi{Z/) < e/6» + pt(W) for all 1 ^ i g », 
Using regularity of pu 1 ^ i ^ n, and the fact that the sets {Zi}n

i=1 are dis­
joint zero-sets, choose disjoint cozero sets Ot so that Zt Q Ot and such that 
0 < piiPt) < e/6n + pi{Zt) for all l S i S n. 

Let K = Uni=iKi and W be a cozero set of X such that K Cl W. For 
1 ^ i ^ », let 7 , = Ot H 17. Also let V = U U ^ . 

Note that £ , (7 , ) ^ £*(0<) ^ £<(Z,) + e/6» ^ pt(Vt) + e/Sn for 1 ^ i ^ 
». Hence K ( 0 * \ F , ) | ^ pi(Ol\Vi) < e/Sn; thus |m,(0,) | ^ |m,(7<)| + 
e/3n for I tk i ^k n. Also, since pi(0\Zt) < e/Qn, {m^O/) — mt(Zi)\ = 
\mi(Ol\Zi)\ < e/Sn; hence |w<(Z,)| < e/Sn + 1^,(0,)! for 1 ^ i ^ n. Thus 

|m|(X) < £ |m«(Z,)| + I < I + | + Z l«*(0,)| < « 
Z = l O O O î = : l 

+ Ê M ^ ) l < e + M ( K ) < 6 + \m\(W). 

In summary, |ra|(X) ^ |w|(I7) + e; hence \m\ £ Mt{X) by the observa­
tion made earlier in this proof. 

3.10 Definition. Let m 6 I f (X : £ ' ) and / £ C*(X : £ ) . The integral of / 
with respect to m, denoted 

x, fdm, 
' X 

is the real number R if for e > 0 there is a finite partition P(e) of X into 
elements of j5a*(X) so that 

£ m(4<)(/(*<)) - P < e 

if {V4Ï}1=I Ç B*(X) is any partition of X refining P(e) and {#*} i=1 is any 
choice of points such that xt £ At for 1 :g ? fg ». 

3.11 LEMMA. Let f Ç C*(X : £ ) a»d m £ i f (X : £ ' ) . Then jxfdm exists and 

J fdml < I | | / ||rf|w|. 
x I •) x 

3.12 PROPOSITION. L ^ m £ Af(X : £ ' ) and 

F(f) = f fd« 
J x ' X 

forf e C*(X:E).ThenFt C*(X : £ ) ' and \\F\\ = \m\(X).Ifm £ Ma(X : Ef) 
or m G Mt(X : Ef), then F is a-additive or tight, respectively. 

Proof. Apply 3.11 and 3.9 plus Sen tilles' results [17], for all assertions but 
the equality | |P| | = \m\(X). From 3.11 it is clear that \\F\\ ^ \m\(X). 

For the reverse inequality, it suffices to show that Y^i=im(^i) (et) = | |P| | + 
e for every e > 0, finite set {£*}"=! contained in the unit ball of Ef and dis-
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joint collection \Z^n
i=\ of zero-sets such that m(Zi)(ei) ^ 0 for 1 ^ i ^ n. 

Suppose that \Z^n
i=\ and {e^n

i=\ are sets as above and e > 0. For ̂  G M(X), 
let |/x| denote the total variation of //. Choose disjoint cozero-sets {Dt}, 1 :g i ^ 
w, so :ha tZi C Z)̂  and |m( • )^j|(Z)i\Zi) < e/n, and functions {ft : 1 ^ i S n\ 
C C*(Z) such that 0 ^ /* ^ 1, 1 ^ i ^ w,/ , = 1 on Z , a n d / , s 0 on X\£>,. 
For / G C*(X) and 6 G E, let / ® e(x) = f(x)e, for all x G X. Note that 
/ ® e G C * ( X : £ ) . T h e n 

n n 

( è /*® «i)| +*< 

Hence \m\(X) ^ | |F | | as claimed. 

3.13 THEOREM. Suppose F is a tight linear functional on C(X : E). 
there exists m G Mt(X : Er) so that 

s . 
•J Zi F\ 

ft ® e{ dm < 

1̂ 11 +«• 

E f h ® et dm + 

Then 

F(f)= f fdtn for all f G C*(X : E ) . 

Proof. For g G C*(X) and e £ E, let g ® e(x) = g(x)e for i f I . Let 
C*(X) ® E denote the linear subspace of C*(X : E) spanned by all functions 
g ® e for g G C*(X) and e G E. By using partitions of unity, we see that 
C*(X) ® £ is /30-dense in C*(X : £ ) . 

Fore G £ , l e t £ e ( / ) = £ ( / ® e) for a l l / G C*(Z). Since F G C*(X:E)Po', 
Fe G C*(X)/3o

/, so by Sentilles' results [17], there is a unique me G Mt(X) 
so that 

w> X/*1 for/ € C*(X). 

Note that | | « , | | = \\Fe\\ ^ | |F | | ||e|| [21, Theorem 6]. For A € B*(X), let 
m(^)(e) = m e (4 ) . Note that m U ) 6 -E' for all A € 5„*(X) since m H + „ = 
we i + wC2 for any pair (ei, e2) in £ X £• This last statement follows from the 
uniqueness guaranteed by the work in [17] or [21]. 

We may show that XX=i||w(/4K)|| ^ | |F | | , for every partition {An}l=1 of X 
into Baire sets, exactly as in the last part of 3.12. Hence m £ Mt{X : E'). 
Note that F(f)= jxfdm, for all / <E C*(X) ® E. By 3.12 and fo-denseness 
of C*(X) ® E, 

F(f ) = f fdm 

holds for a l l / G C*(X E). 

3.14 Question. What can be said about C*(X : £ V and Mff(X : £ ' ) or 
about C*(X : E)p and MT(X : £ ' )? We wish to acknowledge our gratitude to 
Professor Robert Wheeler for some helpful suggestions here, as well as for 
pointing out an error in earlier proof of 3.9. Note that if m G MT(X : E') 
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implies \m\ Ç MT(X) and F is defined as in 3.12, then F is r-additive. Also if 
C*(X) ® £ (see 3.13) is fr-dense in C*(X : E) we would be able to extend 3.13 
by adding that if F is a o--additive linear functional on C*(X : E) then there 
exists M 6 M,(X : Ef) such that F(f)=J fdm for all / in C*(X : E). Simi­
larly if it can be shown that C*(X) ® E is /3-dense in C*(X : E) then the proof 
of 3.13 need be modified very little to show that r-additive linear functionals 
on C*(X : E) are "represented" by elements of MT{X : £ ' ) . 
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