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STRICT TOPOLOGIES FOR VECTOR-VALUED
FUNCTIONS

ROBERT A. FONTENOT

This paper is motivated by work in two fields, the theory of strict topologies
and topological measure theory. In [1], R. C. Buck began the study of the
strict topology for the algebra C*(S) of continuous, bounded real-valued
functions on a locally compact Hausdorff space .S and showed that the topologi-
cal vector space C*(S) with the strict topology has many of the same topologi-
cal vector space properties as Co(S), the sup norm algebra of continuous real-
valued functions vanishing at infinity. Buck showed that as a class, the algebras
C*(S) for S locally compact and C*(X), for X compact, were very much alike.
Many papers on the strict topology for C*(S), where S is locally compact,
followed Buck’s; e.g., see [2; 3]. In [22], J. Wells extended some of Buck’s
work to C*(S : E), the bounded, continuous functions from the locally compact
space S into the locally convex space E. Buck’s work was then generalized to
the case where X is completely regular (for scalar-valued functions); e.g., see
[5;6;17; 18; 20].

In [5] newly defined “‘strict’”’ topologies were shown to be connected with
the field of topological measure theory. One of the classic papers in topological
measure theory is [21]. Many papers followed Varadarajan’s, in an attempt
to answer questions raised in [21]; e.g. see [8-13].

In [5] and [17] it is shown that functional analytic, measure theoretic, and
order theoretic techniques can, with skillful blending, lead to a deeper under-
standing of both topological measure theory and strict topologies. The author’s
work arose as the result of attempts to generalize topological measure theory to
vector-valued measures and to extend the notion of strict topology to the spaces
C*(X : E) where X is completely regular and E is a normed linear space. Some
of the most interesting results, in the author’s opinion, are 2.3, 3.2, 3.7, 3.12,
and 3.13.

1. Preliminaries. We first need to develop some measure theory. A good
reference for this is [21]. Let X denote a completely regular topological space.
The Baire algebra of X, denoted B,*(X) is the smallest algebra of subsets of X
containing the zero-sets of functions in C*(X). We use B,(X) to denote the
smallest o-algebra containing the zero-sets. In this paper, C*(X) always means
bounded real-valued comtinuous functions and all linear spaces considered are
real linear spaces. A positive Baire measure p on X is a finite, non-negative real
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valued, finitely-additive set function on B,*(X) so that 4 € B*(X) = u(4d) =
sup {u(Z) : ZZ A4, Z a zero set of X|. A Baire measure is the difference of two
positive Baire measures. The collection of all Baire measures and positive Baire
measures are denoted M (X) and M+ (X) respectively. If m is a Baire measure,
the set functions m*t(4) = sup {m(B) : BC 4,B € B*(X)}, for 4 € B.*(x),
and m—(4) = — inf {m(B) : B € B*(X) and B C 4}, for 4 € B,*(X), are
elements of M*(X) and m = mt — m—. Let |m| = m* 4+ m. Then |m| € M+(X)
and is called the absolute value of the Baire measure m. M (X) with the norm
||m|| = m*(X) + m=(X) is a Banach space. There is an equivalent definition
of M(X) that is sometimes useful. Let m be a finitely-additive set function on
BX(X). Then m € M(X) if and only if (1) |[m(4)] < C for some C > 0 and
all 4 € BF(X) and (2) for any 4 € B,*(X) and e > 0, there is a zero-set
Z C A4 so that [m(B)| < efor all B C A\Z.

The Banach adjoint C*(X)" of C*(X) can be identified with M (X). If
& ¢ C*(X)’, there is a unique Baire measure m € M (X) such that ®(f) =
ffdm for f € C*(X). Conversely, if ® is defined by the preceding formula for
m € M(X), then ® € C*(X)'. Furthermore, ||®|| = [|m||. The correspon-
dence 1s a vector space homomorphism and preserves order, that is, ® is a
positive linear functional (®(f) =z 0 for f =2 0 in C*(X)) if and only if m €
M+(X) [21, Theorem 6]).

We shall be particularly interested in three classes of measures on X. A Baire
measure m is said to be c-additive if m(Z,) — 0 for every sequence {Z,}>_; of
zero-sets of X such that Z,.; € Z, for all » and N1Z, = ¢ (we denote this
by Z. | ¢). A measure m € M(X) is called r-additive if m(Z,) — 0 for every
net {Z,} of zero-sets of X such that Z, & Zs for « = 8 and NeZ, = ¢ (we
denote this by Z, | ¢). The measure m € M(X) is called tight if for every
e > 0, there exists a compact set K. C X so that |m|«(X\K.) < ¢, where for
ECX,

|m|*(E) = sup {|m|(Z) : Z is a zero-set of X and Z C E}.

If ® ¢ C¥(X)', ® is called o-additive if ®(f,) >0 for every sequence
{ )1 in C*(X) such that f,41 < f, for all #» and f, — 0 pointwise on X (we
denote this by f, | 0). The functional ® € C*(X)' is called r-additive if ®(f,) —
0 for every net { f,} € C*(X) such that f, < fs for @ = 8 and f, — 0 pointwise
on X (we denote this by f, | 0). Finally, ® € C*(X)' is called tight if ®(f,) — 0
for every net { f,} contained in the unit ball of C*(X) such that f, — 0 uni-
formly on compact subsets of X.

In [21], it is shown thatif ® € C*(X)" and m € M (X) such that &(f) =
ffdm, then @ is cs-additive (r-additive, tight) if and only if 7 is s-additive
(r-additive, tight). Identifying functionals and the corresponding Baire mea-
sures, we denote the class of s-additive, r-additive, and tight functionals
(s-additive, r-additive, and tight Baire measures) by M,(X), M.(X), and
M (X), respectively. Note that M ,(X) C M.(X) C M,(X).

One of the big problems of topological measure theory is to determine when
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M.(X) = M,(X). This problem is first mentioned in [21] and has been
studied by many authors. Some good references for the interested reader are
[5; 8-13; 17; 21; 23].

F. D. Sentilles and others have extended Buck’s strict topology 8 [1] to C*(X)
for X completely regular (instead of the more restrictive requirement that X
be locally compact); a partial list of references is [5; 6; 17; 18; 19; 20].

Connections were established between these new ‘‘strict’” topologies and
some aspects of topological measure theory in the work of Sentilles and that of
Fremlin, Garling and Haydon. We shall describe some of the work of Sentilles
as we are more familiar with his paper that with that of Fremlin et al.

The topology Bo on C*(X) is defined to be the finest locally convex linear
topology agreeing with the compact-open topology on norm bounded sets.
Let 8X denote the Stone-Cech compactification of X [4] and if f € C*(X), let f
denote the unique continuous extension of f to BX. For each compact set
Q CBX\X, let Co(X) ={f € C*(X):f=0on Q}. Let 84 be the topology
on C*(X) defined by the seminorms f — || f&|| for f € C*(X) and & € Cy(X).
Let B be the intersection of the topologies 84, where Q varies through all
compact sets in BX\X. If we instead allow Q to vary through the zero-sets (of
continuous functions defined on 8X) contained in BX\X, the topology is called
B:. Let p denote the topology of pointwise convergence on X and C — Op that

of uniform convergence on compact subsets of X and || || the norm topology
on C¥*(X). If T is any topology let C*(X), denote C*(X) equipped with the
topology 7.

Sentilles [17] makes a very important contribution when he calculates the
adjoint spaces of C*(X) endowed with the topologies By, 8, Bi1. It is this
result which allows him to use the interplay between topological measure
theory techniques and functional analytic techniques to obtain a deeper
understanding of both topological measure theory and his strict topologies.
Sentilles shows that C*(X)s," = M,(X), C*(X)s,' = M,(X) and C*(X)4 =
M.(X) and that M,(X) = M,(X) if and only if 8; = 8. He also proves many
other interesting results which we will list as needed.

In the rest of this paper we extend many of the above mentioned results to
vector-valued functions.

In what follows E will always denote a real normed linear space (in most of
the results, if not all of them, E could be any locally convex space, but we feel
that notation is made simpler by restricting ourselves to this case). Let X
denote a completely regular topological space and let C* (X : E) denote the set
of all bounded continuous functions from X to E. C*(X : E) is a real linear
space.

We define the topology 8y on C*(X : E) to be the finest locally convex linear
topology agreeing with the compact-open topology on norm bounded sets.
For Q a compact subset of X /X, the topology B, on C*(X : E) is that topology
defined by the seminorms f — ||Af ||, where & € Co(X) and f € C*(X : E).
Then 8; and 8 are defined as the intersection of topologies 3y, exactly as in the
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scalar case. If T is a topology, by C*(X : E) » we mean the space C*(X : E)
with the topology T

Note that we may restrict ourselves to nonnegative functions in Cp in
defining the B, seminorms and the resulting topology in S,. Also note that if X
is locally compact, then 8 = (¢ and is the topology defined for C*(X : E) by
Buck in [1] and studied in [22]. That B, coincides with Buck’s topology in the
case X is locally compact follows from [18].

1.1 Remark. Let W; denote the topology on C*(X : E) given by the semi-
norms f — ||if|| for f € C*(X : E) where & is a nonnegative real-valued func-
tion such that {x € X : h(x) = €} is compact for all € > 0. Then 8, = W,.
Sentilles notes a similar result in the case E is the reals and his proof goes
through for arbitrary E. See [17, Theorem 2.4].

We also need several results of a somewhat different character. Let 4 be a
Banach algebra with norm || ||. A Banach space V, with a norm also denoted
Il 1l, 1s called a left A-module if there is a mapping from AxV into V, whose
value at the pair (¢, v) in 4 X V is denoted @ - v, satisfying the conditions
that a - v is linear in a for fixed v and linear in v for fixed a and (ab) -v =
a-(b-v)fora,b € 4andv € V. The left 4-module V is said to be isomeiric if
[la -9|| < |lal] ||o]| for all @ € A and v € V. A net {e,} C A4 is an approximate
identity for A if ||es|| = 1 for all @ and

|les¢ — al| >0 and ||ae. —a||—0
o [24

for all a € 4. Suppose that {e,} is an approximate identity for 4 and V is a
left A-module. Then V is called essential (the term is introduced in [15]) if
llea - v — 9| — 0 for every v € V. The following theorem holds [7; 15; 24]:

1.2 THEOREM. Let A be a Banach algebra having an approximate identity and
V a Banach space whick is an isometric left A-module. Then V is essential if and
only if forall e > O and v € V, there exists a € A and w € V such that ||a]| £ 1,
llv — w|| < eand a - w = .

2. The strict topologies 8 and 3, for vector-valued functions. As in
Section 1, let E be a real normed linear space, X a completely regular space,
and C*(X : E) denote the real linear space of bounded continuous functions
from X to E. When no other topology is explicitly mentioned C*(X : E) is
assumed given the norm topology. We denote the norm dual of C*(X : E) by
C*(X : E)'. If T is any other topology on C*(X : E), C*(X : E) ;/ denotes the
dual of C*(X : E) with the topology 7.

2.1 Definition. Let ® € C*(X : E)’. Then & is said to be o-additive if for every
sequence { f,} & C*(X) such thatf, | 0, ®( f,g) — uniformly for gin C*(X : E)
of norm = 1. Similarly, ® is said to be r-additive if, whenever { f,} is a net in
C*(X) such that f, | 0, then ®(f,g) — 0 uniformly for g in C*(X : E) of
norm < 1.
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2.2 Remark. The definitions in 2.1 generalize the usual ones. In order to see
this, we need only show that if ¢ € C*(X)’ and ¢ is a positive linear functional,
then ¢ is s-additive (r-additive) in the sense of [21] implies it is s-additive
(r-additive) in the sense of 2.1. This follows immediately from the Cauchy-
Schwarz inequality for positive linear functionals [14, III, p. 187].

2.3 THEOREM. Let ¢ € C¥*(X : E)'. Then
(a) ¢ is o-additive if and only if ¢ is 81 continuous on C*(X : E);
(b) ¢ is T-additive if and only if ¢ is B continuous on C*(X : E).

Proof. (a) Suppose that ¢ is o-additive. We wish to show that ¢ €
(C*(X : E)g,)’. It clearly suffices to show that ¢ € (C*(X : E)g)’ for an
arbitrary zero-set Q contained in BX\X. Let Q be a zero-set of 8X such that
Q € BX\X. Since Q is a compact G5, Co(X) has a countable approximate
identity {h,}o-: satisfying 0 <k, =1 V¥# and 1 — %, | 0 on X. Thus
¢((1 = ¢,)g) — 0 uniformly for g in C*(X : E). C*(X : E)' is a left Co(X)-
module in a natural way, i.e., if g € Co(X) and ¢ € C¥*(X : E), g-¢(h) =
¢(gh) for all h € C*(X : E). With this notation we have shown that
llen - ¢ — ¢|| — 0. Thus

pc W={p:pec CHX:E) andl|le, p — p|| —0}.

Clearly W is a Banach space and an essential left Cq(X)-module in the lan-
guage of Section 1. By 1.2,if p € W, p = a - q wherea € Co(X) and g € W.
Clearly then W C (C*(X : E)go)’. Thus ¢ € (C*X : E)gg)’ for each compact
zero-set Q C BX\X; hence ¢ € (C*(X : E)g,)’.

Conversely, suppose that ¢ is §; continuous, ||¢|| < 1, ¢ > 0, and { f,} C
C*(X) such that || f,|] £ 1 for all #» and f, | 0 on X. For f € C*(X), let f
denote the unique continuous extension of f to BX. Let

K = a{t € BX:7.(t) >—§}

Then K is a compact nonempty subset of 8X\X and K is a countable inter-
section of zero sets; hence K is a zero-set of BX. Since ¢ € C*(X : E)g,’ there
is by 1.2, a function 0 £ 2 = 1 in Cxg(X) and ¢ € C*(X : E)’ with [[¢|| = 2
so that ¢ = % - . Thus |¢(f )| = [W&f)| £ 2 ||af || for all f € C*(X : E). Let
O=1{t€BX:h(f) < e/2}. Then O is open, K C 0, and SX\0 is compact.
Since O C K, there is an integer N so that {t € 8X : f,(¢) = ¢/2} C O for
n = N.Thenif g € C*(X : E) and ||g]| = 1,

lo(fog)| = 2 [[hfugl] = 2 |[Wfull < e

for n > N. Hence ¢( f,g) — 0 uniformly for g of norm £ 1 in C*(X : E), i.e.,
¢ is o-additive.

(b) The proof of this equivalence is similar to that given in (a) and so is
omitted.
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3. The topology B, on C*(X:E). In this section we characterize the dual
space C*(X : E)g,’, show that C*(X : E)g, has the approximation property if
E has the metric approximation property, and give a vector-valued measure
representation for elements of C*(X : E)g,’, generalizing a theorem in [22].
We also extend 2.3.

3.1 Definition. Let F € C*(X : E)'. Then F is said to be tight if F(g,) — 0
for every net {g,} C C*(X : E) such that ||g.|| =1 for all « and g, — 0
uniformly on compact subsets of X.

3.2 THEOREM. Let F € C*(X : E)'. The following statements are equivalent:

(1) F e C¥X : E)gy's

(2) F is tight,

(3) The real linear functional T on C*(X) defined for f = 0 in C*(X) by the
equation

T(f) =sup {{F(@]: gl = f@), forallx € X, g € CX(X : E)|

and extended by linearity to all of C*(X) us tight;

(4) if € > 0, there exists compact Kc & X so that if f € C*(X : E) and
1l £ 1, then f = 0 on K. implies that |[F(f)| < e

(5) F(fag) — 0 uniformly for g ¢ C*(X : E) of norm < 1, for every net
{ fof © C*(X) such that || full = 1 for all a and f.— 0 uniformly on compact
subsets of X.

Proof. (1) = (2). Suppose F is 8, continuous and g, — 0 uniformly on
compact subsets of X. Since 8, agrees with the compact-open topology on
norm bounded subsets of C*(X : E), g, — 08; hence F(g,) — 0.

(2) = (1). Since B, is defined as the finest locally convex linear topology
agreeing with the compact-open topology on norm bounded sets a linear
functional F on C*(X : E) is 8, continuous if and only if its restriction to norm
bounded subsets of C*(X : E) is continuous in the compact-open topology,
i.e., if and only if F is tight.

(5) = (3). For f = 0in C*(X) define 7°(f) = sup {[F(g)] : [l[g(®)]| = f(x),
for x € X}. We first want to show that we can extend T to a real linear func-
tional on C*(X). In order to establish this, all we need to show is that 7°( f + g)
= T(f)+ T(g), for f, g =2 0in C*(X).

Leth € C*(X : E) so that ||| £ f 4 g Forx € X such that f(x) + g(x) >
0, define

- S@hk) _ _g@h()
B = et e M T e
If f(x) + g(x) = 0, let h1(x) = ho(x) = 0. Note that k, and k, € C*(X : E)
and ||| < f and [[hs|| < g. Thus [F()| = [F(k) + F(i)| < T(f) + T'(g).
Taking the supremum over all such functions &, we get 7(f + g) < 7°(f) +
T'(g). For the other inequality, let e > 0 and &y, by € C*(X : E) with ||| < f,

https://doi.org/10.4153/CJM-1974-079-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-079-1

STRICT TOPOLOGIES 847

[[hof < g and 0 = F(l) = T(f) < F(la) + ¢/2 and 0 £ F(hs) £ T'(g) <
F(hs) + /2. Then T'(f) + T(g) £ F(h) + F(ha) + e = Fli + hy) + € =
T'(f+4 g) 4+ e Since e > 0 is arbitrary we get 7°(f) 4+ T(g) < T(f + g).
Hence I'(f+ ¢g) = T(f) + T'(g) and so T extends to a linear functional on
C*(X) which is bounded.

We now show 7 is tight. Suppose { f.} € C*(X), || fo|] = 1 for all &, and
fo—0 C — Op. We need to show 7°(f,) — 0 so we may assume that f, = 0
for all a.

We first show that it suffices to show that 7°(f,") — O for all positive » > 1.
Assume, for simplicity, that |[|F|| £ 1. Then 0 £ T'(f) £ ||f|| for all f = 0
in C*(X). From elementary calculus, we get that

0< SUpl-—tr<l—1
0< <L r

forr > 1. Hence 0 = T'(fo — fu") S || fa — fl| £ 1 — 1/r for r > 1, and if
7' (fe") — 0 for each r > 1, then 7'( f,) — O.

It remains to be shown that 7°(f,”) — 0 for each real number » > 1. Fix
r > 1, let ¢ > 0 and pick a such that @ = «, implies |F(f.h)| < € for all
h € C¥(X : E)such that ||h]] £ 1. If g € C*(X : E), a 2 ay, and ||g|| = /.7,
let Z(x) = g(x)/fa(x) if fa(x) # 0 and h(x) = 0 otherwise. Then |F(g)| =
|F(fah)] < e Hence T(f") < € for @ = ag. Thus T'(f,") — 0 for each » > 1.

(1) = (4). Suppose F is 8 continuous and ¢ > 0. By 1.1, there is a bounded
nonnegative upper semicontinuous function g which vanishes at infinity such
that [F(f)] £ |lgf|| forall fe C*X :E). If ||f|]£1and f=0o0n K, =
{x € X :g(x) = ¢}, then |[F(f) < e

(4) = (5). Suppose that (4) holds and that { f,} C C*(X), || fal] £ 1 and
fu— 0 C — Op. We want to show that F( fo,g) — 0 uniformly for g in C*(X : E)
of norm =< 1. Clearly, we may assume that f, = 0 for all « and that ||F|| = 1.
Let € > 0 and let K. be the compact subset of X given by (4). Choose «( so
that a = ao implies || fu||x, < €. Let he = min { f,, e}. Then if g € C*(X : E)
and ||gl| £ 1, |F(fag — hag)| < € for @ = a since f, — e = 0 on K. Thus,

for a ; ay,

|F(fa)| = [F(fag)| + |F(hag)] < 2e.
Hence F(f.g) — 0 uniformly for g in the unit ball of C*(X : E).

(3) = (1). Suppose that T is tight. Then, by Sentilles’ result M, = C*(X)z,’
and 1.1, there exists a bounded nonnegative upper semicontinuous function £
vanishing at infinity such that ||T°(g)|| £ ||kg|| for all g € C*(X). Let f €
C*(X : E). Then [F(f)| = T(|fI1) = [ IIf k]l = [|#f]l; therefore F is B,
continuous by 1.1 again. We have shown (2) = (1) = (2) and (1) = (4) =
(5) = (3) = (1), so the proof of 3.2 is complete.

3.3 Remark. We have the following improvement of 2.3, whose proof is clear
if we look at 2.3 along with the proof of (5) = (3) in 3.2 and make the obser-
vation that (3) = (5) in 3.2 is trivial (although we did not prove 3.2 this way).
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3.4 THEOREM. Let F € C*(X : E)'.

(@) The following are equivalent: (1) F is o-additive; (2) F is By continuous;
(3) if T is defined in terms of F as in 3.2, T is o-additive.

(b) The following are equivalent: (1) F is r-additive; (2) F is B continuous;
(8) if T is defined in terms of F as in 3.2, T is r-additive.

The next topic we take up is the approximation problem in C*(X : E)g,
where we generalize a result in [5]. A topological vector space H is said to have
the approximation property if the identity operator can be uniformly approxi-
mated by continuous finite-rank operators on all totally bounded subsets of H.
If H is a normed space and the approximating finite-rank operators can be
chosen with norms = 1, then H is said to have the metric approximation
property. The proof of the following lemma is contained in [5, Theorem 10].

3.5 LEMMA. Let X be a completely regular space, C a compact subset of X ,K a
compact subset of C*(X)g, and ¢ > 0. Then there exists a finite partition of unity
(see 3.6) {g:}i=1 on X and points {c,| 1 < 1 < n} in C so that if P is the linear
operator on C*(X) defined by the equation

Pix) = Z ¢ @)f(c),

then P is Bo continuous, ||P|| < 1, P is of finite rank and supeo||Pf(x) — f(x)||
< eforf € K.

3.6 Definition. Let X be a completely regular space and { fo} € C*(X) such
that 0 < fo = 1 for each «. The family { f,} is called a pariition of unity on X
if the supports of the f, form a locally finite cover of X and > f, = 1 on X.

If there is a covering 4 of X so that the support of f, is a subset of « for each
a € A4, then { f,} is called a partition of unity subordinate to A.

3.7 THEOREM. Let E be a normed linear space with the metric approximation
property and X a completely regular Hausdorff space. Then C*(X : E)g, has the
approximation property.

Proof. Let ¢ > 0, J a By-totally bounded subset of C*(X : E) and % a non-
negative bounded upper semicontinuous function on X which vanishes at
infinity such that ||| < 1. Since J is norm bounded, let us assume that J is
a subset of the unit ball in C*(X : E).

Let C={x:h(x) = ¢/2}. Then C is compact. Note that D =
{f(x) :f € J,x € C} is a totally bounded subset of E. Hence there is a finite
rank operator 7" on E, with [|T]| £ 1, such that ||7(d) — d|| < ¢/2 for all
d € D. Since T is finite-rank, there is a finite set {¢;: 1 =7 < n} C E’ and
a finite set {e;: 1 =7 < n} C E so that ||e]| £ 1,1 £4 = #n, and T'(e) =
>iipi(e)es for e € E. Thus

(@) = 3 (e00f)@es
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for f € C¥*(X : E). Since the set {p;0f:1 =71 =n, f€ J} is a B totally
bounded subset of C*(X), there is, by 3.5, a finite-rank operator P on C*(X)
with [|P|| £ 1, such that P is continuous for the 8, topology on C*(X) and
such that [|P(¢;0f) — (¢s0f)|lc < ¢/2nfor f € Jand 1 < ¢ < n. Further-
more, we may assume P is given by a formula such as that in 3.5. Let S be the
linear operator on C*(X : E) defined for f € C*(X : E) by the equation

Sf(x) = f; P(e;o0f)(x)e; forallx € X.

Note that S is Bo continuous and of finite rank. In order to compute [|S]|,
we write P more explicitly. As in 3.5, let {g,|]1 < j < m} be a partition of
unity on X and {¢;: 1 = j < m} C C so that Pf(x) = > 7_1g;(x)f(c;) for all
feC*X). lffe C*(X : E)and x € X, then

n

S/6) = 33 Plesof)@ei= 3 2; ¢,0) (g1 05(c))es

i=1

3

= Z g;(x) (i i Of(Cj)ei> = i g2;()T(f(cy)-

=1 —

Thus
I1Sfe)]] < max NT(feNI < I

and so ||S]| = 1.
What remains to be shown is that |[E(Sf — f)|| < efor f € Q, If x € X\C,
h(x) < €/2 so that

[ () (Sf(x) — fENI] < (/2) QI f]) < e
If x € C, then

n

> Ploiof )@e: — ‘_; 01 0f@)es

i=1

1576 - )| <

+IT(F@) =@ < 5+5 =«

Thus, if x € C, ||k (x)(Sf — f ) (x)|| < e since ||h|| = 1. Hence ||2(Sf — f)|| < e
for all f € Q and the proof is complete.

Our last results in Section 3 have to do with a vector measure representation
for tight linear functionals on C*(X : E).

3.8 Definition. Let X be a completely regular space and E a normed linear
space. By M (X : E’) we denote the set of all set functions m defined on
B.*(X), with range in E’, which satisfy the following two conditions: (a) the
measure m( - )e, defined for e € E by m(-)e(4) = m(4)(e), A € B.*(X),
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belongs to M(X); (b) there exists C > 0 so that

n

2, myl <€

i=1
for every partition of X into sets 4; € B.*(X). Let M,(X : E'), M,(X : E)
and M,(X : E’) denote the set of m € M(X : E’), so that for each ¢ € E,
m(-)e € M,(X), M,(X), and M,(X), respectively.

3.9 ProrositioN. Let m € M(X : E') and A € B*(X). Let

m|(4) = sup{i1 [lm(A)|| : {4} C B*(X) is a partition ofA}.

Then |m| ¢ M(X). If m € M,(X:E)YM/(X:E)), then |m| < M,(X)
(M (X)).

Proof. The proof of the first assertion is straightforward.

Suppose that m € M,(X : E'), A € B,(X) and e € E. From [21, Theorem
18] there is a unique countably additive (regular) measure m, on B,(X) which
extends m(-)e. Let m'(4) = m.(4) for 4 € B,(X). By regularity and

uniqueness of extension m’ € M(X : E') and |m| = |m’| on B,*(X). Also m’ is
countably additive in norm, i.e., if {A,}%_1 is a disjoint collection in B,(X),
then

|

Hence, by modifying standard arguments such as [16, Theorem 6.2], |m'| is
countably additive. Hence || is s-additive.

Next suppose that m € M (X : E'). We show that |m| € M ,(X). First, we
need one additional bit of terminology. A set U C X is called a cozero set of X
if X\U is a zero set of X, i.e., if there is a function f € C*(X) such
that f =1(0) = X\U. The following observation will be used in the rest of this
proof: A measure u € M (X) belongs to M ,(X) if and only if for all ¢ > 0, there
exists K € X (depending on €) such that K is compact and if I is a cozero
set of X which contains K, then |u|(X) < |[u(W) + e. The proof of this
observation is straightforward and is omitted.

We now proceed to prove that m € M (X : E’) implies that |m| € M, (X).
Let ¢ > 0 and choose a finite disjoint collection of zero sets {Z,}5—; € X and
a set of points {e;}%—1 € E, ||es|| = 1, such that

m’ <Ql An) - i m' (4,)

n=1

— 0.
P

ml0) <5+ 3 mZ) ).

For 1 =1 = n, let m; denote the Baire measure m( - )e; and let p; denote the
total variation of m;,.

According to the observation made earlier in this proof, choose for each
1 £ 7 = nacompactset H; C X such that if W is a cozero set of X containing

https://doi.org/10.4153/CJM-1974-079-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-079-1

STRICT TOPOLOGIES 851

H;, then p;(X) < ¢/6n + p;(W). Let K, = H,; N\ Z, and note that if W is
a cozero set of X containing K ;, then p,(Z,;) < ¢/6n + p,(W) forall1 < i < n.
Using regularity of p;, 1 £ ¢ < n, and the fact that the sets {Z;}-; are dis-
joint zero-sets, choose disjoint cozero sets O; so that Z; C O; and such that
0< p:(0)) < e/6n+ pi(Z;) forall 1 <4 = .

Let K = U%-1K; and W be a cozero set of X such that K C IW. For
17 nletV,=0,NW.Alsolet V = U}V,

Note that p;(V;) < p:0) £ pi(Z) + ¢/6n < p(V,) + ¢/3nforl <1
n. Hence [m;(O\V)| £ pi(0O\V:) < ¢/3n; thus |[m(0,)| £ [my (V)]
¢/3n for 1 =i < n. Also, since p;(O\Z;) < ¢/6n, |m;(0,) — m(Z,)|
|m(ONZ:)| < €/3m; hence |m (Z;)] < ¢/3n + |m,(0;)| for 1 £4 =< n. Thus

=+ 1A

Ml < 3 @ +E <+ 3 0] <

+ Z (VO] < e+ |m| (V) < e + lm|(W).

In summary, |m|(X) < |m|(W) + ¢; hence |m| € M,(X) by the observa-
tion made earlier in this proof.

3.10 Definition. Let m € M(X : E') and f € C*(X : E). The integral of f
with respect to m, denoted

f

is the real number R if for ¢ > O there is a finite partition P(¢) of X into
elements of B,*(X) so that

n

Z m(A;) (fles)) — R‘ < e

=1

if {4,}7-1 © B/*(X) is any partition of X refining P(e) and {x,},—; is any
choice of points such that x;, € 4, for 1 £17 < #n.

3.11 Lemma. Let f € C*(X : E) and m € M(X : E'). Then fxfdm extsts and

| [ gim| < [ i5 il
3.12 PROPOSITION. Let m € M(X : E') and
F(ry = | pim

forf € C*(X :E). Then F € C¥*(X : E) and ||F|| = |m|(X). If m € M, (X : E)
orm € M, (X : E'), then F is o-additive or tight, respectively.

Proof. Apply 3.11 and 3.9 plus Sentilles’ results [17], for all assertions but
the equality [[F|| = |m|(X). From 3.11 it is clear that ||F|| < |m|(X).

For the reverse inequality, it suffices to show that > ;_ym(Z,) (e;) < ||F|| +
¢ for every ¢ > 0, finite set {¢;}—1 contained in the unit ball of E, and dis-
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joint collection {Z,}i_; of zero-sets such that m(Z;)(e;) =0 for 1 <17 < n.

Suppose that {Z,;};—1 and {e;}"_; are sets as above and ¢ > 0. For u € M (X),
let |u| denote the total variation of u. Choose disjoint cozero-sets {D;}, 1 < i <
n,s0 :hat Z; € D;and |m( - e,|(DN\Z:) < ¢/n,and functions { f;: 1 <7 < n}
CC*X)suchthat0 = f;, £1,1=7=<#n,fi=1onZ;and f; = 0 on X\D.,.
For f € C*(X) and e € E, let f ® e(x) = f(x)e, for all x € X. Note that
f®ec C¥(X : E). Then

n

S mzie) =Y [ riecdn<
HOVED

Hence |m|(X) =< [|F|| as claimed.

3.13 THEOREM. Suppose F is a tight linear functional on C(X : E). Then
there exists m € M (X : E') so that

Zl f¢®eidm‘ +e=
i= D

+e< ||l +e

F(f)= fodm forallf € C*(X : E).

Proof. For g € C*(X) and e € E, let g ® e(x) = g(x)e for x € X. Let
C*(X) ® E denote the linear subspace of C*(X : E) spanned by all functions
g Qe for g € C*(X) and e € E. By using partitions of unity, we see that
C*(X) ® E is Bo-dense in C*(X : E).

Fore € E,let F,(f) = F(f® e)forallf € C*(X).Since F € C*(X : E)g,’,
F, € C*(X)s,, so by Sentilles’ results [17], there is a unique m, € M ,(X)
so that

F.(f) = J‘deme for f € C*(X).

Note that ||m.|| = ||F.|| = [|F]| |le|]| [21, Theorem 6]. For 4 € B,*(X), let
m(A4)(e) = m,(4). Note thatm(4) € E' for all 4 € B.*(X) sincem,, + o =
Mo, + M., for any pair (ey, €;) in E X E. This last statement follows from the
uniqueness guaranteed by the work in [17] or [21].

We may show that X »_i||m(4,)|| < [|F||, for every partition {4,}r_; of X
into Baire sets, exactly as in the last part of 3.12. Hence m € M (X : E’).
Note that F(f) = fodm, for all f € C*(X) ® E. By 3.12 and B,-denseness
of C*(X) ® E,

5y = | _gim

holds for all f € C*(X : E).

3.14 Question. What can be said about C*(X : E)g,’ and M,(X : E’) or
about C*(X : E)g’ and M. (X : E’)? We wish to acknowledge our gratitude to
Professor Robert Wheeler for some helpful suggestions here, as well as for
pointing out an error in earlier proof of 3.9. Note that if m € M, (X : E')

https://doi.org/10.4153/CJM-1974-079-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-079-1

STRICT TOPOLOGIES 853

implies |m| € M,(X) and F is defined as in 3.12, then F is r-additive. Also if
C*(X) QE (see 3.13) is B;-dense in C*(X : E) we would be able to extend 3.13
by adding that if F is a o-additive linear functional on C*(X : E) then there
exists M € M,(X : E’) such that F(f) = [ fdm for all fin C*(X : E). Simi-
larly if it can be shown that C*(X) ® E is $-dense in C*(X : E) then the proof
of 3.13 need be modified very little to show that r-additive linear functionals
on C*(X : E) are ‘‘represented’’ by elements of M, (X : E).
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