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1. Introduction Let us consider a pair (S,H) consisting of a closed Riemann
surface 5 and an Abelian group H of conformal automorphisms of 5. We are interested in
finding uniformizations of 5, via Schottky groups, which reflect the action of the group H.
A Schottky uniformization of a closed Riemann surface S is a triple (Q, G, ;r.:Q—»5)
where G is a Schottky group with Q as its region of discontinuity and JI:Q—*S is a
holomorphic covering with G as covering group. We look for a Schottky uniformization
(Q, G, JI:Q—*S) of 5 such that for each transformation h in H there exists an
automorphisms t of Q satisfying h °n = n°t.

In [7] we have obtained necessary conditions, called the condition (A), to get a
Schottky uniformization as desired. These necessary conditions involve only the action of
H at the set of fixed points of its non-trivial elements. In particular, if H acts without fixed
points, then it satisfies automatically such a condition. We show that in the case of H
Abelian, condition (A) is also sufficient.

An equivalent way to describe our problem in the language of three-manifolds is the
following. Let V be a handle-body of genus g and let 5 be the boundary of V. The surface
5 is a closed orientable surface of genus g. Denote by Diff(S) the group of orientation
preserving diffeomorphisms of 5. Let H be a finite abelian subgroup of Diff(S). We ask
for the existence of an element/of Diff(S) such that the group/// /"1 extends to a group
of orientation preserving diffeomorphisms of V. In the rest of our work we consider the
Schottky group description of our problem.

In 1980 L. Keen [11] discussed this problem for hyperelliptic Riemann surfaces 5
with H being the group generated by the hyperelliptic involution. In [5] and [6] we gave a
similar discussion for closed Riemann surfaces which admit a general conformal
involution. In [7] we discuss this problem for more general groups and we obtain
necessary conditions, called the condition (A), to find a Schottky group as desired. In
[8,9,10] we have proved that condition (A) is sufficient if H is isomorphic to a cyclic
group or to the group Z/2Z © Z/2Z or to the Dihedral group O2/7 of order 2p with p a
prime.

In general, if 5 is a closed Riemann surface of genus g > 2 and H is a group of
conformal automorphisms of S satisfying the condition (A), it is not true that this
condition is sufficient.

2. Necessary conditions. In this section, we recall the definition of Schottky groups
(Schottky uniformizations) and we get necessary conditions to be satisfied by the group H
to find a Schottky group as desired. At the end of the section we establish the main result
of this work, which shows that these necessary conditions are also sufficient if the group H
is Abelian. For most of the definitions, concerning Kleinian groups, [14] is a good
reference.
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18 RUBEN A. HIDALGO

We denote by C = C U {°°} = GP, the Riemann Sphere. The group of conformal
automorphisms of C is the Mobius Group, also called the Fractional Linear Group, and
denoted by M.

DEFINITION 1 (Schottky group of genus g). For g > 1, let Ck, C'k, k = 1,. . . , g, be 2g
Jordan curves on the Riemann sphere, C = CU {°°}, such that they are mutually disjoint
and bound a 2g-connected domain, say D. Suppose that for each k there exists a
fractional linear transformation Ak with the following properties:

(i) Ak(Ck) = Ck;
(ii) Ak maps the exterior of Ck onto the interior of C'k.
The transformations {At:i = 1,. . . ,g} generate a subgroup G of Mobius transforma-

tions, necessarily Kleinian, and D is a fundamental domain for G, called a standard
fundamental domain for G. This group is called a Schottky group of genus g.

Observe that if G is a Schottky group, then G is a free group on g generators and all
its elements, except the identity, are loxodromic [15]. These properties in fact define the
Schottky groups of genus g, for g — 1- For our purposes, we define the Schottky group of
genus zero to be the group with the identity as its only element, that is, the trivial group.

THEOREM 1 [15]. Let G be a Kleinian group. Then G is a Schottky group if and only if
G is purely loxodromic, finitely generated and free.

THEOREM 2 [3]. / / G is a Schottky group, then corresponding to any set of free
generators these exists a fundamental domain D, as above, whose boundary curves are
identified by the given generators.

DEFINITION 2. If G is a Schottky group and Au . . . , Ag form a set of free generators,
we say that G = (Au . . . ,Ag) is a marked Schottky group, and that the set of
transformations A i,. . . , Ag is a marking of G.

Let us remark that if G is a Schottky group of genus g, then Q(G)/G is a closed
Riemann surface of genus g. Moreover, if Ai,. . . , Ag form a set of free generators for G
and D is a standard fundamental domain for these generators with boundary curves Ck,
C'k, k = l,. . . ,g, then these loops project to a set of g disjoint homologically
independent simple loops on 5. Reciprocally, the retrosection theorem [2] say to us that
we can reverse this situation.

THEOREM 3 (Retrosection theorem). Every closed Riemann surface S of genus g can
be represented as Q(G)/G, G being a Schottky group of genus g with region of
discontinuity Q(G). More precisely, given a set of g disjoint, homologically independent,
simple closed curves y,,. . . , yg on S, one can choose G, and g generators Au. . . ,Ag of
G, so that there is a standard fundamental domain D for G, bounded by curves Cx,
C\,...,Cg, C'g with Aj(Cj) = C-, such that y, is in the free homotopy class of the image of
C, under Q(G)—»£2(G)/G. The marked Schottky group G = (Au . . . ,Ag) is determined
by (5, y,,. . . , yg) except for replacing Au ... ,Agby BAVB~\ ..., BA"/B'\ where B is
a fractional linear transformation and «, e {-1,1}.

REMARK 1. This theorem was first stated by Felix Klein in 1883 [12] and proved
rigorously by Koebe [13] much later. Let us remark that an easy proof of this theorem can
be given using Bers ideas on quasiconformal mappings [2].
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DEFINITION 3. A Schottky uniformization of a closed Riemann surfaces of genus g is a
triple (Q, G, JT:Q—*S) where, G is a Schottky group (necessarily of genus g) with Q as
its region of discontinuity, and n: Q—» 5 is a holomorphic covering, with Deck(^) = G.

DEFINITION 4. Let (Q, G, ;r:Q—»S) be a Schottky uniformization of a Riemann
surface 5. Let H be a group of conformal automorphisms of 5. We say that H lifts to this
uniformization if each automorphism h e H lifts to a conformal automorphism of Q under
the covering JI:Q—>S, that is, for each h e H there exists / a conformal automorphism of
Q satisfying jz°t = h°n. Observe that such a / is necessarily a Mobius transformation [1].

DEFINITION 5. For p eS, the stabilizer of p with respect to H is the group

= {heH:h(p)=p}.

For the next definition, we need a classical result. Let h e H and p e S be as before
such that h(p) = p. We can find a local coordinate system (U, <p) such that <p(p) = 0 and
<p°h°(j)~i(z) = e"*z, for all z e (f>(U). Moreover, we can assume $(£/) = A, where A
denotes the unit disc in the complex plane C. The angle a = a(h,p) is well defined up to
a multiple of 2n, independent of the local coordinate and a(hk,p) = ka(h,p).

DEFINITION 6 (The rotation number). Let h e H and p e S be such that h(p) = p. We
normalize a by assuming that — n< a<n. We will call a= a{h,p) the rotation number
of h at p.

Assume the finite group H lifts to some Schottky uniformization (Q, G, JI:Q—>S) of
5. Let K be the group obtained by the lifting of H. This group contains the Schottky
group G as a normal subgroup of finite index. In particular, the region of discontinuity of
K is also Q. It is easy to see that K is a finitely generated, geometrically finite, function
group without parabolic elements.

Maskit's classification of finitely generated function groups [17] asserts that K is
constructed by use of the Klein-Maskit Combination theorems from the following basic
function groups:

(i) Finite groups.
(ii) Euclidean groups.
(iii) Finite extensions of cyclic loxodromic groups.
(iv) Quasi-Fuchsian groups.
(v) Degenerated groups.
The above properties of K imply that we cannot use the groups of type (ii), (iv)

or (v). So the group K is constructed from groups of type (i) and (iii).
An easy consequence of the above is the following.

PROPOSITION 1. Let h be any elliptic element of K with fixed points p and q. Then (1)
Either p and q are in Q or there is an element of G commuting with h. (2) / / both fixed
points of h are in Q and they are equivalent under K, then there is an involution j in K
permuting them.

Proof. If K is torsion free, then there is nothing to check. Let us assume K has
torsion. Let h be any elliptic element of K with x and y as its fixed points. If both points
are regular points we are done. Let us assume y is a limit point. Let / be a primitive
elliptic element in K fixing y.
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20 RUBEN A. HIDALGO

CLAIM (i) x is also a fixed point of j .
(ii) If g(y) = y, some g in K, then either g is conjugate in K to a power of j or g is a

loxodromic element with x and y as fixed points.

Proof. (Claim) (i) If j(x)=£x, then the commutator [j,h]=jhj~]h~1 will be a
parabolic element in K with y as fixed point. Since K cannot have parabolic elements we
must have j(x) = x as claimed.

(ii) Let g in K be such that g{y) = y. The only possibility for g is to be elliptic or
loxodromic. By our assumption on y, we obtain that necessarily g(x) =x; otherwise [gj]
will be a parabolic element of K fixing the point y. At this point, g is either a power of j ,
or a loxodromic element with x and y as fixed points. This ends the proof of our claim.

Now we continue with the proof of Proposition 1. Let L be the geodesic in H3 with x
and y as end points. The transformation / acts as the identity on L.

Let P be a convex fundamental polyhedron for G. Since y is a limit point, which is
not a parabolic fixed point, it must be a point of approximation for C (see page 128 in
[14]). This implies that y cannot be in the closure of P (see page 122 in [14]).

By the above observation, we can find a sequence of points yn e L, converging to y,
all of them non-equivalent points under K, and a sequence gn e K, all of them different,
such that gn(yn) = zn e P, where P denotes the Euclidean closure of P.

Let us consider a subsequence such that zn converges, say to z, gn(y) converges, say
to u, and gn(x) converges, say to /. In particular, the point u and t are limit points for the
group G.

Since z,, e P, we have z e P. We have two possibilities for z, that is, z is as regular
point, or z is a parabolic fixed point (see page 128 in [14]). Since K does not have
parabolic elements, z is a regular point.

It is clear that the zn are elliptic fixed points, in fact zn = gnjgn~l(zn). This implies that
z,, must be in some edge of P. Since P has only a finite number of edges, we can assume
all zn lie on the same edge of P. Let M be the geodesic in H3 containing this edge. In
particular, z must belong to the closure of M.

Let us consider the geodesies Ln =g,,(L) through zn, and having end points gn{x) and
gn{y). Since we have supposed gn(x) and gn(y) to converge to / and «, respectively, then
Ln converges either to a point or to the geodesic with end points u and t. If Ln converges
to a point we necessarily have u = t = z, a contradiction to the fact that z is regular point
and u is a limit point. The other possibility is that Ln converges to a geodesic y, with end
points u and /. In this case, since the end points of y are limit points and z is known to be
a regular point we must have z in y Pi H3.

Any neighbourhood of z contains z,,, for n sufficiently large. Since z is a regular
point, there exists a neighborhood of z which is precisely invariant by the elements of G
that fixes z, which is known to be finite. We can then assume without lost of generality
that jnjg~\z) = z, and gnjg'x = h. In other words, {g^gn)j{g^gn)'

1 =j. Since
gjgnl(zn) = zn, g,Jgn '(z) = z, and zn ¥= z for all n, we have gnjg~\w) = w, for all w in y.
In particular, gnjg~l(t) = t and gntg~\u) = u. It follows that {gn(x),gn(y)} = {t, u}. The
facts that t^u and gn(x) converges to t imply that gn{x) = t and gn(y) = u, for n
sufficiently large. We may assume it holds for every n. The last observation implies that
gn,ig,,(x) = x and g^gn(y) = y, for all n, m.
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The transformations g™'gn also keep L invariant, and for n J=m this transformation
cannot be the identity on L. This implies that g^gn is a loxodromic element of K with x
and y as fixed points.

Proposition 1 implies some conditions on the set of points fixed by some non-trivial
element of H that we describe below.

THE CONDITION (A). The fixed points of the non-trivial elements of H can be paired in
the following way.
(Al) If (p,q) is a pair, then p^q, H(p) = H(q), and a(h,p) = —a(h,q), for all
h e H(p) of order greater than two.
(A2) If (p, q) and (r,s) are two different pairs, then {p, q) n {r, t} = 0.
(A3) If (p, q) is a pair and h is in H, then (h(p), h{q)) is also a pair.
(A4) If (p, q) is a pair with /? and g equivalent under H, then there is an involution / in
H permuting them.

REMARK 2. (1) Observe that if we have a pairing satisfying conditions (Al), (A2)
and (A4), then it is easy to get another pairing satisfying (A1)-(A4). (2) If the group H is
Abelian and (p, q) is a pair as above with p and q equivalent under H, then H(p) = H{q)
is just the cyclic group in two elements.

The following shows an example of a closed Riemann surface of genus three,
non-hyperelliptic, with an automorphism h of order three with five fixed points. In
particular, the cyclic group of order five generated by h does not satisfy the condition (A).
Let us consider the quartic complex curve in the complex projective plane CP2 given by
the zero locus of

aX4 + bY4 + cXY3 + dX2Y2 + eX3Y+fZ3X + gZ3Y = 0.

for suitable complex numbers a, b, c, d, e,f and g (e.g. a = b=f = l,c = d = e = g = 0),
this quartic is non-singular and irreducible. Such a quartic is a non-hyperelliptic closed
Riemann surface of genus three, admitting the automorphism of order three h induced by
the linear transformation

/ I 0 0 '

h=[ 0 1 0
\ 0 0

where (o2 + o> + 1 = 0. It is easy to check that this automorphism has in fact only five fixed
points on the above Riemann surface. Now it is clear that the cyclic group generated by h
cannot sastisfy the condition (A).

The following is the main result of this paper.

MAIN THEOREM. Let S be a closed Riemann surface and let H be an Abelian group of
conformal automorphisms of S. Then condition (A) is necessary and sufficient to find a
Schottky uniformization (Q, G, JT:Q—>S) of S for which H lifts.

Let us recall a couple basic results of covering spaces. The proof of the two
propositions below are quite simple and they are left to the reader as an exercise.

PROPOSITION 2. Let S be a closed Riemann surface of genus g and let H be a group of
conformal automorphisms of S. If there exists a set of g homologically independent disjoint
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simple loops on S, whose normalizer in T\\(S) is invariant under the action of H, then
every element of H lifts to a conformal automorphism of the region of discontinuity of the
Schottky group (Schottky uniformization) defined, up to conjugation, by these g loops.

PROPOSITION 3. Let S be a closed Riemann surface of genus g and let {ak:k =

l,...,t} be a family of disjoint simple loops on S. Let us assume that S - U ak is a
k=\

disjoint union of surfaces of genus zero with boundaries. Then there exist g loops in this

family, say au . . . , ag, such that S — Q ock is a sphere with 2g deleted discs. In particular,
they are homologically independent and the normalizer in 11,(5) of these g loops is the
same as for all the family.

To show our main theorem, we construct a set of loops satisfying the hypotheses of
the above two propositions. It is done in the next section.

3. Proof of the Main Theorem. Let 5 be a closed Riemann surface and let H be a
finite Abelian group of conformal automorphisms of 5 satisfying the condition (A).
Assume H has order N and let us pair the fixed points of the non-trivial elements of H
satisfying (A1)-(A4) of condition (A).

Denote by S/H the quotient Riemann surface and by n:S^>S/H the natural
holomorphic branched covering induced by the action of H on 5. The genus of 5 and S/H
will be denoted by g and y, respectively. The subset of S/H consisting of the branch
values of n will be denoted by 58. The branch values of n are exactly the projection to
S/H of the fixed points of the non-trivial elements of H. In case that 38 is not empty, we
can write

® = {P,, g , , P2, Q2, •. •, P,, Q,, Z l s . . . , Zm),

where for each j e {1, . . . ,t}, there exists a pair as defined above, say (pj, <7y), such that
Ji{Pi) = Pj and n{qj) = Qn and for each k e {1, . . . , m}, there exists a pair (rk,sk) such
that n(rk) = n(sk) = Zk.

Condition (A) and the fact that H is abelian imply that the stabilizer of each point
over Zk is the same group in two elements Z/2Z. In particular, for each pair (r, s) such
that n(r) = n(s) we have that the involution fixing r and s and the involution that
permutes them generate the Klein group Z/2Z © Z/2Z.

Clearly, if the liftings of Zk and Z, have the same involution as stabilizer, then we can
change our pairing still satisfying the condition (A) in the following way. Let (r,s) and
(t, u) be two pairs such such that n(r) = n{s) = Zk and n(t) = n{u) = Z,. Pair r with t and
5 with u. Now use the action of H to pair h(r) with h{t) and to pair h(s) with h(u), for all
h in H. Now we can assume that the liftings of different Zk have different involutions as
stabilizer. From now on, we assume this is the case.

For each / e {1,. . . , t} and each k e {1,. . . , m}, let us write
(1) Jt-\ j
(2) n
(3) jr
where lk divides N, and (p'j, q'j) is a pair. Denote by nt = N/lj.
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For each ; e { l , . . . , / } and each i e {1,. . . , /,}, let F]je H be such that 0<
a(F),pb ^ \\a{h,pft\\, over all h e //(pj) - {/}. Clearly, a{F),p^ = 2n/n,.

For each ke{l,...,m}, denote by hk the involution which stabilizes one and
therefore every point in 7i~1(Zk).

The Riemann-Hurwitz formula [4] gives us the following relation
t

g = N(y + / + m/4 - 1) + 1 - £/ , ,
i=i

We proceed to construct a set of disjoint simple loops on 5 such that they are
invariant as set of loops under the action of H and they decompose the surface 5 into
spheres with holes.

Let us construct a system of oriented simple loops as follows. If y s 1, let or, and /},-,
/ = 1,. . . , y, be a set of oriented simple loops on S/H — 38 satisfying the following:
(1) a,;n 38 = <p, for all / = 1,. . . , y;
(2) ^ n 38 = (j>, for all / = 1,. . . , y;
(3) a-, fl a-, = 0, for all i # / ;
(4) or, n ft = 0, for all i±j;
(5) ftnft = 0,foralli#;;
(6) cf, fl /3, consists of exactly one point, for all i = 1,. . . , y; and
(7) or,. /3, = +1, for all / = 1,. . . , y, where . denotes the intersection number (see Figure
1).

Let us consider a set of simple loops (oriented in the natural way) rj,, i = 1,. . . , y,
such that
(8) t)j is homotopic to the commutator a,-ftor,rlj8(

rl on S/H — 38; and
(9) rj,. n 38 = 0 (see Figure 1).

Let us denote by Tk the torus with boundary r;, obtained by cutting 5/H along the rjk

loops, for k = 1,. . . , y (see Figure 1).
If t> 1, we consider a set of disjoint simple loops, <5y, / = 1,. . . , t, on S/H - 38

satisfying the following properties.
(10) If y s l , then 6; is disjoint from the loops a, (t = 1,. . . , y) and JJ* (A: = 1,. . . , y)
constructed above, for all / = 1,. . . , t;
(11) 6j bounds a conformal disc containing the points Pj and Qj and no other branch value
of it, for all / = 1,... ,t.

Let us denote by A; the conformal disc bounded by the loop <5,, for ; = 1,. . . , t (see
Figure 1).

Figure 1: y = 2, t = 2 and m = 3.

https://doi.org/10.1017/S0017089500030500 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030500


24 RUBEN A. HIDALGO

If m S: 1, let <5,+ i be a simple loop disjoint from the above ones and bounding a disc
A,+ 1 containing in its interior the branch values Zk, for all k (see Figure 1).

If m is odd, we construct a simple loop <5,+2 inside the disc A,+1, such that this loop
bound a disc containing in its interior the branch values Zk, k e {1 , . . . , m — 1}. Denote
by o surface bounded by the loops 5,+ ] and 8,+2 (see Figure 1).

In the disc bounded by the loop <5,+2 if m is odd, or by the loop <5,+i otherwise, we
construct a set of disjoint simple loops (pr, r = l,...,T, satisfying the following
properties;
(I) If m is even, say m = 2M;
there are M simple loops, say <f)k for k = l,.
containing exactly two branch values.
(II) If m, is odd, say m = 2M + 1;
there are M simple loops, say <pk for k = l,.
containing exactly two branch values.
(III) The rest of the loops are contained in the common region bounded by the above M
loops and the loop dl+l or 5,+2, and these loops dissect the above region into pants,

each one bounding a disc <t>k

M, each one bounding a disc

Figure 2: y = 0, / = 0 and m = 5.

denoted by Pant,, for 5 = 1,. . . , K (see Figure 2).
We rename the branch values zk in such a way that the disc O*, bounded by <f)k,

contains Z2k_t and Z2k. Clearly the group generated by all the involutions hk is

isomorphic to a group of the form Z/2Z © . . . © Z/2Z = © Z/2Z, for some /.

Now, the loops ah rj,, 8j and (j>r dissect the surface S/H into spheres with holes. The
next step is to show that the liftings under n of these loops define a set of disjoint simple
loops on 5 satisfying the desired conditions.

Let us call by 2 the (connected) surface with boundary the loops ?y, and <5y, for
/ = 1,. . . , y and / = 1, . . . ,t + 1. This surface is sphere with t + 1 + y deleted discs.

LEMMA 1. Each loop r/, and <5y lifts to a loop on S, for / = ! , . . . , y and for

Proof. For fixed i e {1 , . . . , y}, the loop 17, lifts to a loop if and only if the loop
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afijaT1 PTl lifts to a loop. Denote by x the intersection of the loops at and /},-. If z is any
lifting of x, let us lift the loops <*, and /3, at z. The end point of the lifting of or, is/(z) and
the end point of the lifting of /?, is h{z), for some /and h in H. The end point of the lifting
of ayjS/arf'/},"' at 2 is h~lf~1hf(z). Since the group // is abelian, this end point is again 2,
and we are done in this case. For fixed ; e {1,. . . , t}, let y be any point in 6y. Let us
consider two disjoint (except at y) simple loops based at y, say dt and d2, such that d,
bounds a disc containing the point Pj and d2 bounds a disc containing the point <2r Orient
these loops in such a way that going in the positive orientation the branch point they
bound is at the left side. If we show that the loop dxd2 lifts to a loop we will be done. Let
at be a lifting of y and let f(co) and h(co) the end points of the liftings of dx and d2 at to
respectively. Since Pt and Qj are projections of a pair, then necessarily f = h~l. Now the
end point of the lifting of dxd2 at to is fh{to) = jf^\ta) = to. Since the loop 8,+l is
homotopic to the product of the 77, and <5, loops, for i = 1,. . . , y and j = 1,. . . , t, then it
must lift to a loop on 5.

If /n is odd, then clearly the loop 8,+2 cannot lift to a loop on 5. But 8*+2 lifts to a
loop on S. This is a consequence of the fact that 6l+2 is homotopic to the product of two
small simple loops around Zm and 8,+u respectively. Each loop tj)r either lifts to a loop or
its square lifts to a loop. The last is a consequence of the fact that each loop <pr is
homotopic to the product of small simple loops around the points Zk contained in the disc
bounded by it.

DEFINITION 7. A circle domain is a region on a closed Riemann surface obtained as a
component of cutting the closed surface along a finite number of pairwise disjoint
rounded simple loops (in the natural hyperbolic, spherical or euclidean structure of the
surface). We will use the following theorem due to B. Maskit.

THEOREM 5 [16]. Let S be a topologically finite Riemann surface of genus g. Then
there exists a closed Riemann surface S of genus g, and there is a conformal embedding
/:5—»S so thatf{S) is a circle domain on S. This representation is unique; that is, if there
is another closed Riemann surface S', also of genus g, and there is a conformal embedding
f :S—*S', also of genus g, so that f'{S) is also a circle domain, then there is a conformal
homeomorphism h:S^>S' with f = hf. Moreover, if H is the group of conformal auto-
morphisms of S, thenfHf~x can be extended to a group of conformal automorphisms of S.

Now we proceed to describe each component of the lifting via n of each surface Th

A;, Z, o, <Pk and Pants.

N

LEMMA 2. ^r~'(2) = [J 2/, where each 2/ is homeomorphic under n to 2.

Proof. Let 2/ be a component of ^~'(2) and let us consider the restriction of n to
these surfaces

This is a holomorphic unbranched regular covering, with covering group H,. Let us
denote by L, the order of this group, so the above covering has degree L,. Since each loop
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77, and dj lifts to a loop on 5, we have that 2/ is a surface of genus gt with L,(t + y + 1)
deleted discs. We can holomorphically embedd the surface 2 in the Riemann sphere, C,
as the complement of (t + y + 1) deleted holomorphic discs, and we can holomorphically
embedd the surface 2/ in a closed Riemann surface, 2/, of genus g, as the complement of
Lt(t + y + 1) deleted holomorphic discs. Now, we can extend the covering map n to a
regular unbranched covering

Let us apply the Riemann-Hurwitz formula to this covering. In this case, we obtain the
following equality:

from where we obtain that L, = 1 and g, = 0.

LEMMA 3. For each j-\,...,t, n '(Ay) = JJ AM, where each AM is a surface of

genus zero with nt deleted discs, precisely invariant under the cyclic group generated by F1-
in H.

Proof. Let Ay.* be a component of ;r~'(Ay) and let us consider the restriction of n to
these surfaces

This is a holomorphic regular covering branched at Ps and Qn with covering group H-t and
with the property that the loop dy lifts to a loop. Let us denote by Ly the order of the
group Hj, so the above covering has degree Ly. We have that Ay * is a surface of genus gy

with Lj deleted discs. We can holomorphically embedd the surface Ay in the Riemann
sphere, C, as the complement of a holomorphic disc, and we can holomorphically embedd
the surface Ay * in a closed Riemann surface, Ay~*, of genus gy as the complement of Ly

holomorphic discs. Now, we can extend the covering map K to a regular branched
covering

n:A~k^>C,

with the same branching as before, that is, we do not add extra branch points to this
covering. Let us apply the Riemann-Hurwitz formula to this covering. In this case, we
obtain the following equality:

g, = 1 - Lj/ttj,

from where we obtain that L} = n, and gy = 0. Now it is also clear that Hj must be the
cyclic group generated by F).

LEMMA 4. n~\Tj) = JJ 7/,r> where /?, divides N and Tj r is a torus with N/Rj deleted

discs. Moreover, Tj r - (ji~\aj) D T, r) is the disjoint union o/N, spheres with (N/N/Rj + 2)
deleted discs, where NjR, divides N.

Proof. Let Tt r be a component of JT~'(7]) and let us consider the restriction of n to
these surfaces
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This is a holomorphic unbranched regular covering with covering group Ht and with the
property that the loop ?j, lifts to a loop. Let us denote by L, the order of the group //,, so
the above covering has degree L,. We have that T: r is a surface of genus g, with L, deleted
discs. We can holomorphically embedd the surface 7] in a torus, 9~p, as the complement of
a holomorphic disc, and we can holomorphically embedd the surface 7] r in a closed
Riemann surface, fir, of genus g, as the complement of L, holomorphic discs. Now, we
can extend the covering map n to a regular unbranched covering

Let us apply the Riemann-Hurwitz formula to this covering. In this case, we obtain
the following equality:

that is, fir is a torus. The group //, is a finite subgroup of conformal automorphisms of Tt r

acting without fixed points. This group is known to be of the form Z/N,Z © Z/(A7N,7?,)Z,
for some JV, and Rh such that N,7?, divides N. The lemma follows as consequence of the
above.

c^

V

Figure 3.

/V/2

LEMMA 5. ^ '(a) = [J ar, where ar is a sphere with 3 deleted discs and stabilizer in H

the group in two elements generated by the involution hm that fixes any lifting of Zm. (See
Figure 3.)

Proof. Let or be any component of K~1(O). Let us restrict our covering n to these
parts, that is

n:or^> a.

This is a regular covering of degree d with branch value Zm of order two. The loop <5,+,
lifts to a loop and the loop <5,+2 lifts to a path, but its square lifts to a loop on ar. The
surface ar is a surface of genus gr and with (d + d/2) holes. By Maskit's result, we may
assume the surface o to be the Riemann sphere minus a holomorphic disc and the surface
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or to be the complement of (d + d/2) disjoint holomorphic discs on a closed Riemann
surface br of genus gr. We can extend our regular branch covering to a branch covering

with the same covering group and with two branch values of order two, one of them Zm

and the other in the complement disc of a on the Riemann sphere C Now, let us apply
the Riemann-Hurwitz formula to this covering to obtain the equality

As consequence, gr = 0 and d = 2. Since the involution hm must be the covering group of
this covering, we must have that this group is generated by the involution hm.

Figure 4.

/V/4

LEMMA 6. For each k = 1,. . . , M, n '(O*) = JJ <frkr, where <£>kr is a sphere with 2
r=l

holes an invariant under the Klein group generated by h2k-\ and h2k- (See Figure 4.)

Proof. Let <i>k r be any component of n~\<£>k). Let us restrict our covering n to these
parts, that is

This is a regular covering of degree d with branch values Z2k~\ and Z2k of order two. The
loop 4>k lifts to a path, but its square lifts to a loop on <frk r. The surface <bk r is a surface of
genus gk and with d/2 holes. By Maskit's result, we may assume the surface &k to be the
Riemann sphere minus a holomorphic disc and the surface <Jv r to be the complement of
d/2 disjoint holomorphic discs on a closed Riemann surface O ,̂,. of genus gk. We can
extend our regular branch covering to a branch covering

7T * d)?' —» (P
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with the same covering group and with three branch values of order two, two of them
Z2*_i, Z2k and the other in the complementary disc of <t>k on the Riemann sphere C
Now, let us apply the Riemann-Hurwitz formula to this covering to obtain the equality

gk = 1 - dlA.

As a consequence, gk = 0 and d = A. Since the involutions hlk-\ and h2k belong to the
covering group and they generate a Klein group, then we must have that this group is
exactly all the covering group.

For each r, denote by P the pant Pantr and by y,, y2 and y3 the boundary loops of
P = Pantr. Since each of the loops y, either lifts to a loop or its square lifts to a loop and
the loop y3 is homotopic to the product of y, and y2, we have three possibilities for the
liftings of P.

(1) (3)

LEMMA 7. (1) / / y, and y2 lift to loops, then n \P) = JJ Qr, where Qr is
biholomorphic to P under n. In particular, Qr is a pant. r = l

Nil

(2) / / y, lifts to a loop and y2 lifts to a path, then Jt~\P) = JJ Qr, where Qr is a sphere
r= 1

with four holes. The subgroup of H keeping Qr invariant is a group of order 2.
(3) / / Y\ and y2 both lift to paths, then either we are in case (2) by permuting the loops yx

and y3 or n~\P)= JJ Qr, where Qr is a sphere with six holes. In the last case, the
r= I

subgroup of H keeping invariant Qr is a Klein group. (See Figure 5.)
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Proof. (1) Let us assume the loops y, lift to loops for i = 1,2. Since the loop y-, is
homotopic to the product of them, then it lifts also to a loop. Let Qr be a component of
jt~l(P), and consider the regular unbranched covering

This is a regular unbranched covering of degree d. The surface Qr is a surface of genus g
with 3d deleted discs. Again, using Maskit's result we may assume that P is the
complement of three disjoint holomorphic discs in the Riemann sphere and Qr is the
complement of 3d disjoint holomorphic discs in a closed Riemann surface Qr of genus g.
We can extend our covering to a regular unbranched one of degree d

We apply the Riemann-Hurwitz formula to this covering to obtain the equality

From this equality we obtain that g = 0 and d = 1.
(2) Let us assume the loop Y\ lifts to loop and the loop a2 lifts to a path. Since the

loop y3 is homotopic to the product of them, then it lifts also to a path. Let Qr be a
component of n~\P), and consider the regular unbranched covering

This is a regular unbranched covering of degree d. The surface Qr is a surface of genus g
with (d + d/2 + d/2) = 2d deleted discs. Using Maskit's result we may assume that P is
the complement of three disjoint holomorphic discs in the Riemann sphere and Qr is the
complement of 2d disjoint holomorphic discs in a closed Riemann surface Qr of genus g.
We can extend our covering to a regular one of degree d

With two branch values of order two. We apply the Riemann-Hurwitz formula to this
covering to obtain the equality

From this equality we obtain that g = 0 and d = 2.
(3) Let us assume the loops y, lift to paths for i = 1,2. Since the loop y3 is homotopic

to the product of them, then it lifts either to a loop or to a path. In the first case, we
permute the loops y, and y3. In this way, we are in the previous case. Let us assume now
that the three loops lift to paths. Let f{ be the elements of H which are determined in the
following way. Take a point xt in y, and let M, be a lifting of that point in Qr. Lift the loop
y, at «, and look at its end point. That point has the form /•(«,-) for a unique / in H. Since
the group H is abelian, the transformation fi is well defined. Also, since the loops lift to
paths with the property that their square lift to loops, these elements are non-trivial and
of order two. Since y3 is homotopic to the product of y, and y2, then / 3 = / i / 2 . In
particular, the group generated by these elements is the Klein group. Let Qr be a
component of ;r~'(P), then we consider the regular unbranched covering

https://doi.org/10.1017/S0017089500030500 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030500


CLOSED RIEMANN SURFACES 31

This is a regular unbranched covering of degree d. The surface Qr is a surface of genus g
with 3d/2 deleted discs. Again, using Maskit's result we may assume that P is the
complement of three disjoint holomorphic discs in the Riemann sphere and Qr is the
complement of 3d/2 disjoint holomorphic discs in a closed Riemann surface Qr of genus
g. We can extend our covering to a regular one of degree d with three branch values of
order two

We apply the Riemann-Hurwitz formula to this covering to obtain the equality

g = 1 - d/4.

From this equality we obtain that g = 0 and d = 4. Since the Klein group has order 4, then
the covering group is exactly the one generated by the involutions^, for i = 1, 2.

As consequence of the above lemmas, we obtain that the liftings of the loops ah 77,,
dj and the loops 0 r are a family of disjoint simple loops on 5 which dissect 5 into spheres
with holes. Now, we can proceed to finish the proof of the Main Theorem as consequence
of Propositions 2 and 3 in Section 2. Denote by M the normalizer in 11,(5) of the liftings
of the loops r?,, a?1"'*', <5, and 0 r , for i = 1,. . . , 7, j = 1,. . . , / and r = 1,. . . , T. Since 5
minus the liftings of the above loops is a disjoint union of spheres with deleted discs, then
there exists a sub-family Jf of the above liftings consisting of g loops, such that they
dissect S into a sphere with 2g deleted discs. It is clear that the normalizer of Jf is also M.
In particular, M (Jf) defines a Schottky group G, up to isomorphisms, and in particular, a
Schottky uniformization (Q(G), G, n.Q(G)—*S), up to equivalence, of the surface S.
Since the set of loops obtained, as a consequence of the above results, is invariant under
the action of H, its normalizer M is also invariant under H; in particular, the Schottky
uniformization defined by the family M loops is the desired one. This ends the proof of
our theorem.

We must remark that this proof is not so informative as the proof given for the cyclic,
Z/2Z © Z/2Z and dihedral cases done in [8, 9,10].
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